1
|
Andreeva AM, Lamash N, Martemyanov VI, Vasiliev AS, Toropygin IY, Garina DV. High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity. JOURNAL OF FISH BIOLOGY 2024; 104:564-575. [PMID: 37927095 DOI: 10.1111/jfb.15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
To investigate the stress response and physiological adaptations of goldfish (Carassius auratus) to critical salinity (CS) waters, we analyzed high-density lipoprotein (HDL) stoichiometry, stress markers (cortisol, glucose), and plasma osmotic properties (Na+ , osmolality, water content) using ichthyology, biochemistry, and proteomics approaches. After 21 days of exposure to CS, plasma concentrations of cortisol, glucose, and Na+ increased, indicating stress. Total plasma osmolality (Osmtotal ) and osmolality generated by inorganic (Osminorg ) and organic osmolytes (Osmorg ) also increased, the latter by ~2%. We associated the increase of Osmorg with (1) increased metabolite concentration (glucose), (2) dissociation of HDL particles resulting in increased HDL number per unit plasma volume (~1.5-2-fold) and (3) increased HDL osmotic activity. HDL remodeling may be the reason for the redistribution of bound and free water in plasma, which may contribute to water retention in plasma and, at the same time, to hemodynamic disturbances under CS conditions. The study's findings suggest that HDL remodeling is an important mechanism for maintaining osmotic homeostasis in fish, which is consistent with current capillary exchange models in vertebrates.
Collapse
Affiliation(s)
- Alla M Andreeva
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Nina Lamash
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- A.V. Zhirmunsky National Scientifc Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - V I Martemyanov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - A S Vasiliev
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - I Yu Toropygin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D V Garina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
2
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
5
|
Hypoxic Signaling and Cholesterol Lipotoxicity in Fatty Liver Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2548154. [PMID: 29955245 PMCID: PMC6000860 DOI: 10.1155/2018/2548154] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Cholesterol is the only lipid whose absorption in the gastrointestinal tract is limited by gate-keeping transporters and efflux mechanisms, preventing its rapid absorption and accumulation in the liver and blood vessels. In this review, I explored the current data regarding cholesterol accumulation in liver cells and key mechanisms in cholesterol-induced fatty liver disease associated with the activation of deleterious hypoxic and nitric oxide signal transduction pathways. Although nonalcoholic fatty liver disease (NAFLD) affects both obese and nonobese individuals, the mechanism of NAFLD progression in lean individuals with healthy metabolism is puzzling. Lean NAFLD individuals exhibit normal metabolic responses, implying that liver damage is not associated with impaired metabolism per se and that direct lipotoxic effects are crucial for disease progression. Several redox and oxidant signaling pathways involving cholesterol are at play in fatty liver disease development. These include impairment of the mitochondrial and lysosomal function by cholesterol loading of the inner-cell membranes; formation of cholesterol crystals and hepatocyte degradation; and crown-like structures surrounding degrading hepatocytes, activating Kupffer cells, and evoking inflammation. The current review focuses on the induction of liver inflammation, fibrosis, and steatosis by free cholesterol via the hypoxia-inducible factor 1α (HIF-1α), a main oxygen-sensing transcription factor involved in all stages of NAFLD. Cholesterol loading in hepatocytes can result in chronic HIF-1α activity because of the decreased oxygen availability and excessive production of nitric oxide and mitochondrial reactive oxygen species.
Collapse
|
6
|
Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017; 6. [PMID: 28169829 PMCID: PMC5323040 DOI: 10.7554/elife.23355] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI:http://dx.doi.org/10.7554/eLife.23355.001
Collapse
Affiliation(s)
- Rima S Chakrabarti
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sally A Ingham
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Julia Kozlitina
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Austin Gay
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
7
|
Nghiem-Rao TH, Patel SB. Investigating Sitosterolemia to Understand Lipid Physiology. ACTA ACUST UNITED AC 2017; 8:649-658. [PMID: 29928317 DOI: 10.2217/clp.13.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cholesterol molecule is at the center of the pathophysiology of many vascular diseases. Whole-body cholesterol pools are maintained by a balance of endogenous synthesis, dietary absorption and elimination from our bodies. While the cellular aspects of cholesterol metabolism received significant impetus from the seminal work of Goldstein and Brown investigating LDL receptor trafficking, how dietary cholesterol was absorbed and eliminated was relatively neglected. The identification of the molecular defect a rare human disorder, Sitosterolemia, led to elucidation of a key mechanism of how we regulate the excretory pathway in the liver and in the intestine. Two proteins, ABCG5 and ABCG8, constitute a heterodimeric transporter that facilitates the extrusion of sterols from the cell into the biliary lumen, with a preference for xenosterols. This mechanism explained how dietary xenosterols are prevented from accumulating in our bodies. In addition, this disease has also highlighted the potential harm of xenosterols; macrothrombocytopenia, liver disease and endocrine disruption are seen when xenosterols accumulate. Mouse models of this disease suggest that there are more dramatic alterations of physiology, suggesting that these highly conserved mechanisms have evolved to prevent these xenosterols from accumulating in our bodies.
Collapse
Affiliation(s)
| | - Shailendra B Patel
- Medical College of Wisconsin, and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
8
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
10
|
Kasumov T, Willard B, Li L, Li M, Conger H, Buffa JA, Previs S, McCullough A, Hazen SL, Smith JD. 2H2O-based high-density lipoprotein turnover method for the assessment of dynamic high-density lipoprotein function in mice. Arterioscler Thromb Vasc Biol 2013; 33:1994-2003. [PMID: 23766259 DOI: 10.1161/atvbaha.113.301700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver for clearance. Reduced HDL-cholesterol (HDLc) is associated with atherosclerosis; however, as a predictor of cardiovascular disease, HDLc has limitations because it is not a direct marker of HDL functionality. Our objective was to develop a mass spectrometry-based method for the simultaneous measurement of HDLc and ApoAI kinetics in mice, using a single (2)H2O tracer, and use it to examine genetic and drug perturbations on HDL turnover in vivo. APPROACH AND RESULTS Mice were given (2)H2O in the drinking water, and serial blood samples were collected at different time points. HDLc and ApoAI gradually incorporated (2)H, allowing experimental measurement of fractional catabolic rates and production rates for HDLc and ApoAI. ApoE(-/-) mice displayed increased fractional catabolic rates (P<0.01) and reduced production rates of both HDLc and ApoAI (P<0.05) compared with controls. In human ApoAI transgenic mice, levels and production rates of HDLc and human ApoAI were strikingly higher than in wild-type mice. Myriocin, an inhibitor of sphingolipid synthesis, significantly increased both HDL flux and macrophage-to-feces reverse cholesterol transport, indicating compatibility of this HDL turnover method with the macrophage-specific reverse cholesterol transport assay. CONCLUSIONS (2)H2O-labeling can be used to measure HDLc and ApoAI flux in vivo, and to assess the role of genetic and pharmacological interventions on HDL turnover in mice. Safety, simplicity, and low cost of the (2)H2O-based HDL turnover approach suggest that this assay can be scaled for human use to study effects of HDL targeted therapies on dynamic HDL function.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology and Hepatology, Case Western Reserve University School of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Holleboom AG, Jakulj L, Franssen R, Decaris J, Vergeer M, Koetsveld J, Luchoomun J, Glass A, Hellerstein MK, Kastelein JJP, Hovingh GK, Kuivenhoven JA, Groen AK, Turner SM, Stroes ESG. In vivo tissue cholesterol efflux is reduced in carriers of a mutation in APOA1. J Lipid Res 2013; 54:1964-71. [PMID: 23650622 DOI: 10.1194/jlr.p028449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Atheroprotection by high density lipoprotein (HDL) is considered to be mediated through reverse cholesterol transport (RCT) from peripheral tissues. We investigated in vivo cholesterol fluxes through the RCT pathway in patients with low plasma high density lipoprotein cholesterol (HDL-c) due to mutations in APOA1. Seven carriers of the L202P mutation in APOA1 (mean HDL-c: 20 ± 19 mg/dl) and seven unaffected controls (mean HDL-c: 54 ± 11 mg/dl, P < 0.0001) received a 20 h infusion of (13)C2-cholesterol ((13)C-C). Enrichment of plasma and erythrocyte free cholesterol and plasma cholesterol esters was measured. With a three-compartment SAAM-II model, tissue cholesterol efflux (TCE) was calculated. TCE was reduced by 19% in carriers (4.6 ± 0.8 mg/kg/h versus 5.7 ± 0.7 mg/kg/h in controls, P = 0.02). Fecal (13)C recovery and sterol excretion 7 days postinfusion did not differ significantly between carriers and controls: 21.3 ± 20% versus 13.3 ± 6.3% (P = 0.33), and 2,015 ± 1,431 mg/day versus 1456 ± 404 mg/day (P = 0.43), respectively. TCE is reduced in carriers of mutations in APOA1, suggesting that HDL contributes to efflux of tissue cholesterol in humans. The residual TCE and unaffected fecal sterol excretion in our severely affected carriers suggest, however, that non-HDL pathways contribute to RCT significantly.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R, Wilson MD, Dikkers A, Tietge UJF, Collet X, Rudel LL, Temel RE, Brown JM. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res 2013; 54:1567-1577. [PMID: 23564696 DOI: 10.1194/jlr.m034454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.
Collapse
Affiliation(s)
- Kanwardeep S Bura
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Caleb Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gwyn Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Manya Warrier
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jun Zhang
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Janet K Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ramesh Shah
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Martha D Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Arne Dikkers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil Hospital, BP 84225, Toulouse, France
| | - Lawrence L Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The process of reverse cholesterol transport (RCT) is critical for disposal of excess cholesterol from the body. Although it is generally accepted that RCT requires biliary secretion, recent studies show that RCT persists in genetic or surgical models of biliary insufficiency. Discovery of this nonbiliary pathway has opened new possibilities of targeting the intestine as an inducible cholesterol excretory organ. In this review we highlight the relative contribution and therapeutic potential for both biliary and nonbiliary components of RCT. RECENT FINDINGS Recently, the proximal small intestine has gained attention for its underappreciated ability to secrete cholesterol in a process called transintestinal cholesterol efflux (TICE). Although this intestinal pathway for RCT is quantitatively less important than the biliary route under normal physiological conditions, TICE is highly inducible, providing a novel therapeutic opportunity for treatment of atherosclerotic cardiovascular disease (ASCVD). In fact, recent studies show that intestine-specific activation of RCT protects against ASCVD in mice. SUMMARY It is well known that the small intestine plays a gatekeeper role in the maintenance of cholesterol balance. Through integrated regulation of cholesterol absorption and TICE, the small intestine is a key target for new therapies against ASCVD.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
14
|
Experimental models for the investigation of high-density lipoprotein-mediated cholesterol efflux. Curr Atheroscler Rep 2011; 13:266-76. [PMID: 21484293 DOI: 10.1007/s11883-011-0177-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reduction of low-density lipoprotein cholesterol by statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Epidemiologic and interventional studies have clearly established an inverse association between plasma levels of high-density lipoprotein (HDL) cholesterol and incidence of atherosclerosis. The atheroprotective benefits of HDL are not only dependent on HDL concentrations (quantity), but also on HDL function (quality). Therefore, several techniques have been recently developed to assess the different properties of HDL. Because reverse cholesterol transport (RCT) is considered a key player in the beneficial action of HDL, this review focuses on the different methods used to evaluate cholesterol efflux. Measuring the in vivo function of HDL could be of significant importance for both the clinical evaluation of an individual patient and to evaluate the effectiveness of different RCT-enhancing therapeutic approaches.
Collapse
|
15
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
16
|
Amigo L, Quiñones V, Leiva A, Busso D, Zanlungo S, Nervi F, Rigotti A. Apolipoprotein A-I deficiency does not affect biliary lipid secretion and gallstone formation in mice. Liver Int 2011; 31:263-71. [PMID: 21134113 DOI: 10.1111/j.1478-3231.2010.02421.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Apolipoprotein A-I (apo A-I) is the main protein component of plasma high-density lipoproteins (HDL) and a key determinant of HDL cholesterol levels and metabolism. The relevance of HDL in controlling the traffic of cholesterol from plasma into bile has been partially addressed. The aim of this study was to evaluate the role of apo A-I expression in controlling the secretion of biliary lipids as well as the risk of gallstone disease in vivo. METHODS We evaluated biliary lipid secretion and bile acid homeostasis in mice deficient for apo A-I compared with wild-type animals when fed with low- or high-cholesterol diets. In addition, we assessed the importance of murine apoA-I expression for gallstone formation after feeding a lithogenic diet. RESULTS Bile acid pool size and faecal excretion were within the normal range in chow- and cholesterol-fed apo A-I knockout (KO) mice. Basal biliary cholesterol secretion was comparable and increased similarly in both murine strains after cholesterol feeding. Lithogenic diet-fed apo A-I KO mice exhibited an impaired hypercholesterolaemic response owing to a lower increase in cholesterol levels transported in large lipoproteins. However, the lack of apo A-I expression did not affect biliary cholesterol precipitation or gallstone formation in lithogenic diet-fed mice. CONCLUSIONS These findings indicate that biliary lipid secretion, bile acid metabolism and gallstone formation are independent of apo A-I expression and plasma HDL cholesterol levels in mice.
Collapse
Affiliation(s)
- Ludwig Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
17
|
Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010; 12:96-102. [PMID: 20620999 PMCID: PMC2913877 DOI: 10.1016/j.cmet.2010.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Recent evidence suggests that the intestine may play a direct facilitative role in reverse cholesterol transport (RCT), independent of hepatobiliary secretion. In order to understand the nonbiliary pathway for RCT, we created both genetic and surgical models of biliary cholesterol insufficiency. To genetically inhibit biliary cholesterol secretion, we generated mice in which Niemann-Pick C1-Like 1 (NPC1L1) was overexpressed in the liver. Compared to controls, NPC1L1(Liver-Tg) mice exhibit a >90% decrease in biliary cholesterol secretion, yet mass fecal sterol loss and macrophage RCT are normal. To surgically inhibit biliary emptying into the intestine, we have established an acute biliary diversion model. Strikingly, macrophage RCT persists in mice surgically lacking the ability to secrete bile into the intestine. Collectively, these studies demonstrate that mass fecal sterol loss and macrophage RCT can proceed in the absence of biliary sterol secretion, challenging the obligate role of bile in RCT.
Collapse
Affiliation(s)
- Ryan E Temel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu M, Zhou H, Tan KC, Guo R, Shiu SW, Wong Y. ABCG1 mediated oxidized LDL-derived oxysterol efflux from macrophages. Biochem Biophys Res Commun 2009; 390:1349-54. [DOI: 10.1016/j.bbrc.2009.10.152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022]
|
19
|
van der Veen JN, van Dijk TH, Vrins CLJ, van Meer H, Havinga R, Bijsterveld K, Tietge UJF, Groen AK, Kuipers F. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 2009; 284:19211-9. [PMID: 19416968 DOI: 10.1074/jbc.m109.014860] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 micromol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 micromol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (-4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xie C, Turley SD, Dietschy JM. ABCA1 plays no role in the centripetal movement of cholesterol from peripheral tissues to the liver and intestine in the mouse. J Lipid Res 2009; 50:1316-29. [PMID: 19286647 DOI: 10.1194/jlr.m900024-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study uses the mouse to explore the role of ABCA1 in the movement of this cholesterol from the peripheral organs to the endocrine glands for hormone synthesis and liver for excretion. The sterol pool in all peripheral organs was constant and equaled 2,218 and 2,269 mg/kg, respectively, in abca1(+/+) and abca1(-/-) mice. Flux of cholesterol from these tissues equaled the rate of synthesis plus the rate of LDL-cholesterol uptake and was 49.9 mg/day/kg in control animals and 62.0 mg/day/kg in abca1(-/-) mice. In the abca1(+/+) animals, this amount of cholesterol moved from HDL into the liver for excretion. In the abca1(-/-) mice, the cholesterol from the periphery also reached the liver but did not use HDL. Fecal excretion of cholesterol was just as high in abac1(-/-) mice (198 mg/day/kg) as in the abac1(+/+) animals (163 mg/day/kg), although the abac1(-/-) mice excreted relatively more neutral than acidic sterols. This study established that ABCA1 plays essentially no role in the turnover of cholesterol in peripheral organs or in the centripetal movement of this sterol to the endocrine glands, liver, and intestinal tract for excretion.
Collapse
Affiliation(s)
- Chonglun Xie
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | |
Collapse
|
21
|
Sacks FM, Rudel LL, Conner A, Akeefe H, Kostner G, Baki T, Rothblat G, de la Llera-Moya M, Asztalos B, Perlman T, Zheng C, Alaupovic P, Maltais JAB, Brewer HB. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res 2009; 50:894-907. [PMID: 19144994 DOI: 10.1194/jlr.m800622-jlr200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich. We demonstrate that treating plasma with a novel selective delipidation procedure converts large to small HDL [HDL-selectively delipidated (HDL-sdl)]. HDL-sdl contains several cholesterol-depleted species resembling small alpha, prebeta-1, and other prebeta forms. Selective delipidation markedly increases efficacy of plasma to stimulate ABCA1-mediated cholesterol transfer from monocytic cells to HDL. Plasma from African Green monkeys underwent selective HDL delipidation. The delipidated plasma was reinfused into five monkeys. Prebeta-1-like HDL had a plasma residence time of 8 +/- 6 h and was converted entirely to large alpha-HDL having residence times of 13-14 h. Small alpha-HDL was converted entirely to large alpha-HDL. These findings suggest that selective HDL delipidation activates reverse cholesterol transport, in vivo and in vitro. Treatment with delipidated plasma tended to reduce diet-induced aortic atherosclerosis in monkeys measured by intravascular ultrasound. These findings link the conversion of small to large HDL, in vivo, to improvement in atherosclerosis.
Collapse
Affiliation(s)
- Frank M Sacks
- Harvard School of Public Health and Harvard Medical School, Boston, MA, USA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol 2008; 51:2199-211. [PMID: 18534265 DOI: 10.1016/j.jacc.2008.03.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 02/19/2008] [Accepted: 03/04/2008] [Indexed: 02/02/2023]
Abstract
A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression. However, circulating HDL cholesterol levels alone represent an inadequate measure of therapeutic efficacy. Evaluation of the potential effects of HDL-targeted interventions on atherosclerosis requires reliable assays of HDL function and surrogate markers of efficacy. Promotion of macrophage cholesterol efflux and reverse cholesterol transport is thought to be one of the most important mechanisms by which HDL protects against atherosclerosis, and methods to assess this pathway in vivo are being developed. Indexes of monocyte chemotaxis, endothelial inflammation, oxidation, nitric oxide production, and thrombosis reveal other dimensions of HDL functionality. Robust, reproducible assays that can be performed widely are needed to move this field forward and permit effective assessment of the therapeutic potential of HDL-targeted therapies.
Collapse
|
23
|
Wooten JS, Biggerstaff KD, Anderson C. Response of lipid, lipoprotein-cholesterol, and electrophoretic characteristics of lipoproteins following a single bout of aerobic exercise in women. Eur J Appl Physiol 2008; 104:19-27. [DOI: 10.1007/s00421-008-0770-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
|
24
|
Rodríguez-Sureda V, López-Tejero MD, Llobera M, Peinado-Onsurbe J. Social stress profoundly affects lipid metabolism: Over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice. Atherosclerosis 2007; 195:57-65. [PMID: 17222414 DOI: 10.1016/j.atherosclerosis.2006.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/21/2022]
Abstract
We examined the effect of chronic social stress, similar to that endured by humans, on lipid metabolism of mice. The activity of the lipoprotein lipase (LPL) enzyme increased in adrenals, while in plasma it diminished significantly. Hepatic lipase (HL) was strongly affected in liver and adrenal glands, increasing four-fold and three-fold, respectively. At the same time, scavenger receptor class-B type-I (SR-BI), which are considered the high-density lipoprotein (HDL) receptor in the liver, increased significantly. Although the adrenals do not synthesise HL, the increase in HL may facilitate the uptake of HDL cholesterol for the synthesis of corticoids, which increase significantly following chronic stress. The volume of adrenal glands in control animals was significantly higher than in stressed animals (1.23+/-0.12 mm3 versus 0.29+/-0.06 mm3, p<0.001), corresponding with the weight difference of these organs. Medulla volume was also different in the two groups (0.27+/-0.10 mm3 versus 0.04+/-0.02 mm3, p<0.05). Despite this, corticosterone in plasma was significantly higher in stressed animals. Our results shows, for the first time, the effect of chronic social stress on lipid metabolism in general, and in particular on the SR-BI receptor and HL, which is directly involved in cholesterol reverse transport.
Collapse
Affiliation(s)
- Víctor Rodríguez-Sureda
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Mineo C, Shaul PW. Role of High-Density Lipoprotein and Scavenger Receptor B Type I in the Promotion of Endothelial Repair. Trends Cardiovasc Med 2007; 17:156-61. [PMID: 17574123 DOI: 10.1016/j.tcm.2007.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is considerable experimental evidence that high-density lipoprotein (HDL) cholesterol and the principal high-affinity HDL receptor scavenger receptor B type I (SR-BI) afford cardiovascular protection. However, the fundamental mechanisms underlying the protection remain complex and not well understood. Recent work in cell culture indicates that the HDL-SR-BI tandem stimulates endothelial cell migration. Further studies have revealed that this entails Src-mediated, phosphatidylinositol 3-kinase-mediated, and mitogen-activated protein kinase-mediated signaling that leads to the activation of Rac guanosine triphosphate hydrolase and the resultant rearrangement of the actin cytoskeleton. Furthermore, assessment of reendothelialization after perivascular electric injury in mice indicates that HDL-SR-BI-mediated stimulation of endothelial migration is operative in vivo. Recent additional work in mice also indicates that HDL activates the recruitment of endothelial progenitor cells into the intimal layer in the setting of endothelial injury. As such, signaling initiated by HDL-SR-BI promotes endothelial repair, and this novel mechanism of action may be critically involved in the impact of the lipoprotein on vascular health and disease.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW One of the major mechanisms whereby HDL particles are felt to protect against atherosclerosis is that of reverse cholesterol transport from atherosclerotic lesion macrophages to the liver, with subsequent excretion of cholesterol in the bile. This review focuses on recent progress in our understanding of reverse cholesterol transport and the factors that determine plasma HDL cholesterol concentrations. RECENT FINDINGS The liver and intestine are the major sites of apolipoprotein A-I synthesis and nascent HDL particle secretion. The liver has recently been shown to be a major contributor to the plasma HDL-cholesterol concentration, but the precise site or mechanism whereby hepatically-synthesized HDL acquire the bulk of their lipid content remains to be determined. Contrastingly, macrophages contribute little to the plasma HDL cholesterol pool, whereas the quantitatively small macrophage-specific reverse cholesterol transport contributes disproportionately to protection against atherosclerosis. Studies have highlighted the coordinate action of cell surface lipid transporters, cholesterol esterification enzymes and lipid transfer factors in the early steps of reverse cholesterol transport and the recycling of pre-beta HDL particles to create a ready supply of cholesterol acceptor HDL particles. Most of the variation in plasma HDL-cholesterol levels in human populations is accounted for by variations in HDL clearance rather than production. SUMMARY Our understanding of the in-vivo metabolism of HDL particles and their role in reverse cholesterol transport is rapidly evolving, with long-standing concepts being constantly challenged by emerging evidence. An in-depth understanding of HDL metabolism will guide the rational design of novel pharmacological therapies that effectively protect against atherosclerosis.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Affiliation(s)
- Marina Cuchel
- Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
Rashid S, Patterson BW, Lewis GF. Thematic review series: patient-oriented research. What have we learned about HDL metabolism from kinetics studies in humans? J Lipid Res 2006; 47:1631-42. [PMID: 16685079 DOI: 10.1194/jlr.r600008-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasma measurements of lipids, lipoproteins, and apolipoproteins provide information on the static levels of these fractions without providing key information on the dynamic fluxes of lipoproteins in the circulation. Kinetics studies, in contrast, provide additional information on the production and clearance rates of lipoproteins and the flow of lipids and apolipoproteins through lipoprotein fractions. This information is crucial in accurately delineating the metabolism of HDL in plasma, because plasma concentrations of HDL are the net result of the de novo production and catabolism of HDL as well as the recycling of HDL particles and the contribution to HDL from components of other lipoproteins. Studies aimed at measuring the metabolism of HDL particles have shown that HDL metabolism in vivo is complex and consists of multiple components. Kinetics studies provide a window into the metabolism of HDL, allowing us to better understand the mechanisms of HDL decrease in human conditions and the functionality of HDL particles. Here, we review the progress in our understanding of HDL metabolism derived from in vivo kinetics studies, focusing primarily on studies in humans but also reviewing key studies in animal models.
Collapse
Affiliation(s)
- Shirya Rashid
- Department of Cardiology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
29
|
Sirtori CR, Fumagalli R. LDL-cholesterol lowering or HDL-cholesterol raising for cardiovascular prevention. Atherosclerosis 2006; 186:1-11. [PMID: 16310198 DOI: 10.1016/j.atherosclerosis.2005.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/05/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
A number of reports have indicated that both lowering low density lipoprotein (LDL)-cholesterol and raising high density lipoprotein (HDL)-cholesterol can result in significant cardiovascular benefit, both in terms of reduction of events and also, to a variable extent, of atheromatous lesions. LDL and HDL have opposite roles in body cholesterol regulation and, in theory, both reduced deposition (LDL reduction) and increased removal (raised HDL) can improve vascular disease. A number of reports over the last 30 years have attempted to quantitate with cholesterol balance/turnover studies, the correlations between LDL and HDL levels and body cholesterol pool sizes. More recently, these studies have evaluated the effects of LDL or HDL changes on cholesterol elimination. Data have, at times, been fully consistent with theoretical expectations, whereas at others they have not. Evaluation of these, at times, historical data provides, however, an important clue to the understanding of current results with different medications for the management of lipoprotein disorders.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Department of Pharmacological Sciences, University of Milano, Via Balzaretti, 20133 Milano, Italy.
| | | |
Collapse
|
30
|
Seetharam D, Mineo C, Gormley AK, Gibson LL, Vongpatanasin W, Chambliss KL, Hahner LD, Cummings ML, Kitchens RL, Marcel YL, Rader DJ, Shaul PW. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res 2005; 98:63-72. [PMID: 16339487 DOI: 10.1161/01.res.0000199272.59432.5b] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.
Collapse
Affiliation(s)
- Divya Seetharam
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Curtiss LK, Valenta DT, Hime NJ, Rye KA. What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol 2005; 26:12-9. [PMID: 16269660 DOI: 10.1161/01.atv.0000194291.94269.5a] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An initial step in reverse cholesterol transport is the movement of unesterified cholesterol from peripheral cells to high-density lipoproteins (HDLs). This transfer usually occurs in extracellular spaces, such as the subendothelial space of a vessel wall, and is promoted by the interaction of lipid-free or lipid-poor apolipoprotein (apo)AI with ATP binding cassette A1 cellular transporters on macrophages (MPhi). Because HDL does not interact with MPhi ATP binding cassette A1 and apoAI is not synthesized by macrophages, this apoAI must be generated from spherical HDL. In this brief review, we propose that spherical apoAI is derived from HDL by remodeling events that are accomplished by proteins secreted by cholesteryl ester-loaded foam cells, including the lipid transfer proteins, phospholipid transfer protein, and cholesteryl ester transfer protein, and the triglyceride hydrolases hepatic lipase and lipoprotein lipase.
Collapse
Affiliation(s)
- Linda K Curtiss
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
32
|
Rotllan N, Ribas V, Calpe-Berdiel L, Martín-Campos JM, Blanco-Vaca F, Escolà-Gil JC. Overexpression of Human Apolipoprotein A-II in Transgenic Mice Does Not Impair Macrophage-Specific Reverse Cholesterol Transport In Vivo. Arterioscler Thromb Vasc Biol 2005; 25:e128-32. [PMID: 15994442 DOI: 10.1161/01.atv.0000175760.28378.80] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Overexpression of human apolipoprotein (apo) A-II in transgenic mice induces high-density lipoprotein (HDL) deficiency, and increased atherosclerosis susceptibility only when fed an atherogenic diet. This may, in part, be caused by impairment in reverse cholesterol transport (RCT).
Methods and Results—
[
3
H]cholesterol-labeled macrophages were injected intraperitoneally into mice maintained on a chow diet or an atherogenic diet. Plasma [
3
H]cholesterol did not differ from human apoA-II transgenic and control mice at 24 or 48 hours after the label injection. On the chow diet, human apoA-II transgenic mice presented increased [
3
H]cholesterol in liver (1.3-fold) and feces (6-fold) compared with control mice (
P
<0.05). The magnitude of macrophage-specific RCT did not differ between transgenic and control mice fed the atherogenic diet.
Conclusions—
Human apoA-II maintains effective RCT from macrophages to feces in vivo despite an HDL deficiency. These findings suggest that the increased atherosclerotic lesions observed in apoA-II transgenic mice fed an atherogenic diet are not caused by impairment in macrophage-specific RCT.
Collapse
Affiliation(s)
- Noemí Rotllan
- Servei de Bioquímica, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Garver WS, Xie C, Repa JJ, Turley SD, Dietschy JM. Niemann-Pick C1 expression is not regulated by the amount of cholesterol flowing through cells in the mouse. J Lipid Res 2005; 46:1745-54. [PMID: 15930512 DOI: 10.1194/jlr.m500130-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Niemann-Pick C1 (NPC1) protein functions to regulate the transport of cholesterol from late endosomes/lysosomes to other cellular compartments after lipoprotein uptake through the coated-pit pathway. The present study examines the relative expression of NPC1 mRNA and NPC1 protein in different tissues of the mouse in relation to the uptake of total cholesterol carried in chylomicron remnants (CMr-TC), low density lipoproteins (LDL-TC), cholesteryl ester carried in high density lipoproteins (HDL-CE), and cholesterol synthesis. Results from this study demonstrate that the highest relative expression of NPC1 is in the liver, which is also the tissue with the highest uptake of CMr-TC, LDL-TC, HDL-CE, and cholesterol synthesis. However, there was no similar relation in the remaining tissues. To examine the relative expression of NPC1 in relation to the amount of cholesterol that flowed through the coated-pit pathway, mice were fed a diet supplemented with increasing amounts of cholesterol or cholestyramine. The results from this study demonstrated that there was no relation between the relative expression of NPC1 and the amount of cholesterol that flowed through the coated-pit pathway. We conclude that the relative expression of NPC1 is not regulated by the flow of cholesterol through cells in the mouse and is therefore constitutive.
Collapse
Affiliation(s)
- William S Garver
- Department of Pediatrics, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|
34
|
Asztalos BF, de la Llera-Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH. Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J Lipid Res 2005; 46:2246-53. [PMID: 16061948 DOI: 10.1194/jlr.m500187-jlr200] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.
Collapse
Affiliation(s)
- Bela F Asztalos
- Lipid Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The metabolism of high-density lipoproteins (HDL), which are inversely related to risk of atherosclerotic cardiovascular disease, involves a complex interplay of factors regulating HDL synthesis, intravascular remodeling, and catabolism. The individual lipid and apolipoprotein components of HDL are mostly assembled after secretion, are frequently exchanged with or transferred to other lipoproteins, are actively remodeled within the plasma compartment, and are often cleared separately from one another. HDL is believed to play a key role in the process of reverse cholesterol transport (RCT), in which it promotes the efflux of excess cholesterol from peripheral tissues and returns it to the liver for biliary excretion. This review will emphasize 3 major evolving themes regarding HDL metabolism and RCT. The first theme is that HDL is a universal plasma acceptor lipoprotein for cholesterol efflux from not only peripheral tissues but also hepatocytes, which are a major source of cholesterol efflux to HDL. Furthermore, although efflux of cholesterol from macrophages represents only a tiny fraction of overall cellular cholesterol efflux, it is the most important with regard to atherosclerosis, suggesting that it be specifically termed macrophage RCT. The second theme is the critical role that intravascular remodeling of HDL by lipid transfer factors, lipases, cell surface receptors, and non-HDL lipoproteins play in determining the ultimate metabolic fate of HDL and plasma HDL-c concentrations. The third theme is the growing appreciation that insulin resistance underlies the majority of cases of low HDL-c in humans and the mechanisms by which insulin resistance influences HDL metabolism. Progress in our understanding of HDL metabolism and macrophage reverse cholesterol transport will increase the likelihood of developing novel therapies to raise plasma HDL concentrations and promote macrophage RCT and in proving that these new therapeutic interventions prevent or cause regression of atherosclerosis in humans.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine and Physiology, University of Toronto, Canada.
| | | |
Collapse
|
36
|
Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL, Connelly MA, Williams DL, de la Llera-Moya M, Shaul PW, Silver DL. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 2005; 115:969-77. [PMID: 15841181 PMCID: PMC1069105 DOI: 10.1172/jci23858] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 02/02/2005] [Indexed: 12/23/2022] Open
Abstract
The binding of HDL to scavenger receptor-BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-beta-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-beta-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-beta-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane.
Collapse
Affiliation(s)
- Chatchawin Assanasen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kruit JK, Plösch T, Havinga R, Boverhof R, Groot PHE, Groen AK, Kuipers F. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005; 128:147-56. [PMID: 15633131 DOI: 10.1053/j.gastro.2004.10.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Reverse cholesterol transport (RCT) is defined as high-density lipoprotein (HDL)-mediated flux of excess cholesterol from peripheral cells to liver, followed by secretion into bile and disposal via the feces. Various steps of this pathway are controlled by the liver X receptor (LXR). We addressed the role of the intestine in LXR-dependent stimulation of fecal cholesterol excretion. METHODS To segregate biliary from intestine-derived cholesterol, wild-type and Mdr2 P-glycoprotein-deficient mice ( Mdr2 -/- ), which are unable to secrete cholesterol into bile, were treated with the LXR agonist GW3965. RESULTS Treatment with GW3965 increased biliary cholesterol secretion by 74% in wild-type mice but had no effect in Mdr2 -/- mice. LXR activation increased fecal neutral sterol excretion 2.1-fold in wild-type mice. Surprisingly, an identical increase was observed in Mdr2 -/- mice. Fractional cholesterol absorption was reduced on LXR activation in both strains but was more pronounced in Mdr2 -/- mice, coinciding with reduced Npc111 expression. Intestinal gene expression of ATP-binding cassette transporters (Abc) Abca1 , Abcg1 , Abcg5 , and Abcg8 was strongly induced upon LXR activation in both strains, whereas expression of HMGCoA reductase , controlling cholesterol synthesis, remained unaffected. Additionally, LXR activation stimulated the excretion of plasma-derived [ 3 H]cholesterol into the fecal neutral sterol fraction in Mdr2 -/- mice. CONCLUSIONS Increased fecal cholesterol loss upon LXR activation is independent of biliary cholesterol secretion in mice. An important part of excess cholesterol is excreted directly via the intestine, supporting the existence of an alternative, quantitatively important route for cholesterol disposal.
Collapse
Affiliation(s)
- Janine K Kruit
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Asztalos BF. High-density lipoprotein metabolism and progression of atherosclerosis: new insights from the HDL Atherosclerosis Treatment Study. Curr Opin Cardiol 2004; 19:385-91. [PMID: 15218401 DOI: 10.1097/01.hco.0000126979.41946.7e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current understanding of the potentially antiatherogenic properties of high-density lipoprotein related to its different components. RECENT FINDINGS Recent findings on the role of the different high-density lipoprotein subspecies in reverse cholesterol transport, inflammation, endothelial dysfunction, and low-density lipoprotein oxidation are covered. Special emphasis is put on the heterogeneity of high-density lipoprotein and functional changes related to specific high-density lipoprotein particles with the potential therapeutic alterations of high-density lipoprotein metabolism. SUMMARY The diverse action of high-density lipoprotein observed could be explained by the heterogeneity of high-density lipoprotein particles with completely different composition and properties. The modification of specific high-density lipoprotein subpopulations to reach the maximum atheroprotective effects under various pathologic conditions bears great potential in lipid research.
Collapse
Affiliation(s)
- Bela F Asztalos
- Lipid Metabolism Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| |
Collapse
|
39
|
Zanlungo S, Rigotti A, Nervi F. Hepatic cholesterol transport from plasma into bile: implications for gallstone disease. Curr Opin Lipidol 2004; 15:279-86. [PMID: 15166783 DOI: 10.1097/00041433-200406000-00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The transhepatic traffic of cholesterol from plasma lipoproteins into the bile is critical for overall cholesterol homeostasis and its alterations may lead to cholesterol gallstone formation. This review summarizes recent progress in understanding the key hepatic cholesterol metabolism-related proteins and pathways that influence biliary secretion of cholesterol. RECENT FINDINGS In cholesterol-fed apolipoprotein E knockout mice, the availability of dietary cholesterol for biliary disposal is decreased and diet-induced gallstone formation is impaired. Scavenger receptor class B type I is relevant for cholesterol transport from plasma HDL into the bile in chow-fed mice, however its expression is not critical for biliary cholesterol secretion and gallstone formation in lithogenic diet-fed mice. Intrahepatic cholesterol transport proteins (e.g. sterol carrier protein-2, Niemann Pick type C-1 protein) also determine liver cholesterol available for biliary secretion in mice. Genetic manipulation of canalicular ATP-binding cassette transporter G5 and G8 expression in mice has established their essential role for biliary cholesterol secretion. SUMMARY Recent studies have underscored that different proteins involved in hepatic cholesterol transport regulate the availability of cholesterol for biliary secretion. These advances may provide new avenues for prevention and treatment of various disease conditions linked to abnormal cholesterol metabolism.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Marcoleta 367, Santiago, Chile
| | | | | |
Collapse
|
40
|
Hattori H, Kujiraoka T, Egashira T, Saito E, Fujioka T, Takahashi S, Ito M, Cooper JA, Stepanova IP, Nanjee MN, Miller NE. Association of Coronary Heart Disease with Pre-β-HDL Concentrations in Japanese Men. Clin Chem 2004; 50:589-95. [PMID: 14726473 DOI: 10.1373/clinchem.2003.029207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: In individuals heterozygous for ABCA1 transporter mutations, defective reverse cholesterol transport (RCT) causes low HDL-cholesterol and premature coronary heart disease (CHD). However, the extent to which impaired RCT underlies premature CHD in others with low HDL-cholesterol is not known. The primary acceptors of cell cholesterol are a minor subclass of lipid-poor pre-β-HDLs. These are generated during remodeling of α-HDLs, which account for almost all HDL-cholesterol. We studied the strength of the association of CHD with pre-β-HDL concentrations in Japanese men.Methods: Blood was collected from 42 men with clinical CHD and 44 healthy controls 40–70 years of age. Pre-β-HDL was assayed by crossed immunoelectrophoresis.Results: Cases had lower HDL-cholesterol (−23%), total apolipoprotein A-I (−26%), and pre-β-HDL (−55%; all P <0.001) concentrations; lower pre-β-HDL:α-HDL ratios (−45%; P <0.001); and higher plasma triglycerides (20%; P <0.03) than the controls. On stepwise logistic regression, CHD was associated most strongly with pre-β-HDL concentrations. On ROC analysis, pre-β-HDL concentration discriminated between cases and controls better than any other lipoprotein measurement. When plasma was incubated for 16 h at 37 °C, mean (SD) pre-β-HDL increased by 47 (36)% in controls, but was unchanged in cases (group difference, P <0.001).Conclusions: Our results suggest that inefficient RCT, secondary to a low pre-β-HDL concentration and production rate in plasma, contributes to premature CHD in Japanese men with low HDL-cholesterol.
Collapse
Affiliation(s)
- Hiroaki Hattori
- Department of Advanced Medical Technology and Development, BML, Kawagoe, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
AIM Dietary cholesterol absorption, endogenous cholesterol synthesis and biliary cholesterol excretion regulate whole body cholesterol balance as a result of biotransformation into bile acids or direct cholesterol excretion. Recent studies have significantly advanced our understanding of intestinal sterol absorption at molecular level. This review concentrates on two major issues: the mechanisms of sterol absorption, and the currently available or experimental drugs that affect this pathway. DATA SYNTHESIS Nuclear hormone receptors, such as the liver X, farnesoid X and retinoid X receptors, regulate the absorption of dietary sterols by modulating the transcription of several genes involved in cholesterol metabolism, The ABC proteins transport dietary cholesterol from enterocytes back to the intestinal lumen, thus limiting the amount of absorbed cholesterol. By means of the same mechanism, ABC transporters also provide an efficient barrier against the absorption of plant sterols. Phytosterols, bile acid sequestrants, ezetimibe and ACAT inhibitors are possible means of affecting these pathways. CONCLUSION In addition to providing an insight into the molecular mechanisms of sterol absorption, these recent findings may lead to new therapeutic options for the treatment of hypercholesterolemia. This is particularly true in the case of patients at high risk of coronary artery disease requiring aggressive lipid-lowering therapy combining a statin with drugs affecting cholesterol absorption in order to ensure the optimal management of dyslipidemia.
Collapse
Affiliation(s)
- G D Norata
- Department of Pharmacological Sciences, University of Milano, Milano, Italy
| | | |
Collapse
|
43
|
Abstract
It is generally assumed that HDL is the obligate transport vehicle for 'reverse cholesterol transport', the pathway for removal of excess cholesterol from peripheral tissues via the liver into bile and subsequent excretion via the feces. During the last few years, intensive research has generated exciting new data on the separate processes involved in reverse cholesterol transport. Many 'new' proteins, particularly members of the ABC transporter and nuclear receptor subfamilies, that mediate or influence cholesterol fluxes have been identified and characterized. An important role of the intestine in regulation of cholesterol homeostasis is emerging. In this paper, new insights into mechanisms of reverse cholesterol are reviewed.
Collapse
Affiliation(s)
- Albert K Groen
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Quan G, Xie C, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:87-98. [PMID: 14643015 DOI: 10.1016/j.devbrainres.2003.09.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
These studies characterized the ontogenesis and regulation of cholesterol turnover in the central nervous system (CNS) of mice. During the first 3 weeks after birth, the CNS grew rapidly and equaled 5% of body weight. The cholesterol pool in this tissue expanded at a rate of 0.26 mg/day and the CNS synthesized sterol at a rate of 0.28 mg/day. In mature mice between 13 and 26 weeks of age, there was a marked decrease in these parameters including a reduction in the relative size of the CNS to 1.7% of body weight, a decrease in the rate of sterol accretion to 0.012 mg/day, and a reduction in the rate of cholesterol synthesis to 0.035 mg/day. Deletion of the NPC1 and CYP46A1 proteins markedly altered cholesterol metabolism in the CNS. However, changes in the plasma cholesterol concentration or loss of function of ATP-binding cassette AI transporter (ABCA1), scavenger receptor class B, type I (SR-BI), low-density lipoprotein receptor (LDLR), APOE or APOAI had no effect on sterol turnover in the brain. Thus, during early development, cholesterol comes entirely from local synthesis. In the adult, however, synthesis exceeds the need for structural cholesterol so that there is a constant excretion of sterol from the CNS into the plasma at a rate of about 0.023 mg/day.
Collapse
Affiliation(s)
- Gang Quan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8887, USA
| | | | | | | |
Collapse
|
45
|
De Backer G, Ambrosioni E, Broch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, Ebrahim S, Faergeman O, Graham I, Mancia G, Cats VM, Orth-Gom??r K, Perk J, Py??r??l?? K, Rodicio JL, Sans S, Sansoy V, Sechtem U, Silber S, Thomsen T, Wood D. European guidelines on cardiovascular disease prevention in clinical practice Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). ACTA ACUST UNITED AC 2003. [DOI: 10.1097/00149831-200312001-00001] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003; 108:661-3. [PMID: 12900335 DOI: 10.1161/01.cir.0000086981.09834.e0] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abundant data indicate that overexpression of apolipoprotein A-I (apoA-I) in mice inhibits atherosclerosis. One mechanism is believed to be promotion of reverse cholesterol transport, but no direct proof of this concept exists. We developed a novel approach to trace reverse transport of labeled cholesterol specifically from macrophages to the liver and feces in vivo and have applied this approach to investigate the ability of apoA-I overexpression to promote macrophage-specific reverse cholesterol transport. METHOD AND RESULTS J774 macrophages were loaded with cholesterol by incubation with acetylated LDL, labeled with 3H-cholesterol, and then injected intraperitoneally into mice. Plasma and feces were collected at 24 hours and 48 hours, when mice were exsanguinated, tissues were harvested, and all were analyzed for tracer counts. 3H-cholesterol was found in the plasma, liver, and feces. For apoA-I overexpression, mice were injected intravenously with apoA-I adenovirus (1011 particles per animal) 3 days before labeled macrophages were injected. ApoA-I overexpression led to significantly higher 3H-cholesterol in plasma, liver, and feces. The amount of 3H-tracer in the liver was 35% higher (P<0.05) and the 3H-tracer excreted into feces over 48 hours was 63% higher (P<0.05) in apoA-I-expressing mice than in control mice. CONCLUSIONS Injection of 3H-cholesterol-labeled macrophage foam cells is a method of measuring reverse cholesterol transport specifically from macrophages to feces in vivo, and apoA-I overexpression promotes macrophage-specific reverse cholesterol transport.
Collapse
Affiliation(s)
- YuZhen Zhang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kratz M, Wahrburg U, von Eckardstein A, Ezeh B, Assmann G, Kronenberg F. Dietary mono- and polyunsaturated fatty acids similarly increase plasma apolipoprotein A-IV concentrations in healthy men and women. J Nutr 2003; 133:1821-5. [PMID: 12771323 DOI: 10.1093/jn/133.6.1821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of dietary fatty acid composition on plasma apolipoprotein (apo) A-IV concentrations. Plasma apo A-IV concentrations were measured by ELISA in plasma of 48 healthy men and women in a controlled dietary study. First, all participants consumed a 2-wk baseline diet rich in saturated fatty acids (SFA). Then, they were randomly assigned to one of three dietary treatments, which contained refined olive oil [rich in monounsaturated fatty acids (MUFA), n = 17], rapeseed oil [rich in MUFA and alpha-linolenic acid [18:3(n-3)], n = 13], or sunflower oil [rich in (n-6) PUFA, n = 18] as the principal source of fat for 4 wk. The plasma concentrations of apo A-IV increased when subjects consumed the diets rich in unsaturated fatty acids, by 16% or 13.0 mg/L [F((2,76)) = 12.874, P < 0.001 by repeated-measures ANOVA]. The increase was not affected by diet group affiliation, gender or apo A-IV genotype. In conclusion, diets rich in unsaturated fatty acids, independent of the degree of unsaturation, gender and apo A-IV genotype, increase plasma apo A-IV concentrations compared with a baseline diet rich in SFA in healthy men and women.
Collapse
Affiliation(s)
- Mario Kratz
- Institute of Arteriosclerosis Research at the University of Münster, 48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Colesevelam HCl (WelChol, Sankyo Pharmaceuticals Inc.) is a bile acid sequestrant polymer, which has been shown to significantly lower low density lipoprotein cholesterol and favourably affect high-density lipoprotein cholesterol blood levels in monotherapy and in combination with statins (HMG-CoA reductase inhibitors). Although it is similar to other bile acid sequestrants in that it binds bile acids and is non-systemic, colesevelam HCl differs in that it has a unique polymer structure that allows for greater tolerability with less potential drug interactions than with resins. Currently, statins are the most commonly prescribed lipid-altering drugs. However, it is not uncommon that patients demonstrate true or perceived intolerances to statin therapy, that are often dose-related and may include elevations in liver or muscle enzyme blood levels, or myalgias or muscle weakness without muscle enzyme elevation. In rare circumstances, myopathy and even rhabdomyolysis can occur with statins. In addition, many statins also have important potential drug interactions. Finally, statin monotherapy is often not sufficient in achieving lipid treatment goals in many severely dyslipidaemic patients and the availability of colesevelam HCl provides a lipid-altering treatment addition to other lipid-altering drugs. From a clinical perspective, such combination therapy is often required to achieve treatment goals [1] in patients with more complicated or severe dyslipidaemia. Colesevelam HCl may also be an alternative in monotherapy for many patients with mild-to-moderate hypercholesterolaemia, as well as in some patients at potential risk from systemic exposure to alternative lipid-altering drugs (such as young children and fertile women).
Collapse
Affiliation(s)
- Harold Bays
- Kansas Foundation for Clinical Pharmacology, Radiant Research, Kansas City, 12200 W 106th, Overland Park, KS 66215, USA
| | | |
Collapse
|
49
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Churchill GA, Carey MC, Paigen B. Quantitative trait loci that determine lipoprotein cholesterol levels in DBA/2J and CAST/Ei inbred mice. J Lipid Res 2003; 44:953-67. [PMID: 12588951 DOI: 10.1194/jlr.m300002-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6). The fourth QTL, Hdl1 (48 cM, chromosome 2), confirmed a locus discovered previously using a breeding cross that employed different inbred mouse strains. In addition, we identified one novel QTL for total and non-HDL cholesterol (8 cM, chromosome 9) that we named Chol6. Hdlq10, colocalized with a mutagenesis-induced point mutation (Lch), also affecting HDL. We provide molecular evidence for Abca1 as the gene underlying Hdlq10 and Ldlr as the gene underlying Chol6 that, coupled with evidence generated by other researchers using knockout and transgenic models, causes us to postulate that polymorphisms of these genes, different from the mutations leading to Tangier's disease and familial hypercholesterolemia, respectively, are likely primary genetic determinants of quantitative variation of lipoprotein levels in mice and, by orthology, in the human population.
Collapse
MESH Headings
- Animals
- Cholesterol, Dietary/administration & dosage
- Cholesterol, HDL/blood
- Cholesterol, HDL/drug effects
- Cholic Acid/administration & dosage
- Chromosome Mapping
- Crosses, Genetic
- Dose-Response Relationship, Drug
- Female
- Genotype
- Humans
- Male
- Mice
- Mice, Inbred DBA/genetics
- Mice, Inbred Strains/genetics
- Molecular Sequence Data
- Phenotype
- Polymorphism, Genetic
- Quantitative Trait Loci/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Time Factors
Collapse
|
50
|
Mineo C, Yuhanna IS, Quon MJ, Shaul PW. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 2003; 278:9142-9. [PMID: 12511559 DOI: 10.1074/jbc.m211394200] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|