1
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Tang Y, Guo T, Wang X, Li C, Zhang X, Zhang J. Cyclodextrin-Derived Macromolecular Therapies for Inflammatory Diseases. Macromol Biosci 2025:e2400637. [PMID: 40271896 DOI: 10.1002/mabi.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Inflammation is an essential physiological defense mechanism against harmful stimuli, yet dysregulated inflammatory responses are closely associated with the pathogenesis of numerous acute and chronic diseases. Recent advances highlight the remarkable anti-inflammatory potential of bioactive macromolecules, particularly cyclodextrins (CDs) and their engineered derivatives, which are emerging as promising therapeutic agents. This review systematically introduces different CDs and CD-derived macromolecules that demonstrate anti-inflammatory properties, with emphasis on their molecular mechanisms of action. Native CDs exhibit direct therapeutic effects through host-guest interactions, enabling selective sequestration of pathogenic components such as cholesterol crystals and proteins that drive inflammatory cascades. Moreover, chemically modified CD derivatives incorporating functional groups demonstrate enhanced capabilities in neutralizing inflammatory mediators and modulating immune cell responses. This work further discusses the expanding therapeutic applications of these macromolecules across diverse inflammatory conditions, ranging from acute tissue injuries to chronic autoimmune disorders. Finally, this work critically analyzes the crucial challenges and emerging opportunities in translating CD-based macromolecular therapies into clinical practice, addressing key considerations in biocompatibility, targeted delivery, and therapeutic efficacy optimization.
Collapse
Affiliation(s)
- Yige Tang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xuanran Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing, 400039, China
| |
Collapse
|
3
|
Thiberville L, Faivre V, Sizun C, Dehouck MP, Landry C, Baati R, Tsapis N. Cyclodextrin-based formulations for delivering broad-spectrum nerve agent antidote to the central nervous system: stability, physicochemical characterization and application in a human blood-brain barrier model. Int J Pharm 2025; 674:125505. [PMID: 40132767 DOI: 10.1016/j.ijpharm.2025.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Nerve agents, such as VX and sarin, represent a significant threat to global security due to their devastating neurotoxic effects and potential for misuse. The therapeutic inefficacy of current countermeasures underscores the urgent need for more effective alternatives. In this context, recent advances have identified JDS364.HCl, an uncharged hybrid antidote, as a promising candidate. However, its instability in aqueous solution remains a significant challenge. To address this, cyclodextrin-based formulations were developed using two EMA-approved cyclodextrins: HP-β-CD and SBE-β-CD. These formulations significantly improved JDS364.HCl stability for over two months at room temperature. Interaction studies revealed a 1:1 stoichiometry for both cyclodextrin complexes, with JDS364.HCl: SBE-β-CD exhibiting a 100-fold higher affinity constant, attributed to additional electrostatic interactions with SBE-β-CD sidechains. While SBE-β-CD provided superior plasma stability compared to HP-β-CD, the high binding affinity of JDS364.HCl: SBE-β-CD complexes hindered the molecule's release and reduced its ability to cross the BBB, as observed in a human BBB model. Nonetheless, the results for both cyclodextrins are encouraging, as they enhance JDS364.HCl's stability in plasma while allowing its passage across the BBB. Notably, JDS364.HCl demonstrated superior BBB permeability compared to marketed antidotes such as 2-PAM. These findings highlight the potential of cyclodextrins to improve the efficacy of JDS364.HCl as a nerve agent antidote.
Collapse
Affiliation(s)
- Léa Thiberville
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Ecole de Chimie Polymères et Matériaux, Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé UMR CNRS 7515, 67087 Strasbourg, France
| | - Vincent Faivre
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Christina Sizun
- CNRS, Université Paris-Saclay, Institut de Chimie des Substances Naturelles, 91900 Gif-sur-Yvette, France
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Christophe Landry
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Rachid Baati
- Ecole de Chimie Polymères et Matériaux, Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé UMR CNRS 7515, 67087 Strasbourg, France.
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
4
|
Nicolaescu OE, Belu I, Mocanu AG, Manda VC, Rău G, Pîrvu AS, Ionescu C, Ciulu-Costinescu F, Popescu M, Ciocîlteu MV. Cyclodextrins: Enhancing Drug Delivery, Solubility and Bioavailability for Modern Therapeutics. Pharmaceutics 2025; 17:288. [PMID: 40142952 PMCID: PMC11945013 DOI: 10.3390/pharmaceutics17030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Cyclodextrins (CDs) have revolutionized the pharmaceutical industry with their ability to enhance the stability, solubility, and bioavailability of a wide range of active substances. These cyclic oligosaccharides, with a unique hydrophilic exterior and hydrophobic cavity, form inclusion complexes with poorly soluble drugs, improving their pharmacokinetic profiles and therapeutic efficacy. This review explores the multifaceted roles of cyclodextrins in pharmaceutical formulations, ranging from oral, ophthalmic, parenteral, and topical applications to their emerging use in targeted therapies, gene delivery, and treatment of neurodegenerative, cardiovascular, and infectious diseases. Cyclodextrins not only improve drug solubility and controlled release but also reduce toxicity and side effects, leading to safer and more effective treatments. Recent advancements, such as cyclodextrin-based nanoparticles, offer promising pathways for cancer therapy, chronic disease management, and personalized medicine. As research continues, cyclodextrins remain at the forefront of innovation in drug delivery systems, ensuring better patient outcomes and expanding the possibilities of modern therapeutics.
Collapse
Affiliation(s)
- Oana Elena Nicolaescu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Ionela Belu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Andreea Gabriela Mocanu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Valentin Costel Manda
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București Street, 200512 Craiova, Dolj County, Romania;
| | - Felicia Ciulu-Costinescu
- Department of Pharmacy, University Titu Maiorescu, 16 Gheorghe Șincai Street, 031593 București, Romania;
| | - Mariana Popescu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| |
Collapse
|
5
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
6
|
Kalydi E, Malanga M, Nielsen TT, Wimmer R, Béni S. Solving the puzzle of 2-hydroxypropyl β-cyclodextrin: Detailed assignment of the substituent distribution by NMR spectroscopy. Carbohydr Polym 2024; 338:122167. [PMID: 38763706 DOI: 10.1016/j.carbpol.2024.122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/21/2024]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPBCD) is one of the most important cyclodextrin derivatives, finding extensive applications in the pharmaceutical sector. Beyond its role as an excipient, HPBCD achieved orphan drug status in 2015 for Niemann-Pick type C disease treatment, prompting research into its therapeutic potential for various disorders. However, the acceptance of HPBCD as an active pharmaceutical ingredient may be impeded by its complex nature. Indeed, HPBCD is not a single entity with a well-defined structure, instead, it is a complex mixture of isomers varying in substituent positions and the degree of hydroxypropylation, posing several challenges for unambiguous characterization. Pharmacopoeias' methods only address the average hydroxypropylation extent, lacking a rapid approach to characterize the substituent positions on the CD scaffold. Recognizing that the distribution of substituents significantly influences the complexation ability and overall activity of the derivative, primarily by altering cavity dimensions, we present a straightforward and non-destructive method based on liquid state NMR spectroscopy to analyze the positions of the hydroxypropyl sidechains. This method relies on a single set of routine experiments to establish quantitative assignment and it provides a simple yet effective tool to disclose the substitution pattern of this complex material, utilizing easily accessible (400 MHz NMR) instrumentation.
Collapse
Affiliation(s)
- Eszter Kalydi
- Department of Pharmacognosy, Semmelweis University, Üllői út. 26, 1085 Budapest, Hungary.
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary.
| | - Thorbjørn Terndrup Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Szabolcs Béni
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/a, 1117 Budapest, Hungary.
| |
Collapse
|
7
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
8
|
Varshney S, Alam MA, Kaur A, Dhoundiyal S. Niosomes: A Smart Drug Delivery System for Brain Targeting. Pharm Nanotechnol 2024; 12:108-125. [PMID: 37226788 DOI: 10.2174/2211738511666230524143832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Niosomes are lipid-based nanovesicles that have the potential to act as drug-delivery vehicles for a variety of agents. They are effective drug delivery systems for both ASOs and AAV vectors, with advantages such as improved stability, bioavailability, and targeted administration. In the context of brain-targeted drug delivery, niosomes have been investigated as a drug delivery system for brain targeting, but more research is needed to optimize their formulation to improve their stability and release profile and address the challenges of scale-up and commercialization. Despite these challenges, several applications of niosomes have demonstrated the potential of novel nanocarriers for targeted drug delivery to the brain. This review briefly overviews the current use of niosomes in treating brain disorders and diseases.
Collapse
Affiliation(s)
- Sandesh Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Sharma R, Hastings C, Staretz-Chacham O, Raiman J, Paucar M, Spiegel R, Murray B, Hurst B, Liu B, Kjems L, Hrynkow S. Long-term administration of intravenous Trappsol® Cyclo™ (HP-β-CD) results in clinical benefits and stabilization or slowing of disease progression in patients with Niemann-Pick disease type C1: Results of an international 48-week Phase I/II trial. Mol Genet Metab Rep 2023; 36:100988. [PMID: 37670901 PMCID: PMC10475848 DOI: 10.1016/j.ymgmr.2023.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 09/07/2023] Open
Abstract
Background Niemann-Pick disease type C (NPC) is a rare, fatal, pan-ethnic, autosomal recessive lysosomal storage disease characterized by progressive major organ failure and neurodegeneration. Preclinical studies confirmed a critical role of systemically administered hydroxypropyl-β-cyclodextrin (HP-β-CD; Trappsol® Cyclo™) in cholesterol metabolism and homeostasis in peripheral tissues of the body, including the liver, and in the central nervous system (CNS). Herein, the pharmacokinetics (PK), safety, and efficacy of HP-β-CD, and biomarkers of NPC were assessed in pediatric and adult patients with NPC1. Methods This was a multicenter, Phase I/II, randomized, double-blind, parallel-group, 48-week study (ClinicalTrials.gov identifier NCT02912793) to compare the PK of three different single intravenous (IV) doses of HP-β-CD in pediatric and adult patients with NPC1 and to evaluate the efficacy and tolerability of three different dosages of HP-β-CD in patients with NPC1 after long-term treatment. Twelve patients aged at least 2 years (2-39 years of age) with a confirmed diagnosis of NPC1 were randomized to receive one of three IV doses of HP-β-CD (1500 mg/kg, 2000 mg/kg, or 2500 mg/kg) every 2 weeks for 48 weeks. All patients received HP-β-CD; there was no placebo or other control. PK testing of plasma and cerebrospinal fluid (CSF) was at set times after the first infusion. Pharmacodynamic assessments included biomarkers of cholesterol metabolism (synthesis and breakdown products), N-palmitoyl-O-phosphocholineserine (PPCS), and specific biomarkers of CSF neurodegeneration (including total Tau), CNS inflammation (glial fibrillary acidic protein [GFAP] and tumor necrosis factor α [TNFα]), CNS cholesterol metabolism (24S-hydroxycholesterol) and inflammatory markers. Efficacy measures included clinical disease severity, neurologic symptoms, and clinical impressions of improvement. Safety assessment included physical examination, vital signs, clinical safety laboratory assessment and adverse events (AEs). Results Nine patients completed the study, 2 in the 1500 mg/kg group, 4 in the 2000 mg/kg group and 3 in the 2500 mg/kg group. Three patients (all in the 1500 mg/kg group) discontinued the study because of either physician decision/site Principal Investigator (PI) discretion, withdrawal by subject/patient/parent/guardian, or other non-safety reasons. In 5 patients who underwent serial lumbar punctures, HP-β-CD was detected in the CSF. Of the 9 patients who completed the study, 8 (88.9%) improved in at least two domains of the 17-Domain Niemann-Pick disease Type C-Clinical Severity Scale (17D-NPC-CSS), and 6 of these patients improved in at least one domain viewed by patients and their caregivers to be key to quality of life, namely, speech, swallow, fine and gross motor skills, and cognition. Of the 9 patients who completed the study, 7 were viewed by their treating physicians as having improved to some degree at the end of the study, and 2 remained stable; both outcomes are highly relevant in a progressive neurodegenerative disease. Some patients and families reported improvement in quality of life.All three doses of HP-β-CD were well tolerated overall, with most treatment-emergent adverse events transient, mild-to-moderate in nature, and considered by the site PIs to be not related to study drug. Interpretation This 48-week trial is the longest to date to evaluate the safety, tolerability, and efficacy across multiple clinical endpoints of IV administration of Trappsol® Cyclo™ (HP-β-CD) in NPC1 patients. In pediatric and adult patients with NPC, Trappsol® Cyclo™ IV improved clinical signs and symptoms and was generally well tolerated. The findings presented here demonstrate a favorable benefit-risk profile and support the global pivotal trial now underway to evaluate the long-term treatment benefits and the potential of Trappsol® Cyclo™ as a disease-modifying treatment in this patient population.
Collapse
Affiliation(s)
- Reena Sharma
- Salford Royal Hospital NHS Foundation Trust, Department of Adult Inherited Metabolic Diseases, Stott Lane, Salford, Greater Manchester M6 8HD, UK
| | | | | | - Julian Raiman
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Martin Paucar
- Karolinska University Hospital, Huddinge, Department of Neurology, R43 Rehabgatan, 4th Floor, 141 86 Stockholm, Sweden
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula 1834111, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bryan Murray
- Boyd Consultants Ltd, Electra House, Crewe Business Park, Crewe, Cheshire CW1 6GL, UK
| | - Bryan Hurst
- Boyd Consultants Ltd, Electra House, Crewe Business Park, Crewe, Cheshire CW1 6GL, UK
| | - Benny Liu
- Highland Hospital, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Lise Kjems
- Cyclo Therapeutics, Inc, 6714 NW 16th Street, Suite B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc, 6714 NW 16th Street, Suite B, Gainesville, FL 32653, USA
| |
Collapse
|
10
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
11
|
Braga SS. Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases. Biomolecules 2023; 13:biom13040666. [PMID: 37189413 DOI: 10.3390/biom13040666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Cyclodextrins are often used as molecular carriers for small active ingredients in medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-β-cyclodextrin (HPβCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPβCD against Niemann-Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer's and Parkinson's. HPβCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Cougnoux A, Pergande MR, Serna-Perez F, Cologna SM. Investigation of 2-Hydroxypropyl-β-Cyclodextrin Treatment in a Neuronal-Like Cell Model of Niemann-Pick Type C Using Quantitative Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:668-675. [PMID: 36920149 DOI: 10.1021/jasms.2c00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Niemann-Pick, type C (NPC) is a fatal, neurovisceral lysosomal storage disorder with progressive neurodegeneration and no FDA-approved therapy. Significant efforts have been focused on the development of therapeutic options, and 2-hydroxypropyl-β-cyclodextrin (HP-b-CD) has emerged as a promising candidate. In cell culture, HP-b-CD ameliorates cholesterol storage in endo/lysosomes, a hallmark of the disorder. Furthermore, in animal studies, treatment with HP-b-CD delays neurodegeneration and extends lifespan. While HP-b-CD has been promising in vitro and in vivo, a clear understanding of the mechanism(s) of action is lacking. Utilizing a neuron-like cell culture model of SH-SY5Y differentiated cells and U18666A to induce the NPC phenotype, we report here a large-scale mass-spectrometry-based proteomic study to evaluate proteome changes upon treatment with these small molecules. In this study, we show that differentiated SH-SY5Y cells display morphological changes representative of neuronal-like cells along with increased levels of proliferation markers. Inhibition of the NPC cholesterol transporter 1 protein by U18666A resulted in increased levels of known NPC markers including SCARB2/LIMP2 and LAMP2. Finally, investigation of HP-b-CD treatment was performed where we observe that, although HP-b-CD reduces cholesterol storage, levels of NPC1 and NPC2 are not normalized to control levels. This finding further supports the need for a proteostasis strategy for NPC drug development. Moreover, proteins that were dysregulated in the U18666A model of NPC and normalized to control levels suggest that HP-b-CD promotes exocytosis in this neuron-like model. Utilizing state of the art mass spectrometry analysis, these data demonstrate newly reported changes with pharmacological perturbations related to NPC disease and provide insight into the mechanisms of HP-b-CD as a potential therapeutic.
Collapse
Affiliation(s)
- Antony Cougnoux
- Department of Cell and Molecular Biology, Karolinska Institutet and Science for Life Laboratory, Solna 171 65, Sweden
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Fidel Serna-Perez
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
13
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
14
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
15
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
16
|
Hastings C, Liu B, Hurst B, Cox GF, Hrynkow S. Intravenous 2-hydroxypropyl-β-cyclodextrin (Trappsol® Cyclo™) demonstrates biological activity and impacts cholesterol metabolism in the central nervous system and peripheral tissues in adult subjects with Niemann-Pick Disease Type C1: Results of a phase 1 trial. Mol Genet Metab 2022; 137:309-319. [PMID: 36279795 DOI: 10.1016/j.ymgme.2022.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Niemann-Pick Disease Type C1 (NPC1) is a disorder of intracellular cholesterol and lipid trafficking that leads to the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment, resulting in systemic manifestations (including hepatosplenomegaly and lung infiltration) and neurodegeneration. Preclinical studies have demonstrated that systemically administered 2-hydroxypropyl-β-cyclodextrin (HPβCD; Trappsol® Cyclo™) restores cholesterol metabolism and homeostasis in peripheral organs and tissues and in the central nervous system (CNS). Here, we assessed the safety, pharmacokinetics, and pharmacodynamics of HPβCD in peripheral tissues and the CNS in adult subjects with NPC1. METHODS A Phase 1, randomized, double-blind, parallel group study enrolled 13 subjects with NPC1 who received either 1500 mg/kg or 2500 mg/kg HPβCD intravenously every 2 weeks for a total of 7 doses (14 weeks). Subjects were 18 years or older, with a confirmed diagnosis of NPC1 and evidence of systemic involvement on clinical assessment. Pharmacokinetic evaluations in plasma and cerebrospinal fluid (CSF) were performed at the first and seventh infusions. Pharmacodynamic assessments included biomarkers of systemic cholesterol synthesis (serum lathosterol) and degradation (serum 4β-hydroxycholesterol), secondary sphingomyelin storage (plasma lysosphingomyelin-509, now more accurately referred to as N-palmitoyl-O-phosphocholineserine [PPCS]), and CNS-specific biomarkers of neurodegeneration (CSF total Tau) and cholesterol metabolism (serum 24(S)-hydroxycholesterol [24(S)-HC]). Safety monitoring included assessments of liver and kidney function, infusion related adverse events, and hearing evaluations. RESULTS Ten subjects completed the study, with 6 at the 1500 mg/kg dose and 4 at the 2500 mg/kg dose. One subject withdrew following the first infusion after experiencing hypersensitivity pneumonitis, and 2 subjects withdrew after meeting a stopping rule related to hearing loss. Overall, HPβCD had an acceptable safety profile. The observed pharmacokinetic profile of HPβCD was similar following the first and seventh infusions, with a plasma half-life of 2 h, a maximum concentration reached at 6 to 8 h, and no evidence of accumulation. Serum biomarkers of cholesterol metabolism showed reduced synthesis and increased degradation. Compared to Baseline, filipin staining of liver tissue showed significant reductions of trapped unesterified cholesterol at both dose levels at Week 14. Plasma PPCS levels were also reduced. HPβCD was detected at low concentrations in the CSF (maximum, 33 μM) at both dose levels and persisted longer in CSF than in plasma. Total Tau levels in CSF decreased in most subjects. Serum levels of 24(S)-HC, a cholesterol metabolite from the CNS that is exported across the blood-brain barrier and into the circulation, decreased after both the first and seventh doses. Hence, pharmacodynamic assessments in both peripheral and CNS-related tissue show target engagement. While not the aim of the study, subjects reported favorable impacts on their quality of life. CONCLUSIONS The plasma pharmacokinetics and pharmacodynamics of HPβCD administered at two intravenous dose levels to subjects with NPC1 were comparable to those observed in preclinical models. HPβCD cleared cholesterol from the liver and improved peripheral biomarkers of cholesterol homeostasis. At low CSF concentrations, HPβCD appeared to be pharmacologically active in the CNS based on the increased efflux of 24(S)-HC and reduction in CSF total Tau, a biomarker of CNS neurodegeneration. These data support the initiation of longer-term clinical trials to evaluate the safety and efficacy of intravenous HPβCD in subjects with NPC1. (ClinicalTrials.gov numbers: present trial, NCT02939547; open-label extension of the present trial, NCT03893071; global pivotal trial, NCT04860960).
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52(nd) Street, Oakland, CA 94609-1809, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA; Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Bryan Hurst
- Boyd Consultants, Electra House, Electra Avenue, Crewe CW1 6GL, UK
| | - Gerald F Cox
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| |
Collapse
|
17
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
18
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
19
|
Okada BY, Kuroiwa S, Noi A, Tanaka A, Nishikawa J, Kondo Y, Ishitsuka Y, Irie T, Higaki K, Matsuo M, Ichikawa A. Effects of 6-O-α-maltosyl-β cyclodextrin on lipid metabolism in Npc1-deficient Chinese hamster ovary cells. Mol Genet Metab 2022; 137:239-248. [PMID: 36182715 DOI: 10.1016/j.ymgme.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Niemann-Pick disease Type C (NPC) is a lysosomal storage disorder caused by mutation of the NPC1/NPC2 genes, which ultimately results in the accumulation of unesterified cholesterol (UEC) in lysosomes, thereby inducing symptoms such as progressive neurodegeneration and hepatosplenomegaly. This study determines the effects of 6-O-α-maltosyl-β cyclodextrin (Mal-βCD) on lipid levels and synthesis in Npc1-deficient (Npc1-KO cells) and vehicle CHO cells. Compared to vehicle cells, Npc1-KO cells exhibited high level of UEC, and low levels of esterified cholesterols (ECs) and long-chain fatty acids (LCFAs). The difference in lipid levels between Npc1-KO and CHO cells was largely ameliorated by Mal-βCD administration. Moreover, the effects of Mal-βCD were reproduced in the lysosomes prepared from Npc1-KO cells. Stable isotope tracer analysis with extracellular addition of D4-deuterated palmitic acid (D4-PA) to Npc1-KO cells increased the synthesis of D4-deuterated LCFAs (D4-LCFAs) and D4-deuterated ECs (D4-ECs) in a Mal-βCD-dependent manner. Simultaneous addition of D6-deuterated UEC (D6-UEC) and D4-PA promoted the Mal-βCD-dependent synthesis of D6-/D4-ECs, consisting of D6-UEC and D4-PA, D4-deuterated stearic acid, or D4-deuterated myristic acid, in Npc1-KO cells. These results suggest that Mal-βCD helps to maintain normal lipid metabolism by restoring balance among UEC, ECs, and LCFAs through acting on behalf of NPC1 in Npc1-KO cells and may therefore be useful in designing effective therapies for NPC.
Collapse
Affiliation(s)
- By Yasuyo Okada
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan.
| | - Sayako Kuroiwa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Noi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Junichi Nishikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Atsushi Ichikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Bio-Education Laboratory, Tawara Building #702, 1-21-33 Higashinakajima, Osaka 533-0033, Japan.
| |
Collapse
|
20
|
Erickson RP, Grossman LI, Aras S. An explanation for the decreased severity of liver malfunction in Niemann-Pick C1 disease with age. J Appl Genet 2022; 63:469-474. [PMID: 35508755 DOI: 10.1007/s13353-022-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Niemann-Pick C disease frequently presents as severe cholestatic disease in infants. However, it progressively becomes less of a problem as children age. We have found that, in an appropriate mouse model, liver cholesterol levels, which are initially very high, decrease while mitochondrial function, initially quite compromised, increases with age. The key mitochondrial regulator, MNRR1, increases in parallel with the increase in mitochondrial function. These changes appear to explain the amelioration of the liver disease that occurs with time in this disorder.
Collapse
Affiliation(s)
- Robert P Erickson
- Dept of Pediatrics, University of Arizona, Tucson, AZ, 85724-5073, USA.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
21
|
Nishida T, Yokoyama R, Kubohira Y, Maeda Y, Takeo T, Nakagata N, Takagi H, Ishikura K, Yanagihara K, Misumi S, Kishimoto N, Ishitsuka Y, Kondo Y, Irie T, Soga M, Era T, Onodera R, Higashi T, Motoyama K. Lactose-Appended Hydroxypropyl-β-Cyclodextrin Lowers Cholesterol Accumulation and Alleviates Motor Dysfunction in Niemann-Pick Type C Disease Model Mice. ACS APPLIED BIO MATERIALS 2022; 5:2377-2388. [PMID: 35506864 DOI: 10.1021/acsabm.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-β-cyclodextrin (Lac-HPβCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPβCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPβCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPβCD has potential for the treatment of NPC.
Collapse
Affiliation(s)
- Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuto Kubohira
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
22
|
Agnes M, Pancani E, Malanga M, Fenyvesi E, Manet I. Implementation of Water-Soluble Cyclodextrin-Based Polymers in Biomedical Applications: How Far are we? Macromol Biosci 2022; 22:e2200090. [PMID: 35452159 DOI: 10.1002/mabi.202200090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Cyclodextrin-based polymers can be prepared starting from the naturally occurring monomers following green and low-cost procedures. They can be selectively derivatized pre- or post-polymerization allowing to fine-tune functionalities of ad hoc customized polymers. Preparation nowadays has reached the 100 g scale thanks also to the interest of industries in these extremely versatile compounds. During the last 15 years these macromolecules have been the object of intense investigations in view of possible biomedical applications as the ultimate goal and large amounts of scientific data are now available. Compared to their monomeric models, already used in the formulation of various therapeutic agents, they display superior behavior in terms of their solubility in water and solubilizing power towards drugs incompatible with biological fluids. Moreover, they allow the combination of more than one type of therapeutic agent in the polymeric system. In this review we provide a complete state-of-the-art on the knowledge and potentialities of water-soluble cyclodextrin-based polymers as therapeutic agents as well as carrier systems for different types of therapeutics to implement combination therapy. Finally, we give a perspective on their assets for innovation in disease treatment as well as their limits that still need to be addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Agnes
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| | - Elisabetta Pancani
- Advanced Accelerator Applications, A Novartis Company, via Ribes 5, Ivrea, 10010, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., Budapest, H1097, Hungary
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
23
|
Baxter LL, Watkins-Chow DE, Johnson NL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ, Rodriguez-Gil JL. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci Rep 2022; 12:2162. [PMID: 35140266 PMCID: PMC8828765 DOI: 10.1038/s41598-022-06112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.
Collapse
Affiliation(s)
- Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Manohar S, Ding D, Jiang H, Li L, Chen GD, Kador P, Salvi R. Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss. Hear Res 2021; 414:108409. [PMID: 34953289 DOI: 10.1016/j.heares.2021.108409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPβCD). Unfortunately, HPβCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPβCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPβCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPβCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPβCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPβCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPβCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPβCD-induced cochlear damage. Thus, HPβCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Peter Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
| |
Collapse
|
25
|
Sitarska D, Tylki-Szymańska A, Ługowska A. Treatment trials in Niemann-Pick type C disease. Metab Brain Dis 2021; 36:2215-2221. [PMID: 34596813 PMCID: PMC8580890 DOI: 10.1007/s11011-021-00842-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 10/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a genetically determined neurodegenerative metabolic disease. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. It is an autosomal recessive inherited disease that results from mutations in the NPC1 or NPC2 genes. The treatment efforts are focused on the slowing its progression. The only registered drug, devoted for NPC patients is Miglustat. Effective treatment is still under development. NPC disease mainly affects the nervous system, and the crossing of the blood-brain barrier by medicines is still a challenge, therefore the combination therapies of several compounds are increasingly being worked on. The aim of this paper is to present the possibilities in treatment of Niemann-Pick type C disease. The discussed research results relate to animal studies.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
26
|
Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158:105469. [PMID: 34364974 DOI: 10.1016/j.nbd.2021.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.
Collapse
|
27
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
28
|
Arsiccio A, Rospiccio M, Shea JE, Pisano R. Force Field Parameterization for the Description of the Interactions between Hydroxypropyl-β-Cyclodextrin and Proteins. J Phys Chem B 2021; 125:7397-7405. [PMID: 34210121 PMCID: PMC8287564 DOI: 10.1021/acs.jpcb.1c04033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclodextrins are cyclic oligosaccharides, widely used as drug carriers, solubilizers, and excipients. Among cyclodextrins, the functionalized derivative known as hydroxypropyl-β-cyclodextrin (HPβCD) offers several advantages due to its unique structural features. Its optimal use in pharmaceutical and medical applications would benefit from a molecular-level understanding of its behavior, as can be offered by molecular dynamics simulations. Here, we propose a set of parameters for all-atom simulations of HPβCD, based on the ADD force field for sugars developed in our group, and compare it to the original CHARMM36 description. Using Kirkwood-Buff integrals of binary HPβCD-water mixtures as target experimental data, we show that the ADD-based description results in a considerably improved prediction of HPβCD self-association and interaction with water. We then use the new set of parameters to characterize the behavior of HPβCD toward the different amino acids. We observe pronounced interactions of HPβCD with both polar and nonpolar moieties, with a special preference for the aromatic rings of tyrosine, phenylalanine, and tryptophan. Interestingly, our simulations further highlight a preferential orientation of HPβCD's hydrophobic cavity toward the backbone atoms of amino acids, which, coupled with a favorable interaction of HPβCD with the peptide backbone, suggest a propensity for HPβCD to denature proteins.
Collapse
Affiliation(s)
- Andrea Arsiccio
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Marcello Rospiccio
- Molecular Engineering Laboratory, Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Roberto Pisano
- Molecular Engineering Laboratory, Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| |
Collapse
|
29
|
Cruz DL, Pipalia N, Mao S, Gadi D, Liu G, Grigalunas M, O'Neill M, Quinn TR, Kipper A, Ekebergh A, Dimmling A, Gartner C, Melancon BJ, Wagner FF, Holson E, Helquist P, Wiest O, Maxfield FR. Inhibition of Histone Deacetylases 1, 2, and 3 Enhances Clearance of Cholesterol Accumulation in Niemann-Pick C1 Fibroblasts. ACS Pharmacol Transl Sci 2021; 4:1136-1148. [PMID: 34151204 PMCID: PMC8204796 DOI: 10.1021/acsptsci.1c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/29/2022]
Abstract
![]()
Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder
caused by mutations in the NPC1 gene. Mutations in this transmembrane
late endosome protein lead to loss of normal cholesterol efflux from late endosomes and
lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors
(HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the
majority of NPC1 mutants tested in cultured cells. In order to determine the optimal
specificity for HDACi correction of the mutant NPC1s, we screened 76 HDACi's of varying
specificity. We tested the ability of these HDACi's to correct the excess accumulation
of cholesterol in patient fibroblast cells that homozygously express
NPC1I1061T, the most common mutation. We
determined that inhibition of HDACs 1, 2, and 3 is important for correcting the defect,
and combined inhibition of all three is needed to achieve the greatest effect,
suggesting a need for multiple effects of the HDACi treatments. Identifying the specific
HDACs involved in the process of regulating cholesterol trafficking in NPC1 will help to
focus the search for more specific druggable targets.
Collapse
Affiliation(s)
- Dana L Cruz
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Nina Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Deepti Gadi
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gang Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael Grigalunas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew O'Neill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Taylor R Quinn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andi Kipper
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andreas Ekebergh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander Dimmling
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carlos Gartner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bruce J Melancon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Florence F Wagner
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Edward Holson
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,KDAc Therapeutics, Cambridge, Massachusetts 02142, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, P.R. China
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
30
|
Kanagaki S, Suezawa T, Moriguchi K, Nakao K, Toyomoto M, Yamamoto Y, Murakami K, Hagiwara M, Gotoh S. Hydroxypropyl Cyclodextrin Improves Amiodarone-induced Aberrant Lipid Homeostasis of Alveolar Cells. Am J Respir Cell Mol Biol 2021; 64:504-514. [PMID: 33493427 DOI: 10.1165/rcmb.2020-0119oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alveolar epithelial type II (AT2) cells secrete pulmonary surfactant via lamellar bodies (LBs). Abnormalities in LBs are associated with pulmonary disorders, including fibrosis. However, high-content screening (HCS) for LB abnormalities is limited by the lack of understanding of AT2 cell functions. In the present study, we have developed LB cells harboring LB-like organelles that secrete surfactant proteins. These cells were more similar to AT2 cells than to parental A549 cells. LB cells recapitulated amiodarone (AMD)-induced LB enlargement, similar to AT2 cells of patients exposed to AMD. To reverse AMD-induced LB abnormalities, we performed HCS of approved drugs and identified 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cyclic oligosaccharide, as a potential therapeutic agent. A transcriptome analysis revealed that HPβCD modulates lipid homeostasis. In addition, HPβCD inhibited AMD-induced LB abnormalities in human induced pluripotent stem cell-derived AT2 cells. Our results demonstrate that LB cells are useful for HCS and suggest that HPβCD is a candidate therapeutic agent for AMD-induced interstitial pneumonia.
Collapse
Affiliation(s)
- Shuhei Kanagaki
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases and.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masayasu Toyomoto
- Department of Drug Discovery for Lung Diseases and.,Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | | |
Collapse
|
31
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Berry-Kravis E. Niemann-Pick Disease, Type C: Diagnosis, Management and Disease-Targeted Therapies in Development. Semin Pediatr Neurol 2021; 37:100879. [PMID: 33892845 DOI: 10.1016/j.spen.2021.100879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
Niemann-Pick disease, type C (NPC) is a highly heterogeneous rare neurovisceral storage disease with early infantile, late infantile, juvenile and adult onset forms, and relentlessly progressive neurodegeneration leading to death. Vertical supranuclear gaze palsy is a hallmark symptom, and ataxia, dysarthria, dysphagia, dystonia, cognitive decline, seizures, cataplexy, hearing loss and visceromegaly are also characteristic. Diagnosis is made by gene sequencing, metabolic measures, or more recently through gene panels and exome sequencing. Management involves multidisciplinary supportive care. Disease-directed treatments are in development, raising hope that with combination therapy, disease progression will be stalled, and NPC will become a treatable disease.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry Rush University Medical Center, Chicago, IL.
| |
Collapse
|
33
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
34
|
Azizidoost SH, Babaahmadi-Rezaei H, Nazeri Z, Cheraghzadeh M, Kheirollah A. Impact of Methyl-β-Cyclodextrin and Apolipoprotein A-I on The Expression of ATP-Binding Cassette Transporter A1 and Cholesterol Depletion in C57BL/6 Mice Astrocytes. CELL JOURNAL 2021; 23:93-98. [PMID: 33650825 PMCID: PMC7944131 DOI: 10.22074/cellj.2021.7061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 11/04/2022]
Abstract
Objective Dysregulation of cholesterol metabolism in the brain is responsible for many lipid storage disorders, including
Niemann-Pick disease type C (NPC). Here, we have investigated whether cyclodextrin (CD) and apolipoprotein A-I
(apoA-I) induce the same signal to inhibit cell cholesterol accumulation by focusing on the main proteins involved in
cholesterol homeostasis in response to CD and apoA-I treatment.
Materials and Methods In this experimental study, astrocytes were treated with apoA-I or CD and then lysed in RIPA
buffer. We used Western blot to detect protein levels of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR)
and ATP-binding cassette transporter A1 (ABCA1). Cell cholesterol content and cholesterol release in the medium were
also measured.
Results ApoA-I induced a significant increase in ABCA1 and a mild increase in HMGCR protein level, whereas
CD caused a significant increase in HMGCR with a significant decrease in ABCA1. Both apoA-I and CD increased
cholesterol release in the medium. A mild, but not significant increase, in cell cholesterol content was seen by apoA-I;
however, a significant increase in cell cholesterol was detected when the astrocytes were treated with CD.
Conclusion CD, like apoA-I, depletes cellular cholesterol. This depletion occurs in a different way from apoA-I that
is through cholesterol efflux. Depletion of cell cholesterol with CDs led to reduced protein levels of ABCA1 along with
increased HMGCR and accumulation of cell cholesterol. This suggested that CDs, unlike apoA-I, could impair the
balance between cholesterol synthesis and release, and interfere with cellular function that depends on ABCA1.
Collapse
Affiliation(s)
- S Hirin Azizidoost
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Modeling CNS Involvement in Pompe Disease Using Neural Stem Cells Generated from Patient-Derived Induced Pluripotent Stem Cells. Cells 2020; 10:cells10010008. [PMID: 33375166 PMCID: PMC7822217 DOI: 10.3390/cells10010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene. Acid alpha-glucosidase deficiency leads to abnormal glycogen accumulation in patient cells. Given the increasing evidence of central nervous system (CNS) involvement in classic infantile Pompe disease, we used neural stem cells, differentiated from patient induced pluripotent stem cells, to model the neuronal phenotype of Pompe disease. These Pompe neural stem cells exhibited disease-related phenotypes including glycogen accumulation, increased lysosomal staining, and secondary lipid buildup. These morphological phenotypes in patient neural stem cells provided a tool for drug efficacy evaluation. Two potential therapeutic agents, hydroxypropyl-β-cyclodextrin and δ-tocopherol, were tested along with recombinant human acid alpha-glucosidase (rhGAA) in this cell-based Pompe model. Treatment with rhGAA reduced LysoTracker staining in Pompe neural stem cells, indicating reduced lysosome size. Additionally, treatment of diseased neural stem cells with the combination of hydroxypropyl-β-cyclodextrin and δ-tocopherol significantly reduced the disease phenotypes. These results demonstrated patient-derived Pompe neural stem cells could be used as a model to study disease pathogenesis, to evaluate drug efficacy, and to screen compounds for drug discovery in the context of correcting CNS defects.
Collapse
|
36
|
Ramirez CM, Taylor AM, Lopez AM, Repa JJ, Turley SD. Delineation of metabolic responses of Npc1 -/-nih mice lacking the cholesterol-esterifying enzyme SOAT2 to acute treatment with 2-hydroxypropyl-β-cyclodextrin. Steroids 2020; 164:108725. [PMID: 32890578 PMCID: PMC7680374 DOI: 10.1016/j.steroids.2020.108725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-β-cyclodextrin (2HPβCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPβCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPβCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
38
|
Edelmann MJ, Maegawa GHB. CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Front Mol Biosci 2020; 7:559804. [PMID: 33304924 PMCID: PMC7693645 DOI: 10.3389/fmolb.2020.559804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the past decades, several therapeutic approaches have been developed and made rapidly available for many patients afflicted with lysosomal storage disorders (LSDs), inborn organelle disorders with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes. These conditions are individually rare, but, collectively, their incidence ranges from 1 in 2,315 to 7,700 live-births. Most LSDs are manifested by neurological symptoms or signs, including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. The chronic and later-onset clinical forms are at one end of the continuum spectrum and are characterized by a subtle and slow progression of neurological symptoms. Due to its inherent physiological properties, unfortunately, the blood-brain barrier (BBB) constitutes a significant obstacle for current and upcoming therapies to achieve the central nervous system (CNS) and treat neurological problems so prevalent in these conditions. To circumvent this limitation, several strategies have been developed to make the therapeutic agent achieve the CNS. This narrative will provide an overview of current therapeutic strategies under development to permeate the BBB, and address and unmet need for treatment of the progressive neurological manifestations, which are so prevalent in these inherited lysosomal disorders.
Collapse
Affiliation(s)
- Mariola J Edelmann
- Department of Microbiology and Cell Science, The University of Florida's Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Gustavo H B Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
40
|
Seker Yilmaz B, Baruteau J, Rahim AA, Gissen P. Clinical and Molecular Features of Early Infantile Niemann Pick Type C Disease. Int J Mol Sci 2020; 21:E5059. [PMID: 32709131 PMCID: PMC7404201 DOI: 10.3390/ijms21145059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Niemann Pick disease type C (NPC) is a neurovisceral disorder due to mutations in NPC1 or NPC2. This review focuses on poorly characterized clinical and molecular features of early infantile form of NPC (EIF) and identified 89 cases caused by NPC1 (NPC1) and 16 by NPC2 (NPC2) mutations. Extra-neuronal features were common; visceromegaly reported in 80/89 NPC1 and in 15/16 NPC2, prolonged jaundice in 30/89 NPC1 and 7/16 NPC2. Early lung involvement was present in 12/16 NPC2 cases. Median age of neurological onset was 12 (0-24) and 7.5 (0-24) months in NPC1 and NPC2 groups, respectively. Developmental delay and hypotonia were the commonest first detected neurological symptoms reported in 39/89 and 18/89 NPC1, and in 8/16 and 10/16 NPC2, respectively. Additional neurological symptoms included vertical supranuclear gaze palsy, dysarthria, cataplexy, dysphagia, seizures, dystonia, and spasticity. The following mutations in homozygous state conferred EIF: deletion of exon 1+promoter, c.3578_3591 + 9del, c.385delT, p.C63fsX75, IVS21-2delATGC, c. 2740T>A (p.C914S), c.3584G>T (p.G1195V), c.3478-6T>A, c.960_961dup (p.A321Gfs*16) in NPC1 and c.434T>A (p.V145E), c.199T>C (p.S67P), c.133C>T (p.Q45X), c.141C>A (p.C47X) in NPC2. This comprehensive analysis of the EIF type of NPC will benefit clinical patient management, genetic counselling, and assist design of novel therapy trials.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- Department of Paediatric Metabolic Medicine, Mersin University, Mersin 33110, Turkey
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (J.B.); (P.G.)
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
41
|
Recent advances in the treatment of Niemann pick disease type C: A mini-review. Int J Pharm 2020; 584:119440. [PMID: 32428546 DOI: 10.1016/j.ijpharm.2020.119440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Niemann Pick disease Type C (NPC) is a recessive rare disease caused by the mutation on NPC1 and/or NPC2 genes changing the processing of the Low-density proteins (LDL) resulting in an accumulation of lipids in the cells. Until today there is not a cure, the current treatment is based on palliative affairs to reduce the symptoms and prevent its appearance. Among all the treatments proposed the use of cyclodextrins (CDs), nanocarriers which can complex cholesterol, is one of the most useful alternatives. Indeed, for several years 2-hydroxypropyl-β-CD (HPβ-CD) is approved as orphan drug for FDA and EMA to the treatment. However, different CDs based materials are created each year to improve the cholesterol uptake. This review is focused on the novelty of CD based materials for NPC treatment.
Collapse
|
42
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
43
|
Donida B, Raabe M, Tauffner B, de Farias MA, Machado AZ, Timm F, Kessler RG, Hammerschmidt TG, Reinhardt LS, Brito VB, Portugal RV, Bernardi A, Frozza R, Moura DJ, Giugliani R, Poletto F, Vargas CR. Nanoparticles containing β-cyclodextrin potentially useful for the treatment of Niemann-Pick C. J Inherit Metab Dis 2020; 43:586-601. [PMID: 31943253 DOI: 10.1002/jimd.12210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/30/2023]
Abstract
β-Cyclodextrin (β-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver β-CD into the CNS lysosomes. The physicochemical characteristics of β-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the β-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The β-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free β-CD. The results demonstrated the potential of the β-CD-loaded nanoparticles in reducing the brain impairment of NPC.
Collapse
Affiliation(s)
- Bruna Donida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Raabe
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Bárbara Tauffner
- Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Andryele Z Machado
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Timm
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rejane G Kessler
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tatiane G Hammerschmidt
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Verônica B Brito
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisioterapia, Faculdades Integradas de Taquara (FACCAT), Taquara, Brazil
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Andressa Bernardi
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rudimar Frozza
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roberto Giugliani
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Poletto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
44
|
Kao ML, Stellar S, Solon E, Lordi A, Kasica N, Swain G, Bagel JH, Gurda BL, Vite CH. Pharmacokinetics and distribution of 2-hydroxypropyl-β-cyclodextrin following a single intrathecal dose to cats. J Inherit Metab Dis 2020; 43:618-634. [PMID: 31707730 PMCID: PMC7317750 DOI: 10.1002/jimd.12189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 01/28/2023]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) is an experimental therapy for Niemann-Pick disease type C (NPC) that reduced neuronal cholesterol and ganglioside storage, reduced Purkinje cell death, and increased lifespan in npc1-/- mice and NPC1 cats. In this study, tissue distribution was investigated in normal cats that received a single 120-mg dose of [14 C]-HP-β-CD (approximately 200 μCi/cat) via the cerebellomedullary cistern (CBMC) and lumbar cistern. One cat was euthanized at each of various time points up to 24 hours postdose for subsequent processing and quantitative whole-body autoradiographic analysis. HP-β-CD-derived radioactivity absorbed from the CBMC was widely distributed to cat tissues; most tissues were observed to have reached their highest concentration at 1 hour postdose. HP-β-CD-derived radioactivity penetrated into the deeper parts of the central nervous system with the highest concentration at 4 hours (403 μg Eq/g or 0.28 mM) and remained high (49.7 μg Eq/g or 0.03 mM) at 24 hours. The relatively long half-life (11-30 hours) in cerebral ventricles and the subarachnoid space surrounding the brain and spinal cord might contribute to the efficacy of HP-β-CD in NPC1 cats. Other tissues with high concentrations of radioactivity were nasal turbinates, pituitary gland, and urinary bladder, while relatively low concentrations were observed in blood and bile.
Collapse
Affiliation(s)
- Mark L. Kao
- Janssen Research & DevelopmentLLCRaritanNew Jersey
| | | | - Eric Solon
- Madrigal PharmaceuticalsWest ConshohockenPennsylvania
| | - Alfred Lordi
- XenoBiotic Laboratories, IncPlainsboroNew Jersey
| | - Nicole Kasica
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Gary Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Jessica H. Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Brittney L. Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
45
|
Subramanian K, Hutt DM, Scott SM, Gupta V, Mao S, Balch WE. Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid. J Biol Chem 2020; 295:8017-8035. [PMID: 32354745 DOI: 10.1074/jbc.ra119.010524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is primarily caused by mutations in the NPC1 gene and is characterized by the accumulation of unesterified cholesterol and lipids in the late endosomal (LE) and lysosomal (Ly) compartments. The most prevalent disease-linked mutation is the I1061T variant of NPC1, which exhibits defective folding and trafficking from the endoplasmic reticulum to the LE/Ly compartments. We now show that the FDA-approved histone deacetylase inhibitor (HDACi) valproic acid (VPA) corrects the folding and trafficking defect associated with I1061T-NPC1 leading to restoration of cholesterol homeostasis, an effect that is largely driven by a reduction in HDAC7 expression. The VPA-mediated trafficking correction is in part associated with an increase in the acetylation of lysine residues in the cysteine-rich domain of NPC1. The HDACi-mediated correction is synergistically improved by combining it with the FDA-approved anti-malarial, chloroquine, a known lysosomotropic compound, which improved the stability of the LE/Ly-localized fraction of the I1061T variant. We posit that combining the activity of VPA, to modulate epigenetically the cellular acetylome, with chloroquine, to alter the lysosomal environment to favor stability of the trafficked I1061T variant protein can have a significant therapeutic benefit in patients carrying at least one copy of the I1061T variant of NPC1, the most common disease-associated mutation leading to NPC disease. Given its ability to cross the blood-brain barrier, we posit VPA provides a potential mechanism to improve the response to 2-hydroxypropyl-β-cyclodextrin, by restoring a functional NPC1 to the cholesterol managing compartment as an adjunct therapy.
Collapse
Affiliation(s)
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Vijay Gupta
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
46
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Vite CH, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Bodamer O, Wang RY, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann-Pick type C disease. Mol Genet Metab 2020; 129:292-302. [PMID: 32033912 PMCID: PMC7145728 DOI: 10.1016/j.ymgme.2020.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPβCD treatment. In an intravenous (IV) HPβCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Charles H Vite
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, PA 19104, USA
| | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, SP, Brazil
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology - Medford, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Complement Component C3 Participates in Early Stages of Niemann-Pick C Mouse Liver Damage. Int J Mol Sci 2020; 21:ijms21062127. [PMID: 32244854 PMCID: PMC7139721 DOI: 10.3390/ijms21062127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann–Pick type C (NPC), a lysosomal storage disorder, is mainly caused by mutations in the NPC1 gene. Niemann–Pick type C patients and mice show intracellular cholesterol accumulation leading to hepatic failure with increased inflammatory response. The complement cascade, which belongs to the innate immunity response, recognizes danger signals from injured tissues. We aimed to determine whether there is activation of the complement system in the liver of the NPC mouse and to assess the relationship between C3 activation, a final component of the pathway, and NPC liver pathology. Niemann–Pick type C mice showed high levels of C3 staining in the liver which unexpectedly decreased with aging. Using an inducible NPC1 hepatocyte rescue mouse model, we restored NPC1 expression for a short time in young mice. We found C3 positive cells only in non-rescued cells, suggesting that C3 activation in NPC cells is reversible. Then, we studied the effect of C3 ablation on NPC liver damage at two postnatal time points, P56 and P72. Deletion of C3 reduced the presence of hepatic CD68-positive cells at postnatal day 56 and prevented the increase of transaminase levels in the blood of NPC mice. These positive effects were abrogated at P72, indicating that the complement cascade participates only during the early stages of liver damage in NPC mice, and that its inhibition may serve as a new potential therapeutic strategy for the disease.
Collapse
|
48
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev 2020; 165-166:77-95. [PMID: 32142739 DOI: 10.1016/j.addr.2020.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
Administration of substances directly into the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord is one approach that can circumvent the blood-brain barrier to enable drug delivery to the central nervous system (CNS). However, molecules that have been administered by intrathecal injection, which includes intraventricular, intracisternal, or lumbar locations, encounter new barriers within the subarachnoid space. These barriers include relatively high rates of turnover as CSF clears and potentially inadequate delivery to tissue or cellular targets. Nanomedicine could offer a solution. In contrast to the fate of freely administered drugs, nanomedicine systems can navigate the subarachnoid space to sustain delivery of therapeutic molecules, genes, and imaging agents within the CNS. Some evidence suggests that certain nanomedicine agents can reach the parenchyma following intrathecal administration. Here, we will address the preclinical and clinical use of intrathecal nanomedicine, including nanoparticles, microparticles, dendrimers, micelles, liposomes, polyplexes, and other colloidalal materials that function to alter the distribution of molecules in tissue. Our review forms a foundational understanding of drug delivery to the CSF that can be built upon to better engineer nanomedicine for intrathecal treatment of disease.
Collapse
Affiliation(s)
- M J Fowler
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - J D Cotter
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - B E Knight
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - E M Sevick-Muraca
- Brown Foundation Institute of Molecular Medicine, Center for Molecular Imaging, Houston, TX 77030, United States of America
| | - D I Sandberg
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Pediatric Surgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States of America
| | - R W Sirianni
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
50
|
Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2019; 9:e013531. [PMID: 31888429 PMCID: PMC6988162 DOI: 10.1161/jaha.119.013531] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikash Manandhar
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Blake J Cochran
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Kerry-Anne Rye
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| |
Collapse
|