1
|
Nowak JS, Otzen DE. Helping proteins come in from the cold: 5 burning questions about cold-active enzymes. BBA ADVANCES 2023; 5:100104. [PMID: 38162634 PMCID: PMC10755280 DOI: 10.1016/j.bbadva.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024] Open
Abstract
Enzymes from psychrophilic (cold-loving) organisms have attracted considerable interest over the past decades for their potential in various low-temperature industrial processes. However, we still lack large-scale commercialization of their activities. Here, we review their properties, limitations and potential. Our review is structured around answers to 5 central questions: 1. How do cold-active enzymes achieve high catalytic rates at low temperatures? 2. How is protein flexibility connected to cold-activity? 3. What are the sequence-based and structural determinants for cold-activity? 4. How does the thermodynamic stability of psychrophilic enzymes reflect their cold-active capabilities? 5. How do we effectively identify novel cold-active enzymes, and can we apply them in an industrial context? We conclude that emerging screening technologies combined with big-data handling and analysis make it reasonable to expect a bright future for our understanding and exploitation of cold-active enzymes.
Collapse
Affiliation(s)
- Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Oldham D, Wang H, Mullen J, Lietzke E, Sprenger K, Reigan P, Eckel RH, Bruce KD. Using Synthetic ApoC-II Peptides and nAngptl4 Fragments to Measure Lipoprotein Lipase Activity in Radiometric and Fluorescent Assays. Front Cardiovasc Med 2022; 9:926631. [PMID: 35911520 PMCID: PMC9329559 DOI: 10.3389/fcvm.2022.926631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein lipase (LPL) plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides (TGs) in packaged lipoproteins. Since hypertriglyceridemia (HTG) is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide, methods that accurately quantify the hydrolytic activity of LPL in clinical and pre-clinical samples are much needed. To date, the methods used to determine LPL activity vary considerably in their approach, in the LPL substrates used, and in the source of LPL activators and inhibitors used to quantify LPL-specific activity, rather than other lipases, e.g., hepatic lipase (HL) or endothelial lipase (EL) activity. Here, we describe methods recently optimized in our laboratory, using a synthetic ApoC-II peptide to activate LPL, and an n-terminal Angiopoietin-Like 4 fragment (nAngptl4) to inhibit LPL, presenting a cost-effective and reproducible method to measure LPL activity in human post-heparin plasma (PHP) and in LPL-enriched heparin released (HR) fractions from LPL secreting cells. We also describe a modified version of the triolein-based assay using human serum as a source of endogenous activators and inhibitors and to determine the relative abundance of circulating factors that regulate LPL activity. Finally, we describe how an ApoC-II peptide and nAngptl4 can be applied to high-throughput measurements of LPL activity using the EnzChek™ fluorescent TG analog substrate with PHP, bovine LPL, and HR LPL enriched fractions. In summary, this manuscript assesses the current methods of measuring LPL activity and makes new recommendations for measuring LPL-mediated hydrolysis in pre-clinical and clinical samples.
Collapse
Affiliation(s)
- Dean Oldham
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Juliet Mullen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma Lietzke
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Kayla Sprenger
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Kimberley D. Bruce,
| |
Collapse
|
3
|
Rajan S, de Guzman HC, Palaia T, Goldberg IJ, Hussain MM. A simple, rapid, and sensitive fluorescence-based method to assess triacylglycerol hydrolase activity. J Lipid Res 2021; 62:100115. [PMID: 34508728 PMCID: PMC8488599 DOI: 10.1016/j.jlr.2021.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Lipases constitute an important class of water-soluble enzymes that catalyze the hydrolysis of hydrophobic triacylglycerol (TAG). Their enzymatic activity is typically measured using multistep procedures involving isolation and quantification of the hydrolyzed products. We report here a new fluorescence method to measure lipase activity in real time that does not require the separation of substrates from products. We developed this method using adipose triglyceride lipase (ATGL) and lipoprotein lipase (LpL) as model lipases. We first incubated a source of ATGL or LpL with substrate vesicles containing nitrobenzoxadiazole (NBD)-labeled TAG, then measured increases in NBD fluorescence, and calculated enzyme activities. Incorporation of NBD-TAG into phosphatidylcholine (PC) vesicles resulted in some hydrolysis; however, incorporation of phosphatidylinositol into these NBD-TAG/PC vesicles and increasing the ratio of NBD-TAG to PC greatly enhanced substrate hydrolysis. This assay was also useful in measuring the activity of pancreatic lipase and hormone-sensitive lipase. Next, we tested several small-molecule lipase inhibitors and found that orlistat inhibits all lipases, indicating that it is a pan-lipase inhibitor. In short, we describe a simple, rapid, fluorescence-based triacylglycerol hydrolysis assay to assess four major TAG hydrolases: intracellular ATGL and hormone-sensitive lipase, LpL localized at the extracellular endothelium, and pancreatic lipase present in the intestinal lumen. The major advantages of this method are its speed, simplicity, and elimination of product isolation. This assay is potentially applicable to a wide range of lipases, is amenable to high-throughput screening to discover novel modulators of triacylglycerol hydrolases, and can be used for diagnostic purposes.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Hazel C de Guzman
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
4
|
Dockalova V, Sanchez-Carnerero EM, Dunajova Z, Palao E, Slanska M, Buryska T, Damborsky J, Klán P, Prokop Z. Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling. Comput Struct Biotechnol J 2020; 18:922-932. [PMID: 32346465 PMCID: PMC7182704 DOI: 10.1016/j.csbj.2020.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 10/31/2022] Open
Abstract
Haloalkane dehalogenases are enzymes that catalyze the cleavage of carbon-halogen bonds in halogenated compounds. They serve as model enzymes for studying structure-function relationships of >100.000 members of the α/β-hydrolase superfamily. Detailed kinetic analysis of their reaction is crucial for understanding the reaction mechanism and developing novel concepts in protein engineering. Fluorescent substrates, which change their fluorescence properties during a catalytic cycle, may serve as attractive molecular probes for studying the mechanism of enzyme catalysis. In this work, we present the development of the first fluorescent substrates for this enzyme family based on coumarin and BODIPY chromophores. Steady-state and pre-steady-state kinetics with two of the most active haloalkane dehalogenases, DmmA and LinB, revealed that both fluorescent substrates provided specificity constant two orders of magnitude higher (0.14-12.6 μM-1 s-1) than previously reported representative substrates for the haloalkane dehalogenase family (0.00005-0.014 μM-1 s-1). Stopped-flow fluorescence/FRET analysis enabled for the first time monitoring of all individual reaction steps within a single experiment: (i) substrate binding, (ii-iii) two subsequent chemical steps and (iv) product release. The newly introduced fluorescent molecules are potent probes for fast steady-state kinetic profiling. In combination with rapid mixing techniques, they provide highly valuable information about individual kinetic steps and mechanism of haloalkane dehalogenases. Additionally, these molecules offer high specificity and efficiency for protein labeling and can serve as probes for studying protein hydration and dynamics as well as potential markers for cell imaging.
Collapse
Affiliation(s)
- Veronika Dockalova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | | | - Zuzana Dunajova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Eduardo Palao
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michaela Slanska
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry and RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
5
|
Tjora E, Erchinger F, Engjom T, Aksnes L, Dimcevski G, Gudbrandsen OA. Analysis of lipase activity in duodenal juice. Comparison of an automated spectrophotometric assay to a fluorometric microplate assay, and factors affecting sample stability. Scand J Gastroenterol 2019; 53:1206-1211. [PMID: 30353747 DOI: 10.1080/00365521.2018.1518481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Direct pancreas function testing (DPFT) has been regarded as gold standard for assessment of exocrine pancreas function. One of the outcomes from DPFT is pancreatic lipase activity in duodenal juice, but no standard assay for measuring pancreas lipase activity in duodenal juice exists. AIMS To optimize and evaluate an autoanalyzer assay for measuring lipase activity in duodenal juice. METHODS We used samples of duodenal juice from our biobank, collected through a short endoscopic secretin test in patients with suspected exocrine pancreas insufficiency. Samples were analyzed on a Cobas autoanalyzer (Roche Diagnostics), using a colorimetric, kinetic enzyme activity assay. We compared stability of samples diluted in saline to samples diluted in 3-(N-morpholino) propane sulfonic acid (MOPS) buffer added bovine serum albumin (BSA). Results from the Cobas assay were compared to Confluolip method, a fluorometric, kinetic enzyme assay, modified to fit into a microplate setting. RESULTS We tested the stability of 54 samples from 21 patients. Diluting samples with MOPS buffer added BSA gave stable results, and was superior to diluting samples in saline. We compared the two assays in 50 samples from 20 patients and found a good correlation between the two assays (r = 0.91, p < .001). There was a significant proportional bias between the two assays, but no significant systematic bias. CONCLUSION Pancreatic lipase activity in duodenal juice samples diluted in MOPS buffer added BSA is stable for one hour at room temperature. Quantification of lipase activity in duodenal juice using a standard automated activity assay has comparable accuracy to a manual fluorometric method.
Collapse
Affiliation(s)
- Erling Tjora
- a Department of Paediatrics , Haukeland University Hospital , Bergen , Norway.,b Center for Diabetes Research , University of Bergen , Bergen , Norway
| | - Friedemann Erchinger
- c Department of Clinical Medicine , University of Bergen , Bergen , Norway.,d Medical Department , Voss Hospital , Voss , Norway
| | - Trond Engjom
- c Department of Clinical Medicine , University of Bergen , Bergen , Norway.,e Medical Department , Haukeland University Hospital , Bergen , Norway
| | - Lage Aksnes
- f Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Georg Dimcevski
- c Department of Clinical Medicine , University of Bergen , Bergen , Norway.,e Medical Department , Haukeland University Hospital , Bergen , Norway
| | | |
Collapse
|
6
|
Andersen RJ, Brask J. Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates. Chem Phys Lipids 2016; 198:72-9. [DOI: 10.1016/j.chemphyslip.2016.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
7
|
Kaur K, Wanchoo RK, Toor AP. Facile Synthesis of Tributyrin Catalyzed by Versatile Sulfated Iron Oxide: Reaction Pathway and Kinetic Evaluation. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamalpreet Kaur
- Dr.
S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Ravinder Kumar Wanchoo
- Dr.
S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Amrit Pal Toor
- Dr.
S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
- Energy
Research Centre, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
8
|
Camacho-Ruiz MDLA, Mateos-Díaz JC, Carrière F, Rodriguez JA. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin. J Lipid Res 2015; 56:1057-67. [PMID: 25748441 DOI: 10.1194/jlr.d052837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 11/20/2022] Open
Abstract
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.
Collapse
Affiliation(s)
| | | | - Frédéric Carrière
- CNRS, Aix-Marseille Université, UMR 7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, 13402 Marseille Cedex 20, France
| | - Jorge A Rodriguez
- Biotecnología Industrial, CIATEJ A.C., 44270 Guadalajara, Jalisco, Mexico
| |
Collapse
|
9
|
Jang H, Lee J, Min DH. Graphene oxide for fluorescence-mediated enzymatic activity assays. J Mater Chem B 2014; 2:2452-2460. [DOI: 10.1039/c4tb00199k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Johnston M, Bhatt SR, Sikka S, Mercier RW, West JM, Makriyannis A, Gatley SJ, Duclos RI. Assay and inhibition of diacylglycerol lipase activity. Bioorg Med Chem Lett 2012; 22:4585-92. [PMID: 22738638 DOI: 10.1016/j.bmcl.2012.05.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 11/25/2022]
Abstract
A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-(14)C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-(14)C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-(14)C]arachidonic acid.
Collapse
Affiliation(s)
- Meghan Johnston
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Basu D, Manjur J, Jin W. Determination of lipoprotein lipase activity using a novel fluorescent lipase assay. J Lipid Res 2011; 52:826-32. [PMID: 21270098 DOI: 10.1194/jlr.d010744] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel, real-time, homogeneous fluorogenic lipoprotein lipase (LPL) assay was developed using a commercially available substrate, the EnzChek lipase substrate, which is solubilized in Zwittergent. The triglyceride analog substrate does not fluoresce, owing to apposition of fluorescent and fluorescent quenching groups at the sn-1 and sn-2 positions, respectively, fluorescence becoming unquenched upon release of the sn-1 BODIPY FA derivative following hydrolysis. Increase in fluorescence intensity at 37°C was proportional to LPL concentration. The assay was more sensitive than a similar assay using 1,2-O-dilauryl-rac-glycero-3-glutaric acid-(6-methylresorufin ester) and was validated in biological samples, including determination of LPL-specific activity in postheparin mouse plasma. The simplicity and reproducibility of the assay make it ideal for in vitro, high-throughput screening for inhibitors and activators of LPL, thus expediting discovery of drugs of potential clinical value.
Collapse
Affiliation(s)
- Debapriya Basu
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
12
|
VanderVen BC, Hermetter A, Huang A, Maxfield FR, Russell DG, Yates RM. Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A 2010; 77:751-60. [PMID: 20653015 DOI: 10.1002/cyto.a.20911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macrophages play a central role in tissue homeostasis and the immune system. Their primary function is to internalize cellular debris and microorganisms for degradation within their phagosomes. In this context, their capacity to process and sequester lipids such as triacylglycerides and cholesteryl esters makes them key players in circulatory diseases, such as atheroclerosis. To discover new inhibitors of lipolytic processing within the phagosomal system of the macrophage, we have developed a novel, cell-based assay suitable for high-throughput screening. We employed particles carrying a fluorogenic triglyceride substrate and a calibration fluor to screen for inhibitors of phagosomal lipolysis. A panel of secondary assays were employed to discriminate between lipase inhibitors and compounds that perturbed general phagosomal trafficking events. This process enabled us to identify a new structural class of pyrazole-methanone compounds that directly inhibit lysosomal and lipoprotein lipase activity.
Collapse
Affiliation(s)
- Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
13
|
Green CD, Jump DB, Olson LK. Elevated insulin secretion from liver X receptor-activated pancreatic beta-cells involves increased de novo lipid synthesis and triacylglyceride turnover. Endocrinology 2009; 150:2637-45. [PMID: 19228891 PMCID: PMC2689804 DOI: 10.1210/en.2008-1039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased basal and loss of glucose-stimulated insulin secretion (GSIS) are hallmarks of beta-cell dysfunction associated with type 2 diabetes. It has been proposed that elevated glucose promotes insulin secretory defects by activating sterol regulatory element binding protein (SREBP)-1c, lipogenic gene expression, and neutral lipid storage. Activation of liver X receptors (LXRs) also activates SREBP-1c and increases lipogenic gene expression and neutral lipid storage but increases basal and GSIS. This study was designed to characterize the changes in de novo fatty acid and triacylglyceride (TAG) synthesis in LXR-activated beta-cells and determine how these changes contribute to elevated basal and GSIS. Treatment of INS-1 beta-cells with LXR agonist T0901317 and elevated glucose led to markedly increased nuclear localization of SREBP-1, lipogenic gene expression, de novo synthesis of monounsaturated fatty acids and TAG, and basal and GSIS. LXR-activated cells had increased fatty acid oxidation and expression of genes involved in mitochondrial beta-oxidation, particularly carnitine palmitoyltransferase-1. Increased basal insulin release from LXR-activated cells coincided with rapid turnover of newly synthesized TAG and required acyl-coenzyme A synthesis and mitochondrial beta-oxidation. GSIS from LXR-activated INS-1 cells required influx of extracellular calcium and lipolysis, suggesting production of lipid-signaling molecules from TAG. Inhibition of diacylglyceride (DAG)-binding proteins, but not classic isoforms of protein kinase C, attenuated GSIS from LXR-activated INS-1 cells. In conclusion, LXR activation in beta-cells exposed to elevated glucose concentrations increases de novo TAG synthesis; subsequent lipolysis produces free fatty acids and DAG, which are oxidized to increase basal insulin release and activate DAG-binding proteins to enhance GSIS, respectively.
Collapse
Affiliation(s)
- Christopher D Green
- Departments of Physiology, Michigan State University, East Lansing, Michigan 48824-3320, USA
| | | | | |
Collapse
|
14
|
Schicher M, Kollroser M, Hermetter A. Mapping the lipolytic proteome of adipose tissue using fluorescent suicide inhibitors. Methods Mol Biol 2009; 579:497-511. [PMID: 19763492 DOI: 10.1007/978-1-60761-322-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipases are responsible for the hydrolysis of acylglycerols and cholesteryl esters in animals, plants, and microorganisms. In this chapter we describe a tool for the concomitant analysis of lipases in complex proteomes. For this purpose, the target enzymes are selectively and covalently labelled with fluorescent suicide inhibitors. Stable lipid-protein complexes are formed that are separated by gel electrophoresis and identified by mass spectrometry.
Collapse
|
15
|
Yates RM, Hermetter A, Russell DG. Recording phagosome maturation through the real-time, spectrofluorometric measurement of hydrolytic activities. Methods Mol Biol 2009; 531:157-71. [PMID: 19347317 DOI: 10.1007/978-1-59745-396-7_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The efficient degradation of internalized particulate matter is a principal objective of the macrophage's phagosome. Assessment of the true hydrolytic capacity within the phagosomal lumen is often difficult as it is subject to many factors beyond recruitment of lysosomal hydrolases. Here we outline three assays that allow quantitative measurements of serine-cysteine protease, triglyceride lipase, and beta-galactosidase activities within the phagosomes of macrophages, in real time. The assays utilize ratio fluorometry between particle-associated fluorogenic substrates and calibration fluorochromes to yield internally controlled values that record rates of substrate hydrolysis. The methods described utilize a spectrofluorometer for fluorometric measurements from a population of macrophages. These assays, however, can be expanded to high-throughput or single cell formats. In addition, this approach can be applied to measure a wide variety of phagosomal hydrolytic properties with the design of suitable fluorogenic substrates.
Collapse
Affiliation(s)
- Robin M Yates
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
16
|
Abstract
Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, Berne, 3012, Switzerland.
| | | | | |
Collapse
|
17
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
18
|
Chou YC, Tsai YC, Chen CM, Chen SM, Lee JA. Determination of lipoprotein lipase activity in post heparin plasma of streptozotocin-induced diabetic rats by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 2008; 22:502-10. [PMID: 18205134 DOI: 10.1002/bmc.960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of lipoprotein lipase (LPL), an enzyme responsible for lipoprotein metabolism, would vary in diseases and metabolic disorders. For determination of LPL activity, a highly sensitive high performance liquid chromatography (HPLC) method using a fluorescent reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was applied to determinate the oleic acid (OA) generated from triolein by LPL activity without multiple solvents extraction step. We studied the optimal conditions of the reaction including the effect of emulsifiers, deproteinizing solvents, and the concentration of bovine serum albumin (BSA). Ten millimolar concentrations of triolein, 5% of BSA, 1% of Gum arabic (GA), and acetonitrile showed the optimum conditions for measuring the LPL activity. The accuracy values for the determination of LPL activity in 10 microL of rat post heparin plasma were 108.73 approximately 114.36%, and the intra- and inter-day precision values were within 1.28% and 2.91%, respectively. The limit of detection was about 4.53 nM (signal-to-noise ratio 3). The proposed method was applied to determination of LPL activity in post heparin plasma of normal and streptozotocininduced diabetic rats associated with 52.3% reduction. The established assay system could be used for determining LPL activity in different physiological and pathological conditions to clarify the relationship between LPL activity and diabetes mellitus.
Collapse
Affiliation(s)
- Yu-Ching Chou
- Department of Pharmaceutical Analysis, School of Pharmacy, Taipei Medical University, No. 250, Wu-Hsing St, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Li L, Renier G. Adipocyte-derived lipoprotein lipase induces macrophage activation and monocyte adhesion: role of fatty acids. Obesity (Silver Spring) 2007; 15:2595-604. [PMID: 18070750 DOI: 10.1038/oby.2007.311] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We evaluated the effect of adipocyte-derived lipoprotein lipase (LPL) on macrophage activation and monocyte adhesion and the role of fatty acids in these effects. RESEARCH METHODS AND PROCEDURES 3T3-L1 adipocytes were incubated with heparin or insulin to induce LPL secretion; then adipocyte conditioned media (CM) were added to cultured J774 macrophages or human aortic endothelial cells (HAECs). Macrophage cytokine production and monocyte adhesion to HAECs were determined. RESULTS Incubation of macrophages with heparin- or insulin-treated adipocyte CM increased tumor necrosis factor alpha, interleukin-6, and nitric oxide production by these cells. LPL neutralization and heparinase treatment prevented these effects. Addition of active LPL or palmitate to cultured macrophages replicated these effects. Blockade of leptin also reduced the effect of insulin-treated adipocyte CM on macrophage inflammatory changes. Induction of macrophage cytokine secretion by leptin was prevented by LPL immunoneutralization. Finally, addition of CM of heparin- or insulin-treated adipocytes to HAECs stimulated monocyte adhesion to these cells, an effect that was abrogated by an anti-LPL antibody. This effect was reproduced by treating HAECs with active LPL or palmitate. DISCUSSION These results point to an effect of LPL-mediated lipolysis in macrophage activation and monocyte adhesion.
Collapse
Affiliation(s)
- Ling Li
- Vascular Immunology Laboratory, Centre Hospitalier de l'Université de Montréal (CHUM) Research Centre, Notre-Dame Hospital, Department of Medicine, University of Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Hao G, Yang L, Mazsaroff I, Lin M. Quantitative determination of lipase activity by liquid chromatography-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1579-81. [PMID: 17624802 DOI: 10.1016/j.jasms.2007.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 05/16/2023]
Abstract
We developed a novel in vitro lipase assay based on the quantitation of fatty acids by liquid chromatography-mass spectrometry. Oleic acids enzymatically released from triolein substrates were isolated from the reaction mixture by reverse-phase chromatography, ionized in negative mode electrospray mass spectrometry and quantitated with the aid of [(13)C]-oleic acid internal standard. The enzymatic activity was measured by monitoring oleic acid productions at multiple time points. This method overcomes the substrate and pH limitations of conventional techniques and thus serves as a generic lipase activity assay.
Collapse
Affiliation(s)
- Gang Hao
- Altus Pharmaceuticals, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
21
|
Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R, Christ ER. Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes Metab Res Rev 2007; 23:392-9. [PMID: 17211855 DOI: 10.1002/dmrr.715] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Postprandial metabolism is impaired in patients with type 2 diabetes (T2Dm). Two thiazolidinediones pioglitazone (PGZ) and rosiglitazone (RGZ) have similar effects on glycaemic control but differ in their effects on fasting lipids. This study investigated the effects of RGZ and PGZ on postprandial metabolism in a prospective, randomized crossover trial. METHODS Seventeen patients with T2Dm were randomized to RGZ or PGZ for 12 weeks, with an 8-week wash-out period. Fasting blood samples were taken for glucose (FPG), insulin, HbA(1c), lipids, apolipoproteins (apo), lipoprotein (LPL) and hepatic lipase (HL), and cholesterol ester transfer protein (CETP) activity. A standardized breakfast was served and postprandial glucose, insulin, and lipid subfraction profiles were determined. RESULTS RGZ and PGZ treatment resulted in a similar improvement in FPG, HbA(1c) and homeostasis model assessment. Fasting and postprandial triglyceride (TG) levels were significantly lower following PGZ therapy (fasting: -0.35 vs 0.44 mmol/L; p < 0.04; postprandial AUC-TG: -195.6 vs 127.9 mmol/L/min; p < 0.02) associated with changes in VLDL-2-TG (-0.10 vs 0.21 mmol/L; p = 0.23) and VLDL-3-TG (0.0 vs 0.34 mmol/L; p < 0.04). Fasting cholesterol increased with RGZ compared to PGZ (0.06 vs 0.59 mmol/L; p < 0.04), particularly in VLDL-2-C (-0.30 vs 0.59 mmol/L; p < 0.03) and VLDL-3-C (-0.85 vs 2.11 mmol/L; p < 0.02). Postprandial VLDL lipid and protein content increased after RGZ and decreased after PGZ. Fasting apoB, apoA-I, apoC-II/C-III-ratio, and LPL activity did not differ. CETP activity decreased after RGZ and increased after PGZ (-6.2 vs 4.2 p/mol/mL/min; p < 0.002). CONCLUSIONS Both the glitazones had similar effects on glucose metabolism. The additional beneficial effect of PGZ on lipid metabolism may be related to its effects on insulin-independent VLDL production and CETP activity.
Collapse
Affiliation(s)
- Bernard Chappuis
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Berne, Inselspital, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reymond JL, Babiak P. Screening systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 105:31-58. [PMID: 17408081 DOI: 10.1007/10_2006_032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Enzyme screening technology has undergone massive developments in recent years, particularly in the area of high-throughput screening and microarray methods. Screening consists of testing each sample of a sample library individually for the targeted reaction. This requires enzyme assays that accurately test relevant parameters of the reaction, such as catalytic turnover with a given substrate and selectivity parameters such as enantio- and regioselectivity. Enzyme assays also play an important role outside of enzyme screening, in particular for drug screening, medical diagnostics, and in the area of cellular and tissue imaging. In the 1990s, methods for high-throughput screening of enzyme activities were perceived as a critical bottleneck. As illustrated partly in this chapter, a large repertoire of efficient screening strategies are available today that allow testing of almost any reaction with high-throughput.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry & Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland.
| | | |
Collapse
|
23
|
Barcat D, Amadio A, Palos-Pinto A, Daret D, Benlian P, Darmon M, Bérard AM. Combined hyperlipidemia/hyperalphalipoproteinemia associated with premature spontaneous atherosclerosis in mice lacking hepatic lipase and low density lipoprotein receptor. Atherosclerosis 2006; 188:347-55. [PMID: 16384559 DOI: 10.1016/j.atherosclerosis.2005.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/29/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND METHODS Hepatic lipase (HL) is an enzyme which hydrolyzes triglycerides from plasma lipoproteins and thus takes part in the metabolism of triglyceride-rich lipoprotein remnants and high density lipoproteins. The search described here concentrated on the description of the double invalidation of the HL and LDL receptor genes in mice in order to better understand the possible role of HL in combined hyperlipidemia/hyperalphalipoproteinemia and development of atherosclerosis. RESULTS We show here that mice lacking both endogenous HL and LDL receptor (HL-/-:LDLR-/-) dramatically increased their plasma triglyceride-rich lipoproteins and their remnants as a consequence of reduced liver uptake. This result is strenghthened by the fact that HL-/-:LDLR-/- were found to overexpress LRP, LSR, and apoE genes. Interestingly, HL-/-:LDLR-/- mice showed premature spontaneous atherosclerosis and aortic lesions from 1-year-old animals were two-fold larger than those of LDLR-/- single mutants. We confirmed that HL-/- and wild-type mice did not develop atherosclerosis lesion even 1 year after birth. CONCLUSIONS Analysis of this double HL-LDLR knockout mouse model provides in vivo evidence that HL has a major role in the clearance of TRL remnants when LDLR is deficient and in the reduction of the development of atherosclerosis.
Collapse
Affiliation(s)
- D Barcat
- Laboratoire de Biochimie et de Biologie Moléculaire, EA no. 3670, Centre Hospitalier Universitaire de Bordeaux, Université Victor Ségalen Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang Y, Babiak P, Reymond JL. New Monofunctionalized Fluorescein Derivatives for the Efficient High-Throughput Screening of Lipases and Esterases in Aqueous Media. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Yang Y, Babiak P, Reymond JL. Low background FRET-substrates for lipases and esterases suitable for high-throughput screening under basic (pH 11) conditions. Org Biomol Chem 2006; 4:1746-54. [PMID: 16633567 DOI: 10.1039/b601151a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FRET-based fluorogenic substrates for lipases and esterases were prepared in four steps from commercially available building blocks. The substrates are pyrenebutyric acid monoesters of aliphatic 1,2-diols bearing a dinitrophenylamino group as a quencher. The most enzyme-reactive substrate is ester 2a. The substrates do not show any measurable background reaction in the absence of enzyme even at pH 11, but react fast and specifically with lipases and esterases. These substrates offer an unprecedented and practical solution to the long-standing problem of a simple yet efficient high-throughput screening tool for lipase activities under basic conditions.
Collapse
Affiliation(s)
- Yongzheng Yang
- Department of Chemistry & Biochemistry, University of Berne, Switzerland
| | | | | |
Collapse
|
26
|
Yates RM, Hermetter A, Russell DG. The Kinetics of Phagosome Maturation as a Function of Phagosome/Lysosome Fusion and Acquisition of Hydrolytic Activity. Traffic 2005; 6:413-20. [PMID: 15813751 DOI: 10.1111/j.1600-0854.2005.00284.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Professional phagocytes function at the hinge of innate and acquired immune responses by internalizing particulate material that is digested and sampled within the phagosome of the cell. Despite intense interest, assays to measure phagosome maturation remain insensitive and few in number. In this current study, we describe three novel assays that quantify important biological properties of the phagosome as it matures. One assay exploits fluorescence resonance energy transfer to quantify mixing of phagocytosed particles carrying a donor fluor with an acceptor fluor loaded previously into the lysosomes as a fluid phase marker. Two additional assays describe the functional maturation of the phagosome as a hydrolytic compartment following the degradation of specifically designed peptide and triglyceride fluorogenic substrates. The peptide substrate is preferentially cleaved by cysteine proteinases, and its degradation reflects proteinase delivery and activation within the acidifying phagosome. The fluorescence emission of the triglyceride analogue profiles the kinetics of triglyceride lipase activity within the phagosome. The fluorescence profiles of all three assays are modulated by known inhibitors of phagosome maturation, demonstrating the veracity, sensitivity and versatility of the assays.
Collapse
Affiliation(s)
- Robin M Yates
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
27
|
Beauchamp MC, Michaud SE, Li L, Sartippour MR, Renier G. Advanced glycation end products potentiate the stimulatory effect of glucose on macrophage lipoprotein lipase expression. J Lipid Res 2004; 45:1749-57. [PMID: 15210847 DOI: 10.1194/jlr.m400169-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) secreted by macrophages in the arterial wall promotes atherosclerosis. We have shown that macrophages of patients with type 2 diabetes overproduce LPL and that metabolic factors, including glucose, stimulate macrophage LPL secretion. In this study, we determined the effect of advanced glycation end products (AGEs) on LPL expression by macrophages cultured in a high-glucose environment and the molecular mechanisms underlying this effect. Our results demonstrate that AGEs potentiate the stimulatory effect of high glucose on murine and human macrophage LPL gene expression and secretion. Induction of macrophage LPL mRNA levels by AGEs was identical to that elicited by physiologically relevant modified albumin and was inhibited by anti-AGE receptor as well as by antioxidants. Treatment of macrophages with AGEs resulted in protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. Inhibition of these kinases abolished the effect of AGEs on LPL mRNA levels. Finally, exposure of macrophages to AGEs increased the binding of nuclear proteins to the activated protein-1 consensus sequence of the LPL promoter. This effect was inhibited by PKC and MAPK inhibitors. These results demonstrate for the first time that AGEs potentiate the stimulatory effect of high glucose on macrophage LPL expression. This effect appears to involve oxidative stress and PKC/MAPK activation.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Centre Hospitalier de l'Université de Montréal Research Centre, Notre-Dame Hospital, Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Matsusue K, Gavrilova O, Lambert G, Brewer HB, Ward JM, Inoue Y, LeRoith D, Gonzalez FJ. Hepatic CCAAT/enhancer binding protein alpha mediates induction of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol Endocrinol 2004; 18:2751-64. [PMID: 15319454 DOI: 10.1210/me.2004-0213] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CCAAT/enhancer binding protein alpha (C/EBP alpha) is a critical factor in glucose metabolism in the neonate as revealed by conventional C/EBP alpha-null mice that do not survive beyond the first day after birth because of severe hypoglycemia and a deficiency in hepatic glycogen accumulation. To elucidate the function of C/EBP alpha in leptin-deficient mouse (ob/ob) liver, a C/EBP alpha-liver null mouse on an ob/ob background (ob/ob-C/EBP alpha/Cre(+)) was produced using a floxed C/EBP alpha allele and Cre recombinase under control of the albumin promoter (AlbCre). The C/EBP alpha-deficient liver in ob/ob mice had significantly decreased triglyceride content compared with equivalent mice lacking the AlbCre transgene (ob/ob-C/EBP alpha/Cre(-)). Expression of genes involved in lipogenesis including fatty acid synthase, acetyl-coenzyme A carboxylase, stearoyl-coenzyme A desaturase 1 and ATP-citrate lyase dramatically decreased in ob/ob-C/EBP alpha/Cre(+) mouse liver. Induction of these lipogenic genes by a high-carbohydrate diet caused an exacerbation in the development of fatty liver and an increase in liver size, hepatic triglyceride, and cholesterol contents in ob/ob-C/EBP alpha/Cre(-) mice but not in ob/ob-C/EBP alpha/Cre(+) mice. Deficiency in hepatic C/EBP alpha expression caused an exacerbation of hyperglycemia because of decreased insulin secretion. Taken together, these results indicate that hepatic C/EBP alpha plays a critical role in the acceleration of lipogenesis in ob/ob mice and in glucose homeostasis by the indirect regulation of insulin secretion.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Birner-Grünberger R, Scholze H, Faber K, Hermetter A. Identification of various lipolytic enzymes in crude porcine pancreatic lipase preparations using covalent fluorescent inhibitors. Biotechnol Bioeng 2003; 85:147-54. [PMID: 14704997 DOI: 10.1002/bit.10894] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We developed a specific method for determination and discrimination of lipo-/estero-lytic enzymes in crude lipase preparations. Here we study the composition of commercial porcine pancreatic lipase (PPL), since it is widely used for bioconversions of synthetic and natural substrates. Our method is based on incubation of enzyme samples with fluorescently labeled alkyl- or dialkylglyceryl-phosphonates in an appropriate solvent followed by protein separation by electrophoresis and fluorescence detection with a CCD camera. After incubation with short-chain alkylphosphonate solubilized by taurodeoxycholate, crude PPL preparations showed a very weak band at 50 kDa, which is indicative of low PPL concentrations in these samples. In addition, seven other fluorescent bands were detected. The band at the lowest molecular weight corresponded to alpha-chymotrypsin. Two intensive fluorescent bands were in the molecular weight range of chymotrypsinogen (26 kDa) and four weak bands were in the range 20-24 kDa. Long-chain dialkylglycerophosphonate labeled two protein bands in crude PPL: alpha-chymotrypsin and a very intensive band corresponding to the molecular weight of chymotrypsinogen. Detection of cholesterol esterase (98 kDa) in crude PPL preparations depended on addition of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF) to the incubation mix, as demonstrated by spiking with cholesterol esterase. Thus, commercial crude PPL preparations contain a variety of estero-/lipo-lytic enzymes in addition to rather low amounts of active PPL, which should be considered when using crude PPL for bioconversions. Our method can also be used to show whether an isolated esterolytic activity corresponds to a single protein or isoenzymes. Here we confirm by 2D-electrophoretic separation of "pure" PPL that PPL exists as isoenzymes in different glycosylated forms.
Collapse
Affiliation(s)
- Ruth Birner-Grünberger
- Department of Biochemistry, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
31
|
Oskolkova OV, Saf R, Zenzmaier E, Hermetter A. Fluorescent organophosphonates as inhibitors of microbial lipases. Chem Phys Lipids 2003; 125:103-14. [PMID: 14499469 DOI: 10.1016/s0009-3084(03)00085-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Short- and long-chain 1-O-alkyl-2-acylaminodeoxyglycero- and alkoxy-alkylphosphonic acid p-nitrophenyl esters were synthesized as inhibitors for analytical and mechanistic studies on lipolytic enzymes. The respective compounds contain perylene or nitrobenzoxadiazole as reporter fluorophores covalently bound to the omega-ends of the respective 2-acylamino- and alkoxy- residues. Their inhibitory effects on the activities of three selected lipases showing different substrate preferences were determined, including the lipases from Rhizopus oryzae, Pseudomonas species, and Pseudomonas cepacia. R. oryzae lipase reacted much better with the single-chain inhibitors than the two-chain deoxyglycerolipids. In contrast, P. cepacia lipase was inactivated by perylene-containing two-chain phosphonate (XXII) to a larger extent as compared to the other inhibitors whereas Pseudomonas species lipase interacted efficiently and without any preferences with all inhibitors used in this study. In summary, the different lipases show a very characteristic reactivity pattern not only with respect to triacylglycerol substrates but also to their structurally related inhibitors. Thus, the novel phosphonates might be useful tools not only for analysis and discrimination of known lipolytic enzymes but also for discovery of yet unknown lipases/esterases in biological samples.
Collapse
Affiliation(s)
- Olga V Oskolkova
- Department of Biochemistry, Graz University of Technology, Petersgasse 12/II, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
32
|
Maingrette F, Renier G. Leptin increases lipoprotein lipase secretion by macrophages: involvement of oxidative stress and protein kinase C. Diabetes 2003; 52:2121-8. [PMID: 12882931 DOI: 10.2337/diabetes.52.8.2121] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent data suggest that plasma leptin may represent a cardiovascular risk factor in diabetic patients. To gain further insight into the role of leptin in atherogenesis associated with diabetes, we investigated in the present study the role of this hormone in the regulation of macrophage lipoprotein lipase (LPL), a proatherogenic cytokine overexpressed in patients with type 2 diabetes. Treatment of human macrophages with leptin (1-10 nmol/l) increased LPL expression, at both the mRNA and protein levels. Pretreatment of these cells with anti-leptin receptor (Ob-R) antibody, protein kinase C (PKC) inhibitors, calphostin C, and GF109203X, or the antioxidant N-acetylcysteine (NAC) blocked the effects of leptin. Similar results were observed in leptin-treated J774 macrophages. In these cells, leptin increased the membrane expression of conventional PKC isoforms and downregulation of endogenous PKC expression abolished the effects of leptin on macrophage LPL expression. In leptin-treated J774 cells, enhanced LPL synthetic rate and increased binding of nuclear proteins to the activated protein-1 (AP-1) consensus sequence of the LPL gene promoter were also observed. This latter effect was abrogated by GF109203X. Overall, these data demonstrate that binding of leptin at the macrophage cell surface increases, through oxidative stress- and PKC-dependent pathways, LPL expression. This effect appears to be exerted at the transcriptional level and to involve AP-1 activation.
Collapse
Affiliation(s)
- Fritz Maingrette
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
33
|
Li L, Beauchamp MC, Renier G. Peroxisome proliferator-activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 2002; 165:101-10. [PMID: 12208475 DOI: 10.1016/s0021-9150(02)00203-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors which mediate pleiotropic effects including regulation of genes involved in lipid metabolism and control of inflammation. In the present study, we measured the in vitro effects of PPAR alpha and gamma ligands on macrophage lipoprotein lipase (LPL) expression. Human monocyte-derived macrophages (MDM) were cultured for 1-3 days in the presence of PPAR alpha and gamma ligands. At the end of these incubation periods, extracellular LPL immunoreactive mass/activity and LPL mRNA levels were measured. Incubation of human MDM with PPAR alpha and gamma ligands stimulated, in a time- and dose-dependent manner, human MDM LPL mass and activity. These agents also significantly increased macrophage LPL mRNA expression. In THP-1 cells treated with PPAR alpha and gamma ligands, enhanced nuclear protein binding to the peroxisome proliferator responsive element (PPRE) of the human LPL promoter was observed. Furthermore, in these cells, a decreased rate of decay of LPL mRNA was documented. Overall, these results demonstrate that PPAR alpha and gamma activators increase macrophage LPL secretion. Given the proatherogenic effect of vascular wall LPL, better understanding of the role of PPARs in the regulation of macrophage LPL expression could lead to the development of new approaches in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ling Li
- CHUM Research Centre, Notre-Dame Hospital, Department of Biomedical Sciences, University of Montreal, Que., Canada
| | | | | |
Collapse
|
34
|
Abstract
Pyrene is one of the most frequently used lipid-linked fluorophores. Its most characteristic features are a long excited state lifetime and (local) concentration-dependent formation of excimers. Pyrene is also hydrophobic and thus does not significantly distort the conformation of the labeled lipid molecule. These characteristics make pyrene lipids well-suited for studies on a variety of biophysical phenomena like lateral diffusion, inter- or transbilayer movement of lipids and lateral organization of membranes. Pyrene lipids have also been widely employed to determine protein binding to membranes, lipid conformation and the activity of lipolytic enzymes. In cell biology, pyrene lipids are promising tools for studies on lipid trafficking and metabolism, as well as for microscopic mapping of membrane properties. The main disadvantage of pyrene lipids is the relatively large size of the fluorophore. Another disadvantage is that they require UV-excitation, which is not feasible with all microscopes.
Collapse
Affiliation(s)
- Pentti Somerharju
- Institute of Biomedicine, Biomedicum, Room C205b, Haartmaninkatu 8, P.O. Box 63, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
35
|
Oskolkova OV, Hermetter A. Fluorescent inhibitors reveal solvent-dependent micropolarity in the lipid binding sites of lipases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:60-6. [PMID: 12009403 DOI: 10.1016/s0167-4838(02)00277-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Triacylglycerol analogue p-nitrophenyl phosphonates specifically react with the active-site serine of lipolytic enzymes to give covalent lipase-inhibitor complexes, mimicking the first transition state which is involved in lipase-mediated ester hydrolysis. Here we report on a new type of phosphonate inhibitors containing a polarity-sensitive fluorophore to monitor micropolarity around the active site of the enzyme in different solvents. The respective compounds are hexyl and methyl dimethylamino-naphthalenecarbonylethylmercaptoethoxy-phosphonates. The hexyl phosphonate derivative was reacted with lipases from Rhizopus oryzae (ROL), Chromobacterium viscosum (CVL), and Pseudomonas cepacia (PCL). The resulting lipid-protein complexes were characterized in solution with respect to water penetration into the lipid binding site and the associated conformational changes of the proteins as a consequence of solvent polarity changes. We found that the accessibility of the lipid-binding site in all lipases studied was lowest in water. It was much higher when the protein was dissolved in aqueous ethanol. These biophysical effects may contribute to the previously observed dramatic changes of enzyme functions such as activity and stereoselectivity depending on the respective solvents.
Collapse
Affiliation(s)
- Olga V Oskolkova
- Department of Biochemistry, Technische Universität Graz, Petersgasse 12/II, A-8010 Graz, Austria
| | | |
Collapse
|
36
|
Beauchamp MC, Renier G. Homocysteine induces protein kinase C activation and stimulates c-Fos and lipoprotein lipase expression in macrophages. Diabetes 2002; 51:1180-7. [PMID: 11916942 DOI: 10.2337/diabetes.51.4.1180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular disease in human diabetes. Among the multiple factors that may account for the atherogenicity of homocysteine (Hcys) in patients with diabetes, macrophage (Mo) lipoprotein lipase (LPL) has unique features in that it is increased in human diabetes and acts as a proatherogenic factor in the arterial wall. In the present study, we determined the direct regulatory effect of Hcys on Mo LPL gene expression and secretion. Incubation of J774 Mo with Hcys increased, in a time- and dose-dependent manner, LPL mRNA expression and secretion. Induction of LPL gene expression was biphasic, peaking at 1 and 6 h. Whereas Hcys treatment increased protein kinase C (PKC) activity in Mo, pretreatment of Mo with PKC inhibitors totally suppressed Hcys-induced LPL mRNA expression. Hcys also increases the levels of c-fos mRNA in Mo and enhanced nuclear protein binding to the AP-1 sequence of the LPL gene promoter. Overall, these results demonstrate that Hcys stimulates Mo LPL at both the gene and protein levels and that Hcys-induced LPL mRNA expression requires PKC activation. They also suggest a possible role of c-fos in the stimulatory effect of Hcys on Mo LPL mRNA expression. These observations suggest a new mechanism by which Hcys may exert its proatherogenic effects in human diabetes.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Centre Hospitalier de l'Université de Montréal (CHUM) Research Centre, Notre-Dame Hospital, Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
37
|
Macrophage lipoprotein lipase expression is increased in patients with heterozygous familial hypercholesterolemia. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30163-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Dugi KA, Brandauer K, Schmidt N, Nau B, Schneider JG, Mentz S, Keiper T, Schaefer JR, Meissner C, Kather H, Bahner ML, Fiehn W, Kreuzer J. Low hepatic lipase activity is a novel risk factor for coronary artery disease. Circulation 2001; 104:3057-62. [PMID: 11748100 DOI: 10.1161/hc5001.100795] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The crucial function of hepatic lipase (HL) in lipid metabolism has been well established, but the relationship between HL activity and coronary artery disease (CAD) is disputed. METHODS AND RESULTS We measured HL activity in the postheparin plasma of 200 consecutive men undergoing elective coronary angiography and determined the degree of CAD with the extent score, which has been shown to be better correlated with known risk factors than other measures of CAD extent. We found a significant inverse correlation between HL activity and the extent of CAD (r=-0.19, P<0.01). This association was mainly due to patients with HDL levels >0.96 mmol/L (n=94, r=-0.30, P<0.005). HL activity was lower in 173 patients with CAD than in 40 controls with normal angiograms (286+/-106 versus 338+/-108 nmol. mL(-1). min(-1), P<0.01). To correct for potential confounding factors, we performed multivariate analyses that confirmed the independent association of HL activity with CAD extent. In addition, the presence of the T allele at position -514 in the HL promoter, which leads to a reduced HL promoter activity, was associated with lower HL activity (r=0.30, P<0.001) and higher CAD extent (42.2+/-20.8 versus 35.3+/-23.6 [extent score], P<0.05). In patients with heterozygous familial hypercholesterolemia, calcified lesions in ECG-gated spiral computed tomography were higher in patients with low HL activity (6.3+/-6.8 versus 1.5+/-3.1, P=0.01). CONCLUSIONS Our data show that low HL activity is associated with CAD. Therefore, HL might be useful for CAD risk estimation and might be a target for pharmacological intervention.
Collapse
Affiliation(s)
- K A Dugi
- Department of Internal Medicine I, Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 2001; 50:660-6. [PMID: 11246888 DOI: 10.2337/diabetes.50.3.660] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Atherosclerosis is a major complication of type 2 diabetes. The pathogenesis of this complication is poorly understood, but it clearly involves production in the vascular wall of macrophage (Mo) lipoprotein lipase (LPL). Mo LPL is increased in human diabetes. Peripheral factors dysregulated in diabetes, including glucose and free fatty acids (FAs), may contribute to this alteration. We previously reported that high glucose stimulates LPL production in both J774 murine and human Mo. In the present study, we evaluated the direct effect of FAs on murine Mo LPL expression and examined the involvement of peroxisome proliferator-activated receptors (PPARs) in this effect. J774 Mo were cultured for 24 h with 0.2 mmol/l unsaturated FAs (arachidonic [AA], eicosapentaenoic [EPA], and linoleic acids [LA]) and monounsaturated (oleic acid [OA]) and saturated FAs (palmitic acid [PA] and stearic acid [SA]) bound to 2% bovine serum albumin. At the end of this incubation period, Mo LPL mRNA expression, immunoreactive mass, activity, and synthetic rate were measured. Incubation of J774 cells with LA, PA, and SA significantly increased Mo LPL mRNA expression. In contrast, exposure of these cells to AA and EPA dramatically decreased this parameter. All FAs, with the exception of EPA and OA, increased extra- and intracellular LPL immunoreactive mass and activity. Intracellular LPL mass and activity paralleled extracellular LPL mass and activity in all FA-treated cells. In Mo exposed to AA, LA, and PA, an increase in Mo LPL synthetic rate was observed. To evaluate the role of PPARs in the modulatory effect of FAs on Mo LPL gene expression, DNA binding assays were performed. Results of these experiments demonstrate an enhanced binding of nuclear proteins extracted from all FA-treated Mo to the peroxisome proliferator-response element (PPRE) consensus sequence of the LPL promoter. PA-, SA-, and OA-stimulated binding activity was effectively diminished by immunoprecipitation of the nuclear proteins with anti-PPAR-alpha antibodies. In contrast, anti-PPAR-gamma antibodies only significantly decreased AA-induced binding activity. Overall, these results provide the first evidence for a direct regulatory effect of FAs on Mo LPL and suggest a potential role of PPARs in the regulation of Mo LPL gene expression by FAs.
Collapse
Affiliation(s)
- S E Michaud
- Department of Nutrition, University of Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Miled N, Beisson F, de Caro J, de Caro A, Arondel V, Verger R. Interfacial catalysis by lipases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00041-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
|
42
|
Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32106-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Staubmann R, Ncube I, Gübitz GM, Steiner W, Read JS. Esterase and lipase activity in Jatropha curcas L. seeds. J Biotechnol 1999; 75:117-26. [PMID: 10617336 DOI: 10.1016/s0168-1656(99)00151-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two new esterases (JEA and JEB) and a lipase (JL) were extracted from the seeds of Jatropha curas L. Lipase activity was only found during germination of the seeds and increased to a maximum after 4 days of germination. All enzymes were found to be most active in the alkaline range at around pH 8 and the purified (fractionated precipitation with ethanol and gel filtration) esterases were very stable at high temperatures. The molecular weight (SDS-PAGE) of both esterases was determined to be 21.6-23.5 kDa (JEA) and 30.2 kDa (JEB) and the isoelectric point was 5.7-6.1 for esterase JEA and 9.0 for esterase JEB. Most ions caused a negative influence on the activity of both esterases. Using p-nitrophenyl butyrate as a substrate JEA showed a K(m) of 0.02 mM and a v(max) of 0.26 micromol mg(-1) min(-1). Under the same conditions JEB showed a K(m) of 0.07 mM and a v(max) of 0.24 micromol mg(-1) min(-1). Both esterases hydrolyzed tributyrin, nitrophenyl esters up to a chain length of =C4 and naphtylesters up to a chain length =C6. In transesterification reactions, JL was found to be most active at very low water activities (0.2) and in high water activities, the lipase hydrolysed triglycerides into conversions above 80%. The lipase hydrolysed both short chain and long chain triglycerides at about the same rate but was inactive on alpha-methylbenzyl acetate. JL is a potentially useful biocatalyst in the hydrolysis of triglycerides in organic solvents.
Collapse
Affiliation(s)
- R Staubmann
- Department of Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | | |
Collapse
|
44
|
Stradner A, Mayer B, Sottmann T, Hermetter A, Glatter O. Sugar Surfactant-Based Solutions as Host Systems for Enzyme Activity Measurements. J Phys Chem B 1999. [DOI: 10.1021/jp9905171] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Stradner
- Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria, Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria, and Institut für Physikalische Chemie I, Universität zu Köln, D-50939 Köln, Germany
| | - Birgit Mayer
- Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria, Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria, and Institut für Physikalische Chemie I, Universität zu Köln, D-50939 Köln, Germany
| | - Thomas Sottmann
- Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria, Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria, and Institut für Physikalische Chemie I, Universität zu Köln, D-50939 Köln, Germany
| | - Albin Hermetter
- Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria, Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria, and Institut für Physikalische Chemie I, Universität zu Köln, D-50939 Köln, Germany
| | - Otto Glatter
- Institut für Physikalische Chemie, Universität Graz, A-8010 Graz, Austria, Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria, and Institut für Physikalische Chemie I, Universität zu Köln, D-50939 Köln, Germany
| |
Collapse
|
45
|
Graupner M, Haalck L, Spener F, Lindner H, Glatter O, Paltauf F, Hermetter A. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence. Biophys J 1999; 77:493-504. [PMID: 10388774 PMCID: PMC1300346 DOI: 10.1016/s0006-3495(99)76906-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied the intrinsic tryptophan fluorescence of the lipases from Chromobacterium viscosum (CVL), Pseudomonas species (PSL), and Rhizopus oryzae (ROL) in aqueous buffer, zwitterionic detergent micelles, and isopropanol-water mixtures. It was the purpose of this study to obtain information about biophysical properties of the respective enzymes under conditions that modulate enzyme activities and stereoselectivities to a significant extent. According to their decay-associated emission spectra, CVL tryptophans are located in the hydrophobic interior of the protein. In contrast, the PSL and ROL tryptophans are probably confined to the core and the surface of the lipase. From the tryptophan lifetime distributions it can be concluded that the conformation of CVL is not much affected by detergent or organic solvent (isopropanol). Accordingly, CVL is enzymatically active in these systems and most active in the presence of isopropanol. In contrast, ROL and PSL show high conformational mobility, depending on the solvent, because their lifetime distributions are very different in the presence and absence of detergent or isopropanol. Time-resolved anisotropy studies provided evidence that the lipases exhibit very high internal molecular flexibility. This peculiar feature of lipases is perhaps the key to the great differences in activity and stereoselectivity observed in different reaction media. Furthermore, information about self-association of the lipases in different solvents could be obtained. PSL, but not CVL and ROL, forms aggregates in water. Lipase aggregation can be reversed by the addition of detergent or isopropanol, which competes for the hydrophobic surface domains of this protein. This dissociation could efficiently contribute to the increase in lipase activity in the presence of a detergent or isopropanol.
Collapse
Affiliation(s)
- M Graupner
- Department of Biochemistry, Technische Universität Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Zandonella G, Stadler P, Haalck L, Spener F, Paltauf F, Hermetter A. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:63-9. [PMID: 10231365 DOI: 10.1046/j.1432-1327.1999.00325.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent triacylglycerol analogs were synthesized as covalent inhibitors of lipase activity. The respective 1(3), 2-O-dialkylglycero-3(1)-alkyl-phosphonic acid p-nitrophenyl esters contain a fluorescent pyrenealkyl chain and a long-chain alkyl residue bound to the sn-2 and sn-1(3) positions of glycerol, respectively. The phosphonic acid p-nitrophenyl ester bond is susceptible to nucleophilic substitution by the active serine residue in the catalytic triad of a lipase, leading to inactivation of the enzyme. The fluorescent dialkylglycerophosphonates contain two chiral centers, the sn-2 carbon of glycerol and the phosphorus atom. The (1-O-hexadecyl-2-O-pyrenedecyl-sn-glycero)-O-(p-nitrophenyl)-n-hex yl- phosphonate, first peak during HPLC separation and the (3-O-hexadecyl-2-O-pyrenedecyl-sn-glycero)-O-(p-nitrophenyl)-n-hex yl- phosphonate, second peak during HPLC separation were found to be potent lipase inhibitors. After incubation of an equimolar amount of these isomers with lipase from Rhizopus oryzae complete inactivation was observed. Stable conjugates containing a 1 : 1 molar ratio of lipid to protein were formed. The spatial proximity of the fluorescently labeled sn-2 alkyl chain of the inhibitor and tryptophan residues of the lipase was assessed by fluorescence resonance energy transfer. The extent of tryptophan fluorescence quenching and the concomitant increase in pyrene fluorescence upon excitation of lipase tryptophans was found to be similar for the above-mentioned isomers. Thus, the (labeled) sn-2 alkyl chains of a triacylglycerol analog are likely to interact with the same binding site of the R. oryzae lipase, irrespective of their steric configuration. However, it was shown that the extent of resonance energy transfer is strongly influenced by the reaction medium, indicating conformational changes of the lipase in different environments.
Collapse
Affiliation(s)
- G Zandonella
- Department of Biochemistry, Technische Universität, Graz, Austria
| | | | | | | | | | | |
Collapse
|