1
|
Roman-Ramos H, Prieto-da-Silva ÁRB, Dellê H, Floriano RS, Dias L, Hyslop S, Schezaro-Ramos R, Servent D, Mourier G, de Oliveira JL, Lemes DE, Costa-Lotufo LV, Oliveira JS, Menezes MC, Markus RP, Ho PL. The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake Micrurus corallinus That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors. Toxins (Basel) 2024; 16:164. [PMID: 38668589 PMCID: PMC11054780 DOI: 10.3390/toxins16040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | | | - Humberto Dellê
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Rafael S. Floriano
- Laboratório de Toxinologia e Estudos Cardiovasculares, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19067-175, SP, Brazil;
| | - Lourdes Dias
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Raphael Schezaro-Ramos
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Denis Servent
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Gilles Mourier
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Jéssica Lopes de Oliveira
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Douglas Edgard Lemes
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Letícia V. Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Jane S. Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | | | - Regina P. Markus
- Laboratório de Cronofarmacologia, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| |
Collapse
|
2
|
MT9, a natural peptide from black mamba venom antagonizes the muscarinic type 2 receptor and reverses the M2R-agonist-induced relaxation in rat and human arteries. Biomed Pharmacother 2022; 150:113094. [PMID: 35658242 DOI: 10.1016/j.biopha.2022.113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
All five muscarinic receptors have important physiological roles. The endothelial M2 and M3 subtypes regulate arterial tone through direct coupling to Gq or Gi/o proteins. Yet, we lack selective pharmacological drugs to assess the respective contribution of muscarinic receptors to a given function. We used mamba snake venoms to identify a selective M2R ligand to investigate its contribution to arterial contractions. Using a bio-guided screening binding assay, we isolated MT9 from the black mamba venom, a three-finger toxin active on the M2R subtype. After sequencing and chemical synthesis of MT9, we characterized its structure by X-ray diffraction and determined its pharmacological characteristics by binding assays, functional tests, and ex vivo experiments on rat and human arteries. Although MT9 belongs to the three-finger fold toxins family, it is phylogenetically apart from the previously discovered muscarinic toxins, suggesting that two groups of peptides evolved independently and in a convergent way to target muscarinic receptors. The affinity of MT9 for the M2R is 100 times stronger than that for the four other muscarinic receptors. It also antagonizes the M2R/Gi pathways in cell-based assays. MT9 acts as a non-competitive antagonist against acetylcholine or arecaine, with low nM potency, for the activation of isolated rat mesenteric arteries. These results were confirmed on human internal mammary arteries. In conclusion, MT9 is the first fully characterized M2R-specific natural toxin. It should provide a tool for further understanding of the effect of M2R in various arteries and may position itself as a new drug candidate in cardio-vascular diseases.
Collapse
|
3
|
Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 2017; 136:362-373. [PMID: 29138080 DOI: 10.1016/j.neuropharm.2017.11.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G proteincoupled receptors (GPCRs) that mediate the metabotropic actions of acetylcholine (ACh). There are five subtypes of mAChR, M1 - M5, which are expressed throughout the central nervous system (CNS) on numerous cell types and represent promising treatment targets for a number of different diseases, disorders, and conditions of the CNS. Although the present review will focus on Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), a number of conditions such as Parkinson's disease (PD), schizophrenia, and others represent significant unmet medical needs for which selective muscarinic agents could offer therapeutic benefits. Numerous advances have been made regarding mAChR localization through the use of subtype-selective antibodies and radioligand binding studies and these efforts have helped propel a number of mAChR therapeutics into clinical trials. However, much of what we know about mAChR localization in the healthy and diseased brain has come from studies employing radioligand binding with relatively modest selectivity. The development of subtype-selective small molecule radioligands suitable for in vitro and in vivo use, as well as robust, commercially-available antibodies remains a critical need for the field. Additionally, novel genetic tools should be developed and leveraged to help move the field increasingly towards a systems-level understanding of mAChR subtype action. Finally, functional, proteomic, and genetic data from ongoing human studies hold great promise for optimizing the design and interpretation of studies examining receptor levels by enabling patient stratification. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
|
4
|
Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. All muscarinic acetylcholine receptors (M 1-M 5) are expressed in murine brain microvascular endothelium. Sci Rep 2017; 7:5083. [PMID: 28698560 PMCID: PMC5506046 DOI: 10.1038/s41598-017-05384-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy.,Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | | | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.,Engineering Faculty, Constantin Brancusi' University, Calea Eroilor 30, Targu Jiu, 210135, Romania
| | - Grygoriy Tsenov
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Marzia Di Chio
- Department of Public Health and Community Medicine, University of Verona, Verona, 37134, Italy
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Cristina Tognoli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Petr Kacer
- National Institute of Mental Health, Klecany, 25067, Czech Republic
| | | | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy. .,Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Reactorului 30, Magurele, 077125, Romania.
| | - Giuseppe Bertini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Paolo Francesco Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| |
Collapse
|
5
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Odagaki Y, Kinoshita M, Toyoshima R. Functional activation of G-proteins coupled with muscarinic acetylcholine receptors in rat brain membranes. J Pharmacol Sci 2014; 125:157-68. [PMID: 24849282 DOI: 10.1254/jphs.14020fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The functional activation of Gi/o proteins coupled to muscarinic acetylcholine receptors (mAChRs) was investigated with the conventional guanosine-5'-O-(3-[(35)S]thio) triphosphate ([(35)S]GTPγS) binding assay in rat brain membranes. The most efficacious stimulation elicited by acetylcholine or carbachol (CCh) was obtained in striatal membranes. The pharmacological properties of mAChR-mediated [(35)S]GTPγS binding determined with a series of muscarinic agonists and antagonists were almost identical among the three brain regions investigated, i.e., cerebral cortex, hippocampus, and striatum, except for the apparent partial agonist effects of (αR)-α-cyclopentyl-α-hydroxy-N-[1-(4-methyl-3-pentenyl)-4-piperidinyl]benzeneacetamide fumarate (J 104129) observed only in the hippocampus, but not in the other two regions. Among the muscarinic toxins investigated, only MT3 attenuated CCh-stimulated [(35)S] GTPγS binding. The highly selective allosteric potentiator at the M4 mAChR subtype, 3-amino-N-[(4-chlorophenyl)methyl]-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide (VU 10010), shifted the concentration-response curve for CCh leftwards as well as upwards. On the other hand, neither thiochrome nor brucine N-oxide was effective. The increases induced by CCh and 5-HT were essentially additive, though not completely, indicating that the mAChRs and 5-HT1A receptors were coupled independently to distinct pools of Gi/o proteins. Collectively, all of the data suggest that functional activation of Gi/o proteins coupled to mAChRs, especially the M4 subtype, is detectable by means of CCh-stimulated [(35)S]GTPγS binding assay in rat discrete brain regions.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Japan
| | | | | |
Collapse
|
7
|
Problems and solutions to filling the drying drug pipeline for psychiatric disorders: a report from the inaugural 2012 CINP Think Tank. Int J Neuropsychopharmacol 2014; 17:137-48. [PMID: 24063634 DOI: 10.1017/s1461145713001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inaugural Collegium Internationale Neuro-Psychopharmacologicum (CINP) Think Tank, a small open meeting sponsored by the CINP, discussed impediments to developing new drugs for psychiatric disorders and approaches to overcome these impediments. Whilst neuropsycharmacology has a rich pharmacopeia (current treatments benefiting many individuals), issues of treatment resistance, sub-optimal response and unwanted side effects remain problematic. Many scientific, economic and social issues are impeding the development of drugs (e.g. higher risk of failure, placebo effects, problematic regulatory environments, pressures imposed by patent protection, downward pressure on reimbursements and financial, legal and social risk aversion). A consensus of the meeting was that efforts to understanding the core pathophysiology of psychiatric disorders are fundamental to increasing the chance of developing new drugs. However, findings from disorders such as Huntington's chorea, have shown that knowing the cause of a disorder may not reveal new drug targets. By contrast, clinically useful biomarkers that define target populations for new drugs and models that allow findings to be accurately translated from animals to humans will increase the likelihood of developing new drugs. In addition, a greater accent on experimental medicine, creative clinical investigations and improved communication between preclinical neuropsychopharmacologists, clinicians committed to neuropsychopharmacological research, industry and the regulators would also be a driver to the development of new treatments. Finally, it was agreed that the CINP must continue its role as a conduit facilitating vibrant interactions between industry and academia as such communications are a central component in identifying new drug targets, developing new drugs and transitioning new drugs into the clinic.
Collapse
|
8
|
Buiter HJ, Leysen JE, Schuit RC, Fisher A, Lammertsma AA, Windhorst AD. Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [11C]AF150(S). J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hans J.C. Buiter
- Department of Nuclear Medicine & PET Research; VU University Medical Center; PO Box 7057; 1007 MB; Amsterdam; The Netherlands
| | - Josée E. Leysen
- Department of Nuclear Medicine & PET Research; VU University Medical Center; PO Box 7057; 1007 MB; Amsterdam; The Netherlands
| | - Robert C. Schuit
- Department of Nuclear Medicine & PET Research; VU University Medical Center; PO Box 7057; 1007 MB; Amsterdam; The Netherlands
| | - Abraham Fisher
- Israel Institute for Biological Research; Ness-Ziona; Israel
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine & PET Research; VU University Medical Center; PO Box 7057; 1007 MB; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- Department of Nuclear Medicine & PET Research; VU University Medical Center; PO Box 7057; 1007 MB; Amsterdam; The Netherlands
| |
Collapse
|
9
|
Xu J, Xu J, Chen H. Interpreting the structural mechanism of action for MT7 and human muscarinic acetylcholine receptor 1 complex by modeling protein–protein interaction. J Biomol Struct Dyn 2012; 30:30-44. [DOI: 10.1080/07391102.2012.674188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Näreoja K, Näsman J. Selective targeting of G-protein-coupled receptor subtypes with venom peptides. Acta Physiol (Oxf) 2012; 204:186-201. [PMID: 21481193 DOI: 10.1111/j.1748-1716.2011.02305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes.
Collapse
Affiliation(s)
- K Näreoja
- Department of Biosciences, Biochemistry, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
11
|
Alea MP, Borroto-Escuela DO, Romero-Fernandez W, Fuxe K, Garriga P. Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling. J Neuroimmunol 2011; 237:13-22. [PMID: 21742386 DOI: 10.1016/j.jneuroim.2011.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/18/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function.
Collapse
Affiliation(s)
- Mileidys Perez Alea
- Centre for Molecular Biotechnology, Department of Chemical Engineering, Technical University of Catalonia, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
12
|
McBrien NA, Arumugam B, Gentle A, Chow A, Sahebjada S. The M4 muscarinic antagonist MT-3 inhibits myopia in chick: evidence for site of action. Ophthalmic Physiol Opt 2011; 31:529-39. [DOI: 10.1111/j.1475-1313.2011.00841.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 2010; 56:855-67. [PMID: 20670641 DOI: 10.1016/j.toxicon.2010.07.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/19/2010] [Indexed: 12/15/2022]
Abstract
Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three beta-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure-function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these 'sibling' toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure-function relationships and evolution of this group of snake venom toxins.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | |
Collapse
|
14
|
Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer's disease. J Chem Neuroanat 2010; 40:63-70. [PMID: 20347961 DOI: 10.1016/j.jchemneu.2010.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 01/08/2023]
Abstract
Although the M(1) muscarinic receptor is a potential therapeutic target for Alzheimer's disease (AD) based on its wide spread distribution in brain and its association with learning and memory processes, whether its receptor response is altered during the onset of AD remains unclear. A novel [(35)S]GTPgammaS binding/immunocapture assay was employed to evaluated changes in M(1) receptor function in cortical tissue samples harvested from people who had no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD. M(1) function was stable across clinical groups. However, [(3)H]-oxotremorine-M radioligand binding studies revealed that the concentration of M(1) cortical receptors increased significantly between the NCI and AD groups. Although M(1) receptor function did not correlate with cognitive function based upon mini-mental status examination (MMSE) or global cognitive score (GCS), functional activity was negatively correlated with the severity of neuropathology determined by Braak staging and NIA-Reagan criteria for AD. Since M(1) agonists have the potential to modify the pathologic hallmarks of AD, as well as deficits in cognitive function in animal models of this disease, the present findings provide additional support for targeting the M(1) receptor as a potential therapeutic for AD.
Collapse
|
15
|
Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav Brain Res 2010; 221:341-55. [PMID: 20170687 DOI: 10.1016/j.bbr.2010.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The cholinergic neurotransmission in the central nervous system plays an important role in modulating cognitive processes such as learning, memory, arousal and sleep as well as in modulating locomotor activity. Dysfunction of the central cholinergic system is involved in numerous neuropsychiatric diseases. This review will provide a synopsis on the regional localisation of cholinergic and cholinoceptive structures within the adult human brain. On the cholinergic site data based on the distribution of choline acetyltransferase-immunoreactive structures are in the focus, complemented by data from acetylcholinesterase and vesicular acetylcholine transporter studies. On the cholinoceptive site, the distribution and localisation of receptors that transduce the acetylcholine message, i.e. the muscarinic and the nicotinic acetylcholine receptors is summarized. In addition to these data obtained on post mortem brain an overview of markers which allow for the in vivo monitoring of the cholinergic system in the brain is given. The detailed knowledge on the distribution and localisation of cholinergic markers in human brain will provide further information on the cholinergic circuits of neurotransmission - a prerequisite for the interpretation of in vivo imaging data and the development of selective diagnostic and therapeutic compounds.
Collapse
|
16
|
Vieira C, Duarte-Araújo M, Adães S, Magalhães-Cardoso T, Correia-de-Sá P. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors. Neurogastroenterol Motil 2009; 21:1118-e95. [PMID: 19470085 DOI: 10.1111/j.1365-2982.2009.01326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the myenteric plexus, and it regulates its own release acting via muscarinic autoreceptors. Adenosine released from stimulated myenteric neurons modulates ACh release preferentially via facilitatory A(2A) receptors. In this study, we investigated how muscarinic and adenosine receptors interplay to regulate ACh from the longitudinal muscle-myenteric plexus of the rat ileum. Blockade of the muscarinic M(2) receptor with 11-[[2-1[(diethylamino) methyl-1-piperidinyl]- acetyl]]-5,11-dihydro-6H-pyrido [2,3-b][1,4] benzodiazepine-6-one (AF-DX 116), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and atropine facilitated [3H]ACh release evoked by short stimulation trains (5 Hz, 200 pulses). Prolonging stimulus train length (>750 pulses) shifted muscarinic autoinhibition towards facilitatory M(3) receptors activation, as predicted by blockade with J104129 (a selective M(3) antagonist), 4-DAMP and atropine, whereas the selective M(2) antagonist, AF-DX 116, was without of effect. Blockade of A(2A) receptors with ZM 241385, inhibition of adenosine transport with dipyridamole, and inhibition of ecto-5'-nucleotidase with concanavalin A, all attenuated release inhibition caused by 4-DAMP. J104129 and 4-DAMP, but not AF-DX 116, decreased ( approximately 60%) evoked adenosine outflow (5 Hz, 3000 pulses). Oxotremorine (300 micromol L(-1)) facilitated the release of [3H]ACh (34 +/- 4%, n = 5) and adenosine (57 +/- 3%, n = 6) from stimulated myenteric neurons. 4-DAMP, dipyridamole and concanavalin A prevented oxotremorine-induced facilitation. ZM 241385 blocked oxotremorine facilitation of [3H]ACh release, but kept adenosine outflow unchanged. Thus, ACh modulates its own release from myenteric neurons by activating inhibitory M(2) and facilitatory M(3) autoreceptors. While the M(2) inhibition is prevalent during brief stimulation periods, muscarinic M(3) facilitation is highlighted during sustained nerve activity as it depends on extracellular adenosine accumulation leading to activation of facilitatory A(2A) receptors.
Collapse
Affiliation(s)
- C Vieira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Sánchez G, de Oliveira Alvares L, Oberholzer MV, Genro B, Quillfeldt J, da Costa JC, Cerveñansky C, Jerusalinsky D, Kornisiuk E. M4muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. J Neurosci Res 2009; 87:691-700. [DOI: 10.1002/jnr.21876] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Salah-Uddin H, Thomas DR, Davies CH, Hagan JJ, Wood MD, Watson JM, Challiss RAJ. Pharmacological assessment of m1 muscarinic acetylcholine receptor-gq/11 protein coupling in membranes prepared from postmortem human brain tissue. J Pharmacol Exp Ther 2008; 325:869-74. [PMID: 18322150 DOI: 10.1124/jpet.108.137968] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a selective Galpha(q/11) protein antibody capture guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding approach, it has been possible to perform a quantitative pharmacological examination of the functional activity of the M(1) muscarinic acetylcholine receptor (mAChR) in membranes prepared from human postmortem cerebral cortex. Oxotremorine-M caused a > or = 2-fold increase in [35S]GTPgammaS-Galpha(q/11) binding with a pEC(50) of 6.06 +/- 0.16 in Brodmann's areas 23 and 25 that was almost completely inhibited by preincubation of membranes with the M(1) mAChR subtype-selective antagonist muscarinic toxin-7. In addition, the orthosteric and allosteric agonists, xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] and AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride), increased [35S]-GTPgammaS-Galpha(q/11) binding, but with reduced intrinsic activities, inducing maximal responses that were 42 +/- 1 and 44 +/- 2% of the oxotremorine-M-induced response, respectively. These data indicate that the M(1) receptor is the predominant mAChR subtype coupling to the Galpha(q/11) G protein in these brain regions and that it is possible to quantify the potency and intrinsic activity of full and partial M(1) mAChR receptor agonists in postmortem human brain using a selective Galpha(q/11) protein antibody capture [35S]GTPgammaS binding assay.
Collapse
Affiliation(s)
- Hasib Salah-Uddin
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Hamrouni AM, Gudka N, Broadley KJ. Investigation of the mechanism for the relaxation of rat duodenum mediated via M1 muscarinic receptors. ACTA ACUST UNITED AC 2006; 26:275-84. [PMID: 16879493 DOI: 10.1111/j.1474-8673.2006.00353.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1 Relaxation responses of the rat isolated duodenum to the putative M1 muscarinic receptor agonist, McN-A-343, were examined to determine whether the response was due to the release of known non-adrenergic, non-cholinergic relaxant neurotransmitters and to establish the involvement of M1 muscarinic receptors. 2 The role of ATP was examined with the P2 receptor antagonist, suramin, which at 30 mum antagonized the relaxant responses to alpha,beta-methylene ATP. The same dose, however, failed to inhibit the relaxation by McN-A-343. 3 The role of nitric oxide (NO) was examined with the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 100 microm), which failed to inhibit the responses to McN-A-343. As NO mediates relaxation of the duodenum via cGMP generation through guanylyl cyclase, whether the relaxation by McN-A-343 was also via cGMP was examined with the guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The relaxation responses to the NO donor, S-nitroso-N-acetyl penicillamine, were inhibited in the presence of ODQ (3 microm), but not those by McN-A-343. 4 Release of gamma-aminobutyric acid (GABA) was examined with the GABAA receptor antagonist, bicuculline (10 microm), which shifted the concentration-response curves for the relaxation of the duodenum by GABA to the right. There was a similar degree of shift in the concentration-response curve for McN-A-343 by bicuculline indicating that release of GABA from enteric neurones of the duodenum could explain the relaxation response to McN-A-343. 5 To test whether the muscarinic receptors mediating the relaxation of the duodenum were of the M1 subtype, the susceptibility to the selective competitive antagonist, pirenzepine and the selective muscarinic toxin from green mamba, MT7, was examined. Pirenzepine (1 microm) shifted the concentration-response for McN-A-343 to the right in a parallel fashion with a dose ratio of 33.3 +/- 20.2. This yielded a pA2 value of 7.5, which concords with those for other responses reputed to be mediated via M1 muscarinic receptors. The toxin MT7 was used as an irreversible antagonist and following incubation with the duodenum was washed from the bath. An incubation time of 30 min with 100 nm of MT7 caused a significant parallel shift in the concentration-response to McN-A-343 confirming the involvement of M1 muscarinic receptors. 6 This study has confirmed that McN-A-343 relaxes the rat duodenum via muscarinic receptors of the M1 subtype and that these receptors are probably located on enteric neurones from which their stimulation releases GABA.
Collapse
Affiliation(s)
- A M Hamrouni
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | |
Collapse
|
20
|
Sánchez-Lemus E, Arias-Montaño JA. M1 muscarinic receptors contribute to, whereas M4 receptors inhibit, dopamine D1 receptor-induced [3H]-cyclic AMP accumulation in rat striatal slices. Neurochem Res 2006; 31:555-61. [PMID: 16758365 DOI: 10.1007/s11064-006-9052-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2006] [Indexed: 01/01/2023]
Abstract
In rat striatal slices labelled with [(3)H]-adenine and in the presence of 1 mM 3-isobutyl-1-methylxantine (IBMX), cyclic [(3)H]-AMP ([(3)H]-cAMP) accumulation induced by the dopamine D(1) receptor agonist SKF-81297 (1 microM; 177 +/- 13% of basal) was inhibited by the general muscarinic agonist carbachol (maximum inhibition 72 +/- 3%, IC(50) 0.30 +/- 0.06 microM). The muscarinic toxin 7 (MT-7), a selective antagonist at muscarinic M(1) receptors, reduced the effect of SKF-81297 by 40+/-7% (IC(50) 251+/- 57 pM) and enhanced the inhibitory action of a submaximal (1 microM) concentration of carbachol (69 +/- 4% vs. 40 +/- 7% inhibition, IC(50) 386 +/- 105 pM). The toxin MT-1, agonist at M(1) receptors, stimulated [(3)H]-cAMP accumulation in a modest but significant manner (137 +/- 11% of basal at 400 nM), an action additive to that of D(1) receptor activation and blocked by MT-7 (10 nM). The effects of MT-7 on D(1) receptor-induced [(3)H]-cAMP accumulation and the carbachol inhibition were mimicked by the PKC inhibitors Ro-318220 (200 nM) and Gö-6976 (200 nM). Taken together our results indicate that in addition to the inhibitory role of M(4) receptors, in rat striatum acetylcholine stimulates cAMP formation through the activation of M(1 )receptors and PKC stimulation.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, México, DF, México.
| | | |
Collapse
|
21
|
Onali P, Adem A, Karlsson E, Olianas MC. The pharmacological action of MT-7. Life Sci 2004; 76:1547-52. [PMID: 15680165 DOI: 10.1016/j.lfs.2004.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
The mamba toxin MT-7 is the most selective ligand currently available for the muscarinic M1 receptor subtype. The toxin binds stably to the receptor and blocks the agonist-induced activation non-competitively. Although its mode of action on M1 receptors is not yet fully understood, some of the toxin properties support an allosteric mechanism. Thus, the toxin fails to elicit a complete inhibition of the binding of either the muscarinic antagonist [3H]N-methyl-scopolamine ([3H]NMS) or the agonist [3H]acetylcholine ([3H]ACh). When added to ligand-occupied M1 receptors, the toxin slows the dissociation rate of [3H]NMS and increases that of [3H]ACh. Site-directed mutagenesis studies have provided important information about the toxin amino acid residues which are critical for the stable binding to the receptor and for the allosteric modulation of antagonist dissociation. In vivo studies have shown that the intracerebral injection of MT-7 causes a long-lasting blockade of M1 receptor, thus providing a tool for the characterization of the functional role of this receptor subtype in discrete brain areas.
Collapse
Affiliation(s)
- Pierluigi Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, 09042 Monserrato, Cagliari, Italy.
| | | | | | | |
Collapse
|
22
|
Olianas MC, Adem A, Karlsson E, Onali P. Action of the muscarinic toxin MT7 on agonist-bound muscarinic M1 receptors. Eur J Pharmacol 2004; 487:65-72. [PMID: 15033377 DOI: 10.1016/j.ejphar.2004.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 01/05/2004] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
The muscarinic toxin MT7 is the most selective ligand for the muscarinic M(1) receptors. Previous studies have shown that the toxin interacts with the antagonist-receptor complex and slows the antagonist dissociation rate, possibly by binding to an allosteric site and impeding the access to and egress from the orthosteric binding pocket. In the present study, we investigated the action of MT7 on agonist-occupied receptors in functional and radioligand binding assays of the cloned human muscarinic M(1) receptor expressed in Chinese hamster ovary cells. In time-course experiments, the addition of MT7 rapidly blocked the acetylcholine-stimulated guanosine-5'-O-(3-[(35)S]thio)triphosphate binding to membrane G proteins. Similarly, in acetylcholine-treated cells MT7 completely stopped the agonist-stimulated [(3)H]inositol phosphate accumulation. In dissociation experiments using membranes pre-equilibrated with [(3)H]acetylcholine, the addition of MT7 increased the rate of radioligand dissociation. The data indicate that MT7, while partially stabilizing the antagonist-receptor complex, effectively destabilizes the agonist-occupied muscarinic M(1) receptors.
Collapse
Affiliation(s)
- Maria C Olianas
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | | | | | | |
Collapse
|
23
|
Nelson CP, Gupta P, Napier CM, Nahorski SR, Challiss RAJ. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland. J Pharmacol Exp Ther 2004; 310:1255-65. [PMID: 15140916 DOI: 10.1124/jpet.104.067140] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding and functional affinities of the muscarinic acetylcholine (mACh) receptor antagonists darifenacin, tolterodine, oxybutynin, and atropine were assessed in Chinese hamster ovary (CHO) cells expressing the human recombinant M2 (CHO-m2) or M3 (CHO-m3) receptors, and in guinea pig bladder and submandibular gland. In [N-methyl-3H]scopolamine methyl chloride binding studies in CHO cells, darifenacin displayed selectivity (14.8-fold) for the M3 versus M2 mACh receptor subtype. Oxybutynin was nonselective, whereas atropine and tolterodine were weakly M2-selective (5.1- and 6.6-fold, respectively). Antagonist functional affinity estimates were determined by the inhibition of agonist-induced [3H]inositol phosphate accumulation in CHO-m3 cells and antagonism of the agonist-induced inhibition of forskolin-stimulated cyclic AMP accumulation in CHO-m2 cells. Darifenacin was the most M3-selective antagonist (32.4-fold), whereas oxybutynin, atropine, and tolterodine exhibited lesser selectivity. Functional affinity estimates in guinea pig urinary bladder and submandibular salivary gland using indices of phosphoinositide turnover revealed that oxybutynin, darifenacin, and tolterodine each displayed selectivity for the response in the bladder, relative to that seen in the submandibular gland (9.3-, 7.9-, and 7.4-fold, respectively). In contrast, atropine displayed a similar affinity in both tissues. These data demonstrate that in bladder, compared with submandibular gland from a single species, the mACh receptor antagonists darifenacin, tolterodine, and oxybutynin display selectivity to inhibit agonist-mediated phosphoinositide responses. It is proposed that both responses are mediated via M3 mACh receptor activation and that differential functional affinities displayed by some, but not all, antagonists are indicative of the influence of cell background upon the pharmacology of the M3 mACh receptor.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | |
Collapse
|
24
|
Selz KA, Mandell AJ, Shlesinger MF, Arcuragi V, Owens MJ. Designing human m1 muscarinic receptor-targeted hydrophobic eigenmode matched peptides as functional modulators. Biophys J 2004; 86:1308-31. [PMID: 14990463 PMCID: PMC1303971 DOI: 10.1016/s0006-3495(04)74204-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 10/23/2003] [Indexed: 11/24/2022] Open
Abstract
A new proprietary de novo peptide design technique generated ten 15-residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, "modes", of the human m(1) muscarinic cholinergic receptor, m(1)AChR. These modes were also shared by the m(4)AChR subtype (but not the m(2), m(3), or m(5) subtypes) and the three-finger snake toxins that pseudoirreversibly bind m(1)AChR. The linear decomposition of the hydrophobically transformed m(1)AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct-agonist-induced cellular activation in stably m(1)AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m(2)ACh and D(2) dopamine receptors. Morlet wavelet transformation of the leading eigenvector-derived, m(1)AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites.
Collapse
Affiliation(s)
- Karen A Selz
- Cielo Institute, Asheville, North Carolina 28804, USA.
| | | | | | | | | |
Collapse
|
25
|
Faria M, Oliveira L, Timóteo MA, Lobo MG, Correia-De-Sá P. Blockade of neuronal facilitatory nicotinic receptors containing alpha 3 beta 2 subunits contribute to tetanic fade in the rat isolated diaphragm. Synapse 2003; 49:77-88. [PMID: 12740863 DOI: 10.1002/syn.10211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nicotinic receptor (nAChR) subtypes involved in pre- and postjunctional actions underlying tetanic fade were studied in rat phrenic-nerve hemidiaphragms. We investigated the ability of subtype-specific nAChR antagonists to depress nerve-evoked contractions and [(3)H]-acetylcholine ([(3)H]-ACh) release. Muscle tension was transiently increased during brief high frequency trains (50 Hz for 5 sec). The rank potency order of nAChR antagonists to reduce tetanic peak tension was alpha-bungarotoxin > d-tubocurarine >> mecamylamine > hexamethonium. Reduction of maximal tetanic tension produced by dihydro-beta-erythroidine (0.03-10 microM), methyllycaconitine (0.003-3 microM), and alpha-conotoxin MII (0.001-0.3 microM) did not exceed 30%. Besides reduction of peak tension d-tubocurarine (0.1-0.7 microM), mecamylamine (0.1-300 microM), and hexamethonium (30-3,000 microM) also caused tetanic fading. With alpha-conotoxin MII (0.001-0.3 microM) and dihydro-beta-erythroidine (0.03-10 microM), tetanic fade was evident only after decreasing the safety factor of neuromuscular transmission (with high magnesium ions, 6-7 mM). The antagonist rank potency order to reduce evoked (50 Hz for 5 sec) [(3)H]-ACh release from motor nerve terminals was alpha-conotoxin MII (0.1 microM) > dihydro-beta-erythroidine (1 microM) approximately d-tubocurarine (1 microM) > mecamylamine (100 microM) > hexamethonium (1,000 microM). When applied in a concentration (0.3 microM) above that producing tetanic paralysis, alpha-bungarotoxin failed to affect [(3)H]-ACh release. Data obtained suggest that postjunctional neuromuscular relaxants interact with alpha-bungarotoxin-sensitive nicotinic receptors containing alpha1-subunits, whereas blockade of neuronal alpha3beta2-containing receptors produce tetanic fade by breaking nicotinic autofacilitation of acetylcholine release.
Collapse
Affiliation(s)
- Miguel Faria
- Laboratório de Farmacologia, Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | | | | | | | | |
Collapse
|
26
|
Gu Z, Zhong P, Yan Z. Activation of muscarinic receptors inhibits beta-amyloid peptide-induced signaling in cortical slices. J Biol Chem 2003; 278:17546-56. [PMID: 12606559 DOI: 10.1074/jbc.m209892200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deposition of fibrillar aggregates of the beta-amyloid peptide (Abeta) is a key pathologic feature during the early stage of Alzheimer's disease. The initial neuronal responses to Abeta in cortical circuits and the regulation of Abeta-induced signaling remain unclear. In this study, we found that exposure of cortical slices to Abeta(1-42) or Abeta(25-35) induced a marked increase in the activation of protein kinase C (PKC) and Ca(2+)/calmodulin-dependent kinase II (CaMKII), two enzymes critically involved in a variety of cellular functions. Activation of M1 muscarinic receptors, but not nicotinic receptors, significantly inhibited the Abeta activation of PKC and CaMKII. Increasing inhibitory transmission mimicked the M1 effect on Abeta, whereas blocking GABA(A) receptors eliminated the M1 action. Moreover, electrophysiological evidence shows that application of Abeta to cortical slices induced action potential firing and enhanced excitatory postsynaptic currents, whereas muscarinic agonists potently increased inhibitory postsynaptic currents. These results suggest that Abeta activates PKC and CaMKII through enhancing excitatory activity in glutamatergic synaptic networks. Activation of M1 receptors inhibits Abeta signaling by enhancing the counteracting GABA(ergic) inhibitory transmission. Thus the muscarinic reversal of the Abeta-induced biochemical and physiological changes provides a potential mechanism for the treatment of Alzheimer's disease with cholinergic enhancers.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
27
|
Kang YJ, Eisenach JC. Intrathecal clonidine reduces hypersensitivity after nerve injury by a mechanism involving spinal m4 muscarinic receptors. Anesth Analg 2003; 96:1403-1408. [PMID: 12707142 DOI: 10.1213/01.ane.0000060450.80157.ff] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED alpha2-Adrenergic agonists reduce mechanical and thermal hypersensitivity in animals with nerve injury and effectively treat neuropathic pain in humans. Previous studies indicate a reliance of alpha2-adrenergic agonists in this setting on spinal cholinergic activation and stimulation of muscarinic receptors. The subtype(s) of muscarinic receptors in the spinal cord that produces antinociception in normal animals is controversial, and those involved in reducing hypersensitivity and interacting with alpha2-adrenergic systems after nerve injury are unstudied. To examine this, the left L5 and L6 spinal nerves were tightly ligated in rats, resulting in reduction in withdrawal threshold to punctate mechanical stimuli. Intrathecal clonidine, 15 micro g, returned the withdrawal threshold to normal. Using highly specific m1 and m4 antagonists, we observed no reduction in the effect of clonidine by the m1 antagonist, but inhibition of clonidine's effect by the m4 antagonist. Western analysis revealed no difference in quantitative expression of m1 and m4 receptor protein in the dorsal spinal cord of spinal nerve-injured animals compared with sham-operated controls, suggesting this interaction with m4 receptors does not reflect an increase in receptor expression. IMPLICATIONS Neuraxial clonidine is an effective adjunct in the treatment of neuropathic pain and increases acetylcholine concentrations in cerebrospinal fluid in humans. These data in animals suggest that spinal m4 type muscarinic receptors are important to the effect of clonidine in treating hypersensitivity to touch after nerve injury.
Collapse
Affiliation(s)
- Yoo-Jin Kang
- Department of Anesthesiology and Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
28
|
Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446:17-29. [PMID: 12690458 DOI: 10.1007/s00424-002-0999-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2002] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh) is an important neurotransmitter of the CNS that binds both nicotinic and muscarinic receptors to exert its action. However, the mechanisms underlying the effects of cholinergic receptors have still not been completely elucidated. Central cholinergic neurons, mainly located in basal forebrain, send their projections to different structures including the cortex. The cortical innervation is diffuse and roughly topographic, which has prompted some authors to suspect a modulating role of ACh on the activity of the cortical network rather than a direct synaptic role. The cholinergic system is implicated in functional, behavioural and pathological states including cognitive function, nicotine addiction, Alzheimer's disease, Tourette's syndrome, epilepsies and schizophrenia. As these processes depend on the activation of glutamatergic and GABAergic systems, the cholinergic terminals must exert their effects via the modulation of excitatory and/or inhibitory neurotransmission. However, the understanding of cholinergic modulation is complex because it is the result of a mixture of positive and negative modulation, implying that there are various types, or even subtypes, of cholinergic receptors. In this review, we summarize the current knowledge on central cholinergic systems (projections and receptors) and then aim to focus on the implications for ACh in the modulation of cortical neuronal activity.
Collapse
Affiliation(s)
- E Lucas-Meunier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, INAF-CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
29
|
Constanti A. Can bethanechol distinguish between different muscarinic signalling pathways in neurones? Br J Pharmacol 2003; 138:1185-7. [PMID: 12711615 PMCID: PMC1573772 DOI: 10.1038/sj.bjp.0705158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Andrew Constanti
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX.
| |
Collapse
|
30
|
Liu L, Rittenhouse AR. Pharmacological discrimination between muscarinic receptor signal transduction cascades with bethanechol chloride. Br J Pharmacol 2003; 138:1259-70. [PMID: 12711626 PMCID: PMC1573771 DOI: 10.1038/sj.bjp.0705157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Muscarinic agonist specificity is limited, making it difficult to match receptor subtypes with signal transduction cascades that mediate ion channel modulation. We have characterized the inhibitory effects of two muscarinic agonists, oxotremorine-M (Oxo-M) and bethanechol chloride (BeCh), on Ca(2+) currents in neonatal rat superior cervical ganglion neurons. 2. Oxo-M-mediated (10 micro M) inhibition occurred via two signaling pathways. The first pathway inhibited whole cell peak currents, consisting primarily of N-type current, but not FPL 64176-induced, long-lasting tail currents, comprised entirely of L-type current. Inhibited currents displayed slowed activation kinetics and voltage dependence, characteristics of membrane-delimited inhibition. Current inhibition was blocked by the selective M(2) receptor antagonist, methoctramine (METH; 100 nM), or following pertussis toxin (PTX) pretreatment. 3. Activation of the second pathway inhibited both peak and long-lasting tail currents. This pathway was voltage-independent, PTX-insensitive, but sensitive to internal Ca(2+) chelator concentration. Muscarinic toxin 7 (MT-7, 100 nM), an irreversible M(1) receptor antagonist, eliminated this inhibition. Oxo-M (100 micro M) decreased L- and N-type channel activities in cell-attached patches, indicating that a diffusible second messenger is involved. 4. BeCh (100 micro M) also inhibited whole cell currents via the membrane-delimited pathway. Blocking M(4) receptors with 100 nM pirenzepine (in the presence of MT-7) had no effect, while antagonizing M(2) receptors with METH abolished inhibition. Concentrations of BeCh as high as 3 mM failed to inhibit either peak or long-lasting tail currents following PTX pretreatment. 5. These results indicate that BeCh may be an effective tool for selectively activating M(2) receptor stimulation of the membrane-delimited pathway.
Collapse
Affiliation(s)
- Liwang Liu
- Program in Neuroscience, Program in Cellular & Molecular Physiology, Department of Physiology, University of Massachusetts Medical Center, 55 Lake Ave. North, Worcester, MA 01655, U.S.A
| | - Ann R Rittenhouse
- Program in Neuroscience, Program in Cellular & Molecular Physiology, Department of Physiology, University of Massachusetts Medical Center, 55 Lake Ave. North, Worcester, MA 01655, U.S.A
- Author for correspondence:
| |
Collapse
|
31
|
Mulugeta E, Karlsson E, Islam A, Kalaria R, Mangat H, Winblad B, Adem A. Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res 2003; 960:259-62. [PMID: 12505680 DOI: 10.1016/s0006-8993(02)03542-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We assessed muscarinic M(1), M(2) and M(4) receptor subtypes in the hippocampus of Alzheimer's and control brains by receptor autoradiography using ligands such as [(125)I]muscarinic toxin-1 ([(125)I]MT-1, M(1) selective), [(3)H]AFDX-384 (M(2) partially selective) and [(125)I]muscarinic toxin 4 ([(125)I]M(4) toxin-1, M(4) selective). Our results revealed a significant decrease in muscarinic M(4) receptor binding in the dentate gyrus and CA4 regions of brain sections from Alzheimer's patients compared to controls. No changes in the density of M(1) or M(2) receptor binding were observed. Our findings suggest that, relative to other muscarinic receptor subtypes, the M(4) receptor could be the subtype which is selectively compromised in Alzeheimer's disease (AD).
Collapse
Affiliation(s)
- Ezra Mulugeta
- Department of Clinical Neuroscience (NEUROTEC), Section of Experimental Geriatrics, Karolinska Institute, Novum, 141 86, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Mourier G, Dutertre S, Fruchart-Gaillard C, Ménez A, Servent D. Chemical synthesis of MT1 and MT7 muscarinic toxins: critical role of Arg-34 in their interaction with M1 muscarinic receptor. Mol Pharmacol 2003; 63:26-35. [PMID: 12488533 DOI: 10.1124/mol.63.1.26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two muscarinic toxins, MT1 and MT7, were obtained by one-step solid-phase synthesis using the 9-fluorenylmethoxycarbonyl-based method. The synthetic and natural toxins, isolated from the snake venom or recombinantly expressed, display identical physicochemical properties and pharmacological profiles. High protein recovery allowed us to specify the selectivity of these toxins for various muscarinic receptor subtypes. Thus, sMT7 has a selectivity for the M1 receptor that is at least 20,000 times that for the other subtypes. The stability of the toxin-receptor complexes indicates that sMT1 interacts reversibly with the M1 receptor, unlike sMT7, which binds it quasi-irreversibly. The effect of the synthetic toxins on the atropine-induced [3H]N-methylscopolamine (NMS) dissociation confirms that sMT7 targets the allosteric site on the M1 receptor, whereas sMT1 seems interact on the orthosteric one. The great decreases in the binding potencies observed after the R34A modification in sMT1 and sMT7 toxins highlight the functional role of this conserved residue in their interactions with the M1 receptor. Interestingly, after the R34A modification, the sMT7 toxin binds reversibly on the M1 receptor. Furthermore, the potency of sMT7-R34A for the NMS-occupied receptor is lower compared with unmodified toxin, supporting the role of this residue in the allosteric interaction of sMT7. All these results and the different charge distributions observed at the two toxin surfaces of their structure models support the hypothesis that the two toxins recognize the M1 receptor differently.
Collapse
Affiliation(s)
- Gilles Mourier
- Commissariat à l'Energie Atomique, Département d'Ingénierie et d'Etude des Protéines, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
33
|
Harvey AL, Kornisiuk E, Bradley KN, Cerveñansky C, Durán R, Adrover M, Sánchez G, Jerusalinsky D. Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res 2002; 27:1543-54. [PMID: 12512959 DOI: 10.1023/a:1021660708187] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MT1 and MT2, polypeptides from green mamba venom, known to bind to muscarinic cholinoceptors, behave like muscarinic agonists in an inhibitory avoidance task in rats. We have further characterised their functional effects using different preparations. MT1 and MT2 behaved like relatively selective muscarinic M1 receptor agonists in rabbit vas deferens, but their effects were not reversed by washing or prevented by muscarinic antagonists, although allosteric modulators altered responses to MT1. Radioligand binding experiments indicated that both toxins irreversibly inhibited [3H]N-methylscopolamine binding to cloned muscarinic M1 and M4 receptors, and reduced binding to M5 subtype with lower affinity, while they reversibly inhibited the binding of [3H]prazosin to rat cerebral cortex and vas deferens, with 20 fold lower affinity. High concentrations of MT1 reversibly blocked responses of vas deferens to noradrenaline. MT1 and MT2 appear to irreversibly activate muscarinic M1 receptors at a site distinct from the classical one, and to have affinity for some alpha-adrenoceptors.
Collapse
Affiliation(s)
- Alan L Harvey
- Department of Physiology and Pharmacology, and Strathclyde Institute for Drug Research, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
El-Bakri NK, Adem A, Suliman IA, Mulugeta E, Karlsson E, Lindgren JU, Winblad B, Islam A. Estrogen and progesterone treatment: effects on muscarinic M(4) receptor subtype in the rat brain. Brain Res 2002; 948:131-7. [PMID: 12383964 DOI: 10.1016/s0006-8993(02)02962-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effect of ovariectomy (OVX) and hormonal treatment for 10 weeks by estradiol and progesterone on muscarinic M(4) receptor subtype in different brain areas of female rats. Moreover, motor activity of OVX and hormone-treated rats was measured by automated open field exploration boxes. Receptor quantification in the hippocampus, frontal cortex, parietal cortex, amygdala and hypothalamus was done by receptor autoradiography using a selective ligand for muscarinic M(4) receptors. Ovariectomy up-regulated M(4) receptors in the dentate gyrus, CA1, CA3, frontal cortex and hypothalamus whereas the estrogen treatment restored M(4) binding to that of the sham group. Progesterone treatment had no effect on the ovariectomy-induced up-regulation of M(4) receptors. Ovariectomy significantly decreased the exploratory activity of the rats compared to the sham group. Estrogen treatment restored the exploratory behavior of the ovariectomized rats to that of the sham group whereas the progesterone-treated rats were less alert to the surrounding when compared to the sham and estrogen supplemented rats. The effect of estrogen on the hippocampal muscarinic M(4) receptor subtype is a novel finding and may have functional significance for cholinergic receptors especially in relation to postmenopausal memory problems and neurodegenerative disease like Alzheimer's disease.
Collapse
Affiliation(s)
- Nahid K El-Bakri
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Onali P, Olianas MC. Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol 2002; 448:105-11. [PMID: 12144929 DOI: 10.1016/s0014-2999(02)01910-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several studies have indicated the occurrence of an antagonistic interaction between muscarinic and dopamine D1-like receptors in the ventral striatum, but the subtype(s) of muscarinic receptor involved has not been characterized. We show that in membranes of rat nucleus accumbens, carbachol inhibited the stimulation of adenylyl cyclase activity by dopamine and the dopamine D1-like receptor agonist (+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine without affecting the binding properties of dopamine to dopamine D1-like receptors. The carbachol inhibition was competitively counteracted by receptor antagonists with a rank order of potency typical of the involvement of the muscarinic M(4) receptor subtype. Moreover, muscarinic toxin 3, a selective muscarinic M(4) receptor antagonist, completely blocked the carbachol inhibition, whereas muscarinic toxin 7, a selective muscarinic M(1) receptor antagonist, had no effect. The muscarinic inhibition occurred to a similar extent in the core and shell regions. These data demonstrate that in nucleus accumbens, muscarinic M(4) receptors exert a direct inhibitory control on dopamine D1-like receptor signalling.
Collapse
Affiliation(s)
- Pierluigi Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, Via Porcell 4, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
36
|
Oliveira L, Timóteo MA, Correia-de-Sá P. Modulation by adenosine of both muscarinic M1-facilitation and M2-inhibition of [3H]-acetylcholine release from the rat motor nerve terminals. Eur J Neurosci 2002; 15:1728-36. [PMID: 12081652 DOI: 10.1046/j.1460-9568.2002.02020.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crosstalk between adenosine and muscarinic autoreceptors regulating evoked [3H]-acetylcholine ([3H]-ACh) release was investigated on rat phrenic nerve-hemidiaphragm preparations. Motor nerve terminals possess facilitatory M1 and inhibitory M2 autoreceptors that can be activated by McN-A-343 (1-30 microm) and oxotremorine (0.3-100 microm), respectively. The muscarinic receptor antagonist, dicyclomine (3 nm-10 microm), caused a biphasic (inhibitory/facilitatory) effect, indicating that M1-facilitation prevails during 5 Hz stimulation trains. Concomitant activation of AF-DX 116-sensitive M2 receptors was partially attenuated, as pretreatment with M1 antagonists, muscarinic toxin 7 (MT-7, 0.1 nm) and pirenzepine (1 nm), significantly enhanced inhibition by oxotremorine. Activation of A2A-adenosine receptors with CGS 21680C (2 nm) (i) potentiated oxotremorine inhibition, and (ii) shifted McN-A-343-induced facilitation into a small inhibitory effect. Conversely, the A1-receptor agonist, R-N6-phenylisopropyl adenosine (R-PIA, 100 nm), attenuated the inhibitory effect of oxotremorine, without changing facilitation by McN-A-343. Synergism between A2A and M2 receptors is regulated by a reciprocal interaction with facilitatory M1 receptors, which may be prevented by pirenzepine (1 nm). During 50 Hz-bursts, facilitation (M1) of [3H]-ACh release by McN-A-343 disappeared, while the inhibitory (M2) effect of oxotremorine became predominant. This muscarinic shift results from the interplay with A2A receptors, as it was precluded by the selective A2A receptor antagonist, ZM 241385 (10 nm). In conclusion, when the muscarinic M1 positive feedback loop is fully operative, negative regulation of ACh release is mediated by adenosine A1 receptors. During high frequency bursts, tonic activation of A2A receptors promotes M2 autoinhibition by braking the M1 receptor operated counteraction.
Collapse
Affiliation(s)
- Laura Oliveira
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto, Portugal
| | | | | |
Collapse
|
37
|
Leclere PG, Lefebvre RA. Characterization of pre- and postsynaptic muscarinic receptors in circular muscle of pig gastric fundus. Br J Pharmacol 2002; 135:1245-54. [PMID: 11877333 PMCID: PMC1573246 DOI: 10.1038/sj.bjp.0704582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study investigated the subtype of muscarinic receptors on the cholinergic neurones and smooth muscle in the circular muscle of the pig gastric fundus. 2. Muscarinic antagonists, except MT-3, concentration-dependently inhibited the contractions induced by a given concentration of acetylcholine. Concentration-response curves by acetylcholine were shifted rightwards in a parallel manner without depression of the maximum by the muscarinic antagonists, except by MT-3 that induced a leftward shift. Correlation of the pIC(50) and pA(2) values with published pK(i) values for the five muscarinic receptor subtypes suggests that the muscarinic receptors on pig gastric fundus circular muscle belong to the M(3) subtype. 3. Electrically-evoked contractions (40 V, 4 Hz, 0.25 ms, 2 min) were concentration-dependently inhibited by the muscarinic antagonists except for methoctramine and AF-DX 116, that increased the amplitude of the electrically-induced contractions in lower concentrations. MT-3 tended to increase the electrically-induced contractions. 4. The antagonists, except MT-3, concentration-dependently increased the electrically-induced tritium outflow (40 V, 4 Hz, 0.25 ms, 2 min) after incubation of the tissues with [(3)H]-choline. MT-3 (3 x 10(-8) and 10(-7) M) decreased the electrically-induced tritium release. Correlation of the pIC(50) values with published pK(i) values for the different muscarinic receptor subtypes yielded a significant and comparable correlation for M(1), M(3), M(4) and M(5) receptors. 5. These results suggest that the postsynaptic receptors in circular muscle of the pig gastric fundus belong to the M(3) subtype. However, the presynaptic receptor could not be clearly defined, although it does certainly not belong to the M(2) subtype.
Collapse
Affiliation(s)
- Pascal G Leclere
- Heymans Institute of Pharmacology, Ghent University, Faculty of Medicine and Health Sciences, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Romain A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, Faculty of Medicine and Health Sciences, De Pintelaan 185, B-9000 Ghent, Belgium
- Author for correspondence:
| |
Collapse
|
38
|
Minic J, Molgó J, Karlsson E, Krejci E. Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 2002; 15:439-48. [PMID: 11876771 DOI: 10.1046/j.0953-816x.2001.01875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) play an important role in regulating the release of acetylcholine (ACh) in various tissues. We used subtype-specific antibodies and a fluorescent-labelled muscarinic toxin to demonstrate that mammalian neuromuscular junction expresses mAChR subtypes M1 to M4, and that localization of all subtypes is highly restricted to the innervated part of the muscle. To elucidate the roles of the mAChR subtypes regulating ACh release, we measured the mean quantal content of endplate potentials in isolated mouse phrenic--hemidiaphragm preparations in which release was reduced by a low Ca2+/high Mg2+ medium. Muscarine decreased evoked ACh release in normal junctions but, depending on the concentration, reduced or increased transmitter release in collagen Q-deficient junctions completely lacking acetylcholinesterase (AChE). Both effects were also seen in normal junctions when AChE was inhibited by various doses of fasciculin-2. Block of mAChRs by atropine had no effect on evoked release at normal junctions, but decreased release at junctions lacking AChE. The muscarine-elicited depression of ACh release in normal junctions was completely abolished by pertussis toxin or methoctramine pretreatment, but was not affected by muscarinic toxin MT-3, thus indicating the involvement of the M2 mAChR. The muscarine-induced increase of ACh release in AChE-deficient junctions was not affected by pertussis toxin, but was completely blocked by MT-7, a specific M1 mAChR antagonist. Our results show that the M1 and M2 mAChRs have opposite presynaptic functions in modulating quantal ACh release, and that regulation of release by the two receptor subtypes depends on the functional state of AChE at the neuromuscular junction.
Collapse
Affiliation(s)
- Jasmina Minic
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, C.N.R.S., U.P.R. 9040, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
39
|
|
40
|
Roberts DJ, Khan N, McDonald RL, Webster NJ, Peers C, Vaughan PF. Inhibition of depolarisation-evoked [(3)H]noradrenaline release from SH-SYFY human neuroblastoma cells by muscarinic (M1) receptors is not mediated by changes in [Ca(2+)]. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:81-91. [PMID: 11223162 DOI: 10.1016/s0169-328x(00)00294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of this study was to obtain further understanding of the mechanism by which activation of muscarinic M(1) receptors inhibits K(+)-evoked noradrenaline (NA) release in the human neuroblastoma SH-SY5Y. Previous studies have found that muscarinic M(1) and M(3) receptors couple to the activation of phospholipase C in SH-SY5Y cells leading to an increase in (a) intracellular calcium ([Ca(2+)](i)) and (b) activation of protein kinase C (PKC). This study used specific inhibitors of PKC and conditions which deplete Ca(2+)(i) stores to examine the role of protein kinase C and changes in [Ca(2+)](i) in mediating the inhibition of K(+)-evoked NA release by muscarine. Our data show that pretreatment of SH-SY5Y cell layers with bisindolylmaleimide I (BIM-I) (i) failed to reverse inhibition of K(+)-evoked NA release by muscarine but (ii) did overcome the attenuation of muscarine inhibition following pretreatment with TPA. Furthermore pretreating cell layers with Ca(2+)-free Hepes buffered saline in the presence of thapsigargin, conditions which prevented muscarine induced increases in [Ca(2+)](i), failed to prevent inhibition of K(+)-evoked NA release by muscarine. The effect of muscarine on K(+)-evoked uptake of Ca(2+)(e) was examined in SH-SY5Y cells loaded with Fura-2. Muscarine inhibited Ca(2+)(e)-uptake by decreasing the rate at which Ca(2+) entered SH-SY5Y cells via voltage sensitive Ca(2+)-channels. Thus this study shows that muscarine inhibits depolarisation-evoked NA release by a mechanism which is not dependent on activation of PKC or release of Ca(2+) from internal stores.
Collapse
Affiliation(s)
- D J Roberts
- Institute for Cardiovascular Research, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | | | | | | |
Collapse
|
41
|
Olianas MC, Maullu C, Adem A, Mulugeta E, Karlsson E, Onali P. Inhibition of acetylcholine muscarinic M(1) receptor function by the M(1)-selective ligand muscarinic toxin 7 (MT-7). Br J Pharmacol 2000; 131:447-52. [PMID: 11015294 PMCID: PMC1572361 DOI: 10.1038/sj.bjp.0703606] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
MT-7 (1 - 30 nM), a peptide toxin isolated from the venom of the green mamba Dendroaspis angusticeps and previously found to bind selectively to the muscarinic M(1) receptor, inhibited the acetylcholine (ACh)-stimulated [(35)S]-guanosine-5'-O-(3-thio)triphosphate ([(35)S]-GTPgammaS) binding to membranes of Chinese hamster ovary (CHO) cells stably expressing the cloned human muscarinic M(1) receptor subtype. MT-7 failed to affect the ACh-stimulated [(35)S]-GTPgammaS binding in membranes of CHO cells expressing either the M(2), M(3) or M(4) receptor subtype. In N1E-115 neuroblastoma cells endogenously expressing the M(1) and M(4) receptor subtypes, MT-7 (0.3 - 3.0 nM) inhibited the carbachol (CCh)-stimulated inositol phosphates accumulation, but failed to affect the CCh-induced inhibition of pituitary adenylate cyclase activating polypeptide (PACAP) 38-stimulated cyclic AMP accumulation. In both CHO/M(1) and N1E-115 cells the MT-7 inhibition consisted in a decrease of the maximal agonist effect with minimal changes in the agonist EC(50) value. In CHO/M(1) cell membranes, MT-7 (0.05 - 25 nM) reduced the specific binding of 0.05, 1.0 and 15 nM [(3)H]-N-methylscopolamine ([(3)H]-NMS) in a concentration-dependent manner, but failed to cause a complete displacement of the radioligand. Moreover, MT-7 (3 nM) decreased the dissociation rate of [(3)H]-NMS by about 5 fold. CHO/M(1) cell membranes preincubated with MT-7 (10 nM) and washed by centrifugation and resuspension did not recover control [(3)H]-NMS binding for at least 8 h at 30 degrees C. It is concluded that MT-7 acts as a selective noncompetitive antagonist of the muscarinic M(1) receptors by binding stably to an allosteric site.
Collapse
Affiliation(s)
- Maria C Olianas
- Section on Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, via Porcell 4, 09124 Cagliari, Italy
| | - Carlo Maullu
- Department of Clinical Sciences, University of Cagliari, via Porcell 4, 09124 Cagliari, Italy
| | - Abdu Adem
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge, Sweden
| | - Ezra Mulugeta
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge, Sweden
| | - Evert Karlsson
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge, Sweden
| | - Pierluigi Onali
- Section on Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, via Porcell 4, 09124 Cagliari, Italy
- Author for correspondence:
| |
Collapse
|
42
|
Olianas MC, Onali P. Involvement of betagamma subunits of G(q/11) in muscarinic M(1) receptor potentiation of corticotropin-releasing hormone-stimulated adenylyl cyclase activity in rat frontal cortex. J Neurochem 2000; 75:233-9. [PMID: 10854266 DOI: 10.1046/j.1471-4159.2000.0750233.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated the involvement of betagamma subunits of G(q/11) in the muscarinic M(1) receptor-induced potentiation of corticotropin-releasing hormone (CRH)-stimulated adenylyl cyclase activity in membranes of rat frontal cortex. Tissue exposure to either one of two betagamma scavengers, the QEHA fragment type II adenylyl cyclase and the GDP-bound form of the alpha subunit of transducin, inhibited the muscarinic M(1) facilitatory effect. Moreover, like acetylcholine (ACh), exogenously added betagamma subunits of transducin potentiated the CRH-stimulated adenylyl cyclase activity, and this effect was not additive with that elicited by ACh. Western blot analysis indicated the expression in frontal cortex of both type II and type IV adenylyl cyclases, two isoforms stimulated by betagamma subunits in synergism with activated G(s). The M(1) receptor-induced enhancement of the adenylyl cyclase response to CRH was counteracted by the G(q/11) antagonist GpAnt-2A but not by GpAnt-2, a preferential G(i/o) antagonist. In addition, the muscarinic facilitatory effect was inhibited by membrane preincubation with antiserum directed against the C terminus of the alpha subunit of G(q/11), whereas the same treatment with antiserum against either G(i1/2) or G(o) was without effect. These data indicate that in membranes of rat frontal cortex, activation of muscarinic M(1) receptors potentiates CRH-stimulated adenylyl cyclase activity through betagamma subunits of G(q/11).
Collapse
Affiliation(s)
- M C Olianas
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
43
|
Jerusalinsky D, Kornisiuk E, Alfaro P, Quillfeldt J, Ferreira A, Rial VE, Durán R, Cerveñansky C. Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system. Toxicon 2000; 38:747-61. [PMID: 10695963 DOI: 10.1016/s0041-0101(99)00196-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic receptors are widely spread throughout the body, and are involved in the regulation of fundamental physiological processes, like the modulation of the heart rate, control of motor systems and modulation of learning and memory. In the central nervous system the cholinergic transmission is mainly mediated by muscarinic receptors; there are five subtypes that are all expressed in the brain of mammals (m1-m5). There are regional differences in their concentrations in the brain and more than one subtype is expressed in the same cell. It has been difficult to study their localization and function in vivo due to the lack of ligands that exclusively act on one subtype of the receptor. We studied the action of the muscarinic toxins MT1, MT2 and MT3, from the venom of the snake Dendroaspis angusticeps, on muscarinic receptors, by using the classical muscarinic radioligand 3H-NMS as reporter of the inhibition of its own binding, to either native or cloned receptors. We have also studied the in vivo effects on memory retention of the injection of the toxins into discrete brain regions. The muscarinic toxins appear to be invaluable tools to study receptor pharmacology, physiology and structure/function relationships. They would enable the design of new, more selective, pharmacological agents.
Collapse
Affiliation(s)
- D Jerusalinsky
- Instituto de Biología Celular y Neurociencias Profesor Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Miyoshi S, Tu AT. A snake venom inhibitor to muscarinic acetylcholine receptor (mAChR): isolation and interaction with cloned human mAChR. Arch Biochem Biophys 2000; 377:290-5. [PMID: 10845706 DOI: 10.1006/abbi.2000.1784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An inhibitor to the muscarinic acetylcholine receptor (mAChR) was purified from the venom of Crotalus atrox (western diamondback rattlesnake). The inhibitor was found to be a 30-kDa homodimer protein with phospholipase A2 activity. In order to determine the subtype selectivity of the purified inhibitor, the inhibitory effect on the binding of two orthosteric antagonists, [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]N-methylscopolamine methyl chloride ([3H]NMS), to five subtypes of cloned human mAChR was tested. The purified inhibitor reduced the binding of [3H]QNB and/or [3H]NMS to all subtypes of the mAChR while showing the highest inhibitory effect on the M5 subtype. The Kd values of the receptors for the antagonists were increased in the presence of the inhibitor; however, the Bmax values were not changed. The effects of the purified inhibitor on the dissociation of [3H]NMS from the receptors were also investigated. Dissociation of the antagonist was remarkably slowed down by addition of the inhibitor. These findings may suggest an allosteric action of the purified inhibitor. In addition, the present study indicates that the presence of mAChR inhibitors is quite common in snake venoms.
Collapse
Affiliation(s)
- S Miyoshi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
45
|
Angeli P. Receptors in neurodegenerative diseases, muscarinic cholinergic receptors. PHARMACEUTICA ACTA HELVETIAE 2000; 74:131-4. [PMID: 10812949 DOI: 10.1016/s0031-6865(99)00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- P Angeli
- Dipartimento di Scienze Chimiche, Università di Camerino, Italy.
| |
Collapse
|
46
|
Nishiuchi Y, Nishio H, Inui T, Bódi J, Kimura T. Combined solid-phase and solution approach for the synthesis of large peptides or proteins. J Pept Sci 2000; 6:84-93. [PMID: 10718129 DOI: 10.1002/(sici)1099-1387(200002)6:2<84::aid-psc246>3.0.co;2-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the synthesis of large peptides or proteins, highly homogeneous segments are indispensable for a convergent strategy either on a solid-phase resin or in solution. Employing Boc/Bzl chemistry to prepare fully protected segments with a free alpha-carboxyl group from the solid support, base-labile linkers are profitable for practical peptide synthesis since they require no special equipment. For this purpose, an N-[9-(hydroxymethyl)-2-fluorenyl]succinamic acid (HMFS) linker was adopted. Consequently, there must be high compatibility between the protecting groups of the segment and the anchoring group which is cleavable by treatment with morpholine or piperidine in DMF. Instead of using the 2-bromobenzyloxycarbonyl (BrZ) group for the Tyr residue and the formyl (For) group for the Trp residue, both of which are the most susceptible protecting groups under these base-catalysed conditions, the base-resistant 3-pentyl (Pen) and cyclohexyloxycarbonyl (Hoc) groups were introduced to the respective side-chain functional groups. By applying the present strategy, the authors were able to rapidly synthesize homogeneous protected segments for use in the subsequent segment coupling in solution. In the present paper, the utility of the combined solid-phase and solution approach is demonstrated by synthesizing muscarinic toxin 1 (MTX1) which binds to the muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Y Nishiuchi
- Peptide Institute, Inc., Protein Research Foundation, Osaka, Japan.
| | | | | | | | | |
Collapse
|
47
|
D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol 2000; 129:493-500. [PMID: 10711347 PMCID: PMC1571864 DOI: 10.1038/sj.bjp.0703080] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Experiments were carried out in human detrusor strips to characterize muscarinic receptor subtypes involved in the prejunctional regulation of acetylcholine (ACh) release from cholinergic nerve terminals, and in the postjunctional smooth muscle contractile response. 2. In detrusor strips preincubated with [3H]-choline, electrical field stimulation (600 pulses) delivered in six trains at 10 Hz produced a tritium outflow and a contractile response. In the presence of 10 microM paraoxon (to prevent ACh degradation) the tritium outflow was characterized by HPLC analysis as [3H]-ACh (76%) and [3H]-choline (24%). 3. Electrically-evoked [3H]-ACh release was abolished by tetrodotoxin (TTX: 300 nM) and unaffected by hexamethonium (10 microM), indicating a postganglionic event. It was reduced by physostigmine (100 nM) and the muscarinic receptor agonist, muscarone (10 nM-1 microM), and enhanced by atropine (0.1-100 nM). These findings indicate the presence of a muscarinic negative feedback mechanism controlling ACh release. 4. The effects of various subtype-preferring muscarinic receptor antagonists were evaluated on [3H]-ACh release and muscle contraction. The rank potency (-log EC50) orders at pre- and postjunctional level were: atropine > or = 4-diphenyl-acetoxy-N-piperidine (4-DAMP) > mamba toxin 3 (MT-3) > tripitramine > para-fluorohexahydrosiladiphenidol (pF-HHSiD) > or = methoctramine > or = pirenzepine > tripinamide, and atropine > or = 4-DAMP > pF-HHSiD >> pirenzepine = tripitramine > tripinamide > methoctramine >> MT-3, respectively. 5. The comparison of pre- and post-junctional potencies and the relationship analysis with the affinity constants at human cloned muscarinic receptor subtypes indicates that the muscarinic autoreceptor inhibiting ACh release in human detrusor is an M4 receptor, while the receptor involved in muscular contraction belongs to the M3 subtype.
Collapse
Affiliation(s)
- G D'Agostino
- Department of Experimental and Applied Pharmacology, School of Pharmacy, University of Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Receptors in neurodegenerative diseases, muscarinic cholinergic receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0165-7208(00)80009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Olianas MC, Onali P. PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sci 1999; 65:2233-40. [PMID: 10576595 DOI: 10.1016/s0024-3205(99)00488-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In membranes of Chinese hamster ovary cells expressing the cloned human M1-M4 muscarinic receptor subtypes, PD 102807, a novel M4 selective antagonist, was found to counteract the M4 receptor-induced stimulation of [35S]-GTPgammaS binding to membrane G proteins with a pK(B) of 7.40, a value which was 63-, 33- and 10-fold higher than those displayed at M1 (pK(B) = 5.60), M2 (pK(B) = 5.88) and M3 (pK(B) = 6.39) receptor subtypes, respectively. In rat striatal membranes, PD 102807 antagonized the muscarinic inhibition of dopamine (DA) D1 receptor-stimulated adenylyl cyclase with a pK(B) value of 7.36. In contrast, in membranes of rat frontal cortex, PD 102807 displayed lower potencies in antagonizing either the muscarinic facilitation of corticotropin releasing hormone (CRH)-stimulated adenylyl cyclase (pK(B) = 5.79) or inhibition of Ca2+/calmodulin (Ca2+/CaM)-stimulated enzyme activity (pK(B) = 5.95). In each response investigated, PD 102807 interacted with muscarinic receptors in a manner typical of a simple competitive antagonist. These data provide additional evidence that PD 102807 is a M4-receptor preferring antagonist and that this compound can discriminate the striatal muscarinic receptors inhibiting DA D1 receptor activity from the cortical receptors mediating the potentiation of CRH receptor signalling and the inhibition of Ca2+/CaM-stimulated adenylyl cyclase activity.
Collapse
Affiliation(s)
- M C Olianas
- Department of Neuroscience, University of Cagliari, Italy
| | | |
Collapse
|
50
|
Schweitz H, Pacaud P, Diochot S, Moinier D, Lazdunski M. MIT(1), a black mamba toxin with a new and highly potent activity on intestinal contraction. FEBS Lett 1999; 461:183-8. [PMID: 10567694 DOI: 10.1016/s0014-5793(99)01459-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mamba intestinal toxin (MIT(1)) isolated from Dendroaspis polylepis venom is a 81 amino acid polypeptide cross-linked by five disulphide bridges. MIT(1) has a very potent action on guinea-pig intestinal contractility. MIT(1) (1 nM) potently contracts longitudinal ileal muscle and distal colon, and this contraction is equivalent to that of 40 mM K(+). Conversely MIT(1) relaxes proximal colon again as potently as 40 mM K(+). The MIT(1)-induced effects are antagonised by tetrodotoxin (1 microM) in proximal and distal colon but not in longitudinal ileum. The MIT(1)-induced relaxation of the proximal colon is reversibly inhibited by the NO synthase inhibitor L-NAME (200 microM). (125)I-labelled MIT(1) binds with a very high affinity to both ileum and brain membranes (K(d)=1.3 pM and 0.9 pM, and B(max)=30 fmol/mg and 26 fmol/mg, respectively). MIT(1) is a very highly selective toxin for a receptor present both in the CNS and in the smooth muscle and which might be an as yet unidentified K(+) channel.
Collapse
Affiliation(s)
- H Schweitz
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | | | | | | | |
Collapse
|