1
|
Holsboer F, Ising M. Precision Psychiatry Approach to Treat Depression and Anxiety Targeting the Stress Hormone System - V1b-antagonists as a Case in Point. PHARMACOPSYCHIATRY 2024; 57:263-274. [PMID: 39159843 DOI: 10.1055/a-2372-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.A substantial subgroup of patients presents with signs and symptoms of hypothalamic-pituitary-adrenocortical (HPA) overactivity. Therefore, this stress hormone system was considered to offer worthwhile targets. Some promising results emerged, but in sum, the results achieved by targeting corticosteroid receptors were mixed.More specific are non-peptidergic drugs that block stress-responsive neuropeptides, corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) in the brain by antagonizing their cognate CRHR1-and V1b-receptors. If a patient's depressive symptomatology is driven by overactive V1b-signaling then a V1b-receptor antagonist should be first-line treatment. To identify the patient having this V1b-receptor overactivity, a neuroendocrine test, the so-called dex/CRH-test, was developed, which indicates central AVP release but is too complicated to be routinely used. Therefore, this test was transformed into a gene-based "near-patient" test that allows immediate identification if a depressed patient's symptomatology is driven by overactive V1b-receptor signaling. We believe that this precision medicine approach will be the next major innovation in the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
2
|
Yu J, Zhang Y, Cai L, Sun Q, Li W, Zhou J, Liang J, Wang Z. The Changed Nocturnal Sleep Structure and Higher Anxiety, Depression, and Fatigue in Patients with Narcolepsy Type 1. Nat Sci Sleep 2024; 16:725-735. [PMID: 38873239 PMCID: PMC11170032 DOI: 10.2147/nss.s452665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/11/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose This study aimed to evaluate nocturnal sleep structure and anxiety, depression, and fatigue in patients with narcolepsy type 1 (NT1). Methods Thirty NT1 patients and thirty-five healthy controls were enrolled and evaluated using the Epworth sleepiness scale (ESS), Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Fatigue Severity Scale (FSS), polysomnography, multiple sleep latency test, and brain function state monitoring. Statistical analyses were performed using SPSS Statistics for Windows, version 23.0. Benjamini-Hochberg correction was performed to control the false discovery rate. Results Apart from typical clinical manifestations, patients with NT1 are prone to comorbidities such as nocturnal sleep disorders, anxiety, depression, and fatigue. Compared with the control group, patients with NT1 exhibited abnormal sleep structure, including increased total sleep time (P adj=0.007), decreased sleep efficiency (P adj=0.002), shortening of sleep onset latency (P adj<0.001), elevated wake after sleep onset (P adj=0.002), increased N1% (P adj=0.006), and reduced N2%, N3%, and REM% (P adj=0.007, P adj<0.001, P adj=0.013). Thirty-seven percent of patients had moderate to severe obstructive sleep apnea-hypopnea syndrome. And sixty percent of patients were complicated with REM sleep without atonia. Patients with NT1 displayed increased anxiety propensity (P adj<0.001), and increased brain fatigue (P adj=0.020) in brain function state monitoring. FSS scores were positively correlated with brain fatigue (P adj<0.001) and mean sleep latency was inversely correlated with FSS scores and brain fatigue (P adj=0.013, P adj=0.029). Additionally, ESS scores and brain fatigue decreased after 3 months of therapy (P=0.012, P=0.030). Conclusion NT1 patients had abnormal nocturnal sleep structures, who showed increased anxiety, depression, and fatigue. Excessive daytime sleepiness and fatigue improved after 3 months of treatment with methylphenidate hydrochloride prolonged-release tablets in combination with venlafaxine.
Collapse
Affiliation(s)
- Jieyang Yu
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yanan Zhang
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lijia Cai
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Qingqing Sun
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wanru Li
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Junfang Zhou
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Zan Wang
- Sleep Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
3
|
Ibi D, Nakasai G, Sawahata M, Takaba R, Kinoshita M, Yamada K, Hiramatsu M. Emotional behaviors as well as the hippocampal reelin expression in C57BL/6N male mice chronically treated with corticosterone. Pharmacol Biochem Behav 2023; 230:173617. [PMID: 37562494 DOI: 10.1016/j.pbb.2023.173617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Depression is a common psychiatric disorder affecting around 300 million people worldwide. Serum cortisol and glucocorticoid levels in humans are reportedly higher in patients with depression compared to controls. Furthermore, rodents repeatedly treated with exogenous corticosterone (CORT), a glucocorticoid in rodents, exhibit deficits in emotional behaviors. To confirm the availability of mice with chronic CORT treatment as an animal model of depression, we investigated the effect of chronic CORT treatment on depression-like behavioral and neuropathological phenotypes in C57BL/6N male mice. Behavioral studies showed depression- and anxiety-like behaviors in mice treated with CORT compared with control mice in the forced-swim and elevated-plus maze tests. Additionally, treated mice represented anhedonia and social behavior impairments in the sucrose preference and social interaction tests, respectively. Brains of depression patients have altered expression of reelin, an extracellular matrix protein involved in neuronal development and function. Likewise, in the present study, mice with chronic CORT treatment also exhibited reelin downregulation in cells of the hippocampus. Hence, we investigated therapeutic effects of reelin supplementation on CORT-induced behavioral abnormalities in mice. Microinjections of recombinant reelin protein into the hippocampus did not rescue behavioral deficits in mice with chronic CORT treatment. These results suggest that C57BL/6N male mice chronically treated with CORT are a suitable animal depression model, in which depressive behaviors may occur independently of the alternation of hippocampal Reelin expression.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan; Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| | - Genki Nakasai
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Rika Takaba
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Maho Kinoshita
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan; Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| |
Collapse
|
4
|
Svingen E. PTSD and crime propensity: Stress systems, brain structures, and the nature of the relationship. Heliyon 2023; 9:e18381. [PMID: 37519662 PMCID: PMC10375856 DOI: 10.1016/j.heliyon.2023.e18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most commonly found disorder among the prison population; however, research has been slow to study it as a potential cause of crime. This review examines the neurophysiological changes in the organism associated with PTSD and connects them to crime and antisocial behaviour. Patients with PTSD suffer from a hyperactive sympathetic nervous system (SNS), an overactive amygdala that results in a hypoactive hypothalamic‒pituitary‒adrenal (HPA) axis, and a reduced hippocampal volume. All these features have been separately associated with aggressivity and antisocial behaviour; however, no consensus has been reached. Moreover, very little research has addressed the need to study the interaction between several stress-response systems. As a result, although there is some indication that patients with PTSD are probabilistically more likely to commit acts of crime, no conclusive results on the influence of PTSD on crime propensity can yet be drawn. Future research should address the interaction between the stress-response systems to understand the nature of antisocial behaviour and violence as well as to study any possible links between PTSD prevalence and possible unrest in prisons.
Collapse
|
5
|
Mashoodh R, Habrylo IB, Gudsnuk K, Champagne FA. Sex-specific effects of chronic paternal stress on offspring development are partially mediated via mothers. Horm Behav 2023; 152:105357. [PMID: 37062113 DOI: 10.1016/j.yhbeh.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Paternal stress exposure is known to impact the development of stress-related behaviors in offspring. Previous work has highlighted the importance of sperm mediated factors, such as RNAs, in transmitting the effects of parental stress. However, a key unanswered question is whether mothers behavior could drive or modulate the transmission of paternal stress effects on offspring development. Here we investigate how chronic variable stress in Balb/C mice influences the sex-specific development of anxiety- and depression-like neural and behavioral development in offspring. Moreover, we examined how stressed fathers influenced mate maternal investment towards their offspring and how this may modulate the transmission of paternal stress effects on offspring. We show that paternal stress leads to sex-specific effects on offspring behavior. Males that are chronically stressed sire female offspring that show increased anxiety and depression-like behaviors. However, male offspring of stressed fathers show reductions in anxiety- and depression-behaviors and are generally more exploratory. Moreover, we show that females mated with stressed males gain less weight during pregnancy and provide less care towards their offspring which additionally influenced offspring development. These data indicate that paternal stress can influence offspring development both directly and indirectly via changes in mothers, with implications for sex-specific offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | - Ireneusz B Habrylo
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Kathryn Gudsnuk
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Frances A Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America; University of Texas Austin, Department of Psychology, 108 Dean Keeton, Austin, TX 78712, United States of America
| |
Collapse
|
6
|
Kawasaki Y, Ishidoya S, Morimoto R, Ono Y, Omata K, Tezuka Y, Kawamorita N, Yamashita S, Mitsuzuka K, Satoh F, Ito A. Laparoscopic Adrenalectomy Is Beneficial for the Health-Related Quality of Life of Older Patients with Primary Aldosteronism. Urol Int 2023; 107:186-192. [PMID: 34419949 DOI: 10.1159/000518165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Laparoscopic adrenalectomy (LADX) improves hypertension in patients with primary aldosteronism (PA). However, the antihypertensive impact of LADX appears restricted in older patients with PA. In this study, we evaluated the impact of LADX in older patients focusing on the health-related quality of life (HRQoL). METHODS A total of 156 patients with PA who underwent LADX in a single institution were enrolled in this prospective cohort study. The patients were divided into 2 groups, with a boundary of 60 years. The HRQoL was evaluated using the Medical Outcomes Study's 36-Item Short-Form Health Survey version 2 (SF-36v2) questionnaire before and after LADX. Demographics, clinical features, antihypertensive drugs before and after surgery, and perioperative evaluation were recorded. We compared all scale scores and summed scores between groups. Multivariate regression models were used to determine the associations between various covariables and the HRQoL. RESULTS In the older PA patients, most subscales of HRQoL at baseline were lower than the national standard values. The antihypertensive drug-free rate by LADX was only 21% in older patients, compared to 58% in younger patients. However, a significant improvement in mental HRQoL was observed after LADX (p = 0.002). The much preoperative antihypertensive drugs, lower preoperative potassium level, and smaller degree of comorbidities were predictors of improved mental HRQoL by LADX on multivariate analyses. CONCLUSION The older PA patients showed lower mental HRQOL than the national standard populations. Although antihypertensive effects were limited for these patients, LADX was beneficial as PA treatment via improvement of mental HRQoL.
Collapse
Affiliation(s)
- Yoshihide Kawasaki
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Ryo Morimoto
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Omata
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Kawamorita
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Yamashita
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Department of Clinical Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
8
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Grabowska K, Ziemichód W, Biała G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sci 2023; 13:brainsci13010121. [PMID: 36672102 PMCID: PMC9857036 DOI: 10.3390/brainsci13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Nowadays, stressful situations are an unavoidable element of everyday life. Stressors activate a number of complex mental and physiological reactions in the organism, thus affecting the state of health of an individual. Stress is the main risk factor in the development of mental disorders, such as depression and other disorders developing as a result of addiction. Studies indicate that women are twice as likely as men to develop anxiety, depression and therefore addiction, e.g., to nicotine. Even though the data presented is indicative of significant differences between the sexes in the prevalence of these disorders, the majority of preclinical animal models for investigating stress-induced disorders use predominantly male subjects. However, the recent data indicates that this type of studies has also been launched in female rodents. Therefore, conducting research on both sexes allows for a more accurate understanding and assessment of the impact of stress on stress-induced behavioral, peripheral and molecular changes in the body and brain. In this manuscript we have gathered the data from 41 years (from 1981-2022) on the influence of stress on the development of depression and nicotine addiction in both sexes.
Collapse
|
10
|
Ronan PJ, Korzan WJ, Johnson PL, Lowry CA, Renner KJ, Summers CH. Prior stress and vasopressin promote corticotropin-releasing factor inhibition of serotonin release in the central nucleus of the amygdala. Front Behav Neurosci 2023; 17:1148292. [PMID: 37064300 PMCID: PMC10098171 DOI: 10.3389/fnbeh.2023.1148292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is essential for coordinating endocrine and neural responses to stress, frequently facilitated by vasopressin (AVP). Previous work has linked CRF hypersecretion, binding site changes, and dysfunctional serotonergic transmission with anxiety and affective disorders, including clinical depression. Crucially, CRF can alter serotonergic activity. In the dorsal raphé nucleus and serotonin (5-HT) terminal regions, CRF effects can be stimulatory or inhibitory, depending on the dose, site, and receptor type activated. Prior stress alters CRF neurotransmission and CRF-mediated behaviors. Lateral, medial, and ventral subdivisions of the central nucleus of the amygdala (CeA) produce CRF and coordinate stress responsiveness. The purpose of these experiments was to determine the effect of intracerebroventricular (icv) administration of CRF and AVP on extracellular 5-HT as an index of 5-HT release in the CeA, using in vivo microdialysis in freely moving rats and high performance liquid chromatography (HPLC) analysis. We also examined the effect of prior stress (1 h restraint, 24 h prior) on CRF- and AVP-mediated release of 5-HT within the CeA. Our results show that icv CRF infusion in unstressed animals had no effect on 5-HT release in the CeA. Conversely, in rats with prior stress, CRF caused a profound dose-dependent decrease in 5-HT release within the CeA. This effect was long-lasting (240 min) and was mimicked by CRF plus AVP infusion without stress. Thus, prior stress and AVP functionally alter CRF-mediated neurotransmission and sensitize CRF-induced inhibition of 5-HT release, suggesting that this is a potential mechanism underlying stress-induced affective reactivity in humans.
Collapse
Affiliation(s)
- Patrick J. Ronan
- Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, United States
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
- Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO, United States
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Kenneth J. Renner,
| | - Wayne J. Korzan
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, United States
| | - Philip L. Johnson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
| | - Kenneth J. Renner
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Biology, University of South Dakota, Vermillion, SD, United States
- Patrick J. Ronan,
| | - Cliff H. Summers
- Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, United States
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Biology, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Cliff H. Summers,
| |
Collapse
|
11
|
Corticotropin-Releasing Hormone: Biology and Therapeutic Opportunities. BIOLOGY 2022; 11:biology11121785. [PMID: 36552294 PMCID: PMC9775501 DOI: 10.3390/biology11121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In 1981, Wylie Vale, Joachim Spiess, Catherine Rivier, and Jean Rivier reported on the characterization of a 41-amino-acid peptide from ovine hypothalamic extracts with high potency and intrinsic activity stimulating the secretion of adrenocorticotropic hormone and β-endorphin by cultured anterior pituitary cells. With its sequence known, this neuropeptide was determined to be a hormone and consequently named corticotropin-releasing hormone (CRH), although the term corticotropin-releasing factor (CRF) is still used and preferred in some circumstances. Several decades have passed since this seminal contribution that opened a new research era, expanding the understanding of the coding of stress-related processes. The characterization of CRH receptors, the availability of CRH agonists and antagonists, and advanced immunocytochemical staining techniques have provided evidence that CRH plays a role in the regulation of several biological systems. The purpose of this review is to summarize the present knowledge of this 41-amino-acid peptide.
Collapse
|
12
|
Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. Biomed Pharmacother 2022; 151:113146. [PMID: 35643064 DOI: 10.1016/j.biopha.2022.113146] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Approximately, one in three ischemic stroke survivors suffered from depression, namely, post-stroke depression (PSD). PSD affects functional rehabilitation and may lead to poor quality of life of patients. There are numerous explanations about the etiologies of PSD. Here, we speculated that PSD are likely to be the result of specific changes in brain pathology. We hypothesized that the stroke-induced hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis plays an important role in PSD. Stroke initiates a complex sequence of events in neuroendocrine system including HPA axis. The HPA axis is involved in the pathophysiology of depression, especially, the overactivity of the HPA axis occurs in major depressive disorder. This review summarizes the possible etiologies of PSD, focusing on the stroke-induced activation of HPA axis, mainly including the stress followed by severe brain damage and the proinflammatory cytokines release. The role of hyperactive of HPA axis in PSD was discussed in detail, which includes the role of high level corticotropin-releasing hormone in PSD, the effects of glucocorticoids on the alterations in specific brain structures, the expression of enzymes, excitotoxicity, the change in intestinal permeability, and the activation of microglia. The relationship between neuroendocrine regulation and inflammation was also described. Finally, the therapy of PSD by regulating HPA axis, neuroendocrine, and immunity was discussed briefly. Nevertheless, the change of HPA axis and the occurring of PSD maybe interact and promote on each other, and future investigations should explore this hypothesis in more depth.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Wenhao Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
13
|
Ding Y, Wei Z, Yan H, Guo W. Efficacy of Treatments Targeting Hypothalamic-Pituitary-Adrenal Systems for Major Depressive Disorder: A Meta-Analysis. Front Pharmacol 2021; 12:732157. [PMID: 34566653 PMCID: PMC8461240 DOI: 10.3389/fphar.2021.732157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal hypothalamic-pituitary-adrenal (HPA) axis has been implicated in major depressive disorder (MDD). A number of studies have attempted to use HPA-modulating medications to treat depression. However, their results are inconsistent. The efficacy of these drugs for MDD remains uncertain. The aims of this meta-analysis were to determine the effect and safety profile of HPA-targeting medications for MDD. World of Science and PubMed databases were comprehensively searched up to March 2021. All randomized controlled trials (RCTs) and open-label trials exploring antiglucocorticoid and related medications in patients with depression were included. Standardized mean differences (SMDs) and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated for continuous or dichotomous outcomes, respectively. In the meta-analysis, we identified 16 RCTs and seven open-label studies that included 2972 subjects. Pooling the change data that assessed the efficacy across all included HPA-targeting medications for depression showed a significant difference between interventions and controls with very small heterogeneity after influence analysis (SMD = 0.138, 95%CI = 0.052, 0.224, p = 0.002; I2 = 20.7%, p = 0.212). No obvious publication bias was observed (p = 0.127). Effectiveness remained significant in patients with MDD (SMD = 0.136, 95%CI = 0.049, 0.223, p = 0.002). Subgroup analysis showed a significant difference favoring mifepristone and vasopressin 1B (V1B) receptor antagonist treatment. Adverse events were reported by 14 studies and our analysis of high-quality studies showed a significant difference in favor of controls (RR = 1.283, 95%CI = 1.134, 1.452, p = 0). Our study suggested that patients with MDD may benefit from mifepristone and V1B receptor antagonist treatments that have tolerable side effects. HPA-based medications are promising for depression treatment. However, additional high-quality RCTs, including head-to-head trials, are needed. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier registration number: CRD42021247279
Collapse
Affiliation(s)
- Yudan Ding
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zirou Wei
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Haohao Yan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Keijser R, Olofsdotter S, Nilsson KW, Åslund C. Three-way interaction effects of early life stress, positive parenting and FKBP5 in the development of depressive symptoms in a general population. J Neural Transm (Vienna) 2021; 128:1409-1424. [PMID: 34423378 PMCID: PMC8423649 DOI: 10.1007/s00702-021-02405-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
FKBP5 gene–environment interaction (cG × E) studies have shown diverse results, some indicating significant interaction effects between the gene and environmental stressors on depression, while others lack such results. Moreover, FKBP5 has a potential role in the diathesis stress and differential susceptibility theorem. The aim of the present study was to evaluate whether a cG × E interaction effect of FKBP5 single-nucleotide polymorphisms (SNPs) or haplotype and early life stress (ELS) on depressive symptoms among young adults was moderated by a positive parenting style (PASCQpos), through the frameworks of the diathesis stress and differential susceptibility theorem. Data were obtained from the Survey of Adolescent Life in Västmanland Cohort Study, including 1006 participants and their guardians. Data were collected during 2012, when the participants were 13 and 15 years old (Wave I: DNA), 2015, when participants were 16 and 18 years old (Wave II: PASCQpos, depressive symptomology and ELS) and 2018, when participants were 19 and 21 years old (Wave III: depressive symptomology). Significant three-way interactions were found for the FKBP5 SNPs rs1360780, rs4713916, rs7748266 and rs9394309, moderated by ELS and PASCQpos, on depressive symptoms among young adults. Diathesis stress patterns of interaction were observed for the FKBP5 SNPs rs1360780, rs4713916 and rs9394309, and differential susceptibility patterns of interaction were observed for the FKBP5 SNP rs7748266. Findings emphasize the possible role of FKBP5 in the development of depressive symptoms among young adults and contribute to the understanding of possible differential susceptibility effects of FKBP5.
Collapse
Affiliation(s)
- Rebecka Keijser
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden. .,School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden.
| | - Susanne Olofsdotter
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden.,School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital Västerås, 721 89, Västerås, Sweden.,Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Juruena MF, Gadelrab R, Cleare AJ, Young AH. Epigenetics: A missing link between early life stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110231. [PMID: 33383101 DOI: 10.1016/j.pnpbp.2020.110231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
Research has suggested a relationship between early life stress, and depression in particular longer episodes of depression with treatment resistant outcomes. However, the underlying mechanisms for this association remain poorly understood. Molecular studies indicate that, in general, the hereditary character of psychiatric disorders are polygenic, multifactorial and highly complex, with innumerable low-effect genetic variants interacting with each other. In addition, the importance of the environment and its interaction with genes has pointed to a fundamental role of epigenetic mechanisms in psychiatric disorders, such as methylation of deoxyribonucleic acid (DNA), alterations, histone actions and regulation of gene expression by non-coding ribonucleic acids (RNAs). This article provides an overview of the interplay of epigenetics, the HPA axis, early life stress and the development of depression. Advances in our knowledge of epigenetics in the context of early life stress and depression provide a new understanding of the genetic influence on psychopathology and could lead to the identification of new targets for clinical intervention.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK.
| | | | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| |
Collapse
|
16
|
Diel rhythm of urotensin I mRNA expression and its involvement in the locomotor activity and appetite regulation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110627. [PMID: 34058375 DOI: 10.1016/j.cbpb.2021.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
Urotensin I (UI), a member of the corticotropin-releasing hormone family of peptides, regulates a diverse array of physiological functions, including appetite regulation, defensive behavior and stress response. In this study, firstly, the tissue-specific distribution of UI mRNA in olive flounder (Paralichthys olivaceus) was characterized and we found that UI mRNA was highly expressed in caudal neurosecretory system (CNSS) tissue. Secondly, alignment analysis found that a conserved cAMP response binding (CREB) site and a TATA element were located in the proximal promoter of UI gene. In addition, treatment of forskolin activatated cAMP-CREB pathway and induced the up-regulation of UI mRNA in cultured CNSS, suggesting the role of CREB in regulating the UI mRNA expression. Furthermore, plasma UI concentration and UI mRNA in CNSS showed obvious daily rhythm, with higher values in the daytime while lower values in the nighttime. Thirdly, using bold personality (BP) and shy personality (SP) flounder as an animal model, we found that flounder exhibited significantly higher locomotor activity in the nighttime than in the daytime (P < 0.001), and BP flounder showed significantly higher locomotor activity (P < 0.001) compared with SP flounder both in the daytime and nighttime. Analysis of feeding behavior revealed that BP flounder showed a shorter latency to feed and more attacks to prey. Furthermore, the qPCR and immunohistochemistry results showed that BP flounder expressed significantly lower level of UI mRNA and protein in CNSS tissue. Collectively, our study suggested that the UI plays an important role in locomotor activity and appetite regulation, which provides a basis for understanding the mechanism of defensive behavior and animal personality in flounder.
Collapse
|
17
|
Psarraki EE, Kokka I, Bacopoulou F, Chrousos GP, Artemiadis A, Darviri C. Is there a relation between major depression and hair cortisol? A systematic review and meta-analysis. Psychoneuroendocrinology 2021; 124:105098. [PMID: 33310696 DOI: 10.1016/j.psyneuen.2020.105098] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022]
Abstract
Literature supports a causal role of stress in major depressive disorder (MDD). Hair cortisol concentration (HCC) has been widely used as a measure of long-term stress. Although elevated HCC has been observed in healthy people experiencing chronic stress, findings regarding individuals with mental disorders have been complicated. This review attempts to systematically present all the published research on major depression and HCC. An extensive search of databases was performed to identify articles that investigated this question. The initial search retrieved 142 studies, of which, 16 original articles were included in this review. Results were contradictory; most of the studies showed no significant HCC differences between MDD patients and controls, while others indicated either higher or lower HCC in MDD patients than controls. Higher HCC was reported in first depressive episode compared to recurrent MDD and controls; patients with comorbid MDD and anxiety disorder had higher HCC than controls. No significant HCC difference was found between patients with melancholic or atypical depression and controls. Findings concerning HCC in postpartum depression were inconsistent. A meta-analysis of the data extracted from seven studies of the sample was performed to quantify the degree of cortisol change in MDD patients vs. controls. A random effects model revealed no significant hair cortisol concentrations difference between depressed patients and healthy controls (SMD: -0.02, 95% CI: -0.36 to 0.32). Significant heterogeneity was identified across included studies (P = 0.002, I2 = 71%). The disagreement among studies' results indicates that there is room for improvement in this research field. Confounding factors independent of depression should be taken into consideration.
Collapse
Affiliation(s)
- Evgenia E Psarraki
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Ioulia Kokka
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; Outpatient Specialty Clinic for Sexual Health, First Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave, 11528 Athens, Greece
| | - Flora Bacopoulou
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; Center for Adolescent Medicine, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 1 Thivon Street, Goudi, 11527 Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 1 Thivon Street, Goudi, 11527 Athens, Greece
| | - George P Chrousos
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; Center for Adolescent Medicine, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 1 Thivon Street, Goudi, 11527 Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 1 Thivon Street, Goudi, 11527 Athens, Greece
| | - Artemios Artemiadis
- Department of Neurology, Medical School, University of Cyprus, Shakolas Educational Center, Old Road Nikosia-Limmasol 215/6, 2029 Aglantzia, Nicosia, Cyprus
| | - Christina Darviri
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece
| |
Collapse
|
18
|
Corticotropin-releasing hormone 1 receptor antagonism attenuates chronic unpredictable mild stress-induced depressive-like behaviors in rats. Neuroreport 2021; 31:1-8. [PMID: 31688420 DOI: 10.1097/wnr.0000000000001331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis and impairment of the central corticotropin-releasing factor system are factors in the pathogenesis of depression. Though several antagonists of the corticotropin-releasing factor 1 receptor were effective in the recognized behavioral tests for antidepressant activity, there is still little information on the potential interactions between corticotropin-releasing factor 1 receptor inhibitors and conventional antidepressant therapy. The aim of our study was to assess the influence of CP154526, a corticotropin-releasing factor 1 receptor blocker, which presented some signs of depression. Our results revealed that CP154526 (5 and 10 mg/kg) or fluoxetine (10 mg/kg) treatment notably improved the sucrose consumption, produced anti-depressive-like behavior in open-field test, as well as immobility time in forced swimming test. The levels of interleukin-6, interleukin-1β, tumor necrosis factor-α, and corticotropin-releasing hormone concentration in the serum were inhibited effectively by CP154526 or fluoxetine administration. Real-time quantitative PCR and western blot analysis showed the upregulated levels of brain-derived neurotrophic factor and growth associated protein 43 (GAP43) in the hypothalamus of the rats exposed to chronic unpredictable mild stress (CUMS), while different degrees of downregulation in their expression were detected after CP154526 (5 and 10 mg/kg) or fluoxetine (10 mg/kg) treatment, respectively. Thus, our data demonstrated that CP154526 exhibited antidepressant effect in CUMS rats, which might be mediated by decreasing the brain-derived neurotrophic factor and GAP43 expression in the hypothalamus.
Collapse
|
19
|
Abstract
Stress system dysfunction is a typical characteristic of acute depression and other mood disorders. The exact pattern of factors predisposing for stress-related mental disorders is yet to be unraveled. However, corticosteroid receptor function plays an important role for appropriate or dysfunctional neuroendocrine responses to stress exposure and hence in resilience or risk for the development and course of both, depression and anxiety disorders. Solid neuroscience data strongly support that both neuropeptides, corticotropin-releasing hormone (CRH) and vasopressin (AVP), are central in coordinating humoral and behavioral adaptation to stress. Other neuropeptides, including oxytocin, neuropeptide S, neuropeptide Y, and orexin, are also considered important contributors. Attempts to turn neuropeptide biology into treatments for stress-related disorders need to consider that neuropeptide receptors are specific drug targets for certain patient populations rather than universal targets for all patients, like biogenic amine systems. That is why most negative clinical trials testing neuropeptide receptor antagonists have been in fact failed trials by design, because no companion tests were used to identify which patients with depression are most likely to benefit from a specific neuropeptide receptor-targeting drug treatment. Therefore, the most important future research task is discovery and development of appropriate companion tests that will allow the successful transfer of the precious treasure of neuropeptide system-targeting drugs into clinics.
Collapse
Affiliation(s)
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
20
|
Silberstein S, Liberman AC, Dos Santos Claro PA, Ugo MB, Deussing JM, Arzt E. Stress-Related Brain Neuroinflammation Impact in Depression: Role of the Corticotropin-Releasing Hormone System and P2X7 Receptor. Neuroimmunomodulation 2021; 28:52-60. [PMID: 33845478 DOI: 10.1159/000515130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Depression and other psychiatric stress-related disorders are leading causes of disability worldwide. Up to date, treatments of mood disorders have limited success, most likely due to the multifactorial etiology of these conditions. Alterations in inflammatory processes have been identified as possible pathophysiological mechanisms in psychiatric conditions. Here, we review the main features of 2 systems involved in the control of these inflammatory pathways: the CRH system as a key regulator of the stress response and the ATP-gated ion-channel P2X7 receptor (P2X7R) involved in the control of immune functions. The pathophysiology of depression as a stress-related psychiatric disorder is depicted in terms of the impact of CRH and P2X7R function on inflammatory pathways in the brain. Understanding pathogenesis of affective disorders will lead to the development of therapies for treatment of depression and other stress-related diseases.
Collapse
Affiliation(s)
- Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Paula Ayelén Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maria Belén Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Silva ON, Franco OL, Neves BJ, Morais ÁCB, De Oliveira Neto JR, da Cunha LC, Naves LM, Pedrino GR, Costa EA, Fajemiroye JO. Involvement of the gabaergic, serotonergic and glucocorticoid mechanism in the anxiolytic-like effect of mastoparan-L. Neuropeptides 2020; 81:102027. [PMID: 32059939 DOI: 10.1016/j.npep.2020.102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Mastoparan-L (mast-L) is a cell-penetrating tetradecapeptide and stimulator of monoamine exocytosis. In the present study, we evaluated the anxiolytic-like effect of mast-L. Preliminary pharmacological tests were conducted to determine the most appropriate route of administration, extrapolate dose and detect potential toxic effects of this peptide. Oral and intracerebroventricular administration of mast-L (0.1, 0.3 or 0.9 mg.kg-1), diazepam (1 or 5 mg.kg-1), buspirone (10 mg.kg-1) or vehicle 10 mL.kg-1 was carried out prior to the exposure of mice to the anxiety models: open field, light-dark box and elevated plus-maze. To characterize the mechanism underlying the antianxiety-like effect of mast-L, pharmacological antagonism, blood plasma analysis, molecular docking, and receptor binding assays were performed. The absence of a neurotoxic sign, animal's death as well as lack of significant changes in the relative organ weight, hematological and biochemical parameters suggest that mast-L is relatively safe. The anxiolytic-like effect of mast-L was attenuated by flumazenil (antagonist of benzodiazepine binding site) and WAY100635 (selective antagonist of 5-HT1A receptors) pretreatments. Mast-L reduced plasma corticosterone and lowered the scoring function at GABAA -18.48 kcal/mol (Ki = 155 nM), 5-HT1A -22.39 kcal/mol (Ki = 130 nM), corticotropin-releasing factor receptor subtype 1 (CRF1) -11.95 kcal/mol (Ki = 299 nM) and glucocorticoid receptors (GR) -14.69 kcal/mol (Ki = 3552 nM). These data fit the binding affinity (Ki) and demonstrate the involvement of gabaergic, serotonergic and glucocorticoid mechanisms in the anxiolytic-like property of mast-L.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Bruno J Neves
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Álice Cristina B Morais
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Jeronimo R De Oliveira Neto
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Lara M Naves
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Gustavo R Pedrino
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Elson A Costa
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - James O Fajemiroye
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
22
|
Sireeni J, Bakker N, Jaikumar G, Obdam D, Slabbekoorn H, Tudorache C, Schaaf M. Profound effects of glucocorticoid resistance on anxiety-related behavior in zebrafish adults but not in larvae. Gen Comp Endocrinol 2020; 292:113461. [PMID: 32194047 DOI: 10.1016/j.ygcen.2020.113461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/26/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023]
Abstract
Previously, adult zebrafish with a mutation in the gene encoding the glucocorticoid receptor (Gr) were demonstrated to display anxiety- and depression-like behavior that could be reversed by treatment with antidepressant drugs, suggesting that this model system could be applied to study novel therapeutic strategies against depression. Subsequent studies with zebrafish larvae from this grs357 line and a different gr mutant have not confirmed these effects. To investigate this discrepancy, we have analyzed the anxiety-like behavior in 5 dpf grs357 larvae using a dark/tapping stimulus test and a light/dark preference test. In addition, grs357 adult fish were subjected to an open field test. The results showed that in larvae the mutation mainly affected general locomotor activity (decreased velocity in the dark/tapping stimulus test, increased velocity in the light/dark preference test). However, parameters considered specific readouts for anxiety-like behavior (response to dark/tapping stimulus, time spent in dark zone) were not altered by the mutation. In adults, the mutants displayed a profound increase in anxiety-like behavior (time spent in outer zone in open field test), besides changes in locomotor activity (decreased velocity, increased angular velocity and freezing time). We conclude that the neuronal circuitry involved in anxiety- and depression-like behavior is largely affected by deficient Gr signaling in adult fish but not in larvae, indicating that this circuitry only fully develops after the larval stages in zebrafish. This makes the zebrafish an interesting model to study the ontology of anxiety- and depression-related pathology which results from deficient glucocorticoid signaling.
Collapse
Affiliation(s)
- Jenni Sireeni
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Nina Bakker
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Daisy Obdam
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Marcel Schaaf
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
23
|
Sahpolat M, Ari M, Kokacya MH. Plasma Apelin, Visfatin and Resistin Levels in Patients with First Episode Psychosis and Chronic Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:109-115. [PMID: 31958911 PMCID: PMC7006973 DOI: 10.9758/cpn.2020.18.1.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023]
Abstract
Objective This study aims to investigate the possible relationship between plasma concentrations of apelin, visfatin and resistin levels of first episode psychosis patients and chronic schizophrenia patients. Methods A total number of 29 untreated patients with first episode psychosis, 30 chronic schizophrenia and 29 randomly selected weight- and body mass index-matched healthy volunteers were included. The Diagnostic and Statistical Manual of Mental Disorders 4th edition, Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale were applied to the patient groups. The enzyme-linked immunosorbent assay method was used to measure plasma apelin, visfatin and resistin levels. Results There was no difference in age, marital status, occupation, and BMI between the groups. Plasma apelin levels were significantly higher in first episode psychosis group than chronic schizophrenia and control group. There was no statistically significant difference in plasma visfatin levels between the groups: first episode psychosis group, chronic schizophrenia and control group. Plasma resistin levels were higher in both first episode psychosis group and chronic schizophrenia group than the control group. There was no statistically significant correlation between plasma apelin and resistin levels and total PANSS scores in the group of patients. Conclusion To our knowledge, this study is the first which investigates the plasma apelin, visfatin and resistin levels in patients with first episode psychosis and chronic schizophrenia. Based on the results of this study, apelin and resistin may be related with some central nervous system pathologies, including the severity of a psychiatric disorder.
Collapse
Affiliation(s)
- Musa Sahpolat
- Department of Psychiatry, Kilis State Hospital, Kilis, Turkey
| | - Mustafa Ari
- eparment of Psychiatry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Hanifi Kokacya
- eparment of Psychiatry, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
24
|
Abstract
Hypertension is still the number one global killer. No matter what causes are, lowering blood pressure can significantly reduce cardiovascular complications, cardiovascular death, and total death. Unfortunately, some hypertensive individuals simply do not know having hypertension. Some knew it but either not being treated or treated but blood pressure does not achieve goal. The reasons for inadequate control of blood pressure are many. One important reason is that we are not very familiar with antihypertensive agents and less attention has been paid to comorbidities, complications as well as the hypertension-modified target organ damage in patients with hypertension. The right antihypertensive drug was not given to the right hypertensive patients at right time. This reviewer studied comprehensively the literature, hopefully that the review will help improve antihypertensive drug selection and antihypertensive therapy.
Collapse
Affiliation(s)
- Rutai Hui
- Chinese Academy of Medical Sciences FUWAI Hospital Hypertension Division, 167 Beilishilu West City District, 100037, Beijing People's Republic of China, China.
| |
Collapse
|
25
|
Abstract
Depression is one of the most common psychiatric disorders affecting public health. Studies over the past years suggest that the methylations of some specific genes such as BDNF, SLC6A4, and NR3C1 play an important role in the development of depression. Recently, epigenetic evidences suggest that the expression levels of DNA methyltransferases differ in several brain areas including the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens in depression patients and animal models, but the potential link between the expression levels of DNA methylatransferases and the methylations of specific genes needs further investigation to clarify the pathogenesis of depression.
Collapse
Affiliation(s)
- Zhenghao Duan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Amygdalar corticotropin-releasing factor mediates stress-induced anxiety. Brain Res 2019; 1729:146622. [PMID: 31881185 DOI: 10.1016/j.brainres.2019.146622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
The extended amygdala, including the Central nucleus of the Amygdala (CeA) and the Bed Nucleus of the Stria Terminalis (BNST), is a complex structure that plays a pivotal role in emotional behavior. The CeA and the BNST are highly interconnected, being the amygdala traditionally more associated with fear and the BNST with anxiety. Yet, studies using excitotoxic lesions also show the involvement of the CeA in the development of stress-induced anxiety. Likewise, others have also highlighted the role of corticotropin-releasing factor (CRF), a neuropeptide highly expressed in CeA, as an anxiogenic factor and, consequently, important for in anxiety disorders. Here, we used an inducible RNAi lentiviral system to assess the effects of reducing CRF expression in CeA in the development of anxiety-like behavior in a model of Chronic Unpredictable Stress. In addition, we evaluated CRF RNAi-mediated alterations in the stress-triggered molecular signature in the BNST. Knockdown of CRF in the CeA decreased stress-induced anxiety levels. No differences were found in a fear-potentiated startle paradigm. Additionally, we observed that stress-induced alterations in the expression of CRF receptors within the BNST are attenuated by CRF knockdown in the CeA. These results emphasize the importance of the role that amygdalar CRF plays in the modulation of anxiety-like behavior and in the molecular signature of stress in the BNST.
Collapse
|
27
|
Structural determinants governing β-arrestin2 interaction with PDZ proteins and recruitment to CRFR1. Cell Signal 2019; 63:109361. [DOI: 10.1016/j.cellsig.2019.109361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
|
28
|
The Effects of Acute Neonatal Pain on Expression of Corticotropin-Releasing Hormone and Juvenile Anxiety in a Rodent Model. eNeuro 2019; 6:ENEURO.0162-19.2019. [PMID: 31601633 PMCID: PMC6860982 DOI: 10.1523/eneuro.0162-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Premature infants in the neonatal intensive care unit (NICU) may be subjected to numerous painful procedures without analgesics. One necessary, though acutely painful, procedure is the use of heel lances to monitor blood composition. The current study examined the acute effects of neonatal pain on maternal behavior as well as amygdalar and hypothalamic activation, and the long-term effects of neonatal pain on later-life anxiety-like behavior, using a rodent model. Neonatal manipulations consisted of either painful needle pricks or non-painful tactile stimulation in subjects’ left plantar paw surface which occurred four times daily during the first week of life [postnatal day (PND)1–PND7]. Additionally, maternal behaviors in manipulated litters were compared against undisturbed litters via scoring of videotaped interactions to examine the long-term effects of pain on dam-pup interactions. Select subjects underwent neonatal brain collection (PND6) and fluorescent in situ hybridization (FISH) for corticotropin-releasing hormone (CRH) and the immediate early gene c-fos. Other subjects were raised to juvenile age (PND24 and PND25) and underwent innate anxiety testing utilizing an elevated plus maze (EPM) protocol. FISH indicated that neonatal pain influenced amygdalar CRH and c-fos expression, predominately in males. No significant increase in c-fos or CRH expression was observed in the hypothalamus. Additionally, neonatal pain altered anxiety behaviors independent of sex, with neonatal pain subjects showing the highest frequency of exploratory behavior. Neonatal manipulations did not alter maternal behaviors. Overall, neonatal pain drives CRH expression and produces behavioral changes in anxiety that persist until the juvenile stage.
Collapse
|
29
|
Duncko R, Fischer S, Hatch SL, Frissa S, Goodwin L, Papadopoulos A, Cleare AJ, Hotopf M. Recurrence of Depression in Relation to History of Childhood Trauma and Hair Cortisol Concentration in a Community-Based Sample. Neuropsychobiology 2019; 78:48-57. [PMID: 30897568 DOI: 10.1159/000498920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Childhood trauma represents a risk factor for developing depression with increased rates of recurrence. Mechanisms involved include a disturbed regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Hair cortisol concentration (HCC) is a measure of long-term HPA axis activity with less interference from circadian and confounding factors. However, no study has so far used HCC to investigate the role of childhood trauma in recurrent pattern of depressive symptoms. METHODS A community-based sample of 500 participants was recruited, and depression was assessed at 3 time points using the Revised Clinical Interview Schedule. The Childhood Trauma Questionnaire was administered to identify a history of childhood trauma. Hair samples were obtained from 144 participants for analysis of cortisol. RESULTS Patients with recurrent depression had higher rates of childhood trauma compared to participants with no depression. Participants with current-only depression had increased HCC compared to the no depression group, while this was absent in participants with recurrent depression. Within the depressed group (both current-only and recurrent depression), those with a history of childhood physical abuse had lower HCC when compared to those with no such history. CONCLUSIONS Our findings show that retrospectively reported childhood trauma is associated with protracted trajectories of depression and a distinct pattern of long-term HPA axis activity.
Collapse
Affiliation(s)
- Roman Duncko
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom, .,Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, United Kingdom,
| | - Susanne Fischer
- University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland.,Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Stephani L Hatch
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Souci Frissa
- Health Service and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Laura Goodwin
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Papadopoulos
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony J Cleare
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.,Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
30
|
|
31
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
32
|
Menke A. Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope? Front Psychiatry 2019; 10:101. [PMID: 30890970 PMCID: PMC6413696 DOI: 10.3389/fpsyt.2019.00101] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a very common stress-related mental disorder that carries a huge burden for affected patients and the society. It is associated with a high mortality that derives from suicidality and the development of serious medical conditions such as heart diseases, diabetes, and stroke. Although a range of effective antidepressants are available, more than 50% of the patients do not respond to the first treatment they are prescribed and around 30% fail to respond even after several treatment attempts. The heterogeneous condition of MDD, the lack of biomarkers matching patients with the right treatments and the situation that almost all available drugs are only targeting the serotonin, norepinephrine, or dopamine signaling, without regulating other potentially dysregulated systems may explain the insufficient treatment status. The hypothalamic-pituitary-adrenal (HPA) axis is one of these other systems, there is numerous and robust evidence that it is implicated in MDD and other stress-related conditions, but up to date there is no specific drug targeting HPA axis components that is approved and no test that is routinely used in the clinical setting identifying patients for such a specific treatment. Is there still hope after these many years for a breakthrough of agents targeting the HPA axis? This review will cover tests detecting altered HPA axis function and the specific treatment options such as glucocorticoid receptor (GR) antagonists, corticotropin-releasing hormone 1 (CRH1) receptor antagonists, tryptophan 2,3-dioxygenase (TDO) inhibitors and FK506 binding protein 5 (FKBP5) receptor antagonists.
Collapse
Affiliation(s)
- Andreas Menke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
33
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
34
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
35
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Mashoodh R, Habrylo IB, Gudsnuk KM, Pelle G, Champagne FA. Maternal modulation of paternal effects on offspring development. Proc Biol Sci 2018; 285:20180118. [PMID: 29514964 PMCID: PMC5879637 DOI: 10.1098/rspb.2018.0118] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 01/22/2023] Open
Abstract
The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Ireneusz B Habrylo
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Kathryn M Gudsnuk
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Geralyn Pelle
- Columbia University Medical Center, 650 W 168 St, New York, NY 10032, USA
| | - Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, USA
| |
Collapse
|
37
|
Rho SS, Woo YS, Bahk WM. Ginkgo biloba induced mood dysregulation: a case report. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:14. [PMID: 29334964 PMCID: PMC5769324 DOI: 10.1186/s12906-018-2081-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/03/2018] [Indexed: 01/12/2023]
Abstract
Background Impairment of cognitive function as well as negative symptom is the major factor causing the decline of a patient’s functioning in chronic stages of schizophrenia. However, until now, there were no definite treatment options that could effectively reduce the impairment. Case presentation We report a case of mood dysregulation associated with use of Ginkgo biloba in a patient with schizophrenia. After Ginkgo biloba was given, the patient experienced cluster symptoms of mood dysregulation including irritability, difficulty in controlling anger, agitation and restlessness. We estimated the possibility as “probable” according to Naranjo scale considering circumstantial evidence. Conclusions This case suggests that Ginkgo biloba may have caused mood dysregulation in this patient. Although it is generally accepted as safe, more attention should be given to the adverse effect when treating with Ginkgo biloba.
Collapse
|
38
|
Carrillo-Roa T, Labermaier C, Weber P, Herzog DP, Lareau C, Santarelli S, Wagner KV, Rex-Haffner M, Harbich D, Scharf SH, Nemeroff CB, Dunlop BW, Craighead WE, Mayberg HS, Schmidt MV, Uhr M, Holsboer F, Sillaber I, Binder EB, Müller MB. Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity. PLoS Biol 2017; 15:e2002690. [PMID: 29283992 PMCID: PMC5746203 DOI: 10.1371/journal.pbio.2002690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species. Major depression is the second leading cause of disability worldwide. However, only one-third of patients with depression benefit from the first antidepressant compound they are prescribed. It is a fundamental problem that the outcomes of individual antidepressant treatments are still highly unpredictable. In clinical studies, discovery of biomarkers for antidepressant response is hampered by confounding factors such as the heterogeneity of the disease phenotype and additional environmental factors, e.g., previous life events and different schedules of psychopharmacological treatment, which reduce the power to detect true response biomarkers. To overcome some of these limitations, we have established a conceptually novel approach that allows the selection of extreme phenotypes in an antidepressant-responsive mouse strain. In the first step, we identify signatures in the transcriptome of peripheral blood associated with responses following stratification into good and poor treatment responders. As proof of concept, we translate the murine data to a population of depressed patients. We show that differences in expression profiles from baseline to week 12 of the human orthologues predict response status in patients. We finally provide evidence that sensitivity of the glucocorticoid receptor could be a potential key mechanism shaping response to antidepressant treatment.
Collapse
Affiliation(s)
- Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Peter Weber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - David P. Herzog
- Department of Psychiatry and Psychotherapy & German Resilience Center (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Caleb Lareau
- Department of Biostatistics, Harvard University, Boston, Massachusetts, United States of America
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Klaus V. Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mathias V. Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Uhr
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Marianne B. Müller
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy & German Resilience Center (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
39
|
Hudson R, Zhou Y, Leri F. The combination of escitalopram and aripiprazole: Investigation of psychomotor effects in rats. J Psychopharmacol 2017; 31:1605-1614. [PMID: 29069975 DOI: 10.1177/0269881117732515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pre-clinical and clinical evidence suggests that the antidepressant efficacy of the selective serotonin reuptake inhibitor escitalopram can be enhanced by the dopamine and serotonin partial agonist aripiprazole. Given the range of possible neurochemical interactions between these drugs, the current study investigated whether aripiprazole alters the hedonic and psychomotor effects of escitalopram. Male Sprague Dawley rats ( n=116) received 10 mg/kg/day escitalopram (subcutaneous), 2 mg/kg/day aripiprazole (subcutaneous), or combined aripiprazole + escitalopram, and were tested for consumption of incentive nutritional stimuli (high-fructose corn syrup and chow), stereotypy and locomotor activity. At the conclusion of behavioral testing, mRNAs of two genes involved in reward processes were quantified: hypothalamic pro-opiomelanocortin and hippocampal brain-derived neurotrophic factor. Escitalopram produced a selective, but temporary, decrease in high fructose corn syrup consumption that was not altered by aripiprazole co-administration. Escitalopram had no significant effect on locomotion, but aripiprazole co-administration produced a persistent increase in stereotypy. Both brain-derived neurotrophic factor and pro-opiomelanocortin mRNA levels were lower in the aripiprazole + escitalopram group relative to the escitalopram group. Taken together, these results suggest that aripiprazole may enhance the antidepressant efficacy of escitalopram through improvement of psychomotor functions.
Collapse
Affiliation(s)
| | - Yan Zhou
- 2 Laboratory of Addictive Diseases, Rockefeller University, New York, USA
| | | |
Collapse
|
40
|
Li Q, Hegge R, Bridges PJ, Matthews JC. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages. PLoS One 2017; 12:e0184612. [PMID: 28902910 PMCID: PMC5597216 DOI: 10.1371/journal.pone.0184612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.
Collapse
Affiliation(s)
- Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Raquel Hegge
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - James C. Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
41
|
Shimamoto A, Rappeneau V. Sex-dependent mental illnesses and mitochondria. Schizophr Res 2017; 187:38-46. [PMID: 28279571 PMCID: PMC5581986 DOI: 10.1016/j.schres.2017.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
The prevalence of some mental illnesses, including major depression, anxiety-, trauma-, and stress-related disorders, some substance use disorders, and later onset of schizophrenia, is higher in women than men. While the higher prevalence in women could simply be explained by socioeconomic determinants, such as income, social status, or cultural background, extensive studies show sex differences in biological, pharmacokinetic, and pharmacological factors contribute to females' vulnerability to these mental illnesses. In this review, we focus on estrogens, chronic stress, and neurotoxicity from behavioral, pharmacological, biological, and molecular perspectives to delineate the sex differences in these mental illnesses. Particularly, we investigate a possible role of mitochondrial function, including biosynthesis, bioenergetics, and signaling, on mediating the sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States.
| | - Virginie Rappeneau
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States
| |
Collapse
|
42
|
Tanaka M, Tomimatsu Y, Sakimura K, Ootani Y, Sako Y, Kojima T, Aso K, Yano T, Hirai K. Characterization of CRF 1 receptor antagonists with differential peripheral vs central actions in CRF challenge in rats. Peptides 2017; 95:40-50. [PMID: 28689880 DOI: 10.1016/j.peptides.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate peripheral and central roles of corticotropin-releasing factor (CRF) in endocrinological and behavioral changes. Plasma adrenocorticotropin (ACTH) concentration was measured as an activity of hypothalamic-pituitary-adrenal (HPA) axis. As behavioral changes, locomotion and anxiety behavior were measured after CRF challenge intravenously (i.v.) for the peripheral administration or intracerebroventricularly (i.c.v.) for the central administration. Plasma ACTH concentration was significantly increased by both administration routes of CRF; however, hyperlocomotion and anxiety behavior were induced only by the i.c.v. administration. In the drug discovery of CRF1 receptor antagonists, we identified two types of compounds, Compound A and Compound B, which antagonized peripheral CRF-induced HPA axis activation to the same extent, but showed different effects on the central CRF signal. These had similar in vitro CRF1 receptor binding affinities (15 and 10nM) and functional activities in reporter gene assay (15 and 9.5nM). In the ex vivo binding assays using tissues of the pituitary, oral treatment with Compound A and Compound B at 10mg/kg inhibited [125I]-CRF binding, whereas in the assay using tissues of the frontal cortex, treatment of Compound A but not Compound B inhibited [125I]-CRF binding, indicating that only Compound A inhibited central [125I]-CRF binding. In the peripheral CRF challenge, increase in plasma ACTH concentration was significantly suppressed by both Compound A and Compound B. In contrast, Compound A inhibited the increase in locomotion induced by the central CRF challenge while Compound B did not. Compound A also reduced central CRF challenge-induced anxiety behavior and c-fos immunoreactivity in the cortex and the hypothalamic paraventricular nucleus. These results indicate that the central CRF signal, rather than the peripheral CRF signal would be related to anxiety and other behavioral changes, and CRF1 receptor antagonism in the central nervous system may be critical for identifying drug candidates for anxiety and mood disorders.
Collapse
Affiliation(s)
- Maiko Tanaka
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshiro Tomimatsu
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuya Sakimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshikazu Ootani
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuu Sako
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takuto Kojima
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuyoshi Aso
- Research Alliance Group, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Yano
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keisuke Hirai
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
43
|
Inda C, Armando NG, Dos Santos Claro PA, Silberstein S. Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocr Connect 2017; 6:R99-R120. [PMID: 28710078 PMCID: PMC5551434 DOI: 10.1530/ec-17-0111] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023]
Abstract
Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic-pituitary-adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action. In addition, we present an overview of the pathophysiological role of the CRH system, which highlights the need for a precise definition of CRHRs signaling at molecular level to identify novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- DFBMCFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia G Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- DFBMCFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
44
|
The non-peptide CRH1-antagonist CP-154,526 elicits a paradoxical route-dependent activation of the HPA axis. Neurosci Lett 2017; 653:1-6. [PMID: 28511913 DOI: 10.1016/j.neulet.2017.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
The corticotropin-releasing hormone (CRH) plays an important role in mediating physiological response to stress and is thought to be involved in the development of various psychiatric disorders. In this paper, we compare the differences between the effect of intraperitoneal (i.p.) and intraarterial (i.a.) administration of the non-peptide CRH1 antagonist CP-154,526 (CP) (10 and 20mg/kg) on plasma adrenocorticotropic hormone levels (ACTH), heart rate, MAP, and c-Fos expression in the paraventricular nucleus of the hypothalamus. Intraperitoneal, but not i.a., injection of CP resulted in an increase in plasma ACTH (from 105±13 to 278±51pg/ml after 20mg/kg). This effect was accompanied by a dramatic increase in c-Fos expression in cells immunoreactive for CRH in the paraventricular nucleus of the hypothalamus. When the drug was administered i.p., CP-induced activation of the HPA appears to mask the inhibitory effect of CP on stress-induced ACTH secretion, an effect which was readily apparent when the drug was given i.a. Intraperitoneal administration of CP also increased the baseline MAP which may account for previous reports that treatment with this drug attenuated the increases associated with stress. CP given by either route had no effect on baseline heart rate or stress-induced tachycardia. Thus, in all studies in which CP 154,526 is given, the route of delivery must be given careful consideration.
Collapse
|
45
|
Kumar N, Mishra SS, Sharma CS, Singh HP, Kalra S. In silico binding mechanism prediction of benzimidazole based corticotropin releasing factor-1 receptor antagonists by quantitative structure activity relationship, molecular docking and pharmacokinetic parameters calculation. J Biomol Struct Dyn 2017; 36:1691-1712. [PMID: 28521603 DOI: 10.1080/07391102.2017.1332688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite the various research efforts toward the treatment of stress-related disorders, the drug has not yet launched last 20 years. Corticotropin releasing factor-1 receptor antagonists have been point of great interest in stress-related disorders. In the present study, we have selected benzazole scaffold-based compounds as corticotropin releasing factor-1 antagonists and performed 2D and 3D QSAR studies to identify the structural features to elucidating the binding mechanism prediction. The best 2D QSAR model was obtained through multiple linear regression method with r2 value of .7390, q2 value of .5136 and pred_r2 (predicted square correlation coefficient) value of .88. The contribution of 2D descriptor, T_2_C_1 was 60% (negative contribution) and 4pathClusterCount was 40.24% (positive contribution) in enhancing the activity. Also 3D QSAR model was statistically significant with q2 value of .9419 and q2_se (standard error of internal validation) value of .19. Statistical parameters results prove the robustness and significance of both models. Further, molecular docking and pharmacokinetic analysis was performed to explore the scope of investigation. Docking results revealed that the all benzazole compounds show hydrogen bonding with residue Asn283 and having same hydrophobic pocket (Phe286, Leu213, Ile290, Leu287, Phe207, Arg165, Leu323, Tyr327, Phe284, and Met206). Compound B14 has higher activity compare to reference molecules. Most of the compounds were found within acceptable range for pharmacokinetic parameters. This work provides the extremely useful leads for structural substituents essential for benzimidazole moiety to exhibit antagonistic activity against corticotropin releasing factor-1 receptors.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Department of Pharmaceutical Chemistry , Geetanjali College of Pharmacy , Udaipur 313001 , India
| | - Shashank Shekhar Mishra
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Chandra Shekhar Sharma
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Hamendra Pratap Singh
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Sourav Kalra
- c Centre for Human Genetics & Molecular Medicine , Central University of Punjab , Bhatinda 151001 , India
| |
Collapse
|
46
|
Schartner C, Ziegler C, Schiele MA, Kollert L, Weber H, Zwanzger P, Arolt V, Pauli P, Deckert J, Reif A, Domschke K. CRHR1 promoter hypomethylation: An epigenetic readout of panic disorder? Eur Neuropsychopharmacol 2017; 27:360-371. [PMID: 28233670 DOI: 10.1016/j.euroneuro.2017.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
The corticotropin releasing hormone receptor 1 (CRHR1) is crucially involved in the hypothalamic-pituitary-adrenal axis and thus a major regulator of the stress response. CRHR1 gene variation is associated with several mental disorders including anxiety disorders. Studies in rodents have demonstrated epigenetic regulation of CRHR1 gene expression to moderate response to stressful environment. In the present study, we investigated CRHR1 promoter methylation for the first time regarding its role in panic disorder applying a case-control approach (N=131 patients, N=131 controls). In an independent sample of healthy volunteers (N=255), CRHR1 methylation was additionally analyzed for association with the Beck Anxiety Inventory (BAI) score as a dimensional panic-related intermediate phenotype. The functional relevance of altered CRHR1 promoter methylation was investigated by means of luciferase-based reporter gene assays. In panic disorder patients, a significantly decreased CRHR1 methylation was discerned (p<0.001). Accordingly, healthy controls with high BAI scores showed significantly decreased CRHR1 methylation. Functional analyses revealed an increased gene expression in presence of unmethylated as compared to methylated pCpGl_CRHR1 reporter gene vectors. The present study identified a potential role of CRHR1 hypomethylation - conferring increased CRHR1 expression - in panic disorder and a related dimensional intermediate phenotype. This up-regulation of CRHR1 gene expression driven by de-methylation might constitute a link between the stress response and panic disorder risk.
Collapse
Affiliation(s)
- Christoph Schartner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany; kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany; Department of Psychiatry, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
47
|
Calakos KC, Blackman D, Schulz AM, Bauer EP. Distribution of type I corticotropin-releasing factor (CRF1) receptors on GABAergic neurons within the basolateral amygdala. Synapse 2017; 71:10.1002/syn.21953. [PMID: 27997737 PMCID: PMC7876706 DOI: 10.1002/syn.21953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) plays a critical role in mediating anxiety-like responses to stressors, and dysfunction of the CRF system has been linked to the etiology of several psychiatric disorders. Extra-hypothalamic CRF can also modulate learning and memory formation, including amygdala-dependent learning. The basolateral nucleus of the amygdala (BLA) contains dense concentrations of CRF receptors, yet the distribution of these receptors on specific neuronal subtypes within the BLA has not been characterized. Here, we quantified the expression of CRF receptors on three nonoverlapping classes of GABAergic interneurons: those containing the calcium-binding protein parvalbumin (PV), and those expressing the neuropeptides somatostatin (SOM) or cholecystokinin (CCK). While the majority of PV+ neurons and roughly half of CCK+ neurons expressed CRF receptors, they were expressed to a much lesser extent on SOM+ interneurons. Knowledge of the distribution of CRF receptors within the BLA can provide insight into how manipulations of the CRF system modulate fear and anxiety-like behaviors.
Collapse
Affiliation(s)
- Katina C Calakos
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Dakota Blackman
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Alexandra M Schulz
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Elizabeth P Bauer
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| |
Collapse
|
48
|
Hartz RA, Vrudhula VM, Ahuja VT, Grace JE, Lodge NJ, Bronson JJ, Macor JE. Synthesis and evaluation of prodrugs of corticotropin-releasing factor-1 (CRF 1) receptor antagonist BMS-665053 leading to improved oral bioavailability. Bioorg Med Chem Lett 2017; 27:1360-1363. [PMID: 28223020 DOI: 10.1016/j.bmcl.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 11/29/2022]
Abstract
A series of phosphate and ester-based prodrugs of anilinopyrazinone 1 (BMS-665053) containing either a methylene or an (acyloxy)alkoxy linker was prepared and evaluated in rat pharmacokinetic studies with the goal of improving the oral bioavailability of the parent (1). The prodrugs, in general, had improved aqueous solubility and oral bioavailability compared to 1. Prodrug 12, which contains an (acyloxy)alkoxy linker, showed the greatest improvement in the oral bioavailability relative to the parent (1), with a seven-fold increase (from 5% to 36%) in rat pharmacokinetic studies.
Collapse
Affiliation(s)
- Richard A Hartz
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Vivekananda M Vrudhula
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Vijay T Ahuja
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | - James E Grace
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas J Lodge
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Joanne J Bronson
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| | - John E Macor
- Research and Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
49
|
Mochizuki M, Kojima T, Kobayashi K, Kotani E, Ishichi Y, Kanzaki N, Nakagawa H, Okuda T, Kosugi Y, Yano T, Sako Y, Tanaka M, Aso K. Discovery of 4-chloro-2-(2,4-dichloro-6-methylphenoxy)-1-methyl-7-(pentan-3-yl)-1H-benzimidazole, a novel CRF 1 receptor antagonist. Bioorg Med Chem 2017; 25:1556-1570. [PMID: 28174066 DOI: 10.1016/j.bmc.2016.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
Abstract
Compound 1 exhibits potent binding inhibition activity against a corticotropin-releasing factor 1 (CRF1) receptor (IC50=9.5nM) and in vitro antagonistic activity (IC50=88nM) but is rapidly metabolized by human hepatic microsomes (182μL/min/mg). Here we identified metabolically stable compounds with potent CRF binding inhibitory activity. Structure-activity relationship (SAR) studies considering in vitro metabolic stability revealed that 4-chloro-2-(2,4-dichloro-6-methylphenoxy)-1-methyl-7-(pentan-3-yl)-1H-benzimidazole 24d was more stable in human microsomes (87μL/min/mg) than compound 1. Compound 24d demonstrated potent CRF binding inhibitory activity (IC50=4.1nM), in vitro antagonistic activity (IC50=44nM), and slow dissociation from the CRF1 receptor. Orally administered compound 24d (6-24μmol/kg) showed ex vivo CRF1 receptor binding in the rat pituitary, olfactory bulb, and frontal cortex and suppressed stress-induced adrenocorticotropic hormone (ACTH) secretion. In this report, we discuss SAR studies on the metabolic stability as well as CRF binding inhibitory activity of the benzimidazole series as CRF1 receptor antagonists and the pharmacological profiles of compound 24d.
Collapse
Affiliation(s)
- Michiyo Mochizuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takuto Kojima
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsumi Kobayashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Etsuo Kotani
- CMC Center, Takeda Pharmaceutical Company Ltd., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Yuji Ishichi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoyuki Kanzaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Nakagawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruaki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yohei Kosugi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Yano
- Taisho Pharmaceutical Company Ltd., 403, Yoshino-cho 1-chome, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Yuu Sako
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maiko Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuyoshi Aso
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
50
|
McIlwrick S, Pohl T, Chen A, Touma C. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity. Front Cell Neurosci 2017; 11:9. [PMID: 28261058 PMCID: PMC5306385 DOI: 10.3389/fncel.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS.
Collapse
Affiliation(s)
- Silja McIlwrick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Tobias Pohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Chadi Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Behavioural Biology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|