1
|
Chilanti G, Branco CS, Touguinha LBA, Lodi KZ, Rech G, Jahn MP, Augusti PR, Salvador M, Flôres SH. Begonia cucullata Extracts Present Antidiabetic Potential by Protecting Human Endothelial Cells and Rats from Oxidative Damage Induced by Glucose Overload. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:75. [PMID: 39985664 DOI: 10.1007/s11130-025-01312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Diabetes mellitus (DM) is a disease characterized by issues in insulin metabolism and consequent hyperglycemia, associated with oxidative stress and endothelial dysfunction. Current pharmacotherapy for DM is not fully effective, as complications continue even after glycemic control. Thus, plants rich in bioactive compounds with antioxidant potential may be valuable in DM management. Begonia cucullata is a non-conventional edible plant rich in phenolic compounds and traditionally used in medicine as an anti-diabetic agent. However, pharmacological studies on this plant are scarce. This study evaluated the antidiabetic potential of B. cucullata flowers (BFE) and leaves (BLE) extracts in human endothelial cells and rats. Endothelial cells were cultivated in normal (25mM) or high (35mM) glucose and exposed to BFE or BLE (1-100 µg/mL) for 24 h. Healthy and streptozotocin-induced diabetic rats received BFE (200 mg/kg) orally for 4 weeks. HPLC analyses of extracts revealed gallic acid, catechin, epigallocatechin gallate, epicatechin, and epigallocatechin in BFE, whereas BLE exhibited epigallocatechin and myricetin. Both extracts displayed antioxidant activity in vitro and were able to protect cells against oxidative damage caused by glucose overload. BFE attenuated oxidative stress and decreased triglyceride levels in diabetic rats, besides being not hepatotoxic or nephrotoxic. The data suggests that B. cucullata extracts may be potential adjuncts in DM therapy by exerting antioxidant effects and improving triglyceride levels.
Collapse
Affiliation(s)
- Gabriela Chilanti
- Laboratory of Bioactive Compounds, Food Science and Technology Institute, Postgraduate Program in Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Catia Santos Branco
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil.
| | | | - Karina Zanella Lodi
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Giovana Rech
- Laboratory of Physiology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Paula Rossini Augusti
- Laboratory of Food Bioactive and Toxic Compounds, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Simone Hickmann Flôres
- Laboratory of Bioactive Compounds, Food Science and Technology Institute, Postgraduate Program in Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Food Bioactive and Toxic Compounds, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Zhu C, Yang J, Nie X, Wu Q, Wang L, Jiang Z. Influences of Dietary Vitamin E, Selenium-Enriched Yeast, and Soy Isoflavone Supplementation on Growth Performance, Antioxidant Capacity, Carcass Traits, Meat Quality and Gut Microbiota in Finishing Pigs. Antioxidants (Basel) 2022; 11:antiox11081510. [PMID: 36009229 PMCID: PMC9405041 DOI: 10.3390/antiox11081510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Jingsen Yang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| |
Collapse
|
3
|
Ameer OZ, Salman IM, Alwadi AY, Ouban A, Abu-Owaimer FM, AlSharari SD, Bukhari IA. Regional functional and structural abnormalities within the aorta as a potential driver of vascular disease in metabolic syndrome. Exp Physiol 2021; 106:771-788. [PMID: 33450088 DOI: 10.1113/ep089213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is aortic dysfunction, a significant contributor to cardiovascular disease in metabolic syndrome, expressed uniformly across both the thoracic and abdominal aorta? What is the main finding and its importance? Our study shows that, in the setting of metabolic syndrome, functional and structural deficits in the aorta are differentially expressed along its length, with the abdominal portion displaying more extensive vascular abnormalities. It is, therefore, likely that early interventional strategies targeting the abdominal aorta might alleviate cardiovascular pathologies driven by the metabolic syndrome. ABSTRACT The extent of vascular dysfunction associated with metabolic syndrome might vary along the length of the aorta. In this study, we investigated regional functional and structural changes in the thoracic and abdominal aorta of a rat model of metabolic syndrome, namely, high-fat diet (HFD) streptozotocin-induced diabetes mellitus (HFD-D). Four-week-old male Wistar albino rats were fed with either HFD or control diet (CD) for 10 weeks. At week 6, 40 mg/kg streptozotocin and its vehicle were injected i.p. into HFD and CD groups, respectively. At the end of the feeding period, rats were euthanised and aortic segments collected for assessment of vascular functional responses and histomorphometry. Tail-cuff systolic blood pressures (154 ± 6 vs. 110 ± 4 mmHg) and areas under the curve for oral glucose and i.p. insulin tolerance tests were greater in HFD-D versus CD rats. Abdominal aortic vasoconstriction in response to noradrenaline and KCl was greater in HFD-D compared with CD rats. Thoracic vasoconstrictor responses to noradrenaline, but not KCl, were greater in the HFD-D group. Abdominal, but not thoracic, endothelium-dependent vasorelaxation in response to acetylcholine was blunted in HFD-D relative to CD rats; however, nitric oxide-dependent vasorelaxation in HFD-D rats was impaired in both thoracic and abdominal segments. The abdominal aorta of HFD-D rats showed deranged interlamellar spacing and increased lipid plaque deposition. In conclusion, vascular dysfunction in metabolic syndrome is expressed differentially along the length of the aorta, with the abdominal aorta exhibiting increased susceptibility to vasoconstrictors and greater deficits in endothelium-dependent relaxation. These vascular functional abnormalities could potentially underlie the development of hypertensive cardiovascular disease associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Omar Z Ameer
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim M Salman
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Aiman Y Alwadi
- College of Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Shakir D AlSharari
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ishfaq A Bukhari
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Schiano E, Annunziata G, Ciampaglia R, Iannuzzo F, Maisto M, Tenore GC, Novellino E. Bioactive Compounds for the Management of Hypertriglyceridemia: Evidence From Clinical Trials and Putative Action Targets. Front Nutr 2020; 7:586178. [PMID: 33330588 PMCID: PMC7734325 DOI: 10.3389/fnut.2020.586178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hypertriglyceridemia refers to the presence of elevated concentrations of triglycerides (TG) in the bloodstream (TG >200 mg/dL). This lipid alteration is known to be associated with an increased risk of atherosclerosis, contributing overall to the onset of atherosclerotic cardiovascular disease (CVD). Guidelines for the management of hypertriglyceridemia are based on both lifestyle intervention and pharmacological treatment, but poor adherence, medication-related costs and side effects can limit the success of these interventions. For this reason, the search for natural alternative approaches to reduce plasma TG levels currently represents a hot research field. This review article summarizes the most relevant clinical trials reporting the TG-reducing effect of different food-derived bioactive compounds. Furthermore, based on the evidence obtained from in vitro studies, we provide a description and classification of putative targets of action through which several bioactive compounds can exert a TG-lowering effect. Future research may lead to investigations of the efficacy of novel nutraceutical formulations consisting in a combination of bioactive compounds which contribute to the management of plasma TG levels through different action targets.
Collapse
Affiliation(s)
| | | | | | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Jin H, Nicodemus-Johnson J. Gender and Age Stratified Analyses of Nutrient and Dietary Pattern Associations with Circulating Lipid Levels Identify Novel Gender and Age-Specific Correlations. Nutrients 2018; 10:nu10111760. [PMID: 30441803 PMCID: PMC6265871 DOI: 10.3390/nu10111760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is a precursor to a myriad of cardiovascular diseases in the modern world. Age, gender, and diet are known modifiers of lipid levels, however they are not frequently investigated in subset analyses. Food and nutrient intakes from National Health and Nutrition Examination Study 2001–2013 were used to assess the correlation between lipid levels (high-density lipoprotein (HDL) cholesterol, triglycerides (TG), low-density lipoprotein (LDL) cholesterol, and total cholesterol (TC):HDL cholesterol ratio) and nutritional intake using linear regression. Associations were initially stratified by gender and significant gender correlations were further stratified by age. Analyses were performed at both the dietary pattern and nutrient level. Dietary pattern and fat intake correlations agreed with the literature in direction and did not demonstrate gender or age effects; however, we observed gender and age interactions among other dietary patterns and individual nutrients. These effects were independent of ethnicity, caloric intake, socioeconomic status, and physical activity. Elevated HDL cholesterol levels correlated with increasing vitamin and mineral intake in females of child bearing age but not males or older females (≥65 years). Moreover, increases in magnesium and retinol intake correlated with HDL cholesterol improvement only in females (all age groups) and males (35–64), respectively. Finally, a large amount of gender-specific variation was associated with TG levels. Females demonstrated positive associations with sugar and carbohydrate while males show inverse associations with polyunsaturated fatty acid (PUFA) intake. The female-specific association increased with the ratio of carbohydrate: saturated fatty acid (SFA) intake, suggesting that gender specific dietary habits may underlie the observed TG-nutrient correlations. Our study provides evidence that a subset of previously established nutrient-lipid associations may be gender or age-specific. Such discoveries provide potential new avenues for further research into personalized nutritional approaches to treat dyslipidemia.
Collapse
Affiliation(s)
- Huifeng Jin
- Research and Development, USANA Health Sciences, Inc. 3838 W. Parkway Blvd., West Valley City, UT 84120, USA.
| | - Jessie Nicodemus-Johnson
- Research and Development, USANA Health Sciences, Inc. 3838 W. Parkway Blvd., West Valley City, UT 84120, USA.
| |
Collapse
|
6
|
Şakul A, Arı N, Sotnikova R, Ozansoy G, Karasu Ç. A pyridoindole antioxidant SMe1EC2 regulates contractility, relaxation ability, cation channel activity, and protein-carbonyl modifications in the aorta of young and old rats with or without diabetes mellitus. GeroScience 2018; 40:377-392. [PMID: 30054861 DOI: 10.1007/s11357-018-0034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
We studied the effects of treatment with SMe1EC, a hexahydropyridoindole antioxidant, on vascular reactivity, endothelial function, and oxidonitrosative stress level of thoracic aorta in young and old rats with or without diabetes mellitus. The rats were grouped as young control (YC 3 months old), old control (OC 15 months old), young diabetic (YD), old diabetic (OD), young control treated (YCT), old control treated (OCT), young diabetic treated (YDT), and old diabetic treated (ODT). Diabetes was induced by streptozotocin injection and subsequently SMe1EC2 (10 mg/kg/day, p.o.) was administered to YCT, OCT, YDT, and ODT rats for 5 months. In young and old rats, diabetes resulted in hypertension, weight loss, hyperglycemia, and hypertriglyceridemia, which were partially prevented by SMe1EC2. SMe1EC2 also inhibited the diabetes-induced increase in aorta levels of AGEs (advanced glycosylation end-protein adducts), 4-HNE (4-hydroxy-nonenal-histidine), 3-NT (3-nitrotyrosine), and RAGEs (receptors for AGEs). The contractions of the aorta rings to phenylephrine (Phe) and KCL did not significantly change, but acetylcholine (ACh) and salbutamol relaxations were reduced in OC compared to YC rats. Diabetes induction increased Phe contractions in YC and OC rats, KCL contractions in YC rats, and did not cause further inhibition in already inhibited ACh and salbutamol relaxations in OC rats. We have achieved the lowest levels of ACh relaxation in YD rats compared to other groups. SMe1EC2 did not change the response of aorta to ACh, salbutamol and Phe in YC rats, and ameliorated ACh relaxations in OC and YD but not in OD rats. In YDT and ODT rats, increased Phe and KCL contractions, high blood pressure, and impaired salbutamol relaxations were amended by SMe1EC2. Phe contractions observed in YD and OD rats as well as KCl contractions observed in OC rats were the lowest levels when the rats were treated with SMe1EC2. When the bath solution was shifted to cyclopiazonic acid (CYP) or CYP plus Ca2+-free medium, the contraction induced by a single dose of Phe (3 × 10-6 M) was more inhibited in YD and OD than in YC but not in OC rats. In SMe1EC2-treated rats, neither the presence of CFM nor CFM plus CYP exhibited a significant change in response of aorta to a single dose of Phe. These findings suggest that α1-adrenergic receptor signaling is activated in both age groups of diabetic rats, diabetes activates K+-depolarization and calcium mobilization via CaV especially in the aorta of young rats, and sensitizes the aorta of old rats to the regulating effect of SMe1EC2. ACh relaxations were inhibited in YC rats, increased in OC rats and unchanged in YD and OD rats when aortic rings pretreated with TEA, an inhibitor of calcium-activated K+ channels (KCa), or 4-aminopyridine (4-AP), an inhibitor of voltage-sensitive K+ channels (KV). ACh relaxations were inhibited in YCT, OCT, and YDT rats in the presence of 4-AP or TEA. In ODT rats, 4-AP did not change ACh relaxation but TEA inhibited. These findings suggest that the contribution of Kv and KCa to ACh relaxation is likely upregulated by SMe1EC2 when the relaxations were inhibited by aging or diabetes. We conclude that SMe1EC2 might be a promising agent for aging and diabetes related vascular disorders.
Collapse
Affiliation(s)
- Arzu Şakul
- Department of Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ruzenna Sotnikova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gülgün Ozansoy
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Çimen Karasu
- Laboratory for Cellular Stress Response and Signal Transduction Research, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
7
|
Δ 9-Tetrahydrocannabinol Prevents Cardiovascular Dysfunction in STZ-Diabetic Wistar-Kyoto Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7974149. [PMID: 29181404 PMCID: PMC5664274 DOI: 10.1155/2017/7974149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study was to determine if chronic, low-dose administration of a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus. Diabetes was induced in eight-week-old male Wistar-Kyoto rats via a single intravenous dose of streptozotocin (65 mg kg−1). Following the induction of diabetes, Δ9-tetrahydrocannabinol was administered via intraperitoneal injection (0.15 mg kg−1 day−1) for an eight-week period until the animals reached sixteen weeks of age. Upon completion of the treatment regime, assessments of vascular reactivity and left ventricular function and electrophysiology were made, as were serum markers of oxidative stress and lipid peroxidation. Δ9-Tetrahydrocannabinol administration to diabetic animals significantly reduced blood glucose concentrations and attenuated pathological changes in serum markers of oxidative stress and lipid peroxidation. Positive changes to biochemical indices in diabetic animals conferred improvements in myocardial and vascular function. This study demonstrates that chronic, low-dose administration of Δ9-tetrahydrocannabinol can elicit antihyperglycaemic and antioxidant effects in diabetic animals, leading to improvements in end organ function of the cardiovascular system. Implications from this study suggest that cannabinoid receptors may be a potential new target for the treatment of diabetes-induced cardiovascular disease.
Collapse
|
8
|
Mazidi M, Pennathur S, Afshinnia F. Link of dietary patterns with metabolic syndrome: analysis of the National Health and Nutrition Examination Survey. Nutr Diabetes 2017; 7:e255. [PMID: 28319105 PMCID: PMC5380894 DOI: 10.1038/nutd.2017.11] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Population-based interventions aimed at halting the increasing prevalence of metabolic syndrome (MetS) require thorough understanding of dietary interplays. Objective is to identify the independent dietary nutrients associated with MetS and its components using dietary pattern identification and the single-nutrient approaches in The United States. METHODS This is a cross-sectional observation. Participants are selected from the National Health and Nutrition Examination Survey (NHANES) with available dietary intake, biochemical and anthropometrical data from 2001 to 2012. Exposure is diet obtained from 24-h dietary recall. Main outcome measure is MetS and its components. RESULTS Overall, 23 157 eligible individuals including 6561 with MetS were included in the final analysis. Using principle component analysis, we identified three food patterns that explained 50.8% of the variance of the dietary nutrient consumption. The highest quartile of the factor score representative of saturated/monounsaturated fatty acids or the first dietary pattern was associated with 1.27-fold (95% confidence interval (CI): 1.10-1.46, P=0.001) higher odds of association with MetS when compared with the first quartile. The second pattern representative of vitamins and trace elements had an odds ratio of 0.79 (95% CI: 0.70-0.89, P<0.001) for association with MetS, and the third pattern representative of polyunsaturated fatty acids did not have any association with MetS. The nutrient-by-nutrient approach showed that mild alcohol intake and lower consumption of total saturated fatty acids and sodium were associated with lower risk of MetS. CONCLUSIONS Application of multiple complementary analytic approaches reveals more comprehensive dietary determinants of MetS and its components as potential intervening targets.
Collapse
Affiliation(s)
- M Mazidi
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Institute of Genetics and Developmental Biology, International College, University of Chinese Academy of Science, Beijing, China
| | - S Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - F Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Fu J, Hou Y, Xue P, Wang H, Xu Y, Qu W, Zhang Q, Pi J. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev 2014; 14:81-101. [PMID: 24418256 DOI: 10.1016/j.arr.2014.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Aging is a complex biological phenomenon in which the deficiency of the nutritional state combined with the presence of chronic inflammation and oxidative stress contribute to the development of many age-related diseases. Under this profile, the free radicals produced by the oxidative stress lead to a damage of DNA, lipids and proteins with subsequent altered cellular homeostasis and integrity. In young-adult age, the cell has a complex efficient system to maintain a proper balance between the levels of free radicals and antioxidants ensuring the integrity of cellular components. In contrast, in old age this balance is poorly efficient compromising cellular homeostasis. Supplementation with Vitamin E can restore the balance and protect against the deteriorating effects of oxidative stress, progression of degenerative diseases, and aging. Experiments in cell cultures and in animals have clearly shown that Vitamin E has a pivotal role as antioxidant agent against the lipid peroxidation on cell membranes preserving the tissue cells from the oxidative damage. Such a role has been well documented in immune, endothelial, and brain cells from old animals describing how the Vitamin E works both at cytoplasmatic and nuclear levels with an influence on many genes related to the inflammatory/immune response. All these findings have supported a lot of clinical trials in old humans and in inflammatory age-related diseases with however contradictory and inconsistent results and even indicating a dangerous role of Vitamin E able to affect mortality. Various factors can contribute to all the discrepancies. Among them, the doses and the various isoforms of Vitamin E family (α,β,γ,δ tocopherols and the corresponding tocotrienols) used in different trials. However, the more plausible gap is the poor consideration of the Vitamin E-gene interactions that may open new roadmaps for a correct and personalized Vitamin E supplementation in aging and age-related diseases with satisfactory results in order to reach healthy aging and longevity. In this review, this peculiar nutrigenomic and/or nutrigenetic aspect is reported and discussed at the light of specific polymorphisms affecting the Vitamin E bioactivity.
Collapse
|
11
|
Ergin V, Hariry RE, Karasu C. Carbonyl stress in aging process: role of vitamins and phytochemicals as redox regulators. Aging Dis 2013; 4:276-94. [PMID: 24124633 DOI: 10.14336/ad.2013.0400276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022] Open
Abstract
There is a growing scientific agreement that the cellular redox regulators such as antioxidants, particularly the natural polyphenolic forms, may help lower the incidence of some pathologies, including metabolic diseases like diabetes and diabesity, cardiovascular and neurodegenerative abnormalities, and certain cancers or even have anti-aging properties. The recent researches indicate that the degree of metabolic modulation and adaptation response of cells to reductants as well as oxidants establish their survival and homeostasis, which is linked with very critical balance in imbalances in cellular redox capacity and signaling, and that might be an answer the questions why some antioxidants or phytochemicals potentially could do more harm than good, or why some proteins lose their function by increase interactions with glyco- and lipo-oxidation mediates in the cells (carbonyl stress). Nonetheless, pursue of healthy aging has led the use of antioxidants as a means to disrupt age-associated physiological dysfunctions, dysregulated metabolic processes or prevention of many age-related diseases. Although it is still early to define their exact clinical benefits for treating age-related disease, a diet rich in polyphenolic or other forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders. It is now clear that any deficiency in antioxidant vitamins, inadequate enzymatic antioxidant defenses can distinctive for many age-related disease, and protein carbonylation can used as an indicator of oxidative stress associated diseases and aging status. This review examines antioxidant compounds and plant polyphenols as redox regulators in health, disease and aging processes with hope that a better understanding of the many mechanisms involved with these distinct compounds, which may lead to better health and novel treatment approaches for age-related diseases.
Collapse
Affiliation(s)
- Volkan Ergin
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | |
Collapse
|
12
|
Capellini VK, Baldo CF, Celotto AC, Batalhão ME, Cárnio EC, Rodrigues AJ, Evora PRB. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats. ACTA ACUST UNITED AC 2011; 54:530-9. [PMID: 20857057 DOI: 10.1590/s0004-27302010000600004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. METHODS Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. RESULTS MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. CONCLUSIONS NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.
Collapse
Affiliation(s)
- Verena Kise Capellini
- Departamento de Cirurgia e Anatomia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Hayashi T, Mori T, Yamashita C, Miyamura M. Regulation of oxidative stress and cardioprotection in diabetes mellitus. Curr Cardiol Rev 2011; 4:251-8. [PMID: 20066132 PMCID: PMC2801856 DOI: 10.2174/157340308786349426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 12/31/2022] Open
Abstract
Analysis of the Framingham data has shown that the risk of heart failure is increased substantially among diabetic patients, while persons with the metabolic syndrome have an increased risk of both atherosclerosis and diabetes mellitus. Sleep apnea may be related to the metabolic syndrome and systemic inflammation through hypoxia, which might also cause the cardiac remodeling by increased oxidative stress. On the other hand, the renin-angiotensin system is activated in diabetes, and local angiotensin II production may lead to oxidative damage via the angiotensin II type 1 receptor. Basic and clinical data indicate that angiotensin II receptor blockers have the potential to preserve left ventricular function and prevent cardiac remodeling that is exaggerated by oxidative stress in patients with diabetes. Thus, alleviation of oxidative stress might be one possible strategy in the treatment of diabetic patients associated with sleep apnea.
Collapse
|
14
|
Protection of the vascular endothelium in experimental situations. Interdiscip Toxicol 2011; 4:20-6. [PMID: 21577280 PMCID: PMC3090050 DOI: 10.2478/v10102-011-0005-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/13/2011] [Indexed: 11/30/2022] Open
Abstract
One of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) and aorta, as well as by increased endothelaemia. Changes in endothelium-dependent relaxation of SMA were induced by injury of the nitric oxide radical (·NO)-signalling pathway since the endothelium-derived hyperpolarising factor (EDHF)-component of relaxation was not impaired by diabetes. The endothelial dysfunction was accompanied by decreased ·NO bioavailabity as a consequence of reduced activity of eNOS rather than its reduced expression. The results obtained using the chemiluminiscence method (CL) argue for increased oxidative stress and increased ROS production. The enzyme NAD(P)H-oxidase problably participates in ROS production in the later phases of diabetes. Oxidative stress was also connected with decreased levels of reduced glutathione (GSH) in the early phase of diabetes. After 10 weeks of diabetes, adaptational mechanisms probably took place because GSH levels were not changed compared to controls. Antioxidant properties of SMe1EC2 found in vitro were partly confirmed in vivo. Administration of SMe1EC2 protected endothelial function. It significantly decreased endothelaemia of diabetic rats and improved endothelium-dependent relaxation of arteries, slightly decreased ROS-production and increased bioavailability of ·NO in the aorta. Further studies with higher doses of SMe1EC2 may clarify the mechanism of its endothelium-protective effect in vivo.
Collapse
|
15
|
Vignini A, Alidori A, Montesi L, Raffaelli F, Nanetti L, Bertoli E, Mazzanti L. Vitamin E, diabetes and related diseases: an update. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2011; 4:3-9. [DOI: 10.1007/s12349-010-0006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Karasu Ç. Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes: effects of antioxidant treatment. Open Cardiovasc Med J 2010; 4:240-56. [PMID: 21270942 PMCID: PMC3026340 DOI: 10.2174/1874192401004010240] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/24/2010] [Accepted: 10/04/2010] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a common metabolic disease, representing a serious risk factor for the development of cardiovascular complications, such as coronary heart disease, peripheral arterial disease and hypertension. Oxidative stress (OS), a feature of DM, is defined as an increase in the steady-state levels of reactive oxygen species (ROS) and may occur as a result of increased free radical generation and/or decreased anti-oxidant defense mechanisms. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage in DM, either through repeated acute changes in cellular glucose metabolism, or through long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs are formed by the Maillard process, a non-enzymatic reaction between ketone group of the glucose molecule or aldehydes and the amino groups of proteins that contributes to the aging of proteins and to the pathological complications of DM. In the presence of uncontrolled hyperglycemia, the increased formation of AGEs and lipid peroxidation products exacerbate intracellular OS and results in a loss of molecular integrity, disruption in cellular signaling and homeostasis, followed by inflammation and tissue injury such as endothelium dysfunction, arterial stiffening and microvascular complications. In addition to increased AGE production, there is also evidence of multiple pathways elevating ROS generation in DM, including; enhanced glucose auto-oxidation, increased mitochondrial superoxide production, protein kinase C-dependent activation of NADPH oxidase, uncoupled endothelial nitric oxide synthase (eNOS) activity, increased substrate flux through the polyol pathway and stimulation of eicosanoid metabolism. It is, therefore, not surprising that the correction of these variables can result in amelioration of diabetic cardiovascular abnormalities. A linking element between these phenomena is cellular redox imbalance due to glycoxidative stress (GOS). Thus, recent interest has focused on strategies to prevent, reverse or retard GOS in order to modify the natural history of diabetic cardiovascular abnormalities. This review will discuss the links between GOS and diabetes-induced cardiovascular disorders and the effect of antioxidant therapy on altering the development of cardiovascular complications in diabetic animal models.
Collapse
Affiliation(s)
- Çimen Karasu
- The Leader of Antioxidants in Diabetes-Induced Complications (ADIC) Study Group. Cellular Stress Response & Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Burlakova EB, Karagezyan KG, Amirkhanyan OM, Ovakimyan SS, Sekoyan ES. Disorders of tissue transformations of lysophosphatidylcholines at experimental pancreatic diabetes in white rats and peculiarities of the corrective effect of low-energy laser radiation of an extremely low intensity. DOKL BIOCHEM BIOPHYS 2010; 433:145-7. [DOI: 10.1134/s1607672910040010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Indexed: 11/22/2022]
|
18
|
Ceylan-Isık A, Hünkar T, Aşan E, Kaymaz F, Arı N, Söylemezoǧlu T, Renda N, Soncul H, Bali M, Karasu Ç. Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats. J Pharm Pharmacol 2010; 59:1629-41. [DOI: 10.1211/jpp.59.12.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Abnormalities in the metabolism of essential fatty acids and the results of increased oxidative stress have been implicated in cardiovascular disorders observed in diabetes mellitus. This study, therefore, aimed to investigate the effects of cod liver oil (CLO, Lysi Ltd, Iceland), which comprises mainly an antioxidant vitamin A, n:3 polyunsaturated fatty acids (n:3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cardiovascular abnormalities in streptozotocin (STZ)-diabetic rats. Two days after single STZ (55 mg kg−1, i.p.) or vehicle injection, diabetes was verified by increased blood glucose, and non-diabetic and diabetic rats were left untreated or treated with CLO (0.5 mL kg−1 daily, by intragastric probing) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic rats; CLO provided better weight gain, entirely prevented the plasma lipid abnormalities, but partially controlled the glycaemia in diabetic rats. In isolated aorta rings, diabetes resulted in increased phenylephrine-induced vasoconstriction and isoprenaline-induced vasorelaxation, impaired endothelium-dependent vasodilatation and unchanged responsiveness to sodium nitroprusside. CLO treatment completely prevented endothelial deficiency, partly corrected the phenylephrine-induced vasoconstriction and did not affect the responses to isoprenaline and sodium nitroprusside in diabetic aorta. Diabetes also produced a marked decrease in the rate of spontaneously beating right atria and a significant increase in basal contractile force of left ventricular papillary muscle. The responsiveness of right atria to the positive chronotropic effect of isoprenaline was significantly decreased in diabetic rats, and was increased in CLO-treated diabetic rats. The positive chronotropic effect of noradrenaline was markedly increased in diabetic atria, but prevented by CLO treatment. Diabetes also resulted in an increased positive inotropic response of papillary muscle to both noradrenaline and isoprenaline, which were prevented by CLO treatment. CLO treatment also resulted in lower tissue sensitivity (pD2) to these agonists in diabetic papillary muscle. Ventricular hydroxy-proline content was found to be unchanged among the experimental groups. The ultrastructure of diabetic myocardium displayed various degenerations (i.e. intracellular oedema, myofibrillar fragmentation, condensed pleomorphic mitochondria, thick capillary irregular basement membrane, swollen endothelial cells), which were partially prevented by CLO treatment. We conclude that the supplementation with CLO is effective in preventing cardiovascular disorders observed in experimental diabetes.
Collapse
Affiliation(s)
- Aslı Ceylan-Isık
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tuǧba Hünkar
- Institute of Forensic Medicine, Ankara University, Ankara, Turkey
| | - Esin Aşan
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Fugen Kaymaz
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Nurten Renda
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Halim Soncul
- Department of Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Musa Bali
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Çimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
19
|
Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics (Sao Paulo) 2009; 64:235-44. [PMID: 19330251 PMCID: PMC2666447 DOI: 10.1590/s1807-59322009000300015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/24/2008] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study examined the effects of palm oil tocotrienol-rich fractions on streptozotocin-induced diabetic rats. METHODS Animals were divided into three groups: (i) normal non-diabetic (NDM), (ii) diabetic treated (tocotrienol-rich fractions - TRF) and (iii) diabetic untreated (non-TRF). The treatment group received oral administration of tocotrienol-rich fractions (200 mg/kg body weight) daily for eight weeks. The normal non-diabetic and the diabetic untreated groups were fed standard rat feed. Blood glucose and lipid profiles, oxidative stress markers and morphological changes of the thoracic aorta were evaluated. RESULTS Tocotrienol-rich fractions treatment reduced serum glucose and glycated hemoglobin concentrations. The tocotrienol-rich fractions group also showed significantly lower levels of plasma total cholesterol, low-density lipoprotein cholesterol, and triglyceride, as compared to the untreated group. The tocotrienol-rich fractions group had higher levels of high-density lipoprotein cholesterol, as compared to the untreated group. Superoxide dismutase activity and levels of vitamin C in plasma were increased in tocotrienol-rich fractions-treated rats. The levels of plasma and aorta malondealdehyde + 4-hydroxynonenal (MDA + 4-HNE) and oxidative DNA damage were significant following tocotrienol-rich fractions treatment. Electron microscopic examination showed that the normal morphology of the thoracic aorta was disrupted in STZ-diabetic rats. Tocotrienol-rich fractions supplementation resulted in a protective effect on the vessel wall. CONCLUSION These results show that tocotrienol-rich fractions lowers the blood glucose level and improves dyslipidemia. Levels of oxidative stress markers were also reduced by administration of tocotrienol-rich fractions. Vessel wall integrity was maintained due to the positive effects mediated by tocotrienol-rich fractions.
Collapse
MESH Headings
- Animals
- Antioxidants/administration & dosage
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/ultrastructure
- Blood Glucose/drug effects
- Cholesterol/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/pathology
- Dietary Supplements
- Male
- Microscopy, Electron, Transmission
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/ultrastructure
- Oxidative Stress/drug effects
- Palm Oil
- Plant Oils/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Tocotrienols/administration & dosage
Collapse
Affiliation(s)
- Siti Balkis Budin
- Department of Biomedical Science, Faculty of Allied Health Sciences, Universiti Kebangsaan – Malaysia
| | - Faizah Othman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia - Malaysia
| | - Santhana Raj Louis
- Division of Electron Microscope, Institute for Medical Research - Malaysia
| | - Mokhtar Abu Bakar
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia - Malaysia. Tel.: 603 40405645,
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia - Malaysia
| | - Jamaludin Mohamed
- Department of Biomedical Science, Faculty of Allied Health Sciences, Universiti Kebangsaan – Malaysia
| |
Collapse
|
20
|
Silan C. The Effects of Chronic Resveratrol Treatment on Vascular Responsiveness of Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2008; 31:897-902. [DOI: 10.1248/bpb.31.897] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Coskun Silan
- Department of Pharmacology, Faculty of Medicine, Düzce University
| |
Collapse
|
21
|
Gravimetric and morphometric assessments in Wistar rats with experimental diabetes mellitus type 1 and cardiac failure. ACTA VET-BEOGRAD 2008. [DOI: 10.2298/avb0806583c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Yülek F, Or M, Ozoğul C, Isik AC, Ari N, Stefek M, Bauer V, Karasu C. Effects of stobadine and vitamin E in diabetes-induced retinal abnormalities: involvement of oxidative stress. Arch Med Res 2007; 38:503-11. [PMID: 17560455 DOI: 10.1016/j.arcmed.2007.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 02/20/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Because hyperglycemia-induced oxidative stress may be a cause of retinopathy, this study examined the hypothesis that administration of exogenous antioxidants, stobadine (ST) and vitamin E (vitE), can restore retinal abnormalities in experimental diabetes. METHODS Normal and streptozotocin (STZ)-induced male Wistar rats received daily intraoral doses of ST (24.7 mg/kg) and vitE (alpha-dl-tocopherol acetate, 400-500 IU/kg) individually or in combinations for 8 months. The biochemical parameters including aldose reductase enzyme (AR) activity and lipid peroxidation (MDA), and histopathological changes such as retinal capillary basement membrane thickness (RCBMT) and vascular endothelial growth factor (VEGF) expression were evaluated. RESULTS A 37.99% increase in RCBMT was observed in rats after 8 months diabetes duration. The increase in RCBMT was 12.34% in diabetic rats treated with ST and 23.07% in diabetic rats treated with vitE. In diabetic rats treated with antioxidant combination, just a 4.38% increase was observed in RCBMT. The excess VEGF immunoreactivity and increased MDA and AR activity determined in diabetic retina were significantly attenuated by individual antioxidant treatments. Although both antioxidants decreased blood glucose, HbA1c, fructosamine and triglyceride levels in diabetic rats, poor glycemic control was maintained in all experimental groups during the treatment period. However, the antioxidant combination led to almost complete amelioration in retinal MDA and RCBMT in diabetic rats. CONCLUSIONS The ability of antioxidant combination to arrest retinal abnormalities and lipid peroxidation even in the presence of poor glycemic control might advocate the key role of direct oxidative damage and the protective action of antioxidants in retinal alterations associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Fatma Yülek
- Department of Ophthalmalogy, Gazi University, Besevler, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Effect of Combined Extract of Safflower Seed with Herbs on Blood Glucose Level and Biochemical Parameters in Streptozotocin-induced Diabetic Rats. ACTA ACUST UNITED AC 2006. [DOI: 10.3746/jkfn.2006.35.2.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Majithiya JB, Balaraman R. Time-Dependent Changes in Antioxidant Enzymes and Vascular Reactivity of Aorta in Streptozotocin-Induced Diabetic Rats Treated With Curcumin. J Cardiovasc Pharmacol 2005; 46:697-705. [PMID: 16220078 DOI: 10.1097/01.fjc.0000183720.85014.24] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study changes in oxidative stress and vascular reactivity in aortic rings of chronic streptozotocin-diabetic (STZ-CON) and nondiabetic (ND-CON) rats is studied at 4 weekly intervals up to 24 weeks. The effect of chronic curcumin (200 mg/kg) treatment was also studied. Blood glucose and blood pressure levels were significantly higher in the STZ-CON group and curcumin administration had no significant effect on it. Superoxide dismutase and catalase activity were either unchanged or significantly increased during the early stage of diabetes whereas during the medium and late stage were significantly reduced. Reduced glutathione and lipid peroxidation levels significantly decreased as time after STZ administration increased. Phenylephrine (PE)-induced contraction was significantly (P < 0.05) increased during the early stage of diabetes, whereas it was significantly (P < 0.05) reduced at the medium and late stage of diabetes. Acetylcholine (Ach)-induced relaxation significantly decreased with respect to time after STZ administration. Sodium nitroprusside (SNP)-induced relaxation was unaltered up to initial stage but after medium stage there was a rightward shift and the pD2 value significantly decreased. Though curcumin treatment had no significant effect on superoxide dismutase, catalase, and reduced glutathione levels, it significantly reduced lipid peroxidation compared with diabetic control. Curcumin treatment attenuated the phenylephrine-induced increase in contraction during the early stage. However, curcumin treatment had no significant effect at the medium and late stage. Though curcumin administration improved Ach-induced relaxation it did not restore it to normal. Inability of curcumin to prevent oxidative stress during the late stage may be due to the fact that chronic diabetes (hyperglycemia) leads to excessive production of free radicals. Hence the present study shows that variations reported in antioxidant enzymes and vascular reactivity are due to the duration of diabetes or time after diabetes induction in STZ model and this can not be completely reversed by chronic treatment with curcumin.
Collapse
Affiliation(s)
- Jayesh B Majithiya
- Pharmacy Department, Faculty of Technology and Engineering, M. S. University of Baroda, Kalabhavan, Baroda-390001, Gujarat, India.
| | | |
Collapse
|
25
|
Majithiya JB, Parmar AN, Trivedi CJ, Balaraman R. Effect of pioglitazone on L-NAME induced hypertension in diabetic rats. Vascul Pharmacol 2005; 43:260-6. [PMID: 16168716 DOI: 10.1016/j.vph.2005.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 08/02/2005] [Accepted: 08/17/2005] [Indexed: 11/24/2022]
Abstract
The present study investigates the effect of pioglitazone treatment on blood pressure, vascular reactivity and antioxidant enzymes in L-NAME induced hypertension in normal and STZ-diabetic rats. Diabetes was induced in male Sprague Dawley rats (200+/-15 g) by single intravenous injection of 55 mg/kg of streptozotocin (STZ). Rats were randomized into diabetic and nondiabetic groups, Nomega-nitro-L-arginine-methyl ester (L-NAME, 50 mg/kg) was administered in drinking water for 4 weeks. They were treated with pioglitazone (10 mg/kg/day, p.o.) for 4 weeks and following protocol was carried out. Blood pressure, blood glucose levels and body weight were measured. Thoracic aorta was isolated and dose response curve of phenylephrine (PE) with intact and denuded endothelium was recorded. Dose response curve of acetylcholine (Ach) and sodium nitroprusside (SNP) was recorded in precontracted rings. Lipid peroxidation, superoxide dismutase, catalase, and reduced glutathione were estimated in liver, kidney, and aorta. Pioglitazone produced no significant effect on blood glucose levels, body weight and blood pressure of L-NAME administered nondiabetic and diabetic rats. Pioglitazone treatment had no significant effect on PE induced contraction and Ach induced relaxation in L-NAME diabetic and nondiabetic rats. SNP completely relaxed aortic rings of all the groups. Higher oxidative stress in case of diabetic rats was significantly (p<0.05) reduced by pioglitazone treatment. Although pioglitazone reduced oxidative stress in diabetic rats, there was no significant effect on blood pressure as there was complete absence of nitric oxide due to administration of L-NAME. Hence from the present study it can be concluded that reduction in blood pressure in case of STZ-diabetic rats is nitric oxide mediated.
Collapse
Affiliation(s)
- Jayesh B Majithiya
- Pharmacy Department, Faculty of Technology and Engineering, M. S. University of Baroda, Kalabhavan, Baroda 390001, Gujarat, India.
| | | | | | | |
Collapse
|
26
|
Güneş A, Ceylan A, Sarioglu Y, Stefek M, Bauer V, Karasu C. Reactive oxygen species mediate abnormal contractile response to sympathetic nerve stimulation and noradrenaline in the vas deferens of chronically diabetic rats: effects of in vivo treatment with antioxidants. Fundam Clin Pharmacol 2005; 19:73-9. [PMID: 15660962 DOI: 10.1111/j.1472-8206.2004.00312.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies suggest that a link exists between increased oxidative stress and diabetic neuropathy. Moreover, antioxidants may protect neurones from the degenerative effects of reactive oxygen species. In our study, we used streptozotocin (STZ)-diabetic rats in a 8-month chronic diabetes model to study the effects of in vivo treatment with stobadine (ST), a pyridoindole antioxidant, and vitamin E. STZ-diabetic rats were treated with ST (24.7 mg/kg/day), vitamin E (D,L-alpha-tocopheryl acetate, 400-500 IU/kg/day) or ST plus vitamin E through an intra-oral catheter for a 8-month period beginning 10 days after STZ injection. Blood glucose and HbA1c levels were increased in diabetic rats by about 400 and 100%, respectively. Antioxidant treatment significantly decreased haemoglobin glycosylation (P < 0.05). We also determined the effects of chronic diabetes on sympathetic neurotransmission by measuring the contractility of isolated vas deferens. Furthermore, we investigated contractions elicited by electrical field stimulation (EFS) (1-64 Hz) which were significantly decreased in diabetic rats when compared with control rats. Treatment with ST or vitamin E alone partly enhanced the amplitude of the contractions induced by EFS, but a combination of ST and vitamin E treatment showed no additional effects. Contractile response of the vas deferens to exogenous noradrenaline, was increased in diabetic rats when compared with control rats. While the addition of vitamin E alone had no effect, ST completely returned noradrenaline-induced contractions to basal levels. The tension induced by 120 mm KCl was not statistically different among the experimental groups. In normal rats, EFS-induced contractions were significantly inhibited by pyrogallol (10(-4) m), a free-radical generator. Percentage inhibition of pyrogallol on EFS (32 Hz)-induced contractions in ring sections was 48 +/- 5.8 in control, 75 +/- 5.5 in untreated-diabetic, 54 +/- 2.7 in ST-treated diabetic, and 58 +/- 4.7 in vitamin E-treated diabetic rats. Combining both ST and vitamin E treatment had the same effects as each antioxidant alone with a percent inhibition of 48 +/- 6.8. These results are consistent with the degenerative changes seen in sympathetic nerves and the abnormal function observed in chronically diabetic rats, leading to a decrease in EFS response and an increase in response to adrenergic agonists in the vas deferens. Furthermore, we demonstrated that reactive oxygen species are responsible for impaired sympathetic neurotransmission and abnormal function of diabetic vas deferens, and that a combination of antioxidants may be better for the therapy of reproductive system disabilities in male diabetics.
Collapse
Affiliation(s)
- A Güneş
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
De Young L, Yu D, Bateman RM, Brock GB. Oxidative stress and antioxidant therapy: their impact in diabetes-associated erectile dysfunction. ACTA ACUST UNITED AC 2005; 25:830-6. [PMID: 15292117 DOI: 10.1002/j.1939-4640.2004.tb02862.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is believed to affect the development of diabetic-associated vasculopathy, endothelial dysfunction, and neuropathy within erectile tissue. Our hypothesis is that, given adequate concentrations of the oxygen free radical scavenger vitamin E, enhanced levels of circulating nitric oxide (NO) should improve erectile function with the potential for a synergistic effect with a phosphodiesterase type 5 (PDE5) inhibitor. Twenty adult male Sprague-Dawley streptozotocin-induced (60 mg/kg intraperitoneally) diabetic rats were placed in 4 therapeutic groups (n = 5 per group) as follows: 1) peanut oil only (diabetic control), 2) 20 IU of vitamin E per day, 3) 5 mg/kg of sildenafil per day, and 4) vitamin E plus sildenafil using oral gavage for 3 weeks. In addition, 5 age-matched rats served as normal nondiabetic controls (normal). Erectile function was assessed by measuring the rise in intracavernous pressure (ICP) following cavernous nerve electrostimulation. Penile tissue was evaluated for neuronal NO synthase (nNOS), smooth muscle alpha-actin, nitrotyrosine, and endothelial cell integrity. Urine nitrite and nitrate (NOx) concentration was quantified, and electrolytes were tested by a serum biochemistry panel. A significant decrease in ICP was recorded in the diabetic animals, with improvement measured in the animals receiving PDE5 inhibitors either with or without vitamin E; the controls had a pressure of 54.8 +/- 5.3 cm H2O, the vitamin E group had a pressure of 73.5 +/- 6.6 cm H2O, the sildenafil group had a pressure of 78.4 +/- 10.77 cm H2O, and the vitamin E plus sildenafil group had a pressure of 87.9 +/- 5.5 cm H2O (P <.05), compared with the normal cohorts at 103.0 +/- 4.8 cm H2O. Histoexaminations showed improved nNOS, endothelial cell, and smooth muscle cell staining in the vitamin E plus sildenafil group compared to the control animals. Urine NOx increased significantly in all the diabetic groups but was blunted in the vitamin E and vitamin E plus sildenafil groups. A significant increase in positive staining for nitrotyrosine was observed in the vitamin E plus sildenafil group. Vitamin E enhanced the therapeutic effect of the PDE5 inhibitor in this study, supporting the potential use of oxygen free radical scavengers in salvaging erectile function in diabetic patients.
Collapse
Affiliation(s)
- Ling De Young
- Department of Urology, St Joseph's Health Care, London, Canada N6A 4V2
| | | | | | | |
Collapse
|
28
|
Jeong HY, Son SM, Kim YK, Yun MR, Lee SM, Kim CD. Tyrosine kinase-mediated activation of NADPH oxidase enhances proliferative capacity of diabetic vascular smooth muscle cells. Life Sci 2005; 76:1747-57. [PMID: 15698853 DOI: 10.1016/j.lfs.2004.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 09/28/2004] [Indexed: 11/21/2022]
Abstract
To investigate a potential molecular basis for a link between diabetes and atherosclerosis, experiments were performed to determine the role of NADPH oxidase in the enhanced proliferative capacity of vascular smooth muscle cells (VSMC) from OLETF rat, an animal model of type 2 diabetes. An enhanced proliferative response to 10% fetal bovine serum with an increased cell cycle progression from G1 to S phase as well as an augmented superoxide generation with an increased NADPH oxidase activity were observed in diabetic versus control VSMC. Both the enhanced proliferation and superoxide generation in diabetic VSMC were significantly attenuated not only by diphenyleneiodonium (10 microM) and apocynin (100 microM), NADPH oxidase inhibitors but also by protein tyrosine kinase inhibitors such as genistein (100 microM) and AG 112 (100 microM). Furthermore, the enhanced NADPH oxidase activity in diabetic VSMC was significantly attenuated by genistein and AG112, but not by daidzein (100 microM), a genistein analogue devoid of protein tyrosine kinase inhibitory properties. Based on these results, it is suggested that the enhanced proliferative capacity of diabetic VSMC is closely related to the activation of NADPH oxidase that is induced through activation of protein tyrosine kinase.
Collapse
Affiliation(s)
- Hye Young Jeong
- Department of Pharmacology and Internal Medicine, College of Medicine, Research Institute of Genetic Engineering and Medical Research Institute, Pusan National University, 10 Ami-Dong 1-Ga, Seo-Gu, Busan 602-739, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Jeong HY, Jeong HY, Kim CD. p22phox-derived superoxide mediates enhanced proliferative capacity of diabetic vascular smooth muscle cells. Diabetes Res Clin Pract 2004; 64:1-10. [PMID: 15036821 DOI: 10.1016/j.diabres.2003.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 07/14/2003] [Accepted: 10/08/2003] [Indexed: 11/23/2022]
Abstract
To investigate the mechanisms that contribute to the acceleration of atherosclerosis in diabetes, the role of NAD(P)H oxidase in the enhanced proliferative capacity of diabetic vascular smooth muscle cells (VSMC) was studied. VSMC from streptozotocin (STZ)-induced diabetic rat aorta had increased proliferative capacity and generated higher levels of superoxide in comparison with cells from control rats. Both the enhanced proliferation and superoxide generation in diabetic VSMC were significantly attenuated not only by tiron (1mM), a superoxide scavenger but also by diphenyleneiodonium (DPI; 10microM), an NAD(P)H oxidase inhibitor. Both the activity of NAD(P)H oxidase and p22phox expression were significantly increased in diabetic VSMC. Furthermore, inhibition of p22phox expression by transfection of antisense p22phox oligonucleotides into diabetic VSMC resulted in a decrease in superoxide generation, which was accompanied by a significant attenuation of cell proliferation. Based on these results, it is suggested that diabetes-associated increase in NAD(P)H oxidase activity via enhanced expression of p22phox contributes to augmented VSMC proliferation in diabetic rats.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/pathology
- Base Sequence
- Cell Division/drug effects
- Cells, Cultured
- DNA Primers
- Diabetes Mellitus, Experimental/pathology
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic/genetics
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/pharmacology
- Membrane Transport Proteins/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- NAD/metabolism
- NADH, NADPH Oxidoreductases/genetics
- NADPH Dehydrogenase/genetics
- NADPH Dehydrogenase/pharmacology
- NADPH Dehydrogenase/physiology
- NADPH Oxidases
- Oligonucleotides, Antisense/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/pharmacology
- Phosphoproteins/physiology
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/pharmacology
- Transfection
- Xanthine/metabolism
Collapse
Affiliation(s)
- Hye Y Jeong
- Department of Pharmacology, College of Medicine, Research Institute of Genetic Engineering, Pusan National University, 10 Ami-Dong 1-Ga, Seo-Gu, Busan 602-739, South Korea
| | | | | |
Collapse
|
30
|
De Young L, Yu D, Freeman D, Brock GB. Effect of PDE5 inhibition combined with free oxygen radical scavenger therapy on erectile function in a diabetic animal model. Int J Impot Res 2003; 15:347-54. [PMID: 14562136 DOI: 10.1038/sj.ijir.3901026] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphodiesterase (PDE) inhibitors represent an important advance in the treatment of erectile dysfunction (ED). In spite of widespread use and generally good efficacy, as a class they remain ineffective in 15-57% of men. Specific cohorts of patients with severe vascular or neurogenic basis to their ED, such as diabetic men or those who have undergone radical pelvic surgery, demonstrate lower response rates with PDE inhibition treatment. We believe that circulating levels of nitric oxide (NO) may be enhanced through delivery of adequate concentrations of free oxygen radical scavenger molecules such as vitamin E. Higher levels of NO, theoretically, should produce increased penile blood flow with the potential for a synergistic effect when combined with a PDE5 inhibitor. With this hypothesis in mind, 20 adult male Sprague-Dawley streptozotocin-induced (60 mg/kg i.p.) diabetic rats were divided into four therapeutic groups (n=5). Group I--control animals received peanut oil, group II--vitamin E 20 IU/day, group III--sildenafil 5 mg/kg/day and group IV--vitamin E 20 IU/day plus sildenafil 5 mg/kg/day, by oral gavage daily for 3 weeks. Erectile function was assessed as a rise in intracavernous pressure following cavernous nerve electrostimulation. Penile tissue was harvested to determine the changes in tissue morphology including neuronal nitric oxide synthase, smooth muscle alpha-actin and endothelial cell integrity. PDE5 protein content and activity were measured. Significant increases in intracavernous pressure were measured in the animals receiving combined vitamin E plus sildenafil treatment. Immunohistochemical staining showed increases of neuronal nitric oxide synthase, endothelial cell and smooth muscle cell staining. Western blot analysis did not show significant differences of PDE5 protein between the groups. However, higher PDE5 activity was measured in the sildenafil group and lower activity of PDE5 was recorded in the cohort receiving vitamin E with sildenafil. Vitamin E enhanced the therapeutic effect of the PDE5 inhibitor in a meaningful way in this animal model of diabetes. This study indicates a potential means of salvaging erectile function among patients who are refractory to sildenafil.
Collapse
Affiliation(s)
- L De Young
- Department of Urology, St Joseph's Health Care, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Ulusu NN, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C. Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochem Res 2003; 28:815-23. [PMID: 12718433 DOI: 10.1023/a:1023202805255] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the present study was to investigate the effects of treatment with antioxidant stobadine (ST) on the activities of enzymes related with pentose phosphate pathway and glutathione-dependent metabolism and the other markers of oxidative stress in brain and peripheral organs of diabetic rats, and to compare the effects of ST treatment alone with the effects of treatments with another antioxidant vitamin E and ST plus vitamin E. Rats were made diabetic by the injection of streptozotocin (STZ; 55 mg/kg IP), and, 2 days later, some control and diabetic rats were left untreated or treated with ST (24.7 mg/kg/day, orally), vitamin E (400-500 U/kg/day, orally), or both substances together. In the brain, although 6-phosphogluconate dehydrogenase activity (6-PGD) did not change, glucose-6-phosphate dehydrogenase activity (G-6PD) was markedly increased in diabetic rats compared with controls; only combined treatment with ST and vitamin E produced a partial prevention on this alteration. The aorta G-6PD and 6-PGD of diabetic rats were 52% and 36% of control values, respectively. Neither single treatments with each antioxidant nor their combination altered the G-6PD and 6-PGD in aorta of diabetic rats. Glutathione peroxidase (GSHPx) activity was increased by STZ-diabetes in brain, heart, and kidney. In diabetic brain, vitamin E alone or combination with ST kept GSHPx at normal levels. Diabetes-induced stimulation in GSHPx did not decrease in response to the treatment with vitamin E in heart and kidney, but was greatly prevented by ST alone. The activity of glutathione reductase (GR) was decreased in brain and heart of diabetic rats. The treatment with each antioxidant or with a combination of both agents completely prevented this deficiency and resulted in further activation of GR in diabetic tissues. Glutathione S-transferase (GST) activity did not significantly change in diabetic brain and aorta. GST was stimulated by all treatment protocols in the brain of diabetic rats and was depressed in aorta of control rats. Catalase (CAT) was activated in diabetic heart but depressed in diabetic kidney. Diabetes-induced abnormalities in CAT activity did not respond to vitamin E alone in heart, was moderately ameliorated by the treatment with this vitamin in kidney, and was completely prevented by ST alone in both tissues. Superoxide dismutase (SOD) activity of brain and heart was unchanged by the diabetes but inhibited in diabetic kidney after the treatment ST alone or ST plus vitamin E. The lipid peroxidation (MDA) was increased in diabetic brain and heart. ST or vitamin E alone partly prevented diabetes-induced increase in MDA in brain and heart; however, antioxidant combination achieved a completely amelioration in MDA of these tissues of diabetic rats. Kidney MDA levels were similar in control and untreated diabetic animals. ST and vitamin E treatments, when applied separately or together, significantly reduced kidney MDA in both control and diabetic rats; and the combined effect of antioxidants was greater than that of each alone. These results are consistent with the degenerative role of hyperglycemia on cellular reducing equivalent homeostasis and antioxidant defense, and provide further evidence that pharmacological intervention of different antioxidants may have significant implications in the prevention of the prooxidant feature of diabetes and protects redox status of the cells.
Collapse
Affiliation(s)
- Nuray N Ulusu
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dogru Pekiner B, Daş Evcimen N, Ulusu NN, Bali M, Karasu C. Effects of vitamin E on microsomal Ca(2+) -ATPase activity and calcium levels in streptozotocin-induced diabetic rat kidney. Cell Biochem Funct 2003; 21:177-82. [PMID: 12736908 DOI: 10.1002/cbf.1016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.
Collapse
|
33
|
Dhein S, Kabat A, Olbrich A, Rösen P, Schröder H, Mohr FW. Effect of chronic treatment with vitamin E on endothelial dysfunction in a type I in vivo diabetes mellitus model and in vitro. J Pharmacol Exp Ther 2003; 305:114-22. [PMID: 12649359 DOI: 10.1124/jpet.102.045740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus often leads to generalized vasculopathy. Because of the pathophysiological role of free radicals we investigated the effects of vitamin E. Twenty-eight rats were rendered diabetic by streptozotocin injection and were fed either with a diet with low (10 mg/kg of chow), medium (75 mg/kg of chow) or high amounts of vitamin E (1300 mg/kg of chow). Nine age-matched nondiabetic rats receiving 75 mg of vitamin E/kg chow served as controls. After 7 months, mesenteric microcirculation was investigated. Smooth muscle contractile function was not altered in diabetic versus nondiabetic vessels. Endothelial function was significantly reduced in diabetics; relaxation upon 1 micro M acetylcholine was reduced by 50% in diabetics with a medium and high vitamin E diet. In vitamin E-deprived rats, a complete loss of endothelium-dependent relaxation was observed, and instead, acetylcholine elicited vasoconstriction. L-N(G)-Nitro-arginine-induced vasoconstriction was reduced in small arteries in diabetics, which was not prevented by vitamin E, but was aggravated by vitamin E deprivation. In a subchronic endothelial cell culture model, cells were cultivated with 5 or 20 mM D-glucose for an entire cell culture passage (4 days) with or without vitamin E (20 mg/l versus 0.01 mg/l). Hyperglycemia led to significant reduction in basal and ATP-stimulated nitric oxide (NO)-production. Hyperglycemia-induced reduction in basal NO-release was significantly prevented by vitamin E, whereas reduction in stimulated NO-release was not influenced. NADPH-diaphorase activity was reduced by 40% by hyperglycemia, which was completely prevented by vitamin E. We conclude that 1) vitamin E has a potential to prevent partially hyperglycemia-induced endothelial dysfunction, 2) under in vivo conditions vitamin E deficiency enhanced diabetic endothelial dysfunction dramatically, and 3) positive effects of vitamin E may be attenuated with a longer disease duration.
Collapse
Affiliation(s)
- S Dhein
- University of Leipzig, Heart Centre Leipzig, Clinic for Cardiac Surgery, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Sener G, Saçan O, Yanardağ R, Ayanoğlu-Dülger G. Effects of chard (Beta vulgaris L. var. cicla) extract on oxidative injury in the aorta and heart of streptozotocin-diabetic rats. J Med Food 2003; 5:37-42. [PMID: 12511111 DOI: 10.1089/109662002753723205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In diabetes mellitus, increased free radical formation raises the incidence of atherosclerosis and cardiovascular diseases. Regardless of the type of diabetes, the objective of the therapy is to achieve normoglycemia and to prevent or delay the complications. Chard (Beta vulgaris L. var. cicla) is used as a hypoglycemic agent by diabetic patients in Turkey. The aim of this study was to investigate the effect of feeding chard on diabetes-induced free radical-mediated injury in rat aorta and heart tissues. Female Swiss albino rats were randomly divided into four groups: control, diabetic, chard, and diabetic + chard. Rats were subjected to intraperitoneal streptozotocin (STZ, 65 mg/kg) to induce diabetes. Chard extract (2 g/kg) was given for 28 days beginning on the 14th day of the study. Aorta and heart tissue lipid peroxidation and glutathione levels as well as blood glucose levels were determined. The results of the present study indicate that lipid peroxidation was increased and glutathione levels were decreased in both aorta and heart tissue of the diabetic rats. However, treatment with chard extract reversed the effects of diabetes on blood glucose and tissue lipid peroxidation and glutathione levels.
Collapse
Affiliation(s)
- G Sener
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, 81010, Istanbul, Turkey.
| | | | | | | |
Collapse
|
35
|
Pekiner B, Ulusu NN, Das-Evcimen N, Sahilli M, Aktan F, Stefek M, Stolc S, Karasu C. In vivo treatment with stobadine prevents lipid peroxidation, protein glycation and calcium overload but does not ameliorate Ca2+ -ATPase activity in heart and liver of streptozotocin-diabetic rats: comparison with vitamin E. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:71-8. [PMID: 12379316 DOI: 10.1016/s0925-4439(02)00141-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Bilgehan Pekiner
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pieper GM, Siebeneich W, Olds CL, Felix CC, Del Soldato P. Vascular protective actions of a nitric oxide aspirin analog in both in vitro and in vivo models of diabetes mellitus. Free Radic Biol Med 2002; 32:1143-56. [PMID: 12031899 DOI: 10.1016/s0891-5849(02)00832-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Defective endothelium-dependent relaxation is observed in experimental and human diabetes mellitus. The nature of this defect is not fully understood but may involve decreased nitric oxide (NO) bioactivity due to enhanced production of reactive oxygen species (ROS). In this paper, we examine the benefits and actions of a novel NO-donating, antioxidant called 2-acetoxybenzoic acid 2-(2-nitrooxymethyl) phenyl ester, and denoted as NCX4016, on NO-mediated endothelium-dependent relaxation in normal arteries exposed to acute elevations in glucose or in arteries derived from chronic diabetic animals. MATERIAL AND METHODS Intrinsic free radical scavenging by NO-NSAIDs in solution were evaluated using electron paramagnetic resonance (EPR) spectroscopy and spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In acute studies, normal rat aortas were exposed in tissue culture for 18 h to 5.5 mM or 40 mM in the presence or absence of NCX4016, a NO-donating NSAID unrelated to aspirin (NCX2216) or aspirin. Vascular reactivity of thoracic aortic rings to endothelium-dependent relaxation to acetylcholine in vitro was determined. For chronic hyperglycemia, diabetes was induced in rats by intravenous injection with streptozotocin. Vascular reactivity of thoracic aortic rings to endothelium-dependent relaxation to acetylcholine in vitro was determined after 8 wks in untreated animals or animals chronically-treated with NCX4016. Antioxidant efficacy in vivo was determined by measurement of plasma isoprostanes and by nuclear binding activity of NF-kappaB in nuclear fractions of aortae. RESULTS Incubation with NCX4016 and NCX2216 produced a concentration-dependent inhibition of DMPO-OH formation indicating scavenging of hydroxyl radicals (HO(*)). In contrast, little efficacy to scavenge superoxide anion radicals was noted. Acute incubation of normal arteries with elevated glucose concentration caused inhibition of normal relaxation to acetylcholine. This impairment was prevented by co-incubation with NCX4106 but not by mannitol, the parent compound (aspirin) or by NCX2216. In addition, chronic treatment with NCX4016 prevented the development of defective endothelium-dependent relaxation to acetylcholine. This protection did not occur as a result to any changes in blood glucose concentration or hemoglobin glycation. Treatment with NCX4016 did decrease the elevation in plasma isoprostanes and normalized the diabetes-induced increase in NF-kappaB binding activity in nuclear fractions derived from aortic tissue. CONCLUSIONS Collectively, these studies suggest that antioxidant interventions using NO-donating NSAIDs may provide an important novel therapeutic strategy to protect the diabetic endothelium.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Aorta, Thoracic/drug effects
- Aspirin/analogs & derivatives
- Aspirin/pharmacology
- Aspirin/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Electron Spin Resonance Spectroscopy
- Electrophoretic Mobility Shift Assay
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Free Radical Scavengers/pharmacology
- Free Radical Scavengers/therapeutic use
- Gene Expression/drug effects
- Glucose/metabolism
- Glucose/pharmacology
- Hydroxyl Radical/metabolism
- Hyperglycemia/drug therapy
- Hyperglycemia/metabolism
- Isoprostanes/metabolism
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Nitric Oxide/metabolism
- Norepinephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Superoxides/metabolism
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Galen M Pieper
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
37
|
Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 2002; 51:174-81. [PMID: 11756338 DOI: 10.2337/diabetes.51.1.174] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many diabetic patients suffer from cardiomyopathy, even in the absence of vascular disease. This diabetic cardiomyopathy predisposes patients to heart failure and mortality from myocardial infarction. Evidence from animal models suggests that reactive oxygen species play an important role in the development of diabetic cardiomyopathy. Our laboratory previously developed a transgenic mouse model with targeted overexpression of the antioxidant protein metallothionein (MT) in the heart. In this study we used MT-transgenic mice to test whether an antioxidant protein can reduce cardiomyopathy in the OVE26 transgenic model of diabetes. OVE26 diabetic mice exhibited cardiomyopathy characterized by significantly altered mRNA expression, clear morphological abnormalities, and reduced contractility under ischemic conditions. Diabetic hearts appeared to be under oxidative stress because they had significantly elevated oxidized glutathione (GSSG). Diabetic mice with elevated cardiac MT (called OVE26MT mice) were obtained by crossing OVE26 transgenic mice with MT transgenic mice. Hyperglycemia in OVE26MT mice was indistinguishable from hyperglycemia in OVE26 mice. Despite this, the MT transgene significantly reduced cardiomyopathy in diabetic mice: OVE26MT hearts showed more normal levels of mRNA and GSSG. Typically, OVE26MT hearts were found to be morphologically normal, and elevated MT improved the impaired ischemic contractility seen in diabetic hearts. These results demonstrate that cardiomyocyte-specific expression of an antioxidant protein reduces damage to the diabetic heart.
Collapse
Affiliation(s)
- Qiangrong Liang
- Division of Molecular Cardiovascular Biology, University of Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ozcan C, Polat G, Görür K, Talas DU, Bağdatoğlu O, Cinel I. The effect of local administration of N-acetylcysteine in perforated rat tympanic membrane: an experimental study in myringosclerosis. Pharmacol Res 2002; 45:5-9. [PMID: 11820854 DOI: 10.1006/phrs.2001.0906] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myringosclerosis (MyS) is a common sequela of acute and chronic otitis media and ventilation tube treatment of serous otitis media. We aimed to study the effect of topical administration of N -acetylcysteine (NAC) on MyS by assessment of otomicroscopic evaluation, lipid peroxidation and nitric oxide (NO) (nitrite/nitrate) levels in experimental myringotomized rat tympanic membrane. Thirty adult rats were used and the upper posterior quadrant of the tympanic membranes of rats was myringotomized. Thereafter, they were divided into four groups. Group I received no treatment, group II was treated with saline, groups III and IV were treated with topical NAC (0.1 ml of 6 and 12 mg ml(-1), respectively). The levels of nitrite/nitrate and malondialdehyde (MDA) were measured in serum samples. In the otomicroscopic evaluation, non-treated and saline treated ears (controls) showed extensive occurrence of myringosclerotic plaques. Groups III and IV showed fewer occurrences of sclerotic plaques. There was no significant difference between groups III and IV regarding the development of MyS. The development of myringosclerotic lesion was found to be significantly different between NAC treated groups (III and IV) and the control groups (I and II). The levels of nitrite/nitrate of both groups III and IV were significantly lower than the control groups. The levels of MDA of these groups were also significantly lower than the control group. The relationship between groups III and IV was not statistically significant for the levels of nitrite/nitrate and MDA. We conclude that the topical treatment of NAC reduces the levels of MDA and NO products in rats. These results suggest that topical NAC application may be useful for the prevention of MyS.
Collapse
Affiliation(s)
- Cengiz Ozcan
- Department of Otorhinolaryngology, Mersin University, School of Medicine, Mersin, Turkey.
| | | | | | | | | | | |
Collapse
|
39
|
Koçak G, Karasu C. Elimination of *O(2)(-)/H(2)O(2) by alpha-lipoic acid mediates the recovery of basal EDRF/NO availability and the reversal of superoxide dismutase-induced relaxation in diabetic rat aorta. Diabetes Obes Metab 2002; 4:69-74. [PMID: 11874445 DOI: 10.1046/j.1463-1326.2002.00174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The aims of this study were to ascertain the mechanism(s) of relaxant action of exogenous superoxide dismutase (SOD) in aortic rings obtained from 12-week, streptozotocin(STZ)-diabetic and age-matched control rats, and to examine the effects of alpha-lipoic acid (ALA) treatment (for 6 weeks, after 6 weeks of untreated diabetes) on SOD-induced relaxations. MATERIALS AND METHODS Thoracic aorta rings were suspended to isolated tissue chamber, and the changes in isometric tension were recorded. RESULTS SOD produced a greater relaxation in untreated-diabetic rings compared with control rings. ALA treatment partially reversed SOD-induced relaxation in diabetic aorta. Pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microm) inhibited SOD-induced relaxation. This effect of L-NAME was markedly observed in control and ALA-treated-diabetic rings compared with untreated-diabetic rings. SOD-induced relaxation was also inhibited by catalase (60 U/ml) in untreated-diabetic rings but not in ALA-treated-diabetic and control rings. Pretreatment with the cyclooxygenase inhibitor, indomethacin, or the catalase inhibitor, aminotriazole, had no effect on SOD-induced relaxation in any ring. CONCLUSION Findings suggested that: (i) in normal physiological conditions, the relaxant effect of SOD is related to the inhibition of superoxide anion radicals (*O(2)(-))-induced endothelium-derived relaxing factor/nitric oxide (EDRF/NO) destruction in the rat aorta; (ii) in diabetic state, excess *O(2)(-) increasingly inhibits basal EDRF/NO, and the dismutation of excess *O(2)(-) to H(2)O(2) is enhanced by exogenous SOD. H(2)O(2) a vasorelaxant molecule, which probably accounts for the increased responsiveness of diabetic rings to exogenous SOD; and (iii) the reversal effect of in vivo ALA treatment on SOD-induced relaxation in diabetic aorta is probably linked with the elimination of *O(2)(-)/H(2)O(2), which mediates the recovery of basal EDRF/NO availability.
Collapse
Affiliation(s)
- G Koçak
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
40
|
Watson PA, Nesterova A, Burant CF, Klemm DJ, Reusch JE. Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration. J Biol Chem 2001; 276:46142-50. [PMID: 11560925 DOI: 10.1074/jbc.m104770200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We hypothesized that diabetes and glucose-induced reactive oxygen species lead to depletion of cAMP response element-binding protein (CREB) content in the vasculature. In primary cultures of smooth muscle cells (SMC) high medium glucose decreased CREB function but increased SMC chemokinesis and entry into the cell cycle. These effects were blocked by pretreatment with the antioxidants. High glucose increased intracellular reactive oxygen species detected by CM-H(2)DCFA. SMC exposed to oxidative stress (H(2)O(2)) demonstrated a 3.5-fold increase in chemokinesis (p < 0.05) and accelerated entry into cell cycle, accompanied by a significant decrease in CREB content. Chronic oxidative challenge similar to the microenvironment in diabetes (glucose oxidase treatment) decreases CREB content (40-50%). Adenoviral-mediated expression of constitutively active CREB abolished the increase in chemokinesis and cell cycle progression induced by either high glucose or oxidative stress. Analysis of vessels from insulin resistant or diabetic animals indicates that CREB content is decreased in the vascular stroma. Treatment of insulin-resistant animals with the insulin sensitizer rosiglitazone restores vessel wall CREB content toward that observed in normal animals. In summary, high glucose and oxidative stress decrease SMC CREB content increase chemokinesis and entry into the cell cycle, which is blocked by antioxidants or restoration of CREB content. Thus, decreased vascular CREB content could be one of the molecular mechanisms leading to increased atherosclerosis in diabetes.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Blotting, Western
- CREB-Binding Protein
- Cattle
- Cell Division/physiology
- Cell Movement/physiology
- Cells, Cultured
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Glucose/administration & dosage
- Insulin Resistance
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Oxidative Stress
- Rats
- Trans-Activators/metabolism
- Trans-Activators/physiology
Collapse
Affiliation(s)
- P A Watson
- Denver Research Institute, Denver Veterans Administration Medical Center, Denver, Colorado 80220, USA
| | | | | | | | | |
Collapse
|
41
|
Paolisso G, Barbieri M, Rosaria Rizzo M, Manzella D. Should we recommend the therapeutical use of vitamin E in diabetic patients? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2001; 10:159-165. [PMID: 21782572 DOI: 10.1016/s1382-6689(01)00079-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The therapeutic application of vitamin E was initially restricted to thrombocytopenic purpura and later extended to coronary artery diseases and peripheral vascular arteriosclerosis due to the potency of its effects. Several recent studies have pointed out that vitamin E supplementation is useful for reducing low-density lipoprotein oxidation and thus might be protective towards coronary heart disease. Such data has been confirmed in many in vitro data, while in vivo results of reports from epidemiological studies are much more controversial. More consistent is the evidence showing vitamin E to improve endothelial function especially in diabetic patients. Finally, chronic vitamin E has been demonstrated to improve the metabolic control in diabetic patients. Whether chronic vitamin E administration at pharmacological doses and for long time, is safe is still debated. A sure response to such a query will open the possibility for recommending vitamin E as a therapeutic agent in diabetic patients.
Collapse
Affiliation(s)
- G Paolisso
- Department of Geriatric Medicine and Metabolic Diseases, IV Medicina Interna e Malattie dell'Invecchiamento, II University of Naples, Piazza Miraglia 2, I-80138 Naples, Italy
| | | | | | | |
Collapse
|
42
|
Cheng TY, Zhu Z, Masuda S, Morcos NC. Effects of multinutrient supplementation on antioxidant defense systems in healthy human beings. J Nutr Biochem 2001; 12:388-395. [PMID: 11448614 DOI: 10.1016/s0955-2863(01)00153-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidative damage involved in the pathogenesis of many diseases, such as cardiovascular disease, cancer and diabetics. The antioxidant defense system plays an important role in protecting body from oxidative damage. Numerous studies have been shown that a single vitamin or mineral supplementation has the beneficial effect on the antioxidant defense system. However, the overall combined effect of multinutrient supplementation on antioxidant defense system remains to be clarified. In the present double blind, placebo-controlled study, the antioxidative defense system was measured in 34 healthy subjects before and after multinutrient supplementation. Plasma vitamin C, E and beta-carotene, erythrocyte vitamin E, as well as whole blood selenium all showed increase at 5 weeks of supplementation. The activities of catalase (CAT) and glutathione peroxidase (GPX), but not superoxide dismutase (SOD), as well as GSH level were significantly increased at 16 weeks of supplementation. Moreover, the resistance of erythrocytes to 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation was elevated at 5 weeks after supplementation. These results clearly demonstrated that short-term supplementation (16 weeks) with multinutrient could markedly improve antioxidative vitamin status and enzymatic activities. These improvements also led to the reduction of RBC susceptibility to free radial peroxidation.
Collapse
Affiliation(s)
- T -Y. Cheng
- Department of Research and Development, Westar Nutrition Corporation, Costa Mesa, CA, USA
| | | | | | | |
Collapse
|
43
|
Ozansoy G, Akin B, Aktan F, Karasu C. Short-term gemfibrozil treatment reverses lipid profile and peroxidation but does not alter blood glucose and tissue antioxidant enzymes in chronically diabetic rats. Mol Cell Biochem 2001; 216:59-63. [PMID: 11216864 DOI: 10.1023/a:1011000327529] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the efficiency of short-term treatment with gemfibrozil in the reversal of diabetes-induced changes on carbohydrate and lipid metabolism, and antioxidant status of aorta. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.). After 12 weeks of induction of diabetes, the control and diabetic rats were orally gavaged daily with a dosing vehicle alone or with 100 mg/kg of gemfibrozil for 2 weeks. At 14 weeks, there was a significant increase in blood glucose, plasma cholesterol and triglyceride levels of untreated-diabetic animals. Diabetes was associated with a significant increase in thiobarbituric acid reactive substances (TBARS) in both plasma and aortic homogenates, indicating increased lipid peroxidation. Diabetes caused an increase in vascular antioxidant enzyme activity, catalase, indicating existence of excess hydrogen peroxide (H2O2). However, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities in aortas did not significantly change in untreated-diabetic rats. In diabetic plus gemfibrozil group both plasma lipids and lipid peroxides showed a significant recovery. Gemfibrozil treatment had no effect on blood glucose, plasma insulin and vessel antioxidant enzyme activity of diabetic animals. Our findings suggest that the beneficial effect of short-term gemfibrozil treatment in reducing lipid peroxidation in diabetic animals does not depend on a change of glucose metabolism and antioxidant status of aorta, but this may be attributed to its decreasing effect on circulating lipids. The ability of short-term gemfibrozil treatment to recovery of metabolism and peroxidation of lipids may be an effective strategy to minimize increased oxidative stress in diabetic plasma and vasculature.
Collapse
Affiliation(s)
- G Ozansoy
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, Tandoğan, Turkey
| | | | | | | |
Collapse
|
44
|
Title LM, Cummings PM, Giddens K, Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol 2000; 36:2185-91. [PMID: 11127459 DOI: 10.1016/s0735-1097(00)00980-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The goal of this study was to determine whether postprandial hyperglycemia, induced by oral glucose loading, attenuates endothelial function in healthy subjects without diabetes and whether coadministration of vitamins C and E could prevent these postprandial changes. BACKGROUND Epidemiologic evidence suggests that postprandial hyperglycemia, below diabetic levels, is a risk factor for cardiovascular disease. Postprandial hyperglycemia may promote atherosclerosis through endothelial dysfunction and oxidative stress. METHODS We evaluated the acute effects of oral glucose loading (75 g), alone and with vitamins C (2 g) and E (800 IU), on endothelium-dependent flow-mediated dilation (FMD) of the brachial artery, in a randomized, double-blind, placebo-controlled, crossover study of 10 healthy volunteers. Changes in the levels of markers of oxidative stress (plasma malondialdehyde and erythrocyte glutathione, glutathione peroxidase and superoxide dismutase) were also assessed. RESULTS Increases in plasma glucose and insulin after glucose loading were unaffected by vitamin coadministration. With glucose loading alone, FMD fell from 6.5+/-2.2 at baseline to 5.4+/-1.7, 3.7+/-2.1*, 4.1+/-3.5* and 5.7+/-1.9% at 1, 2, 3 and 4 h (*p < 0.05 vs. 0 h). In contrast, FMD did not change significantly after glucose plus vitamins (6.4+/-1.3, 7.6+/-1.8, 7.9+/-2.7, 6.9+/-2.3, 6.9+/-1.9% at 0, 1, 2, 3 and 4 h). By two-way repeated measures analysis of variance we found a significant interaction between vitamin treatment and time (p = 0.0003), indicating that vitamins prevented the glucose-induced attenuation of FMD. Oxidative stress markers did not significantly change with glucose loading alone or with vitamins. CONCLUSIONS Oral glucose loading causes an acute, transient decrease of FMD in healthy subjects without diabetes, which is prevented by vitamins C and E.
Collapse
Affiliation(s)
- L M Title
- Division of Cardiology, Laboratory Medicine at the Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
45
|
Engelen W, Keenoy BM, Vertommen J, De Leeuw I. Effects of long-term supplementation with moderate pharmacologic doses of vitamin E are saturable and reversible in patients with type 1 diabetes. Am J Clin Nutr 2000; 72:1142-9. [PMID: 11063441 DOI: 10.1093/ajcn/72.5.1142] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vitamin E supplementation has been proposed as adjunctive therapy to counteract the increased LDL oxidation in diabetes and thus prevent or delay cardiovascular complications. OBJECTIVE The objective of this study was to investigate the effect of a moderate pharmacologic dose of vitamin E for </=1 y in patients with type 1 diabetes. DESIGN The study was double blind and the subjects were randomly assigned to 2 groups: the supplemented group (group S; n = 22) received 250 IU (168 mg) RRR-alpha-tocopherol 3 times/d for 1 y and the placebo group (group P; n = 22) received a placebo for 6 mo followed by 250 IU (168 mg) RRR-alpha-tocopherol 3 times/d for an additional 6 mo. RESULTS Serum vitamin E doubled after 3 mo of supplementation, from a mean (+/-SD) of 36.9 +/- 10.9 to 66.4 +/- 18.3 micromol/L (P: < 0.0005). Although lipid profiles, glycated hemoglobin, and blood biochemistry values did not change significantly, copper-induced in vitro peroxidizability of LDL and VLDL decreased after 3 mo of supplementation: the production of thiobarbituric acid-reactive substances decreased by 30-60% (P: < 0. 005) and the lag time for the appearance of fluorescent products increased from 107 +/- 25 to 123 +/- 30 min in group S (P: = 0.002 compared with group P). Vitamin E supplementation for an additional 3-9 mo resulted in no further changes in serum vitamin E and lipoprotein peroxidizability. Values returned to baseline after supplementation ended. CONCLUSIONS Because the improvement in lipoprotein peroxidizability is saturable and reversible, life-long supplementation with vitamin E should be considered in patients with type 1 diabetes.
Collapse
Affiliation(s)
- W Engelen
- Laboratory of Endocrinology, the University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
46
|
Zimmer S, Stocker A, Sarbolouki MN, Spycher SE, Sassoon J, Azzi A. A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. J Biol Chem 2000; 275:25672-80. [PMID: 10829015 DOI: 10.1074/jbc.m000851200] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin E (alpha-tocopherol) is an essential dietary nutrient for humans and animals. The mechanisms involved in cellular regulation as well as in the preferential cellular and tissue accumulation of alpha-tocopherol are not yet well established. We previously reported (Stocker, A., Zimmer, S., Spycher, S. E., and Azzi, A. (1999) IUBMB Life 48, 49-55) the identification of a novel 46-kDa tocopherol-associated protein (TAP) in the cytosol of bovine liver. Here, we describe the identification, the molecular cloning into Escherichia coli, and the in vitro expression of the human homologue of bovine TAP, hTAP. This protein appears to belong to a family of hydrophobic ligand binding proteins, which have the CRAL (cis-retinal binding motif) sequence in common. By using a biotinylated alpha-tocopherol derivative and the IASys resonant mirror biosensor, the purified recombinant protein was shown to bind tocopherol at a specific binding site with K(d) 4.6 x 10(-7) m. Northern analyses showed that hTAP mRNA has a size of approximately 2800 base pairs and is ubiquitously expressed. The highest amounts of hTAP message are found in liver, brain, and prostate. In conclusion, hTAP has sequence homology to proteins containing the CRAL_TRIO structural motif. TAP binds to alpha-tocopherol and biotinylated tocopherol, suggesting the existence of a hydrophobic pocket, possibly analogous to that of SEC14.
Collapse
Affiliation(s)
- S Zimmer
- Institute of Biochemistry and Molecular Biology, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Göçmen C, Seçilmiş A, Kumcu EK, Ertuğ PU, Onder S, Dikmen A, Baysal F. Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse. Eur J Pharmacol 2000; 398:93-8. [PMID: 10856452 DOI: 10.1016/s0014-2999(00)00242-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We studied the effect of vitamin E and sodium selenate treatment on the neurogenic and endothelium-dependent relaxation of isolated corpus cavernosum obtained from streptozotocin-induced diabetic mice. Relaxant responses of corpus cavernosum precontracted by phenylephrine to electrical field stimulation and to acetylcholine were significantly decreased in diabetic mice. There was no significant difference between diabetic and non-diabetic groups for the relaxant response of corpus cavernosum to sodium nitroprusside and papaverine. Treatment with sodium selenate, but not vitamin E, partially prevented the impairment of the neurogenic relaxation, whereas both had a significant, partial restorative action on endothelial dysfunction in corpus cavernosum obtained from diabetic groups. Neither agent exhibited a significant action on the relaxant responses of corpus cavernosum obtained from non-diabetic mice. A decrease in the sensitivity of the neurogenic impairment to antioxidant action may develop more rapidly than that of endothelial dysfunction in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- C Göçmen
- Department of Pharmacology, Medical Faculty, Cukurova University, TR-01330, Adana, Turkey.
| | | | | | | | | | | | | |
Collapse
|
48
|
Karasu C. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species. Eur J Pharmacol 2000; 392:163-73. [PMID: 10762670 DOI: 10.1016/s0014-2999(00)00140-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the role of reactive oxygen species and the contribution of antioxidant defence in the time course of changes in acetylcholine-stimulated endothelium-dependent and sodium nitroprusside-stimulated endothelium-independent relaxation were investigated in aortic rings isolated from 6-month streptozotocin-diabetic and age-matched control rats. Although there were no significant differences in the degree of the peak relaxations produced by a single administration of acetylcholine (1 microM) or sodium nitroprusside (0.01 microM) between control and diabetic rings, the endothelium-dependent and -independent relaxant responses were more transient and the time required to reach a peak relaxation after addition of acetylcholine was shorter in diabetic vessels. Pretreatment of diabetic vessels with superoxide dismutase (100 U/ml) normalized the recovery phases of endothelium-dependent and -independent relaxations, but had no effect on the peak responses to acetylcholine and sodium nitroprusside. In the presence of diethyldithiocarbamate (5 mM), an inhibitor of superoxide dismutase, the transient nature of the relaxant response to acetylcholine or sodium nitroprusside was more marked and the peak relaxations were inhibited; these effects of diethyldithiocarbamate were more pronounced in diabetic than in control rings. Catalase, 160 U/ml, decreased the peak relaxant response to acetylcholine and accelerated fading of the relaxation in diabetic aorta. Similar results were obtained for control aorta with a higher concentration of catalase (550 U/ml). Pretreatment with 3-amino-1,2,4 triazole (5 mM), a catalase inhibitor, inhibited the peak relaxant response to acetylcholine in diabetic rings. The combination of superoxide dismutase (100 U/ml) plus 3-amino-1,2,4 triazole (5 mM) produced an increase of the transient nature of endothelium-dependent relaxation of diabetic rings greater than that with 3-amino-1,2,4 triazole alone. Neither catalase nor 3-amino-1,2,4 triazole affected the characteristics of sodium nitroprusside-induced relaxation. Desferrioxamine, an inhibitor of hydroxyl radical (.OH) production, or mannitol, a.OH scavenger, had no effect on the characteristics of either acetylcholine- or sodium nitroprusside-induced relaxation in control and diabetic rings. Biochemical measurements revealed an inhibited superoxide dismutase activity in diabetic aorta together with activated catalase. Our findings suggest that, during the chronic phase of streptozotocin-diabetes, excess superoxide (O(2)(. -)) is responsible for the enhanced transient nature of endothelium-dependent and -independent relaxation of aorta via a reduction in bioavailable concentrations of nitric oxide (NO). However, the involvement of hydrogen peroxide (H(2)O(2)) in the establishment of acetylcholine-stimulated relaxation may be increased, which is likely to account for the maintenance of the relaxant effect of acetylcholine in chronically diabetic vessels.
Collapse
Affiliation(s)
- C Karasu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06100, Tandoğan, Ankara, Turkey.
| |
Collapse
|
49
|
|
50
|
Abstract
NO is an important component of vascular homeostasis and abnormal NO bioactivity has been implicated in number of disease states with important public health implications. One clear mechanism of impaired NO bioactivity and vascular disease is excess vascular oxidative stress. There is now a wealth of developing data that manipulation of vascular antioxidant stress is the considerable influence of the biologic activity of endothelium-derived NO. It remains to be seen if this influence can be exploited in a manner that truly alters the course of human disease.
Collapse
Affiliation(s)
- D T Price
- Evans Memorial Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|