1
|
Hanaya K, Taguchi K, Wada Y, Kawano M. One-Step Maleimide-Based Dual Functionalization of Protein N-Termini. Angew Chem Int Ed Engl 2025; 64:e202417134. [PMID: 39564713 PMCID: PMC11773299 DOI: 10.1002/anie.202417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Maleimide derivatives are privileged reagents for chemically modifying proteins through the Michael addition reaction with cysteine due to their selectivity, operational simplicity, and commercial availability. However, since accessible free cysteine is rarely found in natural proteins, it is highly desirable to find alternative targets to enable direct bioconjugation of proteins with maleimides. In this study, we have developed an operationally simple and straightforward method for the N-terminal modification of proteins without the need for mutagenesis via a copper(II)-mediated [3+2] cycloaddition reaction with maleimides and 2-pyridinecarboxaldehyde (2-PCA) derivatives under non-denaturing conditions at pH 6 and 37 °C in aqueous media. Our method utilizes commercially available maleimides to attach diverse functionalities to various N-terminal amino acids. We demonstrate the preparation of a ternary protein complex cross-linked at the N-termini and dually modified trastuzumab equipped with monomethyl auristatin E (MMAE), a cytotoxic agent, and a Cy5 fluorophore (MMAE-Cy5-trastuzumab). MMAE-Cy5-trastuzumab retained human epidermal growth factor receptor 2 (HER2) recognition activity and exerted cytotoxicity against HER2-positive cells. Furthermore, MMAE-Cy5-trastuzumab allowed successful visualization of HER2-positive cancer cells in mouse tumors. This straightforward method will expand the accessibility of protein conjugates with well-defined structures in a wide range of research fields.
Collapse
Affiliation(s)
- Kengo Hanaya
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Kazuaki Taguchi
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Yuki Wada
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| |
Collapse
|
2
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Tan R, Hoare M, Bellomio P, Broas S, Camacho K, Swovick K, Welle KA, Hryhorenko JR, Ghaemmaghami S. Formylation facilitates the reduction of oxidized initiator methionines. Proc Natl Acad Sci U S A 2024; 121:e2403880121. [PMID: 39499632 PMCID: PMC11572973 DOI: 10.1073/pnas.2403880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation. Here, we investigated how formylation and acetylation of initiator methionines impact their propensity for oxidation and reduction. We show that in vitro, N-terminal methionine residues are particularly prone to chemical oxidation and that their modification by formylation or acetylation greatly enhances their subsequent enzymatic reduction by MsrA and MsrB. Concordantly, in vivo ablation of methionyl-tRNA formyltransferase (MTF) in Escherichia coli increases the prevalence of oxidized methionines within synthesized proteins. We show that oxidation of formylated initiator methionines is detrimental in part because it obstructs their ensuing deformylation by peptide deformylase (PDF) and hydrolysis by methionyl aminopeptidase (MAP). Thus, by facilitating their reduction, formylation mitigates the misprocessing of oxidized initiator methionines.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Philip Bellomio
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Sarah Broas
- Department of Biology, University of Rochester, Rochester, NY14627
| | | | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
4
|
Larsen SK, Bekkelund ÅK, Glomnes N, Arnesen T, Aksnes H. Assessing N-terminal acetylation status of cellular proteins via an antibody specific for acetylated methionine. Biochimie 2024; 226:113-120. [PMID: 39038730 DOI: 10.1016/j.biochi.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.
Collapse
Affiliation(s)
| | - Åse K Bekkelund
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Patel K, Jiramongkol Y, Norman A, Maxwell JWC, Mohanty B, Payne RJ, Cook KM, White MD. The enzymatic oxygen sensor cysteamine dioxygenase binds its protein substrates through their N-termini. J Biol Chem 2024; 300:107653. [PMID: 39122008 PMCID: PMC11406360 DOI: 10.1016/j.jbc.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O2-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.
Collapse
Affiliation(s)
- Karishma Patel
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yannasittha Jiramongkol
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Biswaranjan Mohanty
- Sydney Analytical Core Research Facility, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark D White
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. PLoS One 2024; 19:e0301328. [PMID: 38713657 PMCID: PMC11075865 DOI: 10.1371/journal.pone.0301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| |
Collapse
|
9
|
Ke J, Zhao J, Li H, Yuan L, Dong G, Wang G. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Comput Biol Med 2024; 174:108330. [PMID: 38588617 DOI: 10.1016/j.compbiomed.2024.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
Collapse
Affiliation(s)
- Jinsong Ke
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Jianmei Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, Quzhou, 324000, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Leonardo Silvestre H, Asensio JL, Blundell TL, Bastida A, Bolanos-Garcia VM. Functional and structural characterisation of RimL from Bacillus cereus, a new N α-acetyltransferase of ribosomal proteins that was wrongly assigned as an aminoglycosyltransferase. Int J Biol Macromol 2024; 263:130348. [PMID: 38395274 DOI: 10.1016/j.ijbiomac.2024.130348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria.
Collapse
Affiliation(s)
- H Leonardo Silvestre
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - J L Asensio
- Departamento de Química Bio-orgánica, IQOG, Spanish National Research Council, C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - T L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - A Bastida
- Departamento de Química Bio-orgánica, IQOG, Spanish National Research Council, C/ Juan de la Cierva 3, E-28006 Madrid, Spain.
| | - V M Bolanos-Garcia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
11
|
Venezian J, Bar-Yosef H, Ben-Arie Zilberman H, Cohen N, Kleifeld O, Fernandez-Recio J, Glaser F, Shiber A. Diverging co-translational protein complex assembly pathways are governed by interface energy distribution. Nat Commun 2024; 15:2638. [PMID: 38528060 DOI: 10.1038/s41467-024-46881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
Collapse
Affiliation(s)
- Johannes Venezian
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Hagit Bar-Yosef
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | | | - Noam Cohen
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Haifa, Israel
| | - Ayala Shiber
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Schneps CM, Dunleavy R, Crane BR. Dissecting the Interaction between Cryptochrome and Timeless Reveals Underpinnings of Light-Dependent Recognition. Biochemistry 2024:10.1021/acs.biochem.3c00630. [PMID: 38294880 PMCID: PMC11289166 DOI: 10.1021/acs.biochem.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Circadian rhythms are determined by cell-autonomous transcription-translation feedback loops that entrain to environmental stimuli. In the model circadian clock of Drosophila melanogaster, the clock is set by the light-induced degradation of the core oscillator protein timeless (TIM) by the principal light-sensor cryptochrome (CRY). The cryo-EM structure of CRY bound to TIM revealed that within the extensive CRY:TIM interface, the TIM N-terminus binds into the CRY FAD pocket, in which FAD and the associated phosphate-binding loop (PBL) undergo substantial rearrangement. The TIM N-terminus involved in CRY binding varies in isoforms that facilitate the adaptation of flies to different light environments. Herein, we demonstrate, through peptide binding assays and pulsed-dipolar electron spin resonance (ESR) spectroscopy, that the TIM N-terminal peptide alone exhibits light-dependent binding to CRY and that the affinity of the interaction depends on the initiating methionine residue. Extensions to the TIM N-terminus that mimic less light-sensitive variants have substantially reduced interactions with CRY. Substitutions of CRY residues that couple to the flavin rearrangement in the CRY:TIM complex have dramatic effects on CRY light activation. CRY residues Arg237 on α8, Asn253, and Gln254 on the PBL are critical for the release of the CRY autoinhibitory C-terminal tail (CTT) and subsequent TIM binding. These key light-responsive elements of CRY are well conserved throughout Type I cryptochromes of invertebrates but not by cryptochromes of chordates and plants, which likely utilize a distinct light-activation mechanism.
Collapse
Affiliation(s)
| | - Robert Dunleavy
- Cornell University, Department of Chemistry & Chemical Biology, Ithaca, NY 14853
| | - Brian R. Crane
- Cornell University, Department of Chemistry & Chemical Biology, Ithaca, NY 14853
| |
Collapse
|
14
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
15
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Collars OA, Jones BS, Hu DD, Weaver SD, Sherman TA, Champion MM, Champion PA. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio 2023; 14:e0098723. [PMID: 37772840 PMCID: PMC10653941 DOI: 10.1128/mbio.00987-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Taylor A. Sherman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| |
Collapse
|
17
|
Sugaya N, Tanaka S, Keyamura K, Noda S, Akanuma G, Hishida T. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Genes Genet Syst 2023; 98:61-72. [PMID: 37331807 DOI: 10.1266/ggs.23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Homologous recombination (HR) is a highly accurate mechanism for repairing DNA double-strand breaks (DSBs) that arise from various genotoxic insults and blocked replication forks. Defects in HR and unscheduled HR can interfere with other cellular processes such as DNA replication and chromosome segregation, leading to genome instability and cell death. Therefore, the HR process has to be tightly controlled. Protein N-terminal acetylation is one of the most common modifications in eukaryotic organisms. Studies in budding yeast implicate a role for NatB acetyltransferase in HR repair, but precisely how this modification regulates HR repair and genome integrity is unknown. In this study, we show that cells lacking NatB, a dimeric complex composed of Nat3 and Mdm2, are sensitive to the DNA alkylating agent methyl methanesulfonate (MMS), and that overexpression of Rad51 suppresses the MMS sensitivity of nat3Δ cells. Nat3-deficient cells have increased levels of Rad52-yellow fluorescent protein foci and fail to repair DSBs after release from MMS exposure. We also found that Nat3 is required for HR-dependent gene conversion and gene targeting. Importantly, we observed that nat3Δ mutation partially suppressed MMS sensitivity in srs2Δ cells and the synthetic sickness of srs2Δ sgs1Δ cells. Altogether, our results indicate that NatB functions upstream of Srs2 to activate the Rad51-dependent HR pathway for DSB repair.
Collapse
Affiliation(s)
- Natsuki Sugaya
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shion Tanaka
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University
| |
Collapse
|
18
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Huang Y, Zhu C, Pan L, Zhang Z. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol 2023; 13:1218583. [PMID: 37560320 PMCID: PMC10407107 DOI: 10.3389/fcimb.2023.1218583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.
Collapse
Affiliation(s)
| | | | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing TB and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Pal M, Yadav VK, Pal P, Agarwal N, Rao A. The physiological effect of rimI/rimJ silencing by CRISPR interference in Mycobacterium smegmatis mc 2155. Arch Microbiol 2023; 205:211. [PMID: 37119317 DOI: 10.1007/s00203-023-03561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
N-terminal acetylation of proteins is an important post-translational modification (PTM) found in eukaryotes and prokaryotes. In bacteria, N-terminal acetylation is suggested to play various regulatory roles related to protein stability, gene expression, stress response, and virulence; however, the mechanism of such response remains unclear. The proteins, namely RimI/RimJ, are involved in N-terminal acetylation in mycobacteria. In this study, we used CRISPR interference (CRISPRi) to silence rimI/rimJ in Mycobacterium smegmatis mc2155 to investigate the physiological effects of N-terminal acetylation in cell survival and stress response. Repeat analysis of growth curves in rich media and biofilm analysis in minimal media of various mutant strains and wild-type bacteria did not show significant differences that could be attributed to the rimI/rimJ silencing. However, total proteome and acetylome profiles varied significantly across mutants and wild-type strains, highlighting the role of RimI/RimJ in modulating levels of proprotein acetylation in the cellular milieu. Further, we observed a significant increase in the minimum inhibitory concentration (MIC) (from 64 to 1024 µg ml-1) for the drug isoniazid in rimI mutant strains. The increase in MIC value for the drug isoniazid in the mutant strains suggests the link between N-terminal acetylation and antibiotic resistance. The study highlights the utility of CRISPRi as a convenient tool to study the role of PTMs, such as acetylation in mycobacteria. It also identifies rimI/rimJ genes as necessary for managing cellular response against antibiotic stress. Further research would be required to decipher the potential of targeting acetylation to enhance the efficacy of existing antibiotics.
Collapse
Grants
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Mohinder Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| | - Vinay Kumar Yadav
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pramila Pal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, 496, UdyogVihar Phase-III, Gurgaon, Haryana, 122016, India
| | - Nisheeth Agarwal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, 496, UdyogVihar Phase-III, Gurgaon, Haryana, 122016, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
- Academy of Scientific and Innovation Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Parker HV, Tooley JG, Schaner Tooley CE. Optimizing purification and activity assays of N-terminal methyltransferase complexes. Methods Enzymol 2023; 684:71-111. [PMID: 37230594 PMCID: PMC10619428 DOI: 10.1016/bs.mie.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In vitro methyltransferase assays have traditionally been carried out with tritiated S-adenosyl-methionine (SAM) as the methyl donor, as site-specific methylation antibodies are not always available for Western or dot blots and structural requirements of many methyltransferases prohibit the use of peptide substrates in luminescent or colorimetric assays. The discovery of the first N-terminal methyltransferase, METTL11A, has allowed for a second look at non-radioactive in vitro methyltransferase assays, as N-terminal methylation is amenable to antibody production and the limited structural requirements of METTL11A allow for its methylation of peptide substrates. We have used a combination of Western blots and luminescent assays to verify substrates of METTL11A and the two other known N-terminal methyltransferases, METTL11B and METTL13. We have also developed these assays for use beyond substrate identification, showing that METTL11A activity is opposingly regulated by METTL11B and METTL13. Here we provide two methods for non-radioactive characterization of N-terminal methylation, Western blots with full-length recombinant protein substrates and luminescent assays with peptide substrates, and describe how each can be additionally adapted to look at regulatory complexes. We will review the advantages and disadvantages of each method in context with the other types of in vitro methyltransferase assays and discuss why these types of assays could be of general use to the N-terminal modification field.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
22
|
Genetic Biodiversity and Posttranslational Modifications of Protease Serine Endopeptidase in Different Strains of Sordaria fimicola. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2088988. [PMID: 36814796 PMCID: PMC9940969 DOI: 10.1155/2023/2088988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Genetic variations (mutation, crossing over, and recombination) act as a source for the gradual alternation in phenotype along a geographic transect where the environment changes. Posttranslational modifications (PTMs) predicted modifications successfully in different and the same species of living organisms. Protein diversity of living organisms is predicted by PTMs. Environmental stresses change nucleotides to produce alternations in protein structures, and these alternations have been examined through bioinformatics tools. The goal of the current study is to search the diversity of genes and posttranslational modifications of protease serine endopeptidase in various strains of Sordaria fimicola. The S. fimicola's genomic DNA was utilized to magnify the protease serine endopeptidase (SP2) gene; the size of the product was 700 and 1400 base pairs. Neurospora crassa was taken as the reference strain for studying the multiple sequence alignment of the nucleotide sequence. Six polymorphic sites of six strains of S. fimicola with respect to N. crassa were under observation. Different bioinformatics tools, i.e., NetPhos 3.1, NetNES 1.1 Server, YinOYang1.2, and Mod Pred, to search phosphorylation sites, acetylation, nuclear export signals, O-glycosylation, and methylation, respectively, were used to predict PTMs. The findings of the current study were 35 phosphorylation sites on the residues of serine for protease SP2 in SFS and NFS strains of S. fimicola and N. crassa. The current study supported us to get the reality of genes involved in protease production in experimental fungi. Our study examined the genetic biodiversity in six strains of S. fimicola which were caused by stressful environments, and these variations are a strong reason for evolution. In this manuscript, we predicted posttranslational modifications of protease serine endopeptidase in S. fimicola obtained from different sites, for the first time, to see the effect of environmental stress on nucleotides, amino acids, and proteases and to study PTMs by using various bioinformatics tools. This research confirmed the genetic biodiversity and PTMs in six strains of S. fimicola, and the designed primers also provided strong evidence for the presence of protease serine endopeptidase in each strain of S. fimicola.
Collapse
|
23
|
Barber LJ, Yates NDJ, Fascione MA, Parkin A, Hemsworth GR, Genever PG, Spicer CD. Selectivity and stability of N-terminal targeting protein modification chemistries. RSC Chem Biol 2023; 4:56-64. [PMID: 36685256 PMCID: PMC9811658 DOI: 10.1039/d2cb00203e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Protein N-termini provide uniquely reactive motifs for single site protein modification. Though a number of reactions have been developed to target this site, the selectivity, generality, and stability of the conjugates formed has not been studied. We have therefore undertaken a comprehensive comparative study of the most promising methods for N-terminal protein modification, and find that there is no 'one size fits all' approach, necessitating reagent screening for a particular protein or application. Moreover, we observed limited stability in all cases, leading to a need for continued innovation and development in the bioconjugation field.
Collapse
Affiliation(s)
- Lydia J Barber
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
- Department of Biology, University of York Heslington YO10 5DD UK
| | - Nicholas D J Yates
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Alison Parkin
- Department of Chemistry, University of York Heslington YO10 5DD UK
| | - Glyn R Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | - Paul G Genever
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
- Department of Biology, University of York Heslington YO10 5DD UK
| | - Christopher D Spicer
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
- Department of Biology, University of York Heslington YO10 5DD UK
| |
Collapse
|
24
|
Yang Q, Gao Y, Liu X, Xiao Y, Wu M. A General Method to Edit Histone H3 Modifications on Chromatin Via Sortase-Mediated Metathesis. Angew Chem Int Ed Engl 2022; 61:e202209945. [PMID: 36305862 DOI: 10.1002/anie.202209945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/07/2022]
Abstract
The post-translational modifications (PTMs) on the tail of histone H3 control chromatin structure and influence epigenetics and gene expression. The current chemical methods including unnatural amino acid incorporation and protein splicing enable preparations of the histone with diverse PTMs in cellular contexts, but they are not applicable to edit native chromatin. The manipulation of histone-modifying enzymes alter the endogenous histone PTMs but the lack of specificity of most histone-modifying enzymes prevents precise control of specific H3 tail PTM patterns. Here we report a new method to edit the N-tail of histone H3 via sortase mediated metathesis (SMM). The sortase can install desired PTM patterns into histone H3 on nucleosomes in vitro and in cellulo. This study expands the application scope of sortase from ligation to metathesis in live cells using cell-penetrating peptides (CPPs). In addition, it offers a strategy to edit PTMs of cellular histone H3 with potential for the development of precise epigenome editing.
Collapse
Affiliation(s)
- Qingyun Yang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang Province, China.,Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, 310030, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Yingxiao Gao
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, 310030, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Xia Liu
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, 310030, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Yihang Xiao
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang Province, China.,Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, 310030, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, 310030, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang Province, China
| |
Collapse
|
25
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
26
|
Malinow RA, Zhu M, Jin Y, Kim KW. Forward genetic screening identifies novel roles for N-terminal acetyltransferase C and histone deacetylase in C. elegans development. Sci Rep 2022; 12:16438. [PMID: 36180459 PMCID: PMC9525577 DOI: 10.1038/s41598-022-20361-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023] Open
Abstract
Coordinating the balance between development and stress responses is critical for organismal survival. However, the cellular signaling controlling this mechanism is not well understood. In Caenorhabditis elegans, it has been hypothesized that a genetic network regulated by NIPI-3/Tibbles may control the balance between animal development and immune response. Using a nipi-3(0) lethality suppressor screen in C. elegans, we reveal a novel role for N-terminal acetyltransferase C complex natc-1/2/3 and histone deacetylase hda-4, in the control of animal development. These signaling proteins act, at least in part, through a PMK-1 p38 MAP kinase pathway (TIR-1-NSY-1-SEK-1-PMK-1), which plays a critical role in the innate immunity against infection. Additionally, using a transcriptional reporter of SEK-1, a signaling molecule within this p38 MAP kinase system that acts directly downstream of C/EBP bZip transcription factor CEBP-1, we find unexpected positive control of sek-1 transcription by SEK-1 along with several other p38 MAP kinase pathway components. Together, these data demonstrate a role for NIPI-3 regulators in animal development, operating, at least in part through a PMK-1 p38 MAPK pathway. Because the C. elegans p38 MAP kinase pathway is well known for its role in cellular stress responses, the novel biological components and mechanisms pertaining to development identified here may also contribute to the balance between stress response and development.
Collapse
Affiliation(s)
- Rose Aria Malinow
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ming Zhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon, 24252, South Korea.
- Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
27
|
Weiss A, Murdoch CC, Edmonds KA, Jordan MR, Monteith AJ, Perera YR, Rodríguez Nassif AM, Petoletti AM, Beavers WN, Munneke MJ, Drury SL, Krystofiak ES, Thalluri K, Wu H, Kruse ARS, DiMarchi RD, Caprioli RM, Spraggins JM, Chazin WJ, Giedroc DP, Skaar EP. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell 2022; 185:2148-2163.e27. [PMID: 35584702 PMCID: PMC9189065 DOI: 10.1016/j.cell.2022.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism. Here, we functionally characterize a family of COG0523 proteins that is conserved across vertebrates. We identify Zn metalloprotease methionine aminopeptidase 1 (METAP1) as a COG0523 client, leading to the redesignation of this group of COG0523 proteins as the Zn-regulated GTPase metalloprotein activator (ZNG1) family. Using biochemical, structural, genetic, and pharmacological approaches across evolutionarily divergent models, including zebrafish and mice, we demonstrate a critical role for ZNG1 proteins in regulating cellular Zn homeostasis. Collectively, these data reveal the existence of a family of Zn metallochaperones and assign ZNG1 an important role for intracellular Zn trafficking.
Collapse
Affiliation(s)
- Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin C Murdoch
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Aslin M Rodríguez Nassif
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Amber M Petoletti
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney L Drury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Angela R S Kruse
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Richard M Caprioli
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M Spraggins
- Departments of Chemistry and Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell. One such regulatory mechanism involves lysine acetylation, a covalent modification involving the transfer of an acetyl group from central metabolite acetyl-coenzyme A or acetyl phosphate to a lysine residue in a protein.
Collapse
|
29
|
Xu J, Li Z, Zuo X, Li G, Zhang X, Zhang B, Cui Y. Knockdown of NAA25 Suppresses Breast Cancer Progression by Regulating Apoptosis and Cell Cycle. Front Oncol 2022; 11:755267. [PMID: 35096568 PMCID: PMC8792228 DOI: 10.3389/fonc.2021.755267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
NAA25 gene variants were reported as risk factors for type 1 diabetes, rheumatoid arthritis and acute arterial stroke. But it’s unknown whether it could contribute to breast cancer. We identified rs11066150 in lncHSAT164, which contributes to breast cancer, in our earlier genome-wide long non-coding RNA association study on Han Chinese women. However, rs11066150 A/G variant is also located in NAA25 intron. Based on the public database, such as TCGA and Curtis dataset, NAA25 gene is highly expressed in breast cancer tissues and this result has also been proved in our samples and cell lines through RT-qPCR and western blot analysis. To better understand the function of NAA25 in breast cancer, we knocked down the expression of NAA25 in breast cancer cell lines, FACS was used to detect cell apoptosis and cell cycle and colony formation assay was used to detect cell proliferation. We found that NAA25-deficient cells could increase cell apoptosis, delay G2/M phase cell and decrease cell clone formation. RNA sequencing was then applied to analyze the molecular profiles of NAA25−deficient cells, and compared to the control group, NAA25 knockdown could activate apoptosis-related pathways, reduce the activation of tumor-associated signaling pathways and decrease immune response-associated pathways. Additionally, RT-qPCR was employed to validate these results. Taken together, our results revealed that NAA25 was highly expressed in breast cancer, and NAA25 knockdown might serve as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jingkai Xu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Zhi Li
- Department of Dermatology, Jiangsu Province Hospital, Nanjing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Guozheng Li
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China.,Department of Oncology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
30
|
Drazic A, Timmerman E, Kajan U, Marie M, Varland S, Impens F, Gevaert K, Arnesen T. The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. J Mol Biol 2022; 434:167397. [PMID: 34896361 PMCID: PMC7613935 DOI: 10.1016/j.jmb.2021.167397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022]
Abstract
Actin is a hallmark protein of the cytoskeleton in eukaryotic cells, affecting a range of cellular functions. Actin dynamics is regulated through a myriad of actin-binding proteins and post-translational modifications. The mammalian actin family consists of six different isoforms, which vary slightly in their N-terminal (Nt) sequences. During and after synthesis, actins undergo an intricate Nt-processing that yields mature actin isoforms. The ubiquitously expressed cytoplasmic β-actin is Nt-acetylated by N-alpha acetyltransferase 80 (NAA80) yielding the Nt-sequence Ac-DDDI-. In addition, β-actin was also reported to be Nt-arginylated by arginyltransferase 1 (ATE1) after further peptidase-mediated processing, yielding RDDI-. To characterize in detail the Nt-processing of actin, we used state-of-the-art proteomics. To estimate the relative cellular levels of Nt-modified proteoforms of actin, we employed NAA80-lacking cells, in which actin was not Nt-acetylated. We found that targeted proteomics is superior to a commercially available antibody previously used to analyze Nt-arginylation of β-actin. Significantly, despite the use of sensitive mass spectrometry-based techniques, we could not confirm the existence of the previously claimed Nt-arginylated β-actin (RDDI-) in either wildtype or NAA80-lacking cells. A very minor level of Nt-arginylation of the initially cleaved β-actin (DDDI-) could be identified, but only in NAA80-lacking cells, not in wildtype cells. We also identified small fractions of cleaved and unmodified β-actin (DDI-) as well as cleaved and Nt-acetylated β-actin (Ac-DDI-). In sum, we show that the multi-step Nt-maturation of β-actin is terminated by NAA80, which Nt-acetylates the exposed Nt-Asp residues, in the virtual absence of previously claimed Nt-arginylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Ulrike Kajan
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Michaël Marie
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
31
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Asensio T, Dian C, Boyer JB, Rivière F, Meinnel T, Giglione C. A Continuous Assay Set to Screen and Characterize Novel Protein N-Acetyltransferases Unveils Rice General Control Non-repressible 5-Related N-Acetyltransferase2 Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:832144. [PMID: 35273627 PMCID: PMC8902505 DOI: 10.3389/fpls.2022.832144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 05/19/2023]
Abstract
Protein N-acetyltransferases (NATs) belong to the general control non-repressible 5 (Gcn5)-related N-acetyltransferases (GNATs) superfamily. GNATs catalyze the transfer of acetyl from acetyl-CoA to the reactive amine moiety of a wide range of acceptors. NAT sequences are difficult to distinguish from other members of the GNAT superfamily and there are many uncharacterized GNATs. To facilitate the discovery and characterization of new GNATs, we have developed a new continuous, non-radioactive assay. This assay is virtually independent of the substrate and can be used to get substrate specificity hints. We validated first the assay with the well-characterized Schizosaccharomyces pombe NatA (SpNatA). The SpNatA kinetic parameters were determined with various peptides confirming the robustness of the new assay. We reveal that the longer the peptide substrate the more efficient the enzyme. As a proof of concept of the relevance of the new assay, we characterized a NAA90 member from rice (Oryza sativa), OsGNAT2. We took advantage of an in vivo medium-scale characterization of OsGNAT2 specificity to identify and then validate in vitro several specific peptide substrates. With this assay, we reveal long-range synergic effects of basic residues on OsGNAT2 activity. Overall, this new, high-throughput assay allows better understanding of the substrate specificity and activity of any GNAT.
Collapse
|
33
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
34
|
Shen T, Jiang L, Wang X, Xu Q, Han L, Liu S, Huang T, Li H, Dai L, Li H, Lu K. Function and molecular mechanism of N-terminal acetylation in autophagy. Cell Rep 2021; 37:109937. [PMID: 34788606 DOI: 10.1016/j.celrep.2021.109937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
Collapse
Affiliation(s)
- Tianyun Shen
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lan Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xinyuan Wang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qingjia Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lu Han
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Huihui Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China; West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
35
|
Histone Deacetylase Inhibitors: Providing New Insights and Therapeutic Avenues for Unlocking Human Birth. Reprod Sci 2021; 29:3134-3146. [PMID: 34713433 DOI: 10.1007/s43032-021-00778-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
The pregnant uterus remains relaxed throughout fetal gestation before transforming to a contractile phenotype at term to facilitate birth. Despite ongoing progress, the precise mechanisms that regulate this phenotypic transformation are not yet understood. This knowledge gap limits our understanding of how dysregulation of uterine smooth muscle biology contributes to life-threatening obstetric complications, including preterm birth, and hampers our ability to develop effective therapeutic intervention strategies. Protein acetylation plays a vital role in regulating protein structure, function, and subcellular localization, as well as gene transcription availability through regulating chromatin condensation. Histone deacetylase inhibitors (HDACis) are a class of compounds that block the removal of acetyl functional groups from proteins and, as such, have profound effects on important cellular events, including phenotypic transformation. A large body of data now demonstrates that HDACis have profound effects on pregnant human myometrium. Studies to date show that HDACis operate through both genomic and non-genomic mechanisms to affect myometrial function and phenotype. Interestingly, the effects of HDACis on pregnant myometrium are largely "pro-relaxation," including the direct inhibition of contractile machinery as well as repression of pro-labor genes. The "dual action" effects of HDACis make them a powerful tool for unlocking the regulatory processes that underpin myometrial phenotypic transformation and raises prospects of their therapeutic applications. Here, we review the new insights into human myometrial biology that have garnered through the application of HDACis and explore their potential therapeutic application toward the development of novel preterm birth prevention strategies.
Collapse
|
36
|
Inhibition of CBP synergizes with the RNA-dependent mechanisms of Azacitidine by limiting protein synthesis. Nat Commun 2021; 12:6060. [PMID: 34663789 PMCID: PMC8523560 DOI: 10.1038/s41467-021-26258-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.
Collapse
|
37
|
Van Damme P. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates. Int J Mol Sci 2021; 22:ijms221910692. [PMID: 34639033 PMCID: PMC8509067 DOI: 10.3390/ijms221910692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
N-terminal acetylation (Nt-acetylation) catalyzed by conserved N-terminal acetyltransferases or NATs embodies a modification with one of the highest stoichiometries reported for eukaryotic protein modifications to date. Comprising the catalytic N-alpha acetyltransferase (NAA) subunit NAA10 plus the ribosome anchoring regulatory subunit NAA15, NatA represents the major acetyltransferase complex with up to 50% of all mammalian proteins representing potential substrates. Largely in consequence of the essential nature of NatA and its high enzymatic activity, its experimentally confirmed mammalian substrate repertoire remained poorly charted. In this study, human NatA knockdown conditions achieving near complete depletion of NAA10 and NAA15 expression resulted in lowered Nt-acetylation of over 25% out of all putative NatA targets identified, representing an up to 10-fold increase in the reported number of substrate N-termini affected upon human NatA perturbation. Besides pointing to less efficient NatA substrates being prime targets, several putative NatE substrates were shown to be affected upon human NatA knockdown. Intriguingly, next to a lowered expression of ribosomal proteins and proteins constituting the eukaryotic 48S preinitiation complex, steady-state levels of protein N-termini additionally point to NatA Nt-acetylation deficiency directly impacting protein stability of knockdown affected targets.
Collapse
Affiliation(s)
- Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Motone K, Cardozo N, Nivala J. Herding cats: Label-based approaches in protein translocation through nanopore sensors for single-molecule protein sequence analysis. iScience 2021; 24:103032. [PMID: 34527891 PMCID: PMC8433247 DOI: 10.1016/j.isci.2021.103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteins carry out life's essential functions. Comprehensive proteome analysis technologies are thus required for a full understanding of the operating principles of biological systems. While current proteomics techniques suffer from limitations in sensitivity and/or throughput, nanopore technology has the potential to enable de novo protein identification through single-molecule sequencing. However, a significant barrier to achieving this goal is controlling protein/peptide translocation through the nanopore sensor for processive strand analysis. Here, we review recent approaches that use a range of techniques, from oligonucleotide conjugation to molecular motors, aimed at driving protein strands and peptides through protein nanopores. We further discuss site-specific protein conjugation chemistry that could be combined with these translocation approaches as future directions to achieve single-molecule protein detection and sequencing of native proteins.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
40
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep 2021; 11:13084. [PMID: 34158536 PMCID: PMC8219831 DOI: 10.1038/s41598-021-91086-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Collapse
Affiliation(s)
| | | | - Kathy H Li
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Chan Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Rahul Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Alma Burlingame
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Tian F, Shi J, Li Y, Gao H, Chang L, Zhang Y, Gao L, Xu P, Tang S. Proteogenomics Study of Blastobotrys adeninivorans TMCC 70007-A Dominant Yeast in the Fermentation Process of Pu-erh Tea. J Proteome Res 2021; 20:3290-3304. [PMID: 34008989 DOI: 10.1021/acs.jproteome.1c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blastobotrys adeninivorans plays an essential role in pile-fermenting of Pu-erh tea. Its ability to assimilate various carbon and nitrogen sources makes it available for application in a wide range of industry sectors. The genome of B. adeninivorans TMCC 70007 isolated from pile-fermented Pu-erh tea was sequenced and assembled. Proteomics analysis indicated that 4900 proteins in TMCC 70007 were expressed under various culture conditions. Proteogenomics mapping revealed 48 previously unknown genes and corrected 118 gene models predicted by GeneMark-ES. Ortho-proteogenomics analysis identified 17 previously unidentified genes in B. adeninivorans LS3, the first strain with a sequenced genome among the genus Blastobotrys as well. More importantly, five species specific genes were identified from TMCC 70007, which could serve as a barcode for strain typing and were applicable for fermentation process protection of this industrial species. The datasets generated from tea aqueous extract culture not only increased the proteome coverage and accuracy but also contributed to the identification of proteins related to polyphenols and caffeine, which were considered to change greatly during the microbial fermentation of Pu-erh tea. This study provides a proteome perspective on TMCC 70007, which was considered to be an important strain in the production of Pu-erh tea. The systematic proteogenomics analysis not only made a better annotation on the genome of B. adeninivorans TMCC 70007 as previous proteogenomics study but also provided solution for fermentation process protection on valuable industrial species with species specific genes uniquely identified from proteogenomics study.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linrui Gao
- Yunnan Pu-erh Tea Fermentation Engineering Research Center, Yunnan TAETEA Microbial Technology Co., Ltd., Kunming 650217, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Shukun Tang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.,Yunnan Pu-erh Tea Fermentation Engineering Research Center, Yunnan TAETEA Microbial Technology Co., Ltd., Kunming 650217, China
| |
Collapse
|
43
|
Lee KZ, Basnayake Pussepitiyalage V, Lee YH, Loesch-Fries LS, Harris MT, Hemmati S, Solomon KV. Engineering Tobacco Mosaic Virus and Its Virus-Like-Particles for Synthesis of Biotemplated Nanomaterials. Biotechnol J 2021; 16:e2000311. [PMID: 33135368 DOI: 10.1002/biot.202000311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Biomolecules are increasingly attractive templates for the synthesis of functional nanomaterials. Chief among them is the plant tobacco mosaic virus (TMV) due to its high aspect ratio, narrow size distribution, diverse biochemical functionalities presented on the surface, and compatibility with a number of chemical conjugations. These properties are also easily manipulated by genetic modification to enable the synthesis of a range of metallic and non-metallic nanomaterials for diverse applications. This article reviews the characteristics of TMV and related viruses, and their virus-like particle (VLP) derivatives, and how these may be manipulated to extend their use and function. A focus of recent efforts has been on greater understanding and control of the self-assembly processes that drive biotemplate formation. How these features have been exploited in engineering applications such as, sensing, catalysis, and energy storage are briefly outlined. While control of VLP surface features is well-established, fewer tools exist to control VLP self-assembly, which limits efforts to control template uniformity and synthesis of certain templated nanomaterials. However, emerging advances in synthetic biology, machine learning, and other fields promise to accelerate efforts to control template uniformity and nanomaterial synthesis enabling more widescale industrial use of VLP-based biotemplates.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
| | | | - Yu-Hsuan Lee
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - L Sue Loesch-Fries
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN, 47907, USA
| | - Michael T Harris
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Kevin V Solomon
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
44
|
Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase. J Biol Chem 2021; 296:100391. [PMID: 33567338 PMCID: PMC7961099 DOI: 10.1016/j.jbc.2021.100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5’-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor–mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
45
|
N α-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae. Cell Rep 2021; 34:108711. [PMID: 33535049 DOI: 10.1016/j.celrep.2021.108711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/10/2020] [Accepted: 01/09/2021] [Indexed: 11/22/2022] Open
Abstract
N-terminal (Nt) acetylation is a highly prevalent co-translational protein modification in eukaryotes, catalyzed by at least five Nt acetyltransferases (Nats) with differing specificities. Nt acetylation has been implicated in protein quality control, but its broad biological significance remains elusive. We investigate the roles of the two major Nats of S. cerevisiae, NatA and NatB, by performing transcriptome, translatome, and proteome profiling of natAΔ and natBΔ mutants. Our results reveal a range of NatA- and NatB-specific phenotypes. NatA is implicated in systemic adaptation control, because natAΔ mutants display altered expression of transposons, sub-telomeric genes, pheromone response genes, and nuclear genes encoding mitochondrial ribosomal proteins. NatB predominantly affects protein folding, because natBΔ mutants, to a greater extent than natA mutants, accumulate protein aggregates, induce stress responses, and display reduced fitness in the absence of the ribosome-associated chaperone Ssb. These phenotypic differences indicate that controlling Nat activities may serve to elicit distinct cellular responses.
Collapse
|
46
|
Sun J, Liu X, Guo J, Zhao W, Gao W. Pyridine-2,6-dicarboxaldehyde-Enabled N-Terminal In Situ Growth of Polymer-Interferon α Conjugates with Significantly Improved Pharmacokinetics and In Vivo Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:88-96. [PMID: 33382581 DOI: 10.1021/acsami.0c15786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-protein conjugates are a class of biohybrids with unique properties that are highly useful in biomedicine ranging from protein therapeutics to biomedical imaging; however, it remains a considerable challenge to conjugate polymers to proteins in a site-specific, mild, and efficient way to form polymer-protein conjugates with uniform structures and properties and optimal functions. Herein we report pyridine-2,6-dicarboxaldehyde (PDA)-enabled N-terminal modification of proteins with polymerization initiators for in situ growth of poly(oligo(ethylene glycol)methyl ether methacrylate) (POEGMA) conjugates uniquely at the N-termini of a range of natural and recombinant proteins in a mild and efficient fashion. The formed POEGMA-protein conjugates showed highly retained in vitro bioactivity as compared with free proteins. Notably, the in vitro bioactivity of a POEGMA-interferon α (IFN) conjugate synthesized by this new chemistry is 8.1-fold higher than that of PEGASYS that is a commercially available and Food and Drug Administration (FDA) approved PEGylated IFN. The circulation half-life of the conjugate is similar to that of PEGASYS but is 46.2 times longer than that of free IFN. Consequently, the conjugate exhibits considerably improved antiviral bioactivity over free IFN and even PEGASYS in a mouse model. These results indicate that the PDA-enabled N-terminal grafting-from method is applicable to a number of proteins whose active sites are far away from the N-terminus for the synthesis of N-terminal polymer-protein conjugates with high yield, well-retained activity, and considerably improved pharmacology for biomedical applications.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| | - Jianwen Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenguo Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| |
Collapse
|
47
|
Weidenhausen J, Kopp J, Armbruster L, Wirtz M, Lapouge K, Sinning I. Structural and functional characterization of the N-terminal acetyltransferase Naa50. Structure 2021; 29:413-425.e5. [PMID: 33400917 DOI: 10.1016/j.str.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The majority of eukaryotic proteins is modified by N-terminal acetylation, which plays a fundamental role in protein homeostasis, localization, and complex formation. N-terminal acetyltransferases (NATs) mainly act co-translationally on newly synthesized proteins at the ribosomal tunnel exit. NatA is the major NAT consisting of Naa10 catalytic and Naa15 auxiliary subunits, and with Naa50 forms the NatE complex. Naa50 has recently been identified in Arabidopsis thaliana and is important for plant development and stress response regulation. Here, we determined high-resolution X-ray crystal structures of AtNaa50 in complex with AcCoA and a bisubstrate analog. We characterized its substrate specificity, determined its enzymatic parameters, and identified functionally important residues. Even though Naa50 is conserved among species, we highlight differences between Arabidopsis and yeast, where Naa50 is catalytically inactive but binds CoA conjugates. Our study provides insights into Naa50 conservation, species-specific adaptations, and serves as a basis for further studies of NATs in plants.
Collapse
Affiliation(s)
| | - Jürgen Kopp
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol 2020; 11:580167. [PMID: 33281616 PMCID: PMC7689297 DOI: 10.3389/fphys.2020.580167] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acetate is a major end product of bacterial fermentation of fiber in the gut. Acetate, whether derived from the diet or from fermentation in the colon, has been implicated in a range of health benefits. Acetate is also generated in and released from various tissues including the intestine and liver, and is generated within all cells by deacetylation reactions. To be utilized, all acetate, regardless of the source, must be converted to acetyl coenzyme A (acetyl-CoA), which is carried out by enzymes known as acyl-CoA short-chain synthetases. Acyl-CoA short-chain synthetase-2 (ACSS2) is present in the cytosol and nuclei of many cell types, whereas ACSS1 is mitochondrial, with greatest expression in heart, skeletal muscle, and brown adipose tissue. In addition to acting to redistribute carbon systemically like a ketone body, acetate is becoming recognized as a cellular regulatory molecule with diverse functions beyond the formation of acetyl-CoA for energy derivation and lipogenesis. Acetate acts, in part, as a metabolic sensor linking nutrient balance and cellular stress responses with gene transcription and the regulation of protein function. ACSS2 is an important task-switching component of this sensory system wherein nutrient deprivation, hypoxia and other stressors shift ACSS2 from a lipogenic role in the cytoplasm to a regulatory role in the cell nucleus. Protein acetylation is a critical post-translational modification involved in regulating cell behavior, and alterations in protein acetylation status have been linked to multiple disease states, including cancer. Improving our fundamental understanding of the "acetylome" and how acetate is generated and utilized at the subcellular level in different cell types will provide much needed insight into normal and neoplastic cellular metabolism and the epigenetic regulation of phenotypic expression under different physiological stressors. This article is Part 1 of 2 - for Part 2 see doi: 10.3389/fphys.2020.580171.
Collapse
Affiliation(s)
- John R. Moffett
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
49
|
Ou J, Liu H, Nirala NK, Stukalov A, Acharya U, Green MR, Zhu LJ. dagLogo: An R/Bioconductor package for identifying and visualizing differential amino acid group usage in proteomics data. PLoS One 2020; 15:e0242030. [PMID: 33156866 PMCID: PMC7647101 DOI: 10.1371/journal.pone.0242030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
Sequence logos have been widely used as graphical representations of conserved nucleic acid and protein motifs. Due to the complexity of the amino acid (AA) alphabet, rich post-translational modification, and diverse subcellular localization of proteins, few versatile tools are available for effective identification and visualization of protein motifs. In addition, various reduced AA alphabets based on physicochemical, structural, or functional properties have been valuable in the study of protein alignment, folding, structure prediction, and evolution. However, there is lack of tools for applying reduced AA alphabets to the identification and visualization of statistically significant motifs. To fill this gap, we developed an R/Bioconductor package dagLogo, which has several advantages over existing tools. First, dagLogo allows various formats for input sets and provides comprehensive options to build optimal background models. It implements different reduced AA alphabets to group AAs of similar properties. Furthermore, dagLogo provides statistical and visual solutions for differential AA (or AA group) usage analysis of both large and small data sets. Case studies showed that dagLogo can better identify and visualize conserved protein sequence patterns from different types of inputs and can potentially reveal the biological patterns that could be missed by other logo generators.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Regeneration NEXT, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Haibo Liu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Usha Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael R. Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Schulte L, Mao J, Reitz J, Sreeramulu S, Kudlinzki D, Hodirnau VV, Meier-Credo J, Saxena K, Buhr F, Langer JD, Blackledge M, Frangakis AS, Glaubitz C, Schwalbe H. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nat Commun 2020; 11:5569. [PMID: 33149120 PMCID: PMC7642426 DOI: 10.1038/s41467-020-19372-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.
Collapse
Affiliation(s)
- Linda Schulte
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Jiafei Mao
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Julian Reitz
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Sridhar Sreeramulu
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Denis Kudlinzki
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Victor-Valentin Hodirnau
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Krishna Saxena
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Florian Buhr
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany.,Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | | | | | - Achilleas S Frangakis
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany.
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt, Germany.
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany.
| |
Collapse
|