1
|
Peng Y, Li Z, Zhang Z, Chen Y, Wang R, Xu N, Cao Y, Jiang C, Chen Z, Lin H. Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury. Neural Regen Res 2024; 19:1142-1149. [PMID: 37862220 PMCID: PMC10749608 DOI: 10.4103/1673-5374.385308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 10/22/2023] Open
Abstract
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity, damaging the neurons. However, how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear. Herein, we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury. We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice. Lipid droplet accumulation could be induced by myelin debris in HT22 cells. Myelin debris degradation by phospholipase led to massive free fatty acid production, which increased lipid droplet synthesis, β-oxidation, and oxidative phosphorylation. Excessive oxidative phosphorylation increased reactive oxygen species generation, which led to increased lipid peroxidation and HT22 cell apoptosis. Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway, thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells. Motor function, lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury. The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
Collapse
Affiliation(s)
- Ying Peng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyang Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinglun Chen
- Department of Rehabilitation Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Renyuan Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nixi Xu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sánchez-Vera I, Escudero E, Muñoz Ú, Sádaba MC. IgM to phosphatidylcholine in multiple sclerosis patients: from the diagnosis to the treatment. Ther Adv Neurol Disord 2023; 16:17562864231189919. [PMID: 37599706 PMCID: PMC10437209 DOI: 10.1177/17562864231189919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system. It affects young people, and a considerable percentage of patients need the help of a wheelchair in 15 years of evolution. Currently, there is not a specific technique for the diagnosis of MS. The detection of oligoclonal IgG bands (OIgGBs) is the most sensitive assay for it, but it is not standardizable, only reference laboratories develop it, and uses cerebrospinal fluid. To obtain this sample, a lumbar puncture is necessary, an invasive proceeding with important side effects. It is important to develop and implement standard assays to obtain a rapid diagnosis because the earlier the treatment, the better the evolution of the disease. There are numerous modifying disease therapies, which delay the progression of the disease, but they have important side effects, and a considerable percentage of patients give up the treatment. In addition, around 40% of MS patients do not respond to the therapy and the disease progresses. Numerous researches have been focused on the characterization of predictive biomarkers of response to treatment, in order to help physicians to decide when to change to a second-line treatment, and then the best therapeutic option. Here, we review the new biomarkers for the diagnosis and response to treatment in MS. We draw attention in a new assay, the detection of serum IgM to phosphatidylcholine, that showed a similar sensitivity as OIgGBs and predicts the response to disease modifying treatments.
Collapse
Affiliation(s)
- Isabel Sánchez-Vera
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Escudero
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Úrsula Muñoz
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María C. Sádaba
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (INMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid 28668, Spain
| |
Collapse
|
3
|
Sukstanskii AL, Yablonskiy DA. Microscopic theory of spin-spin and spin-lattice relaxation of bound protons in cellular and myelin membranes-A lateral diffusion model (LDM). Magn Reson Med 2023; 89:370-383. [PMID: 36094730 PMCID: PMC9826187 DOI: 10.1002/mrm.29430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Deciphering salient features of biological tissue cellular microstructure in health and diseases is an ultimate goal of MRI. While most MRI approaches are based on studying MR properties of tissue "free" water indirectly affected by tissue microstructure, other approaches, such as magnetization transfer (MT), directly target signals from tissue-forming macromolecules. However, despite three-decades of successful applications, relationships between MT measurements and tissue microstructure remain elusive, hampering interpretation of experimental results. The goal of this paper is to develop microscopic theory connecting the structure of cellular and myelin membranes to their MR properties. THEORY AND METHODS Herein we introduce a lateral diffusion model (LDM) that explains the T2 (spin-spin) and T1 (spin-lattice) MRI relaxation properties of the macromolecular-bound protons by their dipole-dipole interaction modulated by the lateral diffusion of long lipid molecules forming cellular and myelin membranes. RESULTS LDM predicts anisotropic T1 and T2 relaxation of membrane-bound protons. Moreover, their T2 relaxation cannot be described in terms of a standard R2 = 1/T2 relaxation rate parameter, but rather by a relaxation rate function R2 (t) that depends on time t after RF excitation, having, in the main approximation, a logarithmic behavior: R2 (t) ∼ lnt. This anisotropic non-linear relaxation leads to an absorption lineshape that is different from Super-Lorentzian traditionally used in interpreting MT experiments. CONCLUSION LDM-derived analytical equations connect the membrane-bound protons T1 and T2 relaxation with dynamic distances between protons in neighboring membrane-forming lipid molecules and their lateral diffusion. This sheds new light on relationships between MT parameters and microstructure of cellular and myelin membranes.
Collapse
|
4
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
5
|
Baldacchino K, Peveler WJ, Lemgruber L, Smith RS, Scharler C, Hayden L, Komarek L, Lindsay SL, Barnett SC, Edgar JM, Linington C, Thümmler K. Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Exp Neurol 2022; 354:114113. [PMID: 35569511 DOI: 10.1016/j.expneurol.2022.114113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
Iron released from oligodendrocytes during demyelination or derived from haemoglobin breakdown products is believed to amplify oxidative tissue injury in multiple sclerosis (MS). However, the pathophysiological significance of iron-containing haemoglobin breakdown products themselves is rarely considered in the context of MS and their cellular specificity and mode of action remain unclear. Using myelinating cell cultures, we now report the cytotoxic potential of hemin (ferriprotoporphyrin IX chloride), a major degradation product of haemoglobin, is 25-fold greater than equimolar concentrations of free iron in myelinating cultures; a model that reproduces the complex multicellular environment of the CNS. At low micro molar concentrations (3.3 - 10 μM) we observed hemin preferentially binds to myelin and axons to initiate a complex detrimental response that results in targeted demyelination and axonal loss but spares neuronal cell bodies, astrocytes and the majority of oligodendroglia. Demyelination and axonal loss in this context are executed by a combination of mechanisms that include iron-dependent peroxidation by reactive oxygen species (ROS) and ferroptosis. These effects are microglial-independent, do not require any initiating inflammatory insult and represent a direct effect that compromises the structural integrity of myelinated axons in the CNS. Our data identify hemin-mediated demyelination and axonal loss as a novel mechanism by which intracerebral degradation of haemoglobin may contribute to lesion development in MS.
Collapse
Affiliation(s)
- Karl Baldacchino
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William J Peveler
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg, Austria
| | - Lorna Hayden
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Lina Komarek
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, G12 8TA Glasgow, United Kingdom.
| |
Collapse
|
6
|
Almasieh M, Faris H, Levin LA. Pivotal roles for membrane phospholipids in axonal degeneration. Int J Biochem Cell Biol 2022; 150:106264. [PMID: 35868612 DOI: 10.1016/j.biocel.2022.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Membrane phospholipids are critical components of several signaling pathways. Maintained in a variety of asymmetric distributions, their trafficking across the membrane can be induced by intra-, extra-, and intercellular events. A familiar example is the externalization of phosphatidylserine from the inner leaflet to the outer leaflet in apoptosis, inducing phagocytosis of the soma. Recently, it has been recognized that phospholipids in the axonal membrane may be a signal for axonal degeneration, regeneration, or other processes. This review focuses on key recent developments and areas for ongoing investigations. KEY FACTS: Phosphatidylserine externalization propagates along an axon after axonal injury and is delayed in the Wallerian degeneration slow (WldS) mutant. The ATP8A2 flippase mutant has spontaneous axonal degeneration. Microdomains of axonal degeneration in spheroid bodies have differential externalization of phosphatidylserine and phosphatidylethanolamine. Phospholipid trafficking could represent a mechanism for coordinated axonal degeneration and elimination, i.e. axoptosis, analogous to apoptosis of the cell body.
Collapse
Affiliation(s)
- Mohammadali Almasieh
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Hannah Faris
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Morelli AM, Chiantore M, Ravera S, Scholkmann F, Panfoli I. Myelin sheath and cyanobacterial thylakoids as concentric multilamellar structures with similar bioenergetic properties. Open Biol 2021; 11:210177. [PMID: 34905702 PMCID: PMC8670949 DOI: 10.1098/rsob.210177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is a surprisingly high morphological similarity between multilamellar concentric thylakoids in cyanobacteria and the myelin sheath that wraps the nerve axons. Thylakoids are multilamellar structures, which express photosystems I and II, cytochromes and ATP synthase necessary for the light-dependent reaction of photosynthesis. Myelin is a multilamellar structure that surrounds many axons in the nervous system and has long been believed to act simply as an insulator. However, it has been shown that myelin has a trophic role, conveying nutrients to the axons and producing ATP through oxidative phosphorylation. Therefore, it is tempting to presume that both membranous structures, although distant in the evolution tree, share not only a morphological but also a functional similarity, acting in feeding ATP synthesized by the ATP synthase to the centre of the multilamellar structure. Therefore, both molecular structures may represent a convergent evolution of life on Earth to fulfill fundamentally similar functions.
Collapse
Affiliation(s)
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabella Panfoli
- Experimental Medicine Department, University of Genova, Genova, Italy
| |
Collapse
|
8
|
Fatty acid dysregulation in the anterior cingulate cortex of depressed suicides with a history of child abuse. Transl Psychiatry 2021; 11:535. [PMID: 34663786 PMCID: PMC8523684 DOI: 10.1038/s41398-021-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Child abuse (CA) strongly increases the lifetime risk of suffering from major depression and predicts an unfavorable course for the illness. Severe CA has been associated with a specific dysregulation of oligodendrocyte function and thinner myelin sheaths in the human anterior cingulate cortex (ACC) white matter. Given that myelin is extremely lipid-rich, it is plausible that these findings may be accompanied by a disruption of the lipid profile that composes the myelin sheath. This is important to explore since the composition of fatty acids (FA) in myelin phospholipids can influence its stability, permeability, and compactness. Therefore, the objective of this study was to quantify and compare FA concentrations in postmortem ACC white matter in the choline glycerophospholipid pool (ChoGpl), a key myelin phospholipid pool, between adult depressed suicides with a history of CA (DS-CA) matched depressed suicides without CA (DS) and healthy non-psychiatric controls (CTRL). Total lipids were extracted from 101 subjects according to the Folch method and separated into respective classes using thin-layer chromatography. FA methyl esters from the ChoGpl fraction were quantified using gas chromatography. Our analysis revealed specific effects of CA in FAs from the arachidonic acid synthesis pathway, which was further validated with RNA-sequencing data. Furthermore, the concentration of most FAs was found to decrease with age. By extending the previous molecular level findings linking CA with altered myelination in the ACC, these results provide further insights regarding white matter alterations associated with early-life adversity.
Collapse
|
9
|
Borgmeyer M, Coman C, Has C, Schött HF, Li T, Westhoff P, Cheung YFH, Hoffmann N, Yuanxiang P, Behnisch T, Gomes GM, Dumenieu M, Schweizer M, Chocholoušková M, Holčapek M, Mikhaylova M, Kreutz MR, Ahrends R. Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment. Cell Rep 2021; 37:109797. [PMID: 34610315 DOI: 10.1016/j.celrep.2021.109797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.
Collapse
Affiliation(s)
- Maximilian Borgmeyer
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Canan Has
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Hans-Frieder Schött
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Tingting Li
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Philipp Westhoff
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Yam F H Cheung
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guilherme M Gomes
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Mael Dumenieu
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| | - Michaela Chocholoušková
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Marina Mikhaylova
- Emmy Noether Group 'Neuronal Protein Transport,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; AG Optobiology, Institute for Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Michael R Kreutz
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, 30120 Magdeburg, Germany.
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria.
| |
Collapse
|
10
|
Saeedimasine M, Montanino A, Kleiven S, Villa A. Elucidating Axonal Injuries Through Molecular Modelling of Myelin Sheaths and Nodes of Ranvier. Front Mol Biosci 2021; 8:669897. [PMID: 34250015 PMCID: PMC8260694 DOI: 10.3389/fmolb.2021.669897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Around half of the traumatic brain injuries are thought to be axonal damage. Disruption of the cellular membranes, or alternatively cytoskeletal damage has been suggested as possible injury trigger. Here, we have used molecular models to have a better insight on the structural and mechanical properties of axon sub-cellular components. We modelled myelin sheath and node of Ranvier as lipid bilayers at a coarse grained level. We built ex-novo a model for the myelin. Lipid composition and lipid saturation were based on the available experimental data. The model contains 17 different types of lipids, distributed asymmetrically between two leaflets. Molecular dynamics simulations were performed to characterize the myelin and node-of-Ranvier bilayers at equilibrium and under deformation and compared to previous axolemma simulations. We found that the myelin bilayer has a slightly higher area compressibility modulus and higher rupture strain than node of Ranvier. Compared to the axolemma in unmyelinated axon, mechanoporation occurs at 50% higher strain in the myelin and at 23% lower strain in the node of Ranvier in myelinated axon. Combining the results with finite element simulations of the axon, we hypothesizes that myelin does not rupture at the thresholds proposed in the literature for axonal injury while rupture may occur at the node of Ranvier. The findings contribute to increases our knowledge of axonal sub-cellular components and help to understand better the mechanism behind axonal brain injury.
Collapse
Affiliation(s)
- Marzieh Saeedimasine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Annaclaudia Montanino
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alessandra Villa
- PDC-Center for High Performance Computing, KTH-Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
11
|
Wrapping axons in mammals and Drosophila: Different lipids, same principle. Biochimie 2020; 178:39-48. [PMID: 32800899 DOI: 10.1016/j.biochi.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle.
Collapse
|
12
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Origin of orientation-dependent R 1 (=1/T 1 ) relaxation in white matter. Magn Reson Med 2020; 84:2713-2723. [PMID: 32274862 DOI: 10.1002/mrm.28277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/27/2020] [Accepted: 03/14/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE In a recent MRI study, it was shown that the longitudinal relaxation rate, R1 , in white matter (WM) is influenced by the relative orientation of nerve fibers with respect to the main magnetic field (B0 ). Even though the exact nature of this R1 orientation dependency is still unclear, it can be assumed that the origin of the phenomenon can be attributed to the anisotropic and unique molecular environment within the myelin sheath surrounding the axons. The current work investigates the contribution of dipolar induced R1 relaxation of the myelin associated hydrogen nuclei theoretically and compares the results with the experimentally observed R1 orientation dependency. METHODS Atomistic molecular dynamics simulations were employed and the R1 relaxation rate of hydrogen nuclei of a myelin-alike molecular environment was calculated for various orientations of the trajectory sets relative to the B0 -field. Based on the calculated relaxation rates, the observable R1 relaxation was simulated for various fiber orientations and fitted to the experimental data using a suitable signal weighting-scheme. RESULTS The results obtained show that the R1 relaxation rate of both solid myelin (SM) and myelin water (MW) depends on the fiber orientation relative to the main B0 -field. Moreover, employing a realistic signal weighing scheme and tissue characteristics, the theoretically investigated R1 orientation dependency matches the experimental data well. CONCLUSION The good agreement between theoretical and experimental findings indicates that the R1 orientation dependency in WM mainly originates from anisotropic dipole-dipole interactions between hydrogen nuclei located within the myelin sheath.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany.,Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Koblenz, Germany
| |
Collapse
|
13
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Dipolar induced spin-lattice relaxation in the myelin sheath: A molecular dynamics study. Sci Rep 2019; 9:14813. [PMID: 31616004 PMCID: PMC6794311 DOI: 10.1038/s41598-019-51003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 01/25/2023] Open
Abstract
Interactions between hydrogen protons of water molecules and macromolecules within the myelin sheath surrounding the axons are a major factor influencing the magnetic resonance (MR) contrast in white matter (WM) regions. In past decades, several studies have investigated the underlying effects and reported a wide range of R1 rates for the myelin associated compartments at different field strengths. However, it was also shown that the experimental quantification of the compartment-specific R1 rates is associated with large uncertainties. The current study therefore investigates the longitudinal relaxation rates within the myelin sheath using a molecular dynamic (MD) simulation. For this purpose, a realistic molecular model of the myelin sheath was employed to determine the dipole-dipole induced R1 relaxation rate of the hydrogen protons at clinically relevant field strengths. The results obtained clearly reflect the spatial heterogeneity of R1 with a increased relaxivity of myelin water due to a reduced molecular mobility near the membrane surface. Moreover, the calculated R1 rates for both myelin water and macromolecules are in excellent agreement with experimental findings from the literature at different field strengths.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Remagen, Germany.
- Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Koblenz, Germany.
| |
Collapse
|
14
|
Haszto CS, Stanley JA, Iyengar S, Prasad KM. Regionally Distinct Alterations in Membrane Phospholipid Metabolism in Schizophrenia: A Meta-analysis of Phosphorus Magnetic Resonance Spectroscopy Studies. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:264-280. [PMID: 31748123 DOI: 10.1016/j.bpsc.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Existing data on altered membrane phospholipid metabolism in schizophrenia are diverse. We conducted a meta-analysis of studies of phosphorus magnetic resonance spectroscopy, a noninvasive imaging approach that can assess molecular biochemistry of cortex by measuring phosphomonoester (PME) and phosphodiester (PDE) levels, which can provide evidence of altered biochemical processes involved in neuropil membrane expansion and contraction in schizophrenia. METHODS We analyzed PME and PDE data in the frontal and temporal lobes in subjects with schizophrenia from 24 peer-reviewed publications using the MAVIS package in R by building random- and fixed-effects models. Heterogeneity of effect sizes, effects of publication bias, and file drawer analysis were also assessed. RESULTS Subjects with schizophrenia showed lower PME levels in the frontal regions (p = .008) and elevated PDE levels in the temporal regions (p < .001) with significant heterogeneity. We noted significant publication bias and file drawer effect for frontal PME and PDE and temporal PDE levels, but not for temporal PME levels. Fail-safe analysis estimated that a high number of negative studies were required to provide nonsignificant results. CONCLUSIONS Despite methodological differences, these phosphorus magnetic resonance spectroscopy studies demonstrate regionally specific imbalance in membrane phospholipid metabolism related to neuropil in subjects with schizophrenia compared with control subjects reflecting neuropil contraction. Specifically, decreased PME levels in the frontal regions and elevated PDE levels in the temporal regions provide evidence of decreased synthesis and increased degradation of neuropil membrane, respectively. Notwithstanding significant heterogeneity and publication bias, a large number of negative studies are required to render the results of this meta-analysis nonsignificant. These findings warrant further postmortem and animal studies.
Collapse
Affiliation(s)
- Connor S Haszto
- Kenneth Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Konasale M Prasad
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania.
| |
Collapse
|
15
|
Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J Chem Theory Comput 2018; 15:775-786. [PMID: 30525595 DOI: 10.1021/acs.jctc.8b01066] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.
Collapse
Affiliation(s)
- Jumin Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Sang-Jun Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Joonseong Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Xi Cheng
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine , Queen's University Belfast BT9 7BL , United Kingdom
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel , Airway Research Center North, Member of the German Center for Lung Research (DZL) , D-23845 Borstel , Germany
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 Moscow , Russia
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Sunhwan Jo
- Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
16
|
Stoessel D, Schulte C, Teixeira dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease. Front Aging Neurosci 2018; 10:51. [PMID: 29556190 PMCID: PMC5844983 DOI: 10.3389/fnagi.2018.00051] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0-4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD.
Collapse
Affiliation(s)
- Daniel Stoessel
- Metabolomic Discoveries GmbH, Potsdam, Germany
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | - Irene Rebollo-Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Christian Deuschle
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Dirk Walther
- Department of Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | - Daniela Berg
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andre Nogueira da Costa
- Experimental Medicine and Diagnostics, Global Exploratory Development, UCB Biopharma SPRL, Brussels, Belgium
| | - Walter Maetzler
- Department of Neurodegeneration, German Center for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
17
|
Zhu F, Gatti DL, Yang KH. Nodal versus Total Axonal Strain and the Role of Cholesterol in Traumatic Brain Injury. J Neurotrauma 2015; 33:859-70. [PMID: 26393780 DOI: 10.1089/neu.2015.4007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a health threat that affects every year millions of people involved in motor vehicle and sporting accidents, and thousands of soldiers in battlefields. Diffuse axonal injury (DAI) is one of the most frequent types of TBI leading to death. In DAI, the initial traumatic event is followed by a cascade of biochemical changes that take time to develop in full, so that symptoms may not become apparent until days or weeks after the original injury. Hence, DAI is a dynamic process, and the opportunity exists to prevent its progression provided the initial trauma can be predicted at the molecular level. Here, we present preliminary evidence from micro-finite element (FE) simulations that the mechanical response of central nervous system myelinated fibers is dependent on the axonal diameter, the ratio between axon diameter and fiber diameter (g-ratio), the microtubules density, and the cholesterol concentration in the axolemma and myelin. A key outcome of the simulations is that there is a significant difference between the overall level of strain in a given axonal segment and the level of local strain in the Ranvier nodes contained in that segment, with the nodal strain being much larger than the total strain. We suggest that the acquisition of this geometric and biochemical information by means of already available high resolution magnetic resonance imaging techniques, and its incorporation in current FE models of the brain will enhance the models capacity to predict the site and magnitude of primary axonal damage upon TBI.
Collapse
Affiliation(s)
- Feng Zhu
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | - Domenico L Gatti
- 2 Department of Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan.,3 CardioVascular Research Institute, Wayne State University , Detroit, Michigan
| | - King H Yang
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| |
Collapse
|
18
|
Axonal and oligodendrocyte-localized IgM and IgG deposits in MS lesions. J Neuroimmunol 2012; 247:86-94. [DOI: 10.1016/j.jneuroim.2012.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/29/2012] [Accepted: 03/26/2012] [Indexed: 01/17/2023]
|
19
|
Cloak CC, Alicata D, Chang L, Andrews-Shigaki B, Ernst T. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users. Drug Alcohol Depend 2011; 119:207-15. [PMID: 21775074 PMCID: PMC3214603 DOI: 10.1016/j.drugalcdep.2011.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/18/2011] [Accepted: 06/18/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug's impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. METHODS Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13-23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. RESULTS FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show age-appropriate levels of ACC CHO. CONCLUSIONS The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users.
Collapse
Affiliation(s)
- Christine C Cloak
- Department of Medicine, University of Hawaii, Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| | | | | | | | | |
Collapse
|
20
|
Fester L, Zhou L, Bütow A, Huber C, von Lossow R, Prange-Kiel J, Jarry H, Rune GM. Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 2009; 19:692-705. [PMID: 19156851 DOI: 10.1002/hipo.20548] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354-1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Anatomy I: Cellular Neurobiology, Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
The efficacy of the fluorescent conjugates of cholera toxin subunit B for multiple retrograde tract tracing in the central nervous system. Brain Struct Funct 2009; 213:367-73. [PMID: 19621243 DOI: 10.1007/s00429-009-0212-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Cholera toxin subunit B (CTB) is a sensitive neuroanatomical tracer that generally transports retrogradely in the nervous system, and has been used extensively in brightfield microscopy. Recently, Alexa Fluor (AF) conjugates of CTB have been made available, which now allows multiple tracing with CTB. In this study, we examined the efficacy of these new AF-CTB conjugates when injected into the brain, and compared the results to our previous experiences using fluorescent 3k dextran amines. To test this, we injected AF 488 and AF 594 CTB into the anterior cingulate cortex and the medial agranular cortex in the rat, and examined the retrograde transport to the lateral posterior nucleus of the thalamus. We found that CTB was very viscous but yet very sensitive: small injection sites revealed very intense and detailed retrograde labeling. Anterograde transport was seen only when tissue at the injection site was damaged. These findings suggest that AF-CTB is a very reliable and sensitive retrograde tracer, and should be the first choice retrograde tracer for experiments examining multiple pathways within the same brain.
Collapse
|
22
|
Bakovic M, Fullerton MD, Michel V. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol 2007; 85:283-300. [PMID: 17612623 DOI: 10.1139/o07-006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CDP-ethanolamine branch of the Kennedy pathway is the major route for the formation of ethanolamine-derived phospholipids, including diacyl phosphatidylethanolamine and alkenylacyl phosphatidylethanolamine derivatives, known as plasmalogens. Ethanolamine phospholipids are essential structural components of the cell membranes and play regulatory roles in cell division, cell signaling, activation, autophagy, and phagocytosis. The physiological importance of plasmalogens has not been not fully elucidated, although they are known for their antioxidant properties and deficiencies in a number of inherited peroxisomal disorders. This review highlights important aspects of ethanolamine phospholipid metabolism and reports current molecular information on 1 of the regulatory enzymes in their synthesis, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2 is encoded by a single, nonredundant gene in animal species that could be alternatively spliced into 2 potential protein products. We describe properties of the mouse and human Pcyt2 genes and their regulatory promoters and provide molecular evidence for the existence of 2 distinct Pcyt2 proteins. The goal is to obtain more insight into Pcyt2 catalytic function and regulation to facilitate a better understanding of the production of ethanolamine phospholipids via the CDP-ethanolamine branch of the Kennedy pathway.
Collapse
Affiliation(s)
- Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | |
Collapse
|
23
|
Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1619-30. [PMID: 16651628 PMCID: PMC1606595 DOI: 10.2353/ajpath.2006.050924] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gangliosides participate in various cellular events of the central nervous system and have been closely implicated in many neuronal diseases. However, the precise molecular mechanisms underlying the pathological activity of gangliosides are poorly understood. Here we report that toll-like receptor 4 (TLR4) may mediate the ganglioside-triggered inflammation in glia, brain resident immune cells. Gangliosides rapidly altered the cell surface expression of TLR4 in microglia and astrocytes within 3 hours. Using TLR4-specific siRNA and a dominant-negative TLR4 gene, we clearly demonstrate the functional importance of TLR4 in ganglioside-triggered activation of glia. Inhibition of TLR4 expression by TLR4-siRNA suppressed nuclear factor (NF)-kappaB-binding activity, NF-kappaB-dependent luciferase activity, and transcription of inflammatory cytokines after exposure to gangliosides. Transient transfection of dominant-negative TLR4 also attenuated NF-kappaB-binding activity and interleukin-6 promoter activity. In contrast, these activities were slightly elevated in cells with wild-type TLR4. In addition, CD14 was required for ganglioside-triggered activation of glia, and lipid raft formation may be associated with ganglioside-stimulated signal propagation. Taken together, these results suggest that TLR4 may provide an explanation for the pathological ability of gangliosides to cause inflammatory conditions in the brain.
Collapse
Affiliation(s)
- Ilo Jou
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cholesterol is a multifaceted molecule, which serves as essential membrane component, as cofactor for signaling molecules and as precursor for steroid hormones. Consequently, defects in cholesterol metabolism cause devastating diseases. So far, the role of cholesterol in the nervous system is less well understood. Recent studies showed that cultured neurons from the mammalian central nervous system (CNS) require glia-derived cholesterol to form numerous and efficient synapses. This suggests that the availability of cholesterol in neurons limits the extent of synaptogenesis. Here, I will summarize the experimental evidence for this hypothesis, describe what is known about the structural and functional role of cholesterol at synapses, and discuss how cholesterol may influence synapse development and stability.
Collapse
Affiliation(s)
- Frank W Pfrieger
- Max-Planck/CNRS Group, UPR 2356, Centre de Neurochimie 5, rue Blaise Pascal F-67084 Cedex, Strasbourg, France.
| |
Collapse
|
25
|
Pardo L, Blanck TJJ, Recio-Pinto E. The neuronal lipid membrane permeability was markedly increased by bupivacaine and mildly affected by lidocaine and ropivacaine. Eur J Pharmacol 2002; 455:81-90. [PMID: 12445573 DOI: 10.1016/s0014-2999(02)02555-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the local anesthetic action on ionic membrane conductance (membrane conductance) and selectivity in membranes formed with neuronal phospholipids in the absence and presence of cholesterol. In membranes without cholesterol, 1 mM bupivacaine and ropivacaine increased the membrane conductance approximately 4.5-fold; and 5 mM lidocaine, ropivacaine and bupivacaine increased the membrane conductance by 2.7-, 2.8- and 22.2-fold, respectively. In the presence of cholesterol, 5 mM ropivacaine had no effect, lidocaine decreased the membrane conductance by 2-fold, and bupivacaine increased the membrane conductance by 17-fold. Local anesthetics did not affect the ion selectivity in membranes without cholesterol, but they all decreased the Na(+) selectivity in membranes with cholesterol. Cholesterol reduced the lidocaine- and ropivacaine-induced membrane conductance increase by eliminating or reversing the Na(+) conductance increase and by lowering the Cl(-) conductance increase. In the absence of cholesterol, 5 mM bupivacaine increased both Na(+) conductance (38-fold) and Cl(-) conductance (19-fold), while in the presence of cholesterol it only increased Cl(-) conductance (26-fold). Of the local anesthetics studied, ropivacaine was the least membrane toxic while bupivacaine was the most toxic.
Collapse
Affiliation(s)
- Luis Pardo
- Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
26
|
Abstract
A severe and chronic deficiency of vitamin E results in a characteristic neurological syndrome in both man and experimental animals. This is presumed to result from increased oxidative stress arising from a reduction in antioxidant capacity. In this study we have examined parameters of endogenous lipid peroxidation and susceptibility to in vitro oxidative stress of neural tissues and fractions, and some non-neural tissues from 1-year-old vitamin E-deficient and control rats. We have shown: (1) an increase in endogenous lipid peroxidation (thiobarbituric acid reactive substances and malondialdehyde) in neural tissues from vitamin E-deficient animals compared to controls. (2) The following order of susceptibility of neural tissues to in vitro oxidative stress in both vitamin E-deficient and control animals: brain >> muscle > cord > nerve. (3) The susceptibility of different brain regions to in vitro oxidative stress varied in a consistent manner with the cortex, striatum, and cerebellum showing the greatest and brainstem and hypothalamus the least susceptibility. (4) Fractions isolated from myelinated nerves of brainstem showed the following order of susceptibility to in vitro oxidative stress: axoplasmic membranes and organelles > axolemma enriched fraction > whole homogenate > = myelin. These results would fit with the characteristic neuropathology associated with severe and chronic vitamin E deficiency.
Collapse
Affiliation(s)
- C J MacEvilly
- Division of Biochemistry and Genetics, Institute of Child Health, London, UK
| | | |
Collapse
|
27
|
Segler-Stahl K, Demediuk P, Castillo R, Watts C, Moscatelli EA. Phospholipids of normal and experimentally injured spinal cord of the miniature pig. Neurochem Res 1985; 10:563-9. [PMID: 4000399 DOI: 10.1007/bf00964658] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental spinal cord trauma was produced in 3-month-old SS-1 miniature pigs by dropping a 25 g weight from a height of 20 cm upon the exposed spinal cord. The histological lesion consisted of edema and hemorrhage. Phospholipid concentration and composition, cholesterol concentration and phospholipid fatty acid composition were determined in whole spinal cord 3 hours after injury, and in spinal cord myelin 5 hours after injury. Three hours after injury phospholipid and cholesterol concentration were decreased by about 14% in the whole spinal cord. Trauma had no effect on the phospholipid composition of whole spinal cord and myelin. Fatty acid composition of myelin also did not change after injury, and changed very slightly in the whole spinal cord. It is concluded that edema following spinal cord trauma is much more extensive than previously assumed. Furthermore, peroxidation of membrane lipid fatty acids does not appear to be a significant factor in spinal cord pathology 3 hours after injury.
Collapse
|
28
|
Abstract
As indicated in the Introduction, the many significant developments in the recent past in our knowledge of the lipids of the nervous system have been collated in this article. That there is a sustained interest in this field is evident from the rather long bibliography which is itself selective. Obviously, it is not possible to summarize a review in which the chemistry, distribution and metabolism of a great variety of lipids have been discussed. However, from the progress of research, some general conclusions may be drawn. The period of discovery of new lipids in the nervous system appears to be over. All the major lipid components have been discovered and a great deal is now known about their structure and metabolism. Analytical data on the lipid composition of the CNS are available for a number of species and such data on the major areas of the brain are also at hand but information on the various subregions is meagre. Such investigations may yet provide clues to the role of lipids in brain function. Compared to CNS, information on PNS is less adequate. Further research on PNS would be worthwhile as it is amenable for experimental manipulation and complex mechanisms such as myelination can be investigated in this tissue. There are reports correlating lipid constituents with the increased complexity in the organization of the nervous system during evolution. This line of investigation may prove useful. The basic aim of research on the lipids of the nervous tissue is to unravel their functional significance. Most of the hydrophobic moieties of the nervous tissue lipids are comprised of very long chain, highly unsaturated and in some cases hydroxylated residues, and recent studies have shown that each lipid class contains characteristic molecular species. Their contribution to the properties of neural membranes such as excitability remains to be elucidated. Similarly, a large proportion of the phospholipid molecules in the myelin membrane are ethanolamine plasmalogens and their importance in this membrane is not known. It is firmly established that phosphatidylinositol and possibly polyphosphoinositides are involved with events at the synapse during impulse propagation, but their precise role in molecular terms is not clear. Gangliosides, with their structural complexity and amphipathic nature, have been implicated in a number of biological events which include cellular recognition and acting as adjuncts at receptor sites. More recently, growth promoting and neuritogenic functions have been ascribed to gangliosides. These interesting properties of gangliosides wIll undoubtedly attract greater attention in the future.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
29
|
Abstract
Myelin was isolated from subcortical areas of ten human brains, with ages ranging from 24 days to 350 days-of-age; samples were subsequently analyzed for lipid composition. Eight infants were victims of Sudden Infant Death Syndrome, and two infants were accident cases. Gray and white matter samples from each brain were also dissected and analyzed. Galactolipids were only 12% of the total lipids in white matter from brains of infants that were 24 days-of-age, a time when myelination was just starting in the subcortical areas. At 175 and 350 days of age, myelination was well underway and galactolipids measured 22% of the total lipids. Total phospholipids decreased (65% to 54%) in white matter during development, with the decrease mostly in phosphatidylcholine (23% to 15%). Even though there was little white matter present at early ages, myelin could be isolated. Surprisingly, the lipid composition of myelin from the 24-day-infant brain was similar to that from adult brain. Galactolipids were 22% of the total lipids, cholesterol, 23%, and phospholipids, 52%. These results suggest that only subtle remodeling of myelin occurs in humans once myelination commences. All four major gangliosides were present in myelin during this first year of development. Interestingly, the yield of myelin from the 350-day-old infant subcortical white matter was similar to that from an adult. Thus major tracts in this area may have acquired most of the myelin by one year-after-birth. Since the control samples blend quite well into the developmental pattern obtained, it is believed there are no abnormalities in myelin lipids from SIDS infants.
Collapse
|
30
|
Henderson TJ, Bigbee JW, DeVries GH. The subcellular localization of lipid in myelin-free axonal preparations. Brain Res 1984; 306:179-88. [PMID: 6466972 DOI: 10.1016/0006-8993(84)90367-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bovine myelin-free axonal preparations were subjected to a series of washes designed to partition membranes from other cellular components initially present in these preparations. These washes were composed entirely of membranous structures, essentially free of neurofilament protein subunits, and contained high specific activity of acetylcholinesterase, an axolemma-specific enzyme. The distribution of acetylcholinesterase in the washes paralleled the distribution of lipid and the lipid composition of these washes closely resembled that of bovine axolemma-enriched fractions. In addition, acetylcholinesterase, lipid and galactocerebroside were histo- and immunohistochemically localized on similar structures in the starting material. Our results demonstrate that some of the lipid in myelin-free axonal preparations may be accounted for by axolemma.
Collapse
|
31
|
Hysmith RM, Franson RC. Degradation of human myelin phospholipids by phospholipase-enriched culture media of pathogenic Naegleria fowleri. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 712:698-701. [PMID: 7126633 DOI: 10.1016/0005-2760(82)90300-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cell-free media from cultures of virulent Naegleria fowleri were tested for phospholipase activities and their ability to degrade phospholipids of human myelin. Virulent N. fowleri selectively released lipolytic enzymes into the media at various times during growth and hydrolyzed the phospholipids of human myelin, while media from virulent-attenuated and nonpathogenic Naegleria spp. were almost totally inactive. Hydrolysis of myelin phospholipid increased concomitantly with amebal growth, and the relative rate of breakdown at pH 7.5 was sphingomyelin greater than phosphatidylcholine greater than phosphatidylethanolamine. Elevated levels of lysophosphatidylcholine and lysophosphatidylethanolamine were also noted.
Collapse
|
32
|
Yu RK, Ueno K, Glaser GH, Tourtellotte WW. Lipid and protein alterations of spinal cord and cord myelin of multiple sclerosis. J Neurochem 1982; 39:464-77. [PMID: 7086428 DOI: 10.1111/j.1471-4159.1982.tb03968.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
DeVries GH, Payne W, Saul RG. Composition of axolemma-enriched fractions isolated from bovine CNS myelinated axons. Neurochem Res 1981; 6:521-37. [PMID: 7279111 DOI: 10.1007/bf00964391] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Axolemma-enriched fractions were isolated from the white matter of bovine corpus callosum via a purified preparation of myelinated axons which were osmotically shocked and fractionated on a discontinuous density gradient. Two membrane fractions of differing density were obtained: both were somewhat enriched over white matter whole homogenate in specific activity of acetylcholinesterase and 5'-nucleotidase and maximal binding capacity for saxitoxin. Both membrane fractions contained appreciable amounts of 2', 3'-cyclic nucleotide 3'-phosphohydrolase; the specific activity of antimycin-sensitive NAPH-cytochrome c reductase and cytochrome c oxidase indicated low levels of contamination by microsomal and mitochondrial membrane. The myelin which is concomitantly isolated with the axolemma-enriched fractions has a lipid and protein composition comparable to that of myelin isolated by other procedures. Both axolemma-enriched fractions contain about one half of their dry weight as lipid comprised of approximately 25% cholesterol, 25% galactolipid (cerebrosides and sulfatides in a molar ratio of about 4:1) and 50% phospholipid, mostly choline phosphatides and ethanolamine phospholes in an equimolar ratio. The axolemma fractions are also enriched in ganglioside content relative to the myelin fraction. The polypeptides of the axolemma-enriched fractions range from 20,000 to over 200,000 in molecular weight; the predominant proteins are in the range from 50,000 to 69,000. The most dense axolemma-enriched fraction is over fourfold enriched in glycoprotein content compared with myelin, with at least 10 different molecular-weight classes of glycoproteins as identified by Schiff stain of polyacrylamide gel protein profiles. The differences and similarities in the molecular composition of axolemma-enriched preparations which have been characterized to date are discussed.
Collapse
|