1
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
3
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Olajide OJ, Chapman CA. Amyloid-β (1-42) peptide induces rapid NMDA receptor-dependent alterations at glutamatergic synapses in the entorhinal cortex. Neurobiol Aging 2021; 105:296-309. [PMID: 34144329 DOI: 10.1016/j.neurobiolaging.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
The hippocampus and entorhinal cortex (EC) accumulate amyloid beta peptides (Aβ) that promote neuropathology in Alzheimer's disease, but the early effects of Aβ on excitatory synaptic transmission in the EC have not been well characterized. To assess the acute effects of Aβ1-42 on glutamatergic synapses, acute brain slices from wildtype rats were exposed to Aβ1-42 or control solution for 3 hours, and tissue was analyzed using protein immunoblotting and quantitative PCR. Presynaptically, Aβ1-42 induced marked reductions in synaptophysin, synapsin-2a mRNA, and mGluR3 mRNA, and increased both VGluT2 protein and Ca2+-activated channel KCa2.2 mRNA levels. Postsynaptically, Aβ1-42 reduced PSD95 and GluN2B protein, and also downregulated GluN2B and GluN2A mRNA, without affecting scaffolding elements SAP97 and PICK1. mGluR5 mRNA was strongly increased, while mGluR1 mRNA was unaffected. Blocking either GluN2A- or GluN2B-containing NMDA receptors did not significantly prevent synaptic changes induced by Aβ1-42, but combined blockade did prevent synaptic alterations. These findings demonstrate that Aβ1-42 rapidly disrupts glutamatergic transmission in the EC through mechanisms involving concurrent activation of GluN2A- and GluN2B-containing NMDA receptors.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria; Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Castillo CA, Ballesteros-Yáñez I, León-Navarro DA, Albasanz JL, Martín M. Early Effects of the Soluble Amyloid β 25-35 Peptide in Rat Cortical Neurons: Modulation of Signal Transduction Mediated by Adenosine and Group I Metabotropic Glutamate Receptors. Int J Mol Sci 2021; 22:ijms22126577. [PMID: 34205261 PMCID: PMC8234864 DOI: 10.3390/ijms22126577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain;
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
| | - Inmaculada Ballesteros-Yáñez
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| | - Mairena Martín
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
7
|
Rahman MS, Yang J, Luan Y, Qiu Z, Zhang J, Lu H, Chen X, Liu Y. Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo. Neurochem Res 2020; 45:1230-1243. [PMID: 32140955 DOI: 10.1007/s11064-020-03006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
The activation of microglia in response to intracerebral hemorrhagic stroke is one of the principal components of the progression of this disease. It results in the formation of pro-inflammatory cytokines that lead to neuronal death, a structural deterioration that, in turn interferes with functional recovery. Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in reactive microglia and is involved in the pathological processes of brain disorders, but its role in intracerebral hemorrhage (ICH) remains unknown. We hypothesized that mGluR5 regulates microglial activation and ICH maintenance. In this study, collagenase-induced ICH mice received a single intraperitoneal injection of the mGluR5 antagonist-, MTEP, or vehicle 2 h after injury. We found that acute ICH upregulated mGluR5 and microglial activation. mGluR5 was highly localized in reactive microglia in the peri-hematomal cortex and striatum on days 3 and 7 post-ICH. The MTEP-mediated pharmacological inhibition of mGluR5 in vivo resulted in the substantial attenuation of acute microglial activation and IL-6, and TNF-α release. We also showed that the blockade of mGluR5 markedly reduced cell apoptosis, and neurodegeneration and markedly elevated neuroprotection. Furthermore, the MTEP-mediated inhibition of mGluR5 significantly reduced the lesion volume and improved functional recovery. Taken together, our results demonstrate that ICH injury enhances mGluR5 expression in the acute and subacute stages and that mGluR5 is highly localized in reactive microglia. The blockade of mGluR5 reduces ICH-induced acute microglial activation, provides neuroprotection and promotes neurofunctional recovery after ICH. The inhibition of mGluR5 may be a relevant therapeutic target for intracerebral hemorrhagic stroke.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Department of Anatomy and Histology, Patuakhali Science and Technology University, Dhaka, Bangladesh
| | - Jianbo Yang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, People's Republic of China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
9
|
Adenosine and NMDA Receptors Modulate Neuroprotection-Induced NMDA Preconditioning in Mice. J Mol Neurosci 2019; 70:590-599. [DOI: 10.1007/s12031-019-01463-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
|
10
|
Westmark CJ. Fragile X and APP: a Decade in Review, a Vision for the Future. Mol Neurobiol 2019; 56:3904-3921. [PMID: 30225775 PMCID: PMC6421119 DOI: 10.1007/s12035-018-1344-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Fragile X syndrome (FXS) is a devastating developmental disability that has profound effects on cognition, behavior, and seizure susceptibility. There are currently no treatments that target the underlying cause of the disorder, and recent clinical trials have been unsuccessful. In 2007, seminal work demonstrated that amyloid-beta protein precursor (APP) is dysregulated in Fmr1KO mice through a metabotropic glutamate receptor 5 (mGluR5)-dependent pathway. These findings raise the hypotheses that: (1) APP and/or APP metabolites are potential therapeutic targets as well as biomarkers for FXS and (2) mGluR5 inhibitors may be beneficial in the treatment of Alzheimer's disease. Herein, advances in the field over the past decade that have reproduced and greatly expanded upon these original findings are reviewed, and required experimentation to validate APP metabolites as potential disease biomarkers as well as therapeutic targets for FXS are discussed.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, USA.
| |
Collapse
|
11
|
Qian M, Wouters E, Dalton JAR, Risseeuw MDP, Crans RAJ, Stove C, Giraldo J, Van Craenenbroeck K, Van Calenbergh S. Synthesis toward Bivalent Ligands for the Dopamine D 2 and Metabotropic Glutamate 5 Receptors. J Med Chem 2018; 61:8212-8225. [PMID: 30180563 DOI: 10.1021/acs.jmedchem.8b00671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized heterobivalent ligands targeting heteromers consisting of the metabotropic glutamate 5 receptor (mGluR5) and the dopamine D2 receptor (D2R). Bivalent ligand 22a with a linker consisting of 20 atoms showed 4-fold increase in affinity for cells coexpressing D2R and mGluR5 compared to cells solely expressing D2R. Likewise, the affinity of 22a for mGluR5 increased 2-fold in the coexpressing cells. Additionally, 22a exhibited a 5-fold higher mGluR5 affinity than its monovalent precursor 21a in cells coexpressing D2R and mGluR5. These results indicate that 22a is able to bridge binding sites on both receptors constituting the heterodimer. Likewise, cAMP assays revealed that 22a had a 4-fold higher potency in stable D2R and mGluR5 coexpressing cell lines than 1. Furthermore, molecular modeling reveals that 22a is able to simultaneously bind both receptors by passing between the TM5-TM6 interface and establishing six protein-ligand H-bonds.
Collapse
Affiliation(s)
- Mingcheng Qian
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium.,Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Elise Wouters
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - René A J Crans
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Christophe Stove
- Laboratory of Toxicology , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | | | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW) , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| |
Collapse
|
12
|
Ketamine and Ceftriaxone-Induced Alterations in Glutamate Levels Do Not Impact the Specific Binding of Metabotropic Glutamate Receptor Subtype 5 Radioligand [ 18F]PSS232 in the Rat Brain. Pharmaceuticals (Basel) 2018; 11:ph11030083. [PMID: 30158438 PMCID: PMC6161118 DOI: 10.3390/ph11030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/21/2023] Open
Abstract
Several studies showed that [11C]ABP688 binding is altered following drug-induced perturbation of glutamate levels in brains of humans, non-human primates and rats. We evaluated whether the fluorinated derivative [18F]PSS232 can be used to assess metabotropic glutamate receptor 5 (mGluR5) availability in rats after pharmacological challenge with ketamine, known to increase glutamate, or ceftriaxone, known to decrease glutamate. In vitro autoradiography was performed on rat brain slices with [18F]PSS232 to prove direct competition of the drugs for mGluR5. One group of rats were challenged with a bolus injection of either vehicle, racemic ketamine, S-ketamine or ceftriaxone followed by positron emission tomography PET imaging with [18F]PSS232. The other group received an infusion of the drugs during the PET scan. Distribution volume ratios (DVRs) were calculated using a reference tissue model. In vitro autoradiography showed no direct competition of the drugs with [18F]PSS232 for the allosteric binding site of mGluR5. DVRs of [18F]PSS232 binding in vivo did not change in any brain region neither after bolus injection nor after infusion. We conclude that [18F]PSS232 has utility for measuring mGluR5 density or occupancy of the allosteric site in vivo, but it cannot be used to measure in vivo fluctuations of glutamate levels in the rat brain.
Collapse
|
13
|
Mu B, Mu L, Schibli R, Ametamey SM, Milicevic Sephton S. Improved Syntheses of the mGlu5 Antagonists MMPEP and MTEP Using Sonogashira Cross-Coupling. Pharmaceuticals (Basel) 2018; 11:ph11010024. [PMID: 29461503 PMCID: PMC5874720 DOI: 10.3390/ph11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022] Open
Abstract
The Sonogashira cross-coupling, a key step in the syntheses of the mGlu5 antagonists MMPEP and MTEP, provided an improved three-step method for the preparation of MMPEP in 62% overall yield. Using Spartan molecular modeling kit an explanation for the failure to employ analogues method in the synthesis of MTEP was sought. The DFT calculations indicated that meaningful isolated yields were obtained when the HOMO energy of the aryl halide was lower than the HOMO energy of the respective alkyne.
Collapse
Affiliation(s)
- Boshuai Mu
- Center of Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Linjing Mu
- Center of Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Ramistrasse 101, 8003 Zurich, Switzerland.
| | - Roger Schibli
- Center of Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Ramistrasse 101, 8003 Zurich, Switzerland.
| | - Simon M Ametamey
- Center of Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Selena Milicevic Sephton
- Center of Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Ramistrasse 101, 8003 Zurich, Switzerland.
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Box 65 Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK..
| |
Collapse
|
14
|
Stepan AF, Claffey MM, Reese MR, Balan G, Barreiro G, Barricklow J, Bohanon MJ, Boscoe BP, Cappon GD, Chenard LK, Cianfrogna J, Chen L, Coffman KJ, Drozda SE, Dunetz JR, Ghosh S, Hou X, Houle C, Karki K, Lazzaro JT, Mancuso JY, Marcek JM, Miller EL, Moen MA, O'Neil S, Sakurada I, Skaddan M, Parikh V, Smith DL, Trapa P, Tuttle JB, Verhoest PR, Walker DP, Won A, Wright AS, Whritenour J, Zasadny K, Zaleska MM, Zhang L, Shaffer CL. Discovery and Characterization of (R)-6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates. J Med Chem 2017; 60:7764-7780. [PMID: 28817277 DOI: 10.1021/acs.jmedchem.7b00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.
Collapse
Affiliation(s)
- Antonia F Stepan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Michelle M Claffey
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gayatri Balan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gabriela Barreiro
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jason Barricklow
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Michael J Bohanon
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Brian P Boscoe
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gregg D Cappon
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Lois K Chenard
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Julie Cianfrogna
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Laigao Chen
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Karen J Coffman
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Susan E Drozda
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Joshua R Dunetz
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Somraj Ghosh
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Xinjun Hou
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Christopher Houle
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Kapil Karki
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - John T Lazzaro
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jessica Y Mancuso
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - John M Marcek
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Emily L Miller
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Mark A Moen
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Steven O'Neil
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Isao Sakurada
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Marc Skaddan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Vinod Parikh
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Deborah L Smith
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Patrick Trapa
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jamison B Tuttle
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Patrick R Verhoest
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Daniel P Walker
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Annie Won
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Ann S Wright
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jessica Whritenour
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Kenneth Zasadny
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Margaret M Zaleska
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Lei Zhang
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Christopher L Shaffer
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| |
Collapse
|
15
|
Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 2017; 32:96-110. [DOI: 10.1016/j.coph.2017.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
|
16
|
Pu-erh Tea Protects the Nervous System by Inhibiting the Expression of Metabotropic Glutamate Receptor 5. Mol Neurobiol 2016; 54:5286-5299. [PMID: 27578019 PMCID: PMC5533841 DOI: 10.1007/s12035-016-0064-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
Abstract
Glutamate is one of the major excitatory neurotransmitters of the CNS and is essential for numerous key neuronal functions. However, excess glutamate causes massive neuronal death and brain damage owing to excitotoxicity via the glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5) is one of the glutamate receptors and represents a promising target for studying neuroprotective agents of potential application in neurodegenerative diseases. Pu-erh tea, a fermented tea, mainly produced in Yunnan province, China, has beneficial effects, including the accommodation of the CNS. In this study, pu-erh tea markedly decreased the transcription and translation of mGluR5 compared to those by black and green teas. Pu-erh tea also inhibited the expression of Homer, one of the synaptic scaffolding proteins binding to mGluR5. Pu-erh tea protected neural cells from necrosis via blocked Ca2+ influx and inhibited protein kinase C (PKC) activation induced by excess glutamate. Pu-erh tea relieved rat epilepsy induced by LiCl-pilocarpine in behavioural and physiological assays. Pu-erh tea also decreased the expression of mGluR5 in the hippocampus. These results show that the inhibition of mGluR5 plays a role in protecting neural cells from glutamate. The results also indicate that pu-erh tea contains biological compounds binding transcription factors and inhibiting the expression of mGluR5 and identify pu-erh tea as a novel natural neuroprotective agent.
Collapse
|
17
|
Galambos J, Domány G, Nógrádi K, Wágner G, Keserű GM, Bobok A, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Kóti J, Szakács Z, Béni Z, Gál K, Szombathelyi Z, Greiner I. 4-Aryl-3-arylsulfonyl-quinolines as negative allosteric modulators of metabotropic GluR5 receptors: From HTS hit to development candidate. Bioorg Med Chem Lett 2016; 26:1249-52. [DOI: 10.1016/j.bmcl.2016.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
|
18
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Nickols HH, Yuh JP, Gregory KJ, Morrison RD, Bates BS, Stauffer SR, Emmitte KA, Bubser M, Peng W, Nedelcovych MT, Thompson A, Lv X, Xiang Z, Daniels JS, Niswender CM, Lindsley CW, Jones CK, Conn PJ. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy. J Pharmacol Exp Ther 2015; 356:123-36. [PMID: 26503377 DOI: 10.1124/jpet.115.226597] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Joannes P Yuh
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Karen J Gregory
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Ryan D Morrison
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Brittney S Bates
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Shaun R Stauffer
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Kyle A Emmitte
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael Bubser
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Weimin Peng
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael T Nedelcovych
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Analisa Thompson
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Xiaohui Lv
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Zixiu Xiang
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - J Scott Daniels
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Colleen M Niswender
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Craig W Lindsley
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Carrie K Jones
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - P Jeffrey Conn
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| |
Collapse
|
20
|
Tomasini MC, Borelli AC, Beggiato S, Tanganelli S, Loche A, Cacciaglia R, Ferraro L, Antonelli T. GET73 Prevents Ethanol-Induced Neurotoxicity in Primary Cultures of Rat Hippocampal Neurons. Alcohol Alcohol 2015; 51:128-35. [PMID: 26271115 DOI: 10.1093/alcalc/agv094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/23/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide (GET73) may be considered a promising therapeutic agent for the treatment of alcohol use disorders. The compound displayed anti-alcohol and anxiolytic properties in rat. In the present study, an in vitro experimental model of chronic ethanol treatment was used to investigate the ability of the compound to counteract the ethanol-induced neurotoxicity. METHODS Primary cultures of rat hippocampal neurons were exposed to ethanol (75 mM; 4 days) and the neuroprotective effects of GET73 were assessed by evaluating cell viability, cell morphology, glutamate levels and reactive oxygen species production. RESULTS The exposure to ethanol induced a reduction of cell viability, an alteration of cytoskeleton, a decrease in extracellular glutamate levels and an increase of reactive oxygen species production. The addiction of GET73 (1 and 10 µM) 1 h before and during chronic ethanol exposure prevented all the above ethanol-induced effects. Based on the proposed GET73 mechanism of action, the effects of mGlu5 receptor negative allosteric modulator, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), on ethanol-induced reduction of cell viability were also assessed. The results indicated that the addiction of MPEP (100 µM) 1 h before and during chronic ethanol exposure prevented the ethanol-induced cell viability reduction. CONCLUSION The present findings provide the first evidence that GET73 shows a neuroprotective role against ethanol-induced neurotoxicity in primary cultures of rat hippocampal neurons. Together with previous findings, these results suggest that GET73 possesses multifaceted properties thus lending further support to the significance of developing GET73 as a therapeutic tool for use in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy IRET Foundation, Ozzano Emilia, Bologna, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Tiziana Antonelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy Department of Medical Sciences, University of Ferrara, Ferrara, Italy LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Kumar A, Dhull DK, Mishra PS. Therapeutic potential of mGluR5 targeting in Alzheimer's disease. Front Neurosci 2015; 9:215. [PMID: 26106290 PMCID: PMC4460345 DOI: 10.3389/fnins.2015.00215] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
Decades of research dedicated toward Alzheimer's disease (AD) has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.
Collapse
Affiliation(s)
- Anil Kumar
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Dinesh K Dhull
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Pooja S Mishra
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences Bangalore, India
| |
Collapse
|
22
|
Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis 2015; 6:131-48. [PMID: 25821641 PMCID: PMC4365957 DOI: 10.14336/ad.2014.0423] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.
Collapse
Affiliation(s)
- Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel S. Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
- Center for Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
23
|
Haas LT, Kostylev MA, Strittmatter SM. Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). J Biol Chem 2014; 289:28460-77. [PMID: 25148681 DOI: 10.1074/jbc.m114.584342] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrP(C)). PrP(C) interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrP(C) to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrP(C) and mGluR5 in cell lines and mouse brain. We show that the PrP(C) segment of amino acids 91-153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrP(C) interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrP(C) and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrP(C) and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrP(C) segment of amino acids 91-153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrP(C). The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrP(C) and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol.
Collapse
Affiliation(s)
- Laura T Haas
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074 Tübingen, Germany
| | - Mikhail A Kostylev
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| | - Stephen M Strittmatter
- From the Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| |
Collapse
|
24
|
Sephton SM, Herde AM, Mu L, Keller C, Rüdisühli S, Auberson Y, Schibli R, Krämer SD, Ametamey SM. Preclinical evaluation and test-retest studies of [(18)F]PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 2014; 42:128-37. [PMID: 25139517 DOI: 10.1007/s00259-014-2883-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE A novel, (18)F-labelled metabotropic glutamate receptor subtype 5 (mGlu5) derivative of [(11)C]ABP688 ([(11)C]1), [(18)F]PSS232 ([(18)F] ]5), was evaluated in vitro and in vivo for its potential as a PET agent and was used in test-retest reliability studies METHODS The radiosynthesis of [(18)F]5 was accomplished via a one-step reaction using a mesylate precursor. In vitro stability was determined in PBS and plasma, and with liver microsomal enzymes. Metabolite studies were performed using rat brain extracts, blood and urine. In vitro autoradiography was performed on horizontal slices of rat brain using 1 and 8, antagonists for mGlu5 and mGlu1, respectively. Small-animal PET, biodistribution, and test-retest studies were performed in Wistar rats. In vivo, dose-dependent displacement studies were performed using 6 and blocking studies with 7. RESULTS [(18)F]5 was obtained in decay-corrected maximal radiochemical yield of 37 % with a specific activity of 80 - 400 GBq/μmol. Treatment with rat and human microsomal enzymes in vitro for 60 min resulted in 20 % and 4 % of hydrophilic radiometabolites, respectively. No hydrophilic decomposition products or radiometabolites were found in PBS or plasma. In vitro autoradiography on rat brain slices showed a heterogeneous distribution consistent with the known distribution of mGlu5 with high binding to hippocampal and cortical regions, and negligible radioactivity in the cerebellum. Similar distribution of radioactivity was found in PET images. Under displacement conditions with 6, reduced [(18)F]5 binding was found in all brain regions except the cerebellum. 7 reduced binding in the striatum by 84 % on average. Test-retest studies were reproducible with a variability ranging from 6.8 % to 8.2 %. An extended single-dose toxicity study in Wistar rats showed no compound-related adverse effects. CONCLUSION The new mGlu5 radiotracer, [(18)F]5, showed specific and selective in vitro and in vivo properties and is a promising radioligand for PET imaging of mGlu5 in humans.
Collapse
Affiliation(s)
- Selena Milicevic Sephton
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Petrov D, Pedros I, de Lemos ML, Pallàs M, Canudas AM, Lazarowski A, Beas-Zarate C, Auladell C, Folch J, Camins A. Mavoglurant as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2014; 23:1165-79. [PMID: 24960254 DOI: 10.1517/13543784.2014.931370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION A major unresolved issue in the Parkinson's disease (PD) treatment is the development of l-DOPA-induced dyskinesias (LIDs) as a side effect of chronic L-DOPA administration. Currently, LIDs are managed in part by reducing the L-DOPA dose or by the administration of amantadine. However, this treatment is only partially effective. A potential strategy, currently under investigation, is the coadministration of metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) and L-DOPA; a treatment that results in the improvement of dyskinesia symptoms and that permits reductions in l-DOPA dosage frequency. AREAS COVERED The authors examine the role of mGluR5 in the pathophysiology of PD and the potential use of mGluR5 NAM as an adjuvant therapy together with a primary treatment with L-DOPA. Specifically, the authors look at the mavoglurant therapy and the evidence presented through preclinical and clinical trials. EXPERT OPINION Interaction between mGluR5 NAM and L-DOPA is an area of interest in PD research as concomitant treatment results in the improvement of LID symptoms in humans, thus enhancing the patient's quality of life. However, few months ago, Novartis decided to discontinue clinical trials of mavoglurant for the treatment of LID, due to the lack of efficacy demonstrated in trials NCT01385592 and NCT01491529, although no safety concerns were involved in this decision. Nevertheless, the potential application of mGluR5 antagonists as neuroprotective agents must be considered and further studies are warranted to better investigate their potential.
Collapse
Affiliation(s)
- Dmitry Petrov
- Universitat de Barcelona, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Unitat de Farmacologia I Farmacognòsia, Facultat de Farmàcia , Barcelona, Avda/Joan XXIII , Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kandratavicius L, Rosa-Neto P, Monteiro MR, Guiot MC, Assirati JA, Carlotti CG, Kobayashi E, Leite JP. Distinct increased metabotropic glutamate receptor type 5 (mGluR5) in temporal lobe epilepsy with and without hippocampal sclerosis. Hippocampus 2013; 23:1212-30. [PMID: 23804486 PMCID: PMC4165311 DOI: 10.1002/hipo.22160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 12/04/2022]
Abstract
Metabotropic glutamate receptor type 5 (mGluR5) upregulation in temporal lobe epilepsy (TLE) and the correlation of its expression with features of hippocampal sclerosis (HS) remains unclear. Here we characterized mGluR5 immunoreactivity in hippocampus, entorhinal cortex (EC), and subiculum of TLE specimens with confirmed HS, with neocortical TLE (non-HS) and necropsy controls. We correlated mGluR5 immunoreactivity with neuronal density, mossy fiber sprouting, astrogliosis (GFAP), and dendritic alterations (MAP2). TLE specimens showed increased mGluR5 expression, which was most pronounced in the EC, subiculum, CA2, and dentate gyrus outer molecular layer. Increased mGluR5 expression was seen in hippocampal head and body segments and was independent of neuronal density, astrogliosis, or dendritic alterations. Positive correlation between mGluR5 expression with mossy fiber sprouting and with MAP2 in CA3 and CA1 was found only in HS specimens. Negative correlation between mGluR5 expression with seizure frequency and epilepsy duration was found only in non-HS cases. Specimens from HS patients without previous history of febrile seizure (FS) showed higher mGluR5 and MAP2 expression in CA2. Our study suggests that mGluR5 upregulation is part of a repertoire of post-synaptic adaptations that might control overexcitation and excessive glutamate release rather than a dysfunction that leads to seizure facilitation. That would explain why non-HS cases, on which seizures are likely to originate outside the hippocampal formation, also exhibit upregulated mGluR5. On the other hand, lower mGluR5 expression was related to increased seizure frequency. In addition to its role in hyperexcitability, mGluR5 upregulation could play a role in counterbalance mechanisms along the hyperexcitable circuitry uniquely altered in sclerotic hippocampal formation. Inefficient post-synaptic compensatory morphological (dendritic branching) and glutamatergic (mGluR5 expression) mechanisms in CA2 subfield could potentially underlie the association of FS with HS and TLE. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao PauloBrazil
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill UniversityMontreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, Department of Neurology and Neurosurgery, Douglas Research Institute, McGill UniversityMontreal, Canada
| | - Mariana Raquel Monteiro
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao PauloBrazil
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Institute, McGill UniversityMontreal, Canada
| | | | | | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill UniversityMontreal, Canada
| | - Joao Pereira Leite
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao PauloBrazil
- *Correspondence to: Joao Pereira Leite, Ribeirao Preto Medical School, Department of Neurosciences and Behavior, University of Sao Paulo, Av Bandeirantes 3900, 14049-900, Ribeirao Preto, SP, Brazil. E-mail:
| |
Collapse
|
27
|
Paquet M, Ribeiro FM, Guadagno J, Esseltine JL, Ferguson SSG, Cregan SP. Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Mol Brain 2013; 6:9. [PMID: 23406666 PMCID: PMC3598502 DOI: 10.1186/1756-6606-6-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Group I metabotropic glutamate receptors (mGluR) are coupled via Gαq/11 to the activation of phospholipase Cβ, which hydrolyzes membrane phospholipids to form inositol 1,4,5 trisphosphate and diacylglycerol. In addition to functioning as neurotransmitter receptors to modulate synaptic activity, pathological mGluR5 signaling has been implicated in a number of disease processes including Fragile X, amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, and drug addiction. The expression of mGluR5 in astrocytes has been shown to be increased in several acute and chronic neurodegenerative conditions, but little is known about the functional relevance of mGluR5 up-regulation in astrocytes following injury. RESULTS In the current study, we investigated primary mouse cortical astrocyte cell death in response to oxygen glucose deprivation (OGD) and found that OGD induced both necrotic and apoptotic cell death of astrocytes. OGD resulted in an increase in astrocytic mGluR5 protein expression, inositol phosphate formation and extracellular regulated kinase (ERK1/2) phosphorylation, but only inositol phosphate formation was blocked with the mGluR5 selective antagonist MPEP. Cortical astrocytes derived from mGluR5 knockout mice exhibited resistance to OGD-stimulated apoptosis, but a lack of mGluR5 expression did not confer protection against necrotic cell death. The antagonism of the inositol 1,4,5 trisphosphate receptor also reduced apoptotic cell death in wild-type astrocytes, but did not provide any additional protection to astrocytes derived from mGluR5 null mice. Moreover, the disruption of Homer protein interactions with mGluR5 also reduced astrocyte apoptosis. CONCLUSION Taken together these observations indicated that mGluR5 up-regulation contributed selectively to the apoptosis of astrocytes via the activation of phospholipase C and the release of calcium from intracellular stores as well as via the association with Homer proteins.
Collapse
Affiliation(s)
- Maryse Paquet
- J, Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, 100 Perth Drive, London, ON, N6A 5K8, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Sephton SM, Mu L, Müller A, Wanger-Baumann CA, Schibli R, Krämer SD, Ametamey SM. Synthesis and in vitro/in vivo pharmacological evaluation of [11C]-ThioABP, a novel radiotracer for imaging mGluR5 with PET. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20332d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
Milicevic Sephton S, Mu L, Schweizer WB, Schibli R, Krämer SD, Ametamey SM. Synthesis and evaluation of novel α-fluorinated (E)-3-((6-methylpyridin-2-yl)ethynyl)cyclohex-2-enone-O-methyl oxime (ABP688) derivatives as metabotropic glutamate receptor subtype 5 PET radiotracers. J Med Chem 2012; 55:7154-62. [PMID: 22822714 DOI: 10.1021/jm300648b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the search for an optimal fluorine-18-labeled positron emission tomography (PET) radiotracer for imaging metabotropic glutamate receptor subtype 5 (mGluR5), we have prepared a series of five α-fluorinated derivatives based on the ABP688 structural manifold by application of a two-step enolization/NFSI α-fluorination method. Their binding affinities were evaluated in vitro, and the most promising candidate (Z)-16 exhibited a K(i) of 5.7 nM and a clogP value of 2.3. The synthesis of the precursor tosylate (E)-22 revealed a preference for the (E)-configurational isomer (K(i) = 31.2 nM), and successful radiosynthesis afforded (E)-[(18)F]-16 which was used as a model PET tracer to establish plasma and PBS stability. (E)-[(18)F]-16 (K(d) = 70 nM) exhibited excellent specificity for mGluR5 in autoradiographic studies on horizontal rat brain slices in vitro.
Collapse
Affiliation(s)
- Selena Milicevic Sephton
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Transient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum. Neuroscience 2012; 219:271-9. [PMID: 22677205 DOI: 10.1016/j.neuroscience.2012.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
Abstract
The generation of the most abundant neurons of the cerebellum, the granule cells, relies on a balance between clonal expansion and apoptosis during the first 10 days after birth in the external germinal layer (EGL). The amino acid glutamate controls such critical phases of cell development in other systems through specific receptors such as metabotropic glutamate receptor 5 (mGlu(5)R). However, the function of mGlu(5)Rs on the proliferation and survival of granule cell precursors (GCPs) remains elusive. We found mGlu(5)R mRNA transcripts in EGL using RT-PCR and observed mGlu(5)R-mediated Ca(2+) responses in GCPs in acute slices as early as postnatal day (P) 2-3. Using in vivo injections of the selective non-competitive mGlu(5)R antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) in P7-P9 mice, we found a 20% increase in the number of proliferative GCPs labeled at P7 with the S-phase marker bromodeoxyuridine (BrdU), but no increase in cell proliferation examined 2h following a BrdU injection. Furthermore, similar treatments led to a significant 70% decrease in the number of apoptotic GCPs in the EGL as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. In contrast, in vivo treatment with the mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) resulted in a ∼60% increase in the number of TUNEL-labeled GCPs compared to control. These findings identify a unique role for glutamate acting at mGlu(5)Rs as a functional switch regulating GCP survival in the EGL, thus controlling the total number of cerebellar granule cells produced.
Collapse
|
32
|
Śmiałowska M, Gołembiowska K, Kajta M, Zięba B, Dziubina A, Domin H. Selective mGluR1 antagonist EMQMCM inhibits the kainate-induced excitotoxicity in primary neuronal cultures and in the rat hippocampus. Neurotox Res 2012; 21:379-92. [PMID: 22144346 PMCID: PMC3296950 DOI: 10.1007/s12640-011-9293-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 10/25/2022]
Abstract
Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1-100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5-10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Neuronal receptors as targets for the action of amyloid-beta protein (Aβ) in the brain. Expert Rev Mol Med 2012; 14:e2. [PMID: 22261393 DOI: 10.1017/s1462399411002134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Accumulation of neurotoxic soluble amyloid-beta protein (Aβ) oligomers in the brains of patients with Alzheimer disease (AD) and their role in AD pathogenesis have emerged as topics of considerable interest in recent years. Soluble Aβ oligomers impair synaptic and neuronal function, leading to neurodegeneration that is clinically manifested by memory and cognitive dysfunction. The precise mechanisms whereby Aβ oligomers cause neurotoxicity remain unknown. Emerging insights into the mechanistic link between neuronal receptors and soluble Aβ oligomers highlight the potential role of these receptors in Aβ-mediated neurotoxicity in AD. The current review focuses on studies describing interactions between soluble Aβ oligomers and neuronal receptors, and their role in AD pathogenesis. Furthermore, these studies provide insight into potential therapies for AD using compounds directed at putative target receptors for the action of Aβ in the central nervous system. We focus on interactions of Aβ with subtypes of acetylcholine and glutamatergic receptors. Additionally, neuronal receptors such as insulin, amylin and receptor for advanced glycation end products could be potential targets for soluble Aβ-oligomer-mediated neurotoxicity. Aβ interactions with other receptors such as the p75 neurotrophin receptors, which are highly expressed on cholinergic basal forebrain neurons lost in AD, are also highlighted.
Collapse
|
34
|
Giordano C, Cristino L, Luongo L, Siniscalco D, Petrosino S, Piscitelli F, Marabese I, Gatta L, Rossi F, Imperatore R, Palazzo E, de Novellis V, Di Marzo V, Maione S. TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. ACTA ACUST UNITED AC 2011; 22:2495-518. [PMID: 22139792 DOI: 10.1093/cercor/bhr328] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1(-/-) mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1(-/-) mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB(1) agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain.
Collapse
Affiliation(s)
- Catia Giordano
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology L. Donatelli, Second University of Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV. A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 2011; 42:252-64. [DOI: 10.1016/j.nbd.2011.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
|
36
|
Domin H, Zięba B, Gołembiowska K, Kowalska M, Dziubina A, Śmiałowska M. Neuroprotective potential of mGluR5 antagonist MTEP: effects on kainate-induced excitotoxicity in the rat hippocampus. Pharmacol Rep 2010; 62:1051-61. [DOI: 10.1016/s1734-1140(10)70367-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/19/2010] [Indexed: 11/16/2022]
|
37
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
38
|
Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands. Bioorg Med Chem 2010; 18:6044-54. [DOI: 10.1016/j.bmc.2010.06.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/08/2010] [Accepted: 06/20/2010] [Indexed: 11/19/2022]
|
39
|
Takagi N, Besshoh S, Morita H, Terao M, Takeo S, Tanonaka K. Metabotropic glutamate mGlu5 receptor-mediated serine phosphorylation of NMDA receptor subunit NR1 in hippocampal CA1 region after transient global ischemia in rats. Eur J Pharmacol 2010; 644:96-100. [PMID: 20667449 DOI: 10.1016/j.ejphar.2010.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/18/2010] [Accepted: 07/11/2010] [Indexed: 11/25/2022]
Abstract
Phosphorylation of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in the regulation of the receptor's ion channel. The contribution of metabotropic glutamate receptors to the NMDA receptor function after brain ischemia remains to be determined. Presently we investigated the effects of an antagonist of the metabotropic glutamate mGlu5 receptor on cell death and serine phosphorylation of the NR1 subunit of the NMDA receptor in the hippocampal CA1 region after transient global ischemia and sought to explore the mechanisms involved. Phosphorylation of serine residues at 890 and 896 of NR1 was increased predominantly in the deoxycholate (DOC)-insoluble fraction after transient global ischemia in rats; and the increase in the phosphorylation of S890, but not that of S896, of NR1 in this fraction was attenuated by the mGlu5 receptor antagonist. The administration of this antagonist also reduced the increase in the amount of protein kinase C (PKC)gamma, but not that of PKCalpha, in the DOC-insoluble fraction. The results suggest that the mGlu5 receptor in the hippocampal CA1 region is involved in the phosphorylation of S890 of NR1 subunit via PKCgamma following transient ischemia. As treatment with the mGlu5 receptor antagonist reduced cell death in the hippocampal CA1 region on day 3 after the start of the reperfusion, these changes in intracellular signaling through mGlu5 receptor may be linked to the pathogenesis of cerebral ischemia.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Wágner G, Wéber C, Nyéki O, Nógrádi K, Bielik A, Molnár L, Bobok A, Horváth A, Kiss B, Kolok S, Nagy J, Kurkó D, Gál K, Greiner I, Szombathelyi Z, Keseru GM, Domány G. Hit-to-lead optimization of disubstituted oxadiazoles and tetrazoles as mGluR5 NAMs. Bioorg Med Chem Lett 2010; 20:3737-41. [PMID: 20483612 DOI: 10.1016/j.bmcl.2010.04.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Here we report the discovery and early SAR of a series of mGluR5 negative allosteric modulators (NAMs). Starting from a moderately active HTS hit we synthesized 3,5-disubstituted-oxadiazoles and tetrazoles as mGluR5 NAMs. Based on the analysis of ligand efficiency and lipophilic efficiency metrics we identified a promising lead candidate as a starting point for further optimization.
Collapse
|
41
|
Effect of MPEP on rat's behavioral activity in experimental episodes of hypoxia. Adv Med Sci 2009; 54:277-82. [PMID: 20022861 DOI: 10.2478/v10039-009-0041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The influence of the selective antagonism of metabotropic glutamate receptor subtype 5 (mGluR5) by MPEP (2-methyl-6-(phenylethynyl)-pyridine) on some behaviors was tested in control groups of rats and in rats exposed to short-term hypoxia once or to repeated episodes of hypoxia. MATERIAL AND METHODS We used the following methods: the open field test, the passive avoidance test and the object recognition test. Experimental hypoxia was produced by placing rats in a glass chamber flushed with a mixture of 2% O2 in N2. RESULTS MPEP applied intravenously (IV) at the dose of 1 mg kg-1 significantly enhanced locomotor and exploratory activity, impaired acquisition, but improved consolidation and retrieval in the passive avoidance situation and did not alter rats' activity in the object recognition test. The single short-term hypoxia significantly inhibited motility of rats and profoundly impaired acquisition, consolidation and retrieval processes, but the positive effect of MPEP on retrieval was preserved. Hypoxia also did not influence the activity of rats in the object recognition object. The repeated episodes of short-term hypoxia were induced for five consecutive days and it also inhibited motility of rats, but did not change consolidation and retrieval processes. The episodes of hypoxia significantly diminished the beneficial effect of MPEP on consolidation and retrieval, and also the enhancement of locomotor and exploratory activity. MPEP, used in rats subjected to the single or the repeated episodes of short-term hypoxia, did not change recognition memory. CONCLUSION MPEP used before the single episode of hypoxia only, had beneficial effect on retrieval.
Collapse
|
42
|
Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW. Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 2009; 55:174-80. [DOI: 10.1016/j.neuint.2009.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/27/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
|
43
|
Estrada Sánchez AM, Mejía-Toiber J, Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington's disease. Arch Med Res 2008; 39:265-76. [PMID: 18279698 DOI: 10.1016/j.arcmed.2007.11.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/15/2007] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative hereditary illness originated by the mutation of the gene encoding the huntingtin-protein (htt). Mutated htt (mhtt) is characterized by an increased number of glutamine repeats in the N-terminal end; when 40 or more glutamine residues are present, the disease is manifested. Expression of mhtt leads to the selective death of the medium spiny neurons (MSN) in the neostriatum, resulting in the appearance of generalized involuntary movements, the main phenotypic alteration of HD. The relationship between the expression of mhtt and the death of the MSN is not fully understood. Nonetheless, according to experimental evidence indicating that MSN are selectively vulnerable to the toxicity of glutamate (excitotoxicity) or its analogues, excitotoxic neuronal death is suggested to be involved in neurodegeneration associated with HD. Support for this hypothesis comes from studies in HD postmortem tissue and transgenic mice models, suggesting a correlation between mhtt expression and altered glutamatergic neurotransmission, mainly altered conductance of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype and decreased levels of glutamate transporters. On the other hand, alterations in energy metabolism are well documented in HD patients, which might facilitate excitotoxicity. Throughout this review we will discuss relevant evidence suggesting that altered glutamatergic neurotransmission plays a role in neurodegeneration associated with HD, as well as the possible contribution of deficient energy metabolism to the development of an excitotoxic cell death cascade in MSN. We show data supporting protection by energy substrates against neuronal damage in a rat model combining energy deficit and glutamate toxicity.
Collapse
Affiliation(s)
- Ana María Estrada Sánchez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
44
|
Sarichelou I, Cappuccio I, Ferranti F, Mosillo P, Ciceroni C, Sale P, Stocchi F, Battaglia G, Nicoletti F, Melchiorri D. Metabotropic glutamate receptors regulate differentiation of embryonic stem cells into GABAergic neurons. Cell Death Differ 2008; 15:700-7. [DOI: 10.1038/sj.cdd.4402298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
45
|
Vernon AC, Zbarsky V, Datla KP, Croucher MJ, Dexter DT. Subtype selective antagonism of substantia nigra pars compacta Group I metabotropic glutamate receptors protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J Neurochem 2007; 103:1075-91. [PMID: 17714448 DOI: 10.1111/j.1471-4159.2007.04860.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that increased glutamatergic input to the substantia nigra pars compacta as a result of hyperactivity of subthalalmic nucleus output pathways may contribute to the progressive degeneration of nigral dopaminergic neurones in Parkinson's disease (PD), a debilitating neurodegenerative disorder which affects approximately 1% of people aged over 65. Substantial electrophysiological evidence suggests that the excitation of nigral dopaminergic neurones is regulated by the activation of Group I metabotropic glutamate receptors (mGluR), comprising mGluR1 and mGluR5 subtypes. As activation of these receptors by endogenous glutamate may promote multiple cascades leading to excitotoxic neuronal death, it may be hypothesised that functional antagonism of Group I mGluR should be neuroprotective and could form the basis of a novel neuroprotective treatment for PD. To investigate this hypothesis, the neuroprotective potential of the selective competitive mGlu1 antagonist (+)-2-methyl-4-carboxyphenylglycine ((S)-(+)-alpha-amino-4-carboxy-2-methlybenzeneacetic acid; LY367385) and the selective allosteric mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was tested in a rodent 6-hydroxydopamine (6-OHDA) model of PD in vivo. Both acute and subchronic intranigral administration of either LY367385 or MPEP resulted in significant neuroprotection of nigral tyrosine hydroxylase immunoreactive cell bodies, which correlated closely with prevention of striatal monoamine depletion following 6-OHDA lesioning. This neuroprotective action of LY367385 and MPEP displayed a clear concentration-dependent effect, suggesting a receptor-mediated mechanism of action. LY367385 produced robust neuroprotection at all concentrations tested (40, 200 and 1000 nmol in 4 microL), whilst MPEP displayed a bell-shaped neuroprotective profile with significant neuroprotection at low concentrations (2 and 10 nmol in 4 microL) but not at higher concentrations (50 nmol). Importantly, subchronic intranigral administration of MPEP and LY367385 appeared to slow the degeneration of remaining nigral dopaminergic neurones and prevented further striatal dopamine depletion in animals with established 6-OHDA induced nigrostriatal lesions, suggesting that these compounds may significantly influence disease progression in this model.
Collapse
Affiliation(s)
- Anthony C Vernon
- Department of Cellular and Molecular Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, London, UK
| | | | | | | | | |
Collapse
|
46
|
Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 2007; 27:8297-308. [PMID: 17670976 PMCID: PMC6673047 DOI: 10.1523/jneurosci.1889-07.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 12/21/2022] Open
Abstract
Dual metabotropic glutamate 2/3 (mGlu2/3) receptor agonists have been examined with success in the clinic with positive proof of efficacy in several tests of anxiety and schizophrenia. Moreover, a large body of evidence has accumulated that these drugs have significant neuroprotective potential. An important discussion in the field deals with dissecting effects on mGlu2 versus effects on mGlu3 receptors, which is relevant for the potential use of subtype-selective agonists or allosteric activators. We addressed this issue using mGlu2 and mGlu3 receptor knock-out mice. We used mixed cultures of cortical cells in which astrocytes and neurons were plated at different times and could therefore originate from different mice. Cultures were challenged with NMDA for the induction of excitotoxic neuronal death. The mGlu2/3 receptor agonist, (-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), was equally neuroprotective in cultures containing neurons from wild-type, mGlu2-/-, or mGlu3-/- mice. Neuroprotection was instead abolished when astrocytes lacked mGlu3 receptors, unless neuronal mGlu2 receptors were also absent. The latter condition partially restored the protective activity of LY379268. Cultures in which neurons originated from mGlu2-/- mice were also intrinsically resistant to NMDA toxicity. In in vivo experiments, systemic administration of LY379268 protected striatal neurons against NMDA toxicity in wild-type and mGlu2-/- mice but not in mGlu3-/- mice. In addition, LY379268 was protective against nigrostriatal degeneration induced by low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only in mice lacking mGlu2 receptors. We conclude that neuroprotection by mGlu2/3 receptor agonists requires the activation of astrocytic mGlu3 receptors, whereas, unexpectedly, activation of mGlu2 receptors might be harmful to neurons exposed to toxic insults.
Collapse
Affiliation(s)
- Corrado Corti
- Department of Biology, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline Medicines Research Centre, 37135 Verona, Italy
| | | | - Gemma Molinaro
- Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
| | - Barbara Riozzi
- Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
| | - Anna Pittaluga
- Department of Experimental Medicine, Pharmacology and Toxicology Section, Center of Excellence for Biomedical Research, University of Genova, 16148 Genova, Italy, and
| | - Mauro Corsi
- Department of Biology, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline Medicines Research Centre, 37135 Verona, Italy
| | - Manolo Mugnaini
- Department of Biology, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline Medicines Research Centre, 37135 Verona, Italy
| | - Ferdinando Nicoletti
- Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
- Department of Human Physiology and Pharmacology, University of Rome “La Sapienza,” 00185 Rome, Italy
| | - Valeria Bruno
- Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
- Department of Human Physiology and Pharmacology, University of Rome “La Sapienza,” 00185 Rome, Italy
| |
Collapse
|
47
|
Nasser Y, Keenan CM, Ma AC, McCafferty DM, Sharkey KA. Expression of a functional metabotropic glutamate receptor 5 on enteric glia is altered in states of inflammation. Glia 2007; 55:859-72. [PMID: 17405149 DOI: 10.1002/glia.20507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is expressed by astrocytes and its expression is modulated by inflammation. Enteric glia have many similarities to astrocytes and are the most numerous cell in the enteric nervous system (ENS). We investigated whether enteric glia express a functional mGluR5 and whether expression of this receptor was altered in colitis. In both enteric plexuses of the ileum and colon of guinea pigs and mice, we observed widespread glial mGluR5 expression. Incubation of isolated segments of the guinea pig ileum with the mGluR5 specific agonist RS-2-chloro-5-hydroxyphenylglycine (CHPG) caused a dose-dependent increase in the glial expression of c-Fos and the phosphorylated form of the extracellular signal-regulated kinase 1/2. Preincubation of tissues with the group I metabotropic glutamate receptor antagonist, S-4-carboxyphenylglycine, abolished the effects of CHPG. We examined mGluR5 expression in the guinea pig trinitrobenzene sulfonic acid and the IL-10 gene-deficient (IL-10(-/-)) mouse models of colitis. In guinea pigs, mGluR5 immunoreactivity became diffusely localized over the colonic myenteric ganglia, suggesting a change in receptor distribution. In contrast, glial mGluR5 expression was significantly reduced in the colonic myenteric plexus of IL-10(-/-) mice, as assessed with both real-time quantitative RT-PCR as well as immunohistochemistry and image analysis. These changes occurred without concomitant changes to enteric ganglia or glial fibrillary acidic protein expression in the IL-10(-/-) mouse. Our data suggest that enteric glia are a functional target of the glutamatergic neurotransmitter system in the ENS and that changes in mGluR5 expression may be of physiological significance during colitis.
Collapse
Affiliation(s)
- Yasmin Nasser
- Institute for Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
48
|
Lipina T, Weiss K, Roder J. The ampakine CX546 restores the prepulse inhibition and latent inhibition deficits in mGluR5-deficient mice. Neuropsychopharmacology 2007; 32:745-56. [PMID: 16936708 DOI: 10.1038/sj.npp.1301191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to test the possible role of mGluR5 signaling in the behavioral endophenotypes of schizophrenia and other psychiatric disorders, we used genetic engineering to create mice carrying null mutations in this gene. Compared to their mGluR5(+/+) littermates, mGluR5(-/-) mice have disrupted latent inhibition (LI) as measured in a thirst-motivated conditioned emotional response procedure. Administration of the positive modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPAR), CX546, during the conditioning phase only, improved the disrupted LI in mGluR5 knockout mice and facilitated LI in control C57BL/6J mice, given extended number of conditioning trails (four conditioning stimulus-unconditioned stimulus). Prepulse inhibition (PPI) was impaired in mGluR5(-/-) mice to a level that could not be disrupted further by the antagonist of N-methyl-D-aspartate receptors - MK-801. PPI deficit of mGluR5(-/-) mice was effectively reversed by CX546, whereas aniracetam had a less pronounced effect. These data provide evidence that a potent positive AMPAR modulator can elicit antipsychotic action and represents a new approach for treatment of schizophrenia.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Analysis of Variance
- Animals
- Antidepressive Agents/pharmacology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Conditioning, Classical/drug effects
- Dioxoles/pharmacology
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Interactions
- Electroshock/adverse effects
- Excitatory Amino Acid Antagonists/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neural Inhibition/drug effects
- Neural Inhibition/genetics
- Piperidines/pharmacology
- Pyrrolidinones/pharmacology
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/deficiency
- Reflex, Startle/drug effects
- Reflex, Startle/genetics
Collapse
Affiliation(s)
- Tatiana Lipina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | | | | |
Collapse
|
49
|
|
50
|
Tebano MT, Martire A, Pepponi R, Domenici MR, Popoli P. Is the functional interaction between adenosine A(2A) receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus. Purinergic Signal 2006; 2:619-25. [PMID: 18404464 PMCID: PMC2096652 DOI: 10.1007/s11302-006-9026-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/30/2006] [Accepted: 04/20/2006] [Indexed: 12/20/2022] Open
Abstract
The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders.
Collapse
Affiliation(s)
- M T Tebano
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299 00161, Italy,
| | | | | | | | | |
Collapse
|