1
|
Bremmer MP, Paladino MB, Campbell AM, Xia K, Tarran R, Hendershot CS, Girdler SS. Acute analgesic effect of nicotine vaping using three experimental pain induction tasks: a randomized, placebo-controlled laboratory study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06669-8. [PMID: 39120697 DOI: 10.1007/s00213-024-06669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
RATIONALE Pain and nicotine use are co-occurring conditions with a significant impact on health. Experimental evidence supports an acute analgesic effect of nicotine which may reinforce nicotine use among those with chronic pain. Evidence for nicotine analgesia have primarily been gathered in combustible cigarette users and have not been extended to electronic nicotine delivery systems (ENDS or vaping). Furthermore, the mechanisms of nicotine analgesia in humans are not well understood. OBJECTIVES Assess the effect of acute vaped nicotine on subjective and behavioral indices of pain sensitivity using three tasks designed to probe distinct mechanisms of analgesia. METHODS This study recruited ENDS users (N = 86) to undergo a paced vaping protocol followed by pain tasks in counterbalanced order. Across four sessions, participants vaped e-liquid containing nicotine or placebo, and flavor or no-flavor in a 2 × 2 within-subject design. Assessments included cold pressor, submaximal effort tourniquet to induce ischemic pain, and temporal summation of heat pain, an index of central sensitization. RESULTS Compared to placebo, nicotine increased cold pressor pain tolerance (ηp2 = 0.031), ischemic pain threshold (ηp2 = 0.073) and tolerance (ηp2 = 0.056) but had no effect on temporal summation of pain. Flavor did not affect pain sensitivity. Females reported greater ischemic pain sensitivity (ηp2 = 0.027) and greater reductions in craving (ηp2 = 0.086). CONCLUSIONS Consistent with research from tobacco smoking, analgesia may be reinforcing and contribute to nicotine dependence among ENDS users. More research on sex differences is warranted.
Collapse
Affiliation(s)
- Michael P Bremmer
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Michael B Paladino
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alana M Campbell
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Christian S Hendershot
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan S Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Sykes MJ, Kekesi OS, Wong YT, Zhao FY, Spanswick D, Imlach WL. Neuron-specific responses to acetylcholine within the spinal dorsal horn circuits of rodent and primate. Neuropharmacology 2021; 198:108755. [PMID: 34416268 DOI: 10.1016/j.neuropharm.2021.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Excitatory and inhibitory neurotransmission within the spinal dorsal horn is tightly controlled to regulate transmission of nociceptive signals to the brain. One aspect of this control is modulation of neuronal activity through cholinergic signaling. Nociceptive neurons in the dorsal horn express both nicotinic and muscarinic cholinergic receptors and activation of these receptors reduces pain in humans, while inhibition leads to nociceptive hypersensitivity. At a cellular level, acetylcholine (ACh) has diverse effects on excitability which is dependent on the receptor and neuronal subtypes involved. In the present study we sought to characterize the electrophysiological responses of specific subsets of lamina II interneurons from rat and marmoset spinal cord. Neurons were grouped by morphology and by action potential firing properties. Whole-cell voltage-clamp recordings from lamina II dorsal horn neurons of adult rats showed that bath applied acetylcholine increased, decreased or had no effect on spontaneous synaptic current activity in a cell-type specific manner. ACh modulated inhibitory synaptic activity in 80% of neurons, whereas excitatory synaptic activity was affected in less than 50% of neurons. In whole-cell current clamp recordings, brief somatic application of ACh induced cell-type specific responses in 79% of rat lamina II neurons, which included: depolarization and action potential firing, subthreshold membrane depolarization, biphasic responses characterized by transient depolarization followed by hyperpolarization and membrane hyperpolarization alone. Similar responses were seen in marmoset lamina II neurons and the properties of each neuron group were consistent across species. ACh-induced hyperpolarization was blocked by the muscarinic antagonist atropine and all forms of acetylcholine-induced depolarization were blocked by the nicotinic antagonist mecamylamine. The cholinergic system plays an important role in regulating nociception and this study contributes to our understanding of how circuit activity is controlled by ACh at a cellular level in primate and rodent spinal cord.
Collapse
Affiliation(s)
- Matthew J Sykes
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia
| | - Orsolya S Kekesi
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia; Department of Electrical and Computer Systems Engineering, Melbourne, VIC, 3800, Australia
| | - Fei-Yue Zhao
- NeuroSolutions Ltd, Coventry, CV4 7AL, United Kingdom
| | - David Spanswick
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia; University of Warwick, Warwick Medical School, Coventry, CV4 7AL, United Kingdom
| | - Wendy L Imlach
- Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia; Monash Biomedicine Discovery Institute, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
The nAChR Chaperone TMEM35a (NACHO) Contributes to the Development of Hyperalgesia in Mice. Neuroscience 2021; 457:74-87. [PMID: 33422618 PMCID: PMC7897319 DOI: 10.1016/j.neuroscience.2020.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.
Collapse
|
4
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
5
|
Kaur J, Rauti R, Nistri A. Nicotine‐mediated neuroprotection of rat spinal networks against excitotoxicity. Eur J Neurosci 2018; 47:1353-1374. [DOI: 10.1111/ejn.13950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jaspreet Kaur
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
- Jaspreet Kaur, Institute of Neurosciences of Timone (IMAPATH Team) ‐ CERIMEDUMR 7289Aix‐Marseille University 27, boulevard Jean Moulin Marseille Cedex 05 13385 France
| | - Rossana Rauti
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| | - Andrea Nistri
- Department of NeuroscienceInternational School for Advanced Studies (SISSA) Trieste Italy
| |
Collapse
|
6
|
Xanthos DN, Beiersdorf JW, Thrun A, Ianosi B, Orr-Urtreger A, Huck S, Scholze P. Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine. Neuropharmacology 2015; 95:37-49. [PMID: 25725336 DOI: 10.1016/j.neuropharm.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Nicotinic receptors in the central nervous system (nAChRs) are known to play important roles in pain processing and modulate behavioral responses to analgesic drugs, including nicotine. The presence of the α5-neuronal nicotinic accessory subunit in the nicotinic receptor complex is increasingly understood to modulate reward and aversive states, addiction, and possibly pathological pain. In the current study, using α5-knockout (KO) mice and subunit-specific antibodies, we assess the role of α5-containing neuronal nicotinic receptors in neuropathic pain and in the analgesic response to nicotine. After chronic constriction injury (CCI) or partial sciatic nerve ligation (PSNL), no differences in mechanical, heat, or cold hyperalgesia were found in wild-type (WT) versus α5-KO littermate mice. The number of α5-containing nAChRs was decreased (rather than increased) after CCI in the spinal cord and in the thalamus. Nevertheless, thermal analgesic response to nicotine was marginally reduced in CCI α5-KO mice at 4 days after CCI, but not at later timepoints or after PSNL. Interestingly, upon daily intermittent nicotine injections in unoperated mice, WT animals developed tolerance to nicotine-induced analgesia to a larger extent than α5-KO mice. Our results suggest that α5-containing nAChRs mediate analgesic tolerance to nicotine but do not play a major role in neuropathic pain.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| | - Johannes W Beiersdorf
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Ariane Thrun
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Bogdan Ianosi
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Avi Orr-Urtreger
- The Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Austria.
| |
Collapse
|
7
|
Yoon H, Kim MJ, Yoon I, Li DX, Bae H, Kim SK. Nicotinic Acetylcholine Receptors Mediate the Suppressive Effect of an Injection of Diluted Bee Venom into the GV3 Acupoint on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats. Biol Pharm Bull 2015; 38:710-4. [DOI: 10.1248/bpb.b14-00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Heera Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University
| | - Min Joon Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University
| | - Insoo Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University
| | - Dong Xing Li
- Department of Physiology, College of Korean Medicine, Kyung Hee University
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University
- Department of Physiology, College of Korean Medicine, Kyung Hee University
| |
Collapse
|
8
|
Albers KM, Zhang XL, Diges CM, Schwartz ES, Yang CI, Davis BM, Gold MS. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons. Mol Pain 2014; 10:31. [PMID: 24886596 PMCID: PMC4036648 DOI: 10.1186/1744-8069-10-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions These findings suggest that Artn regulates the expression and composition of nAChRs in GFRα3 nociceptors and that these changes contribute to the thermal hypersensitivity that develops in response to Artn injection and perhaps to inflammation.
Collapse
Affiliation(s)
- Kathryn M Albers
- Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Jiang CY, Fujita T, Kumamoto E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol 2014; 111:991-1007. [DOI: 10.1152/jn.00609.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at −70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPβS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca2+-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K+, or around 0 mV. The oxytocin current was depressed in high-K+, low-Na+ or Ba2+-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg8]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K+ and/or Na+, which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca2+-release.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | | |
Collapse
|
10
|
Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 2013; 86:1054-62. [PMID: 23732296 PMCID: PMC3797251 DOI: 10.1016/j.bcp.2013.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs.
Collapse
Affiliation(s)
- Anshul A Pandya
- Chukchi Campus, Department of Bio-science, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA.
| | | |
Collapse
|
11
|
Umana IC, Daniele CA, McGehee DS. Neuronal nicotinic receptors as analgesic targets: it's a winding road. Biochem Pharmacol 2013; 86:1208-14. [PMID: 23948066 DOI: 10.1016/j.bcp.2013.08.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Along with their well known role in nicotine addiction and autonomic physiology, neuronal nicotinic receptors (nAChRs) also have profound analgesic effects in animal models and humans. This is not a new idea, even in the early 1500s, soon after tobacco was introduced to the new world, its proponents listed pain relief among the beneficial properties of smoking. In recent years, analgesics that target specific nAChR subtypes have shown highly efficacious antinociceptive properties in acute and chronic pain models. To date, the side effects of these drugs have precluded their advancement to the clinic. This review summarizes the recent efforts to identify novel analgesics that target nAChRs, and outlines some of the key neural substrates that contribute to these physiological effects. There remain many unanswered mechanistic questions in this field, and there are still compelling reasons to explore neuronal nAChRs as targets for the relief of pain.
Collapse
Affiliation(s)
- Iboro C Umana
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
12
|
Aglawe MM, Taksande BG, Kuldhariya SS, Chopde CT, Umekar MJ, Kotagale NR. Participation of central imidazoline binding sites in antinociceptive effect of ethanol and nicotine in rats. Fundam Clin Pharmacol 2013; 28:284-93. [PMID: 23600743 DOI: 10.1111/fcp.12034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 02/06/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
Despite synergistic morbidity and mortality, concomitant consumption of alcohol and tobacco is increasing, and their antinociceptive effect has been linked with co-abuse. Present study was designed to investigate the role of imidazoline binding sites in the antinociceptive effect of nicotine, ethanol, and their combination. Separate group of male Sprague-Dawley rats (200-250 g) were treated with different doses of alcohol (0.50-2 g/kg, i.p.) or nicotine (0.25-1 mg/kg, i.p.), and their combination evaluated in tail flick test. Influence of endogenous imidazoline binding site ligands, agonist, and antagonists were determined by their prior treatment with effective or subeffective doses of either ethanol or nicotine. Ethanol, nicotine, or their subeffective dose combination exhibited significant antinociceptive effects in dose-dependent manner. Antinociceptive effect of ethanol and nicotine was significantly augmented by intracerebroventricular (i.c.v.) administration of endogenous imidazoline receptor ligands, harmane (25 μg/rat, i.c.v.) and agmatine (10 μg/rat, i.c.v.), as well as imidazoline I1 /α2 adrenergic receptor agonist, clonidine (2 μg/rat, i.c.v.), I1 agonist moxonidine (25 μg/rat, i.c.v.), and imidazoline I2 agonist, 2-BFI (10 μg/rat, i.c.v.). Conversely, antinociception elicited by ethanol or nicotine or their subeffective dose combination was antagonized by pretreatment with imidazoline I1 antagonist, efaroxan (10 μg/rat, i.c.v.), and I2 antagonist, idazoxan (4 μg/rat, i.c.v.), at their per se ineffective doses. These findings project imidazoline binding ligands as important therapeutic molecules for central antinociceptive activity as well as may reduce the co-abuse potential of alcohol and nicotine.
Collapse
Affiliation(s)
- Manish Manohar Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, 441002, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
13
|
al'Absi M, Nakajima M, Grabowski J. Stress response dysregulation and stress-induced analgesia in nicotine dependent men and women. Biol Psychol 2012; 93:1-8. [PMID: 23274170 DOI: 10.1016/j.biopsycho.2012.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 01/21/2023]
Abstract
Alterations in the stress response and endogenous pain regulation mechanisms may contribute directly and indirectly to maintenance of nicotine dependence and relapse. We examined the extent to which nicotine dependence alters endogenous pain regulatory systems, including the hypothalamic-pituitary-adrenocortical axis, cardiovascular activity, and stress-induced analgesia. Smokers and nonsmokers attended a laboratory session that included assessment of hormonal and cardiovascular responses to stress. Smokers smoked at their regular rate prior to the session. The hand cold pressor and heat thermal pain tests were completed twice, once after acute stress (public speaking and math tasks) and the other after rest. While smokers and nonsmokers exhibited significant hormonal and cardiovascular responses to stress, smokers exhibited blunted stress responses relative to nonsmokers. They also exhibited diminished stress-induced analgesia. Results demonstrate altered stress response and diminished stress-induced analgesia among chronic smokers, and suggest that these dysregulated physiological responding may contribute to altered endogenous pain regulation.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Duluth Medical Research Institute, University of Minnesota Medical School, Duluth, MN 55812, USA.
| | | | | |
Collapse
|
14
|
Behrend C, Prasarn M, Coyne E, Horodyski M, Wright J, Rechtine GR. Smoking Cessation Related to Improved Patient-Reported Pain Scores Following Spinal Care. J Bone Joint Surg Am 2012; 94:2161-6. [PMID: 23095839 DOI: 10.2106/jbjs.k.01598] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Smoking is associated with low back pain, intervertebral disc disease, inferior patient outcomes following surgical interventions, and increased rates of postoperative complications. The purpose of the present study was to examine the effect of smoking and smoking cessation on pain and disability in patients with painful spinal disorders. METHODS We examined a prospectively maintained database of records for 5333 patients with axial or radicular pain from a spinal disorder with regard to smoking history and the patient assessment of pain on four visual analog scales during the course of care. Confounding factors, including secondary gain, sex, age, and body mass index, were also examined. The mean duration of follow-up was eight months. Multivariate statistical analysis was performed with variables including smoking status, secondary gain status, sex, depression, and age as predictors of pain and disability. RESULTS Compared with patients who had never smoked, patients who were current smokers reported significantly greater pain in all visual analog scale pain ratings (p < 0.001). The mean improvement in reported pain over the course of care was significantly different between nonsmokers and current smokers (p <0.001). Compared with patients who had continued to smoke, those who had quit smoking during the course of care reported significantly greater improvement in pain in visual analog scale pain ratings for worst (p = 0.013), current (p < 0.05), and average weekly pain (p = 0.024). The mean improvement in the visual analog scale pain ratings was clinically important in patients in all three groups of nonsmokers. As a group, those who had continued smoking during treatment had no clinically important improvement in reported pain. CONCLUSIONS Given a strong association between improved patient-reported pain and smoking cessation, this study supports the need for smoking cessation programs for patients with a painful spinal disorder.
Collapse
Affiliation(s)
- Caleb Behrend
- Department of Orthopaedics,University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14625, USA.
| | | | | | | | | | | |
Collapse
|
15
|
AlSharari SD, Carroll FI, McIntosh JM, Damaj MI. The antinociceptive effects of nicotinic partial agonists varenicline and sazetidine-A in murine acute and tonic pain models. J Pharmacol Exp Ther 2012; 342:742-9. [PMID: 22678099 DOI: 10.1124/jpet.112.194506] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic agonists display a wide-range profile of antinociceptive activity in acute, tonic, and chronic pain models. However, their effectiveness is limited by their unacceptable side effects. We investigated the antinociceptive effects of two new α4β2* nicotinic partial agonists, varenicline and sazetidine-A, in acute thermal and tonic pain mouse models. Both drugs failed to induce significant effects in the tail-flick and hot-plate tests after subcutaneous administration. However, they blocked nicotine's effects in these tests at very low doses. In contrast to acute pain tests, varenicline and sazetidine-A dose-dependently induced an analgesic effect in the mouse formalin test after systemic administration. Their antinociceptive effects were mediated, however, by different nicotinic acetylcholine receptor (nAChR) subtypes. Sazetidine-A effects were mediated by β2* nAChR subtypes, whereas varenicline actions were attributed to α3β4 nAChRs. Moreover, low inactive doses of varenicline blocked nicotine's actions in phase II of the formalin test. Overall, our results suggest that the antagonistic actions of varenicline at low doses are mediated by β2*-nAChRs and at higher doses as an agonist by α3β4*-nAChRs. In contrast, both actions of sazetidine-A are mediated by β2*-nAChR subtypes. These results suggest that nicotinic partial agonists possess analgesic effects in a rodent tonic pain model and may provide a potential treatment for the treatment of chronic pain disorders.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
16
|
Positive and negative effects of alcohol and nicotine and their interactions: a mechanistic review. Neurotox Res 2011; 21:57-69. [PMID: 21932109 DOI: 10.1007/s12640-011-9275-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/14/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
Nicotine and alcohol are two of the most commonly abused legal substances. Heavy use of one drug can often lead to, or is predictive of, heavy use of the other drug in adolescents and adults. Heavy drinking and smoking alone are of significant health hazard. The combination of the two, however, can result in synergistic adverse effects particularly in incidences of various cancers (e.g., esophagus). Although detrimental consequences of smoking are well established, nicotine by itself might possess positive and even therapeutic potential. Similarly, alcohol at low or moderated doses may confer beneficial health effects. These opposing findings have generated considerable interest in how these drugs act. Here we will briefly review the negative impact of drinking-smoking co-morbidity followed by factors that appear to contribute to the high rate of co-use of alcohol and nicotine. Our main focus will be on what research is telling us about the central actions and interactions of these drugs, and what has been elucidated about the mechanisms of their positive and negative effects. We will conclude by making suggestions for future research in this area.
Collapse
|
17
|
Cheng LZ, Han L, Fan J, Huang LT, Peng LC, Wang Y. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559. Mol Pain 2011; 7:56. [PMID: 21816108 PMCID: PMC3161881 DOI: 10.1186/1744-8069-7-56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022] Open
Abstract
Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Long-Zhen Cheng
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
18
|
Liu T, Fujita T, Kumamoto E. Acetylcholine and norepinephrine mediate GABAergic but not glycinergic transmission enhancement by melittin in adult rat substantia gelatinosa neurons. J Neurophysiol 2011; 106:233-46. [DOI: 10.1152/jn.00838.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic and glycinergic inhibitory synaptic transmissions in substantia gelatinosa (SG; lamina II of Rexed) neurons of the spinal dorsal horn play an important role in regulating nociceptive transmission from the periphery. It has not yet been well known whether each of the inhibitory transmissions plays a distinct role in the regulation. We report an involvement of neurotransmitters in GABAergic but not glycinergic transmission enhancement produced by the PLA2 activator melittin, where the whole-cell patch-clamp technique is applied to the SG neurons of adult rat spinal cord slices. Glycinergic but not GABAergic spontaneous inhibitory postsynaptic current (sIPSC) was increased in frequency and amplitude by melittin in the presence of nicotinic, muscarinic acetylcholine, and α1-adrenergic receptor antagonists (mecamylamine, atropine, and WB-4101, respectively). GABAergic transmission enhancement produced by melittin was unaffected by the 5-hydroxytryptamine 3 receptor and P2X receptor antagonists (ICS-205,930 and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid, respectively). Nicotinic and muscarinic acetylcholine receptor agonists [(−)-nicotine and carbamoylcholine, respectively] and norepinephrine, as well as melittin, increased GABAergic sIPSC frequency and amplitude. A repeated application of (−)-nicotine, carbamoylcholine, and norepinephrine, but not melittin, at an interval of 30 min produced a similar transmission enhancement. These results indicate that melittin produces the release of acetylcholine and norepinephrine, which activate (nicotinic and muscarinic) acetylcholine and α1-adrenergic receptors, respectively, resulting in GABAergic but not glycinergic transmission enhancement in SG neurons. The desensitization of a system leading to the acetylcholine and norepinephrine release is slow in recovery. This distinction in modulation between GABAergic and glycinergic transmissions may play a role in regulating nociceptive transmission.
Collapse
Affiliation(s)
- Tao Liu
- Department of Physiology, Saga Medical School, Saga, Japan; and
- Department of Pediatrics, Medical College of Nanchang University, Nanchang, China
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan; and
| | - Eiichi Kumamoto
- Department of Physiology, Saga Medical School, Saga, Japan; and
| |
Collapse
|
19
|
Ueda M, Iida Y, Yoneyama T, Kawai T, Ogawa M, Magata Y, Saji H. In vivo relationship between thalamic nicotinic acetylcholine receptor occupancy rates and antiallodynic effects in a rat model of neuropathic pain: Persistent agonist binding inhibits the expression of antiallodynic effects. Synapse 2010; 65:77-83. [DOI: 10.1002/syn.20819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Waldinger MD, De Lint GJ, Venema PL, Van Gils AP, Schweitzer DH. ORIGINAL RESEARCH—WOMEN'S SEXUAL HEALTH: Successful Transcutaneous Electrical Nerve Stimulation in Two Women with Restless Genital Syndrome: The Role of Aδ- and C-Nerve Fibers. J Sex Med 2010; 7:1190-9. [DOI: 10.1111/j.1743-6109.2009.01578.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Logan HL, Fillingim RB, Bartoshuk LM, Sandow P, Tomar SL, Werning JW, Mendenhall WM. Smoking status and pain level among head and neck cancer patients. THE JOURNAL OF PAIN 2009; 11:528-34. [PMID: 20015696 DOI: 10.1016/j.jpain.2009.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/13/2009] [Accepted: 09/09/2009] [Indexed: 01/21/2023]
Abstract
UNLABELLED Smoking is a risk factor for cancer of the upper aerodigestive tract with recidivism rates high even after diagnosis. Nicotine, a major product in tobacco, is a complex drug with multiple characteristics including analgesic properties. The goal of the study was to examine pain levels in the context of smoking status among patients recently diagnosed with cancer of the upper aerodigestive tract who have not yet received any treatment including radiation, surgery, or chemotherapy. A convenience sample of 112 newly diagnosed head and neck cancer patients (78 men and 34 women) was recruited from clinics at the University of Florida. Smoking rates were: 32% never smoked, 34% former smokers, 34% current smokers. Among current smokers, 62% reported plans to quit in the next 3 months and 38% had tried to quit more than 3 times in the past 5 years. Current smokers reported higher general (sensory and affective) and oral pain levels (spontaneous and functional) and pain-related interference than did never and former smokers (all F's > 8. and P's < .0001) even after controlling for stage of diagnosis. In addition, current smokers reported significantly greater interference from the pain (F(2,73) = 10.5 P < .0001). PERSPECTIVE This study highlights the importance of understanding self-reported pain in cancer patients who continue to smoke. When pain is elevated, smokers may be motivated to use tobacco as a means of reducing pain, which in turn reinforces smoking behavior. Tobacco cessation programs should include pain management as a component of treatment.
Collapse
Affiliation(s)
- Henrietta L Logan
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Olson LC, Hong D, Conell-Price JS, Cheng S, Flood P. A transdermal nicotine patch is not effective for postoperative pain management in smokers: a pilot dose-ranging study. Anesth Analg 2009; 109:1987-91. [PMID: 19923530 DOI: 10.1213/ane.0b013e3181bd1612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nicotine has an antinociceptive effect in animal models. The analgesic effect in humans has been examined, but studies have had mixed results. A proposed etiology is variability in chronic nicotine exposure because of differences in tobacco smoking rates and second-hand smoke exposure. In this study, we examined the postoperative analgesic effect of a transdermal nicotine patch in smokers in a parallel design to a previous study in nonsmokers. METHODS We conducted a randomized, double-blind, prospective, placebo-controlled trial of 28 patients undergoing abdominal or pelvic surgery who required patient-controlled analgesia and an overnight hospital stay. Before anesthetic induction, a transdermal nicotine patch was applied (0, 5, 10, or 15 mg). The primary outcome variable was postoperative pain reported over the first hour and over the next 5 days using a standard numerical rating scale. Secondary outcome variables were pain medication use, hemodynamic values, nausea, and sedation. RESULTS Patients treated with nicotine reported higher pain scores than those treated with placebo over the first hour after surgery (P < 0.01, average numerical rating scale increase = 0.67) and there was no difference between groups in the subsequent 5 days (P > 0.05). There was no significant dose effect. Diastolic blood pressure in the first hour was higher in the placebo group compared with the nicotine-treated group (P < 0.01, average increase = 11 mm Hg). There was no difference in nausea or sedation. CONCLUSIONS Transdermal nicotine, 5-15 mg, failed to relieve postoperative pain or reduce opioid use in smokers.
Collapse
Affiliation(s)
- Luke C Olson
- Department of Anesthesiology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
23
|
Egea J, Rosa AO, Lorrio S, del Barrio L, Cuadrado A, López MG. Haeme oxygenase-1 overexpression via nAChRs and the transcription factor Nrf2 has antinociceptive effects in the formalin test. Pain 2009; 146:75-83. [PMID: 19660867 DOI: 10.1016/j.pain.2009.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 06/03/2009] [Accepted: 07/07/2009] [Indexed: 11/28/2022]
Abstract
Epibatidine has shown antinociceptive effects in various pain models, being 200-fold more potent than morphine. Previous results from our laboratory demonstrated that HO-1 overexpression has an antinociceptive effect in the formalin test. Furthermore, epibatidine was able to induce haeme oxygenase-1 (HO-1). So, the aim of this study was to investigate the effect of HO-1 overexpression induced by epibatidine in nociception elicited by formalin injection in the mice hindpaw. Administration of epibatidine (4 microg/kg) 24h before the test reduced the nociceptive response during the first phase and second phase of the formalin test. This effect was prevented by treatment with tin protoporphyrin (SnPP, an inhibitor of HO-1 activity) administered via intraplantar 5min before the test, suggesting a main role of HO-1. Western blot analysis revealed that epibatidine treatment increased by 2-fold HO-1 expression in the paw; this effect was lost in knockout mice for nuclear factor-erythroid 2-related factor 2 (Nrf2) and was accompanied by the loss of its antinociceptive effect. Furthermore, the antinociceptive effect of epibatidine was related to the activation of alpha7 and/or alpha9 nAChRs since methyllycaconitine (MLA) and mecamylamine but not dihydro-beta-erythroidine (DHbetaE) reverted this effect. Finally, we showed by flow cytometry and by immunofluorescence that white blood cells of the animals injected with epibatidine expressed more HO-1 than control animals, and this expression was also reverted by MLA pre-treatment. These findings demonstrate that HO-1 induction by epibatidine has antinociceptive and anti-inflammatory effects by the activation of MLA-sensitive nAChRs.
Collapse
Affiliation(s)
- Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4. 28029 Madrid, Spain. ,
| | | | | | | | | | | |
Collapse
|
24
|
Chen Y, Cui Y, Lin JW, Xiang QL, Liu WF, Wang TH. Modulatory role of estradiol in nicotinic antinociception in adult female rats. Life Sci 2009; 85:91-6. [DOI: 10.1016/j.lfs.2009.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
25
|
Rowley TJ, Payappilly J, Lu J, Flood P. The Antinociceptive Response to Nicotinic Agonists in a Mouse Model of Postoperative Pain. Anesth Analg 2008; 107:1052-7. [DOI: 10.1213/ane.0b013e318165e0c0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Xue Y, Domino EF. Tobacco/nicotine and endogenous brain opioids. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1131-8. [PMID: 18215788 PMCID: PMC2582831 DOI: 10.1016/j.pnpbp.2007.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/04/2007] [Accepted: 12/12/2007] [Indexed: 11/25/2022]
Abstract
Smoking is a major public health problem with devastating health consequences. Although many cigarette smokers are able to quit, equal numbers of others cannot! Standard medications to assist in smoking cessation, such as nicotine replacement therapies and bupropion, are ineffective in many remaining smokers. Recent developments in the neurobiology of nicotine dependence have identified several neurotransmitter systems that may contribute to the process of smoking maintenance and relapse. These include: especially dopamine, but also norepinephrine, 5-hydroxytryptamine, acetylcholine, endogenous opioids, gamma-aminobutyric acid (GABA), glutamate, and endocannabinoids. The present review examines the limited contribution of the endogenous opioid system to the complex effects of nicotine/tobacco smoking.
Collapse
Affiliation(s)
| | - Edward F. Domino
- Corresponding author. E.F. Domino, M.D., Tel#: 734-764-9115, Fax#: 734-763-4450,
| |
Collapse
|
27
|
Young T, Wittenauer S, Parker R, Vincler M. Peripheral nerve injury alters spinal nicotinic acetylcholine receptor pharmacology. Eur J Pharmacol 2008; 590:163-9. [PMID: 18573248 DOI: 10.1016/j.ejphar.2008.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/22/2008] [Accepted: 06/05/2008] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors are widely expressed in the rat spinal cord and modulate innocuous and nociceptive transmission. The present studies were designed to investigate the plasticity of spinal nicotinic acetylcholine receptors modulating mechanosensitive information following spinal nerve ligation. A tonic inhibitory cholinergic tone mediated by dihydro-beta-erythroidine- (DHbetaE) and methyllycaconitine- (MLA) sensitive nicotinic acetylcholine receptors was identified in the normal rat spinal cord and cholinergic tone at both populations of nicotinic acetylcholine receptors was lost ipsilateral to spinal nerve ligation. The administration of intrathecal nicotinic acetylcholine receptor agonists reduced mechanical paw pressure thresholds with a potency of epibatidine=A-85380>>nicotine>choline in the normal rat. Following spinal nerve ligation, intrathecal epibatidine and nicotine produced an ipsilateral antinociception, but intrathecal A-85380 and choline did not. The antinociceptive response to intrathecal nicotine was blocked with the alpha7 and alpha9alpha10-selective nicotinic acetylcholine receptor antagonist, MLA, and the alphabeta heteromeric nicotinic acetylcholine receptor antagonist, DHbetaE. The antinociceptive effects of both intrathecal nicotine and epibatidine were mediated by GABA(A) receptors. Spinal [(3)H]epibatidine saturation binding was unchanged in spinal nerve-ligated rats, but spinal nerve ligation did increase the ability of nicotine to displace [(3)H]epibatidine from spinal cord membranes. Spinal nerve ligation altered the expression of nicotinic acetylcholine receptor subunits ipsilaterally, with a large increase in the modulatory alpha5 subunit. Taken together these results suggest that pro- and antinociceptive populations of spinal nicotinic acetylcholine receptors modulate the transmission of mechanosensitive information and that spinal nerve ligation-induced changes in spinal nicotinic acetylcholine receptors likely result from a change in subunit composition rather than overt loss of nicotinic acetylcholine receptor subtypes.
Collapse
Affiliation(s)
- Tracey Young
- Department of Anesthesiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
28
|
Drisdel RC, Sharp D, Henderson T, Hales TG, Green WN. High affinity binding of epibatidine to serotonin type 3 receptors. J Biol Chem 2008; 283:9659-65. [PMID: 17702741 PMCID: PMC2442297 DOI: 10.1074/jbc.m703672200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/15/2007] [Indexed: 01/22/2023] Open
Abstract
Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of (125)I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT(3)Rs) block the remaining 25%. (125)I-Epibatidine binds with a high affinity to native 5-HT(3)Rs of N1E-115 cells and to receptors composed of only 5-HT(3A) subunits expressed in HEK cells. In these cells, serotonin, the 5-HT(3)R-specific antagonist MDL72222, and the 5-HT(3)R agonist chlorophenylbiguanide readily competed with (125)I-epibatidine binding to 5-HT(3)Rs. Nicotine was a poor competitor for (125)I-epibatidine binding to 5-HT(3)Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of (125)I-epibatidine binding to 5-HT(3)Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT(3)Rs in neuroblastoma cell lines and 5-HT(3A)Rs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT(3)Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT(3)R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT(3)Rs.
Collapse
Affiliation(s)
- Renaldo C Drisdel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
29
|
Kwon MS, Seo YJ, Choi SM, Lee JK, Jung JS, Park SH, Suh HW. The effect of formalin pretreatment on nicotine-induced antinociceptive effect: the role of mu-opioid receptor in the hippocampus. Neuroscience 2008; 154:415-23. [PMID: 18456411 DOI: 10.1016/j.neuroscience.2008.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
Nicotine is attractive as an analgesic component despite that its antinociceptive mechanism is not well known until now. In the present study, we examined the antinociceptive effect of nicotine administered supra-spinally on acetic acid-induced visceral pain induction (writhing test), and found that the antinociceptive effect of nicotine was abolished by mu-, delta-, and kappa-opioid receptor antagonist administered i.c.v. In addition, s.c. 5% formalin pretreatment at 5 h, 20 h, 40 h, and 1 week prior to i.c.v. nicotine injection abolished the antinociceptive effect of nicotine in the writhing test, suggesting that s.c. formalin pretreatment induced tolerance to the antinociceptive effect of nicotine in the supra-spinal region. Furthermore, neuronal loss of the hippocampal cornus ammonis (CA) 3 region reduced nicotine-induced an antinociceptive effect in the writhing test. In Western blot assay, we examined s.c. formalin injection down-regulated mu-opioid receptor in the hippocampus after 40 h, and its effect was maintained for 1 week. However, various acetylcholine receptor subunits and delta-, and kappa-opioid receptors were not altered. These results suggest that s.c. formalin pretreatment can contribute to induce tolerance on nicotine-induced antinociception as down-regulating mu-opioid receptor in the hippocampus, especially 40 h after s.c. formalin injection.
Collapse
Affiliation(s)
- M-S Kwon
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okcheon-Dong, Chuncheon, Gangwon-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu T, Fujita T, Nakatsuka T, Kumamoto E. Phospholipase A2 Activation Enhances Inhibitory Synaptic Transmission in Rat Substantia Gelatinosa Neurons. J Neurophysiol 2008; 99:1274-84. [DOI: 10.1152/jn.01292.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A2 (PLA2) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA2, we examined the effect of PLA2 activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique. Melittin enhanced the frequency and amplitude of GABAergic and glycinergic sIPSCs. The enhancement of GABAergic but not glycinergic transmission was largely depressed by Na+ channel blocker tetrodotoxin or glutamate-receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and/or dl-2-amino-5-phosphonovaleric acid) and also in a Ca2+-free Krebs solution. The effects of melittin on glycinergic sIPSC frequency and amplitude were dose-dependent with an effective concentration of ∼0.7 μM for half-maximal effect and were depressed by PLA2 inhibitor 4-bromophenacyl bromide or aristolochic acid. The melittin-induced enhancement of glycinergic transmission was depressed by lipoxygenase inhibitor nordihydroguaiaretic acid but not cyclooxygenase inhibitor indomethacin. These results indicate that the activation of PLA2 in the SG enhances GABAergic and glycinergic inhibitory transmission in SG neurons. The former action is mediated by glutamate-receptor activation and neuronal activity increase, possibly the facilitatory effect of PLA2 activation on excitatory transmission, whereas the latter action is due to PLA2 and subsequent lipoxygenase activation and is independent of extracellular Ca2+. It is suggested that PLA2 activation in the SG could enhance not only excitatory but also inhibitory transmission, resulting in the modulation of nociception.
Collapse
|
31
|
Matsumoto M, Xie W, Inoue M, Ueda H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Mol Pain 2007; 3:41. [PMID: 18088441 PMCID: PMC2234393 DOI: 10.1186/1744-8069-3-41] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/19/2007] [Indexed: 11/17/2022] Open
Abstract
Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition.
Collapse
Affiliation(s)
- Misaki Matsumoto
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | | | | | | |
Collapse
|
32
|
Uustalu M, Abelson KSP. Drug Distribution in Spinal Cord during Administration with Spinal Loop Dialysis Probes in Anaesthetized Rats. Basic Clin Pharmacol Toxicol 2007; 100:196-200. [PMID: 17309524 DOI: 10.1111/j.1742-7843.2006.00034.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatidine in concentrations of 1, 10 and 100 nM was dissolved in Ringer's solution and administered through the dialysis membrane into the dorsal region of the cervical spinal cord. First, the outflow of [(3)H]epibatidine from the probe into the spinal cord was examined with respect to different concentrations and changes over time. Then, the distribution of the different [(3)H]epibatidine concentrations along the spinal cord was studied. It was found that the percentage of [(3)H]epibatidine entering the spinal cord did not differ between different administered concentrations after a stabilization period of 60 min. The administered [(3)H]epibatidine was found to be distributed to the area closest to the dialysis probe and not dispersed along the spinal cord, and the distribution was equal for all concentrations. The data presented in this investigation provide information, which is important for interpretation of data from intraspinal administration of substances through the spinal loop dialysis probe.
Collapse
Affiliation(s)
- Maria Uustalu
- Division of Comparative Medicine, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
33
|
Lee HJ, Shin SW, Yang WS, Baek SH, Kim CH, Kim HK, Baik SW. The Change of Neuropathic Pain and Pain Related Gene Expression following Exposure to Chronic Smoking. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.53.3.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hyeon Jeong Lee
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| | - Sang Wook Shin
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| | - Woo Seong Yang
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
| | - Seung Hoon Baek
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| | - Cheul Hong Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| | - Hae Kyu Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| | - Seong Wan Baik
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Korea
- Medical Research Institute, Pusan National University Hospital, Korea
| |
Collapse
|
34
|
Abdin MJ, Morioka N, Morita K, Kitayama T, Kitayama S, Nakashima T, Dohi T. Analgesic action of nicotine on tibial nerve transection (TNT)-induced mechanical allodynia through enhancement of the glycinergic inhibitory system in spinal cord. Life Sci 2006; 80:9-16. [PMID: 16950410 DOI: 10.1016/j.lfs.2006.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/07/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.
Collapse
Affiliation(s)
- Md Joynal Abdin
- Department of Dental Pharmacology, Division of Integrated Medical Science, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Masuda H, Hayashi Y, Chancellor MB, Kihara K, de Groat WC, de Miguel F, Yoshimura N. Roles of Peripheral and Central Nicotinic Receptors in the Micturition Reflex in Rats. J Urol 2006; 176:374-9. [PMID: 16753446 DOI: 10.1016/s0022-5347(06)00581-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated the effects of nicotinic acetylcholine receptor activation in the bladder and central nervous system on the micturition reflex in urethane anesthetized rats. MATERIALS AND METHODS The effects of nicotinic acetylcholine receptor activation on bladder activity were examined during continuous infusion cystometrogram. Nicotine with or without the nicotinic acetylcholine receptor antagonist mecamylamine (Sigma Chemical Co., St. Louis, Missouri) was administered intravesically, intrathecally or intracerebroventricularly in normal or capsaicin pretreated rats. We also examined nicotine induced responses in dissociated bladder afferent neurons from L6 to S1 dorsal root ganglia that were sensitive to capsaicin using whole cell patch clamp recordings. RESULTS Intravesical nicotine (1 to 10 mM) significantly decreased intercontraction intervals in dose dependent fashion. This excitatory effect was abolished by co-application of mecamylamine (3 mM) as well as by capsaicin pretreatment. On patch clamp recordings 300 muM nicotine evoked rapid inward currents that were antagonized by mecamylamine in capsaicin sensitive bladder afferent neurons. Intrathecal and intracerebroventricular administration of nicotine (10 mug) decreased and increase intercontraction intervals, respectively. Each effect was antagonized by mecamylamine (50 mug) administered intrathecally and intracerebroventricularly. The spinal excitatory effect was significantly inhibited by the N-methyl-D-aspartate receptor antagonist (+)-MK-801 hydrogen maleate (20 mug) given intrathecally or by capsaicin pretreatment, although the effects of capsaicin pretreatment were significantly smaller than those of (+)-MK-801 hydrogen maleate. CONCLUSIONS These results indicate that nicotinic acetylcholine receptor activation in capsaicin sensitive C-fiber afferents in the bladder can induce detrusor overactivity. In the central nervous system nicotinic acetylcholine receptor activation in the spinal cord and brain has an excitatory and an inhibitory effect on the micturition reflex, respectively. In addition, the nicotine induced spinal excitatory effect may be mediated by the activation of glutamatergic mechanisms.
Collapse
MESH Headings
- Administration, Intravesical
- Animals
- Capsaicin/pharmacology
- Central Nervous System/metabolism
- Dose-Response Relationship, Drug
- Female
- Ganglia, Spinal/metabolism
- Injections, Intraventricular
- Injections, Spinal
- Mecamylamine/pharmacology
- Muscle Contraction/drug effects
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neurons, Afferent/metabolism
- Nicotine/administration & dosage
- Nicotine/pharmacology
- Nicotinic Antagonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, Nicotinic/metabolism
- Receptors, Nicotinic/physiology
- Reflex/physiology
- Urinary Bladder/innervation
- Urinary Bladder/metabolism
- Urinary Bladder/physiology
- Urination/physiology
Collapse
Affiliation(s)
- Hitoshi Masuda
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Seddik R, Schlichter R, Trouslard J. Modulation of GABAergic synaptic transmission by terminal nicotinic acetylcholine receptors in the central autonomic nucleus of the neonatal rat spinal cord. Neuropharmacology 2006; 51:77-89. [PMID: 16678861 DOI: 10.1016/j.neuropharm.2006.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 02/09/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Using patch clamp recordings from an in vitro spinal cord slice preparation of neonatal rats (9-15days old), we characterized the GABAergic synaptic transmission in sympathetic preganglionic neurones (SPN) of the central autonomic nucleus (CA) of lamina X. Local applications of isoguvacine (100microM), a selective agonist at GABA(A) receptors, induced in all cells tested a chloride current which was abolished by bicuculline, a competitive antagonist at GABA(A) receptors. In addition, 25% of the recorded cells displayed spontaneous tetrodotoxin-insensitive and bicuculline-sensitive chloride miniature inhibitory postsynaptic currents (mIPSCs). Acetylcholine (100microM) increased the frequency of GABAergic mIPSCs without affecting their amplitudes or their kinetic properties indicating a presynaptic site of action. The presynaptic effect of ACh was restricted to GABAergic neurones synapsing onto sympathetic preganglionic neurones. The facilitatory effect of ACh was abolished in the absence of external calcium or in the presence of 100microM cadmium added to the bath solution. Choline 10mM, an agonist at alpha7 nicotinic acetylcholine receptors (nAChRs) or muscarine (10microM), a muscarinic receptor agonist, did not reproduce the presynaptic effect of ACh. The presynaptic effect of ACh was blocked by 1microM of dihydro-beta-erythroidine (DHbetaE), an antagonist of non-alpha7 nAChRs but was insensitive to alpha7 nAChRs antagonists (strychnine, alpha-bungarotoxin and methyllycaconitine) or to the muscarinic receptor antagonist atropine (10microM). It was concluded that SPNs of the central autonomic nucleus displayed a functional GABAergic transmission which is facilitated by terminal non alpha7 nAChRs.
Collapse
Affiliation(s)
- Riad Seddik
- Department of Physiology, University of Basel, Pharmazentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
37
|
Rashid MH, Furue H, Yoshimura M, Ueda H. Tonic inhibitory role of alpha4beta2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain 2006; 125:125-35. [PMID: 16781069 DOI: 10.1016/j.pain.2006.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 04/06/2006] [Accepted: 05/03/2006] [Indexed: 11/20/2022]
Abstract
In the spinal dorsal horn, activation of the nicotinic acetylcholine receptors (nAChR) by exogenously applied agonists is known to enhance inhibitory synaptic transmission, and to produce analgesia. However, it is still unknown whether endogenously released acetylcholine exerts a tonic inhibition on nociceptive transmission through the nAChRs in the spinal dorsal horn. Here, we report the presence of such a tonic inhibitory mechanism in the spinal dorsal horn in mice. In behavioral experiments, intrathecal (i.t.) injection of non-selective nAChR antagonist mecamylamine and alpha4beta2 subtype-selective antagonist dihydro-beta-erythroidine (DHbetaE) dose-dependently induced thermal and mechanical hyperalgesia in mice while the alpha7-selective antagonist methyllycaconitine (MLA) had no effect. Similarly, antisense knock-down of alpha4 subunit of nAChR, but not alpha7 subunit, in spinal cord induced thermal and mechanical hyperalgesia. In whole-cell patch-clamp experiments in spinal cord slice preparation from adult mice, the frequency of miniature inhibitory postsynaptic currents (mIPSCs) observed in substantia gelatinosa (SG) neurons was decreased by mecamylamine and DHbetaE, but not by MLA. The amplitudes of the mIPSCs were not affected. The nicotinic antagonists decreased the frequency of both GABAergic and glycinergic IPSCs. On the other hand, the nicotinic antagonists had no effect on the excitatory postsynaptic currents (EPSCs). Finally, acetylcholine-esterase inhibitor neostigmine-induced facilitation of IPSC frequencies in SG neurons was inhibited by mecamylamine and DHbetaE. Altogether these findings suggest that nicotinic cholinergic system in the spinal dorsal horn can tonically inhibit nociceptive transmission through presynaptic facilitation of inhibitory neurotransmission in SG via the alpha4beta2 subtype of nAChR.
Collapse
Affiliation(s)
- Md Harunor Rashid
- Department of Integrative Physiology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
38
|
Campbell VC, Taylor RE, Tizabi Y. Antinociceptive effects of alcohol and nicotine: Involvement of the opioid system. Brain Res 2006; 1097:71-7. [PMID: 16730342 DOI: 10.1016/j.brainres.2006.04.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 11/23/2022]
Abstract
Both alcohol and nicotine have been shown to possess antinociceptive or analgesic effects. An additive or synergistic antinociceptive effect induced by simultaneous administration of alcohol and nicotine could further contribute to their co-abuse. In this study, we sought to evaluate the antinociceptive effects of various combinations of ethanol and nicotine and to determine whether these effects could be blocked by an opioid antagonist. Adult male Wistar rats were treated with various doses of alcohol (0.1-2 g/kg), nicotine (0.01-2 mg/kg) or their combination and their behavior in tail flick test, reflective of spinal antinociception and hotplate test, mainly reflective of supraspinal antinociception were evaluated. Alcohol at the highest dose of 2 g/kg resulted in significant antinociceptive effects in both assays. Nicotine at 1 mg/kg resulted in significant antinociception in the hotplate; however, in the tail flick test a dose of 2 mg/kg was required for an antinociceptive effect. Combination of doses of alcohol and nicotine that were ineffective by themselves resulted in antinociceptive responses in both paradigms. These effects were attenuated by pretreatment with the non-selective opioid receptor antagonist naloxone. The data indicate that a combination of alcohol and nicotine can result in a synergistic antinociceptive response that is at least partially mediated by the opioid system. The analgesic effects induced by combination of alcohol and nicotine may be a contributory factor in their co-abuse.
Collapse
Affiliation(s)
- Vera Combs Campbell
- Howard University, College of Medicine, Department of Pharmacology, Numa P. Adams Suite 3408, 520 W Street North West, Washington, DC 20059, USA
| | | | | |
Collapse
|
39
|
Simons CT, Cuellar JM, Moore JA, Pinkerton KE, Uyeminami D, Carstens MI, Carstens E. Nicotinic receptor involvement in antinociception induced by exposure to cigarette smoke. Neurosci Lett 2006; 389:71-6. [PMID: 16095820 DOI: 10.1016/j.neulet.2005.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/14/2005] [Accepted: 07/14/2005] [Indexed: 11/27/2022]
Abstract
Direct exposure of rats to tobacco smoke induces antinociception. We presently investigated if this antinociception is mediated via nicotinic and/or mu-opioid receptors. Adult male rats were surgically implanted with Alzet osmotic minipumps that delivered either saline (control), the nicotinic antagonist mecamylamine, or the opiate antagonist naltrexone (3 mg/kg/day i.v. for 21 days). Nocifensive responses were assessed on alternate days using tail-flick reflex latency (TFL) over a 3-week period. During the second week, the rats were exposed to concentrated cigarette smoke in an environmental chamber for 6 h/day for 5 consecutive days; a control group was similarly exposed to filtered cigarette smoke. Rats receiving mecamylamine and naltrexone exhibited a significant weight loss after the first day of infusion. All treatment groups additionally exhibited significant weight loss during exposure to unfiltered or filtered smoke. The saline group exhibited significant antinociception on the first day of smoke exposure with rapid development of tolerance. The mecamylamine and naltrexone groups did not exhibit significant antinociception. Controls exposed to filtered smoke (with approximately 50% lower nicotine concentration) also exhibited significant analgesia on the first exposure day with rapid development of tolerance. Exposure to high levels of cigarette smoke, or to filtered smoke with a lower nicotine concentration in the vapor phase, induces antinociception with rapid development of tolerance. The antinociceptive effect appears to be mediated via nicotinic and mu-opioid receptors.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Drug Tolerance/physiology
- Male
- Mecamylamine/pharmacology
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Smoking
Collapse
Affiliation(s)
- Christopher T Simons
- Givaudan Flavors Corp., Research and Development, 1199 Edison Drive, Cincinnati, OH 45216, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Meyer MD. Neuronal nicotinic acetylcholine receptors as a target for the treatment of neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Abstract
The potential use of nicotinic acetylcholine receptor agonists has been the subject of a number of recent reviews. Despite the promises of better things to come, few new compounds have been identified that circumvent the issues hindering the widespread use of the previously described nicotinic analgesics, mainly a narrow therapeutic window between analgesic efficacy and toxicity, and a lack of knowledge of native nicotinic acetylcholine receptor expression. However, several recent developments have potentially opened new windows of opportunity in the use of nicotinic agents for analgesia. A small number of laboratories have reported that peripheral nerve injury alters the pharmacology of nicotinic receptors, resulting in a leftward shift of analgesic potency but not of toxicity. Another important development in the pathophysiology of neuropathic pain is the reliance of nerve injury-induced behavioural hypersensitivity on both peripheral and central neural immune interactions. Finally, the reported neuroprotective effects of nicotine following spinal cord injury may provide an opportunity for the development of selective nicotinic agonists that are capable of attenuating chronic pain. The current review will attempt to highlight these recent developments and outline key findings that demonstrate further opportunity for the development of nicotinic agonists as novel analgesics.
Collapse
Affiliation(s)
- Michelle Vincler
- Department of Anesthesiology, The Center for the Study of Pharmacological Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
42
|
Khan IM, Wennerholm M, Singletary E, Polston K, Zhang L, Deerinck T, Yaksh TL, Taylor P. Ablation of primary afferent terminals reduces nicotinic receptor expression and the nociceptive responses to nicotinic agonists in the spinal cord. ACTA ACUST UNITED AC 2005; 33:543-56. [PMID: 15906161 DOI: 10.1007/s11068-004-0516-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/31/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
A variety of studies indicate that spinal nicotinic acetylcholine receptors modulate the behavioral and autonomic responses elicited by afferent stimuli. To examine the location of and role played by particular subtypes of nicotinic receptors in mediating cardiovascular and nociceptive responses, we treated neonatal and adult rats with capsaicin to destroy C-fibers in primary afferent terminals. Reduction of C-fiber terminals was ascertained by the loss of isolectin B4, CGRP and vanilloid receptors as monitored by immunofluorescence. Receptor autoradiography shows a reduction in number of epibatidine binding sites following capsaicin treatment. The reduction is particularly marked in the dorsal horn and primarily affects the class of high affinity epibatidine binding sites thought to modulate nociceptive responses. Accompanying the loss of terminals and nicotinic binding sites were significant reductions in the expression of alpha 3, alpha 4, alpha 5, beta 2 and beta 4 nicotinic receptor subunits in the superficial layers of the spinal cord as determined by antibody staining and confocal microscopy. The loss of nicotinic receptors that follows capsaicin treatment results in attenuation of the nociceptive responses to both spinal cytisine and epibatidine. Capsaicin treatment also diminishes the capacity of cytisine to desensitize nicotinic receptors mediating nociception, but it shows little effect on intrathecal nicotinic agonist elicited pressor and heart rate responses. Hence, our data suggest that alpha 3, alpha 4, alpha 5, beta 2 and beta 4 subunits of nicotinic receptors are localized in the spinal cord on primary afferent terminals that mediate nociceptive input. A variety of convergent data based on functional studies and subunit expression suggest that alpha 3 and alpha 4, in combination with beta 2 and alpha 5 subunits, form the majority of functional nicotinic receptors on C-fiber primary afferent terminals. Conversely, spinal nicotinic receptors not located on C-fibers play a primary role in the spinal pathways evoking spinally coordinated autonomic cardiovascular responses.
Collapse
Affiliation(s)
- Imran M Khan
- Department of Pharmacology, University of California, San Diego, CA 92093-0636, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Genzen JR, McGehee DS. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res 2005; 1031:229-37. [PMID: 15649448 DOI: 10.1016/j.brainres.2004.10.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 10/26/2022]
Abstract
While the mechanisms underlying nicotinic acetylcholine receptor (nAChR)-mediated analgesia remain unresolved, one process that is almost certainly involved is the recently-described nicotinic enhancement of inhibitory synaptic transmission in the spinal cord dorsal horn. Despite these observations, the prototypical nicotinic analgesic (epibatidine) has not yet been shown to modulate inhibitory transmission in the spinal cord. Furthermore, while nAChRs have been implicated in short-term modulation, no studies have investigated the role of nAChRs in the modulation of long-term synaptic plasticity of inhibitory transmission in dorsal horn. Whole-cell patch clamp recordings from dorsal horn neurons of neonatal rat spinal cord slices were therefore conducted to investigate the short- and long-term effects of nicotinic agonists on GABAergic transmission. GABAergic synaptic transmission was enhanced in 86% of neurons during applications of 1 microM nicotine (mean increased spontaneous GABAergic inhibitory postsynaptic current (sIPSC) frequency was approximately 500% of baseline). Epibatidine (100 nM) induced an increase to an average of approximately 3000% of baseline, and this effect was concentration dependent (EC50=43 nM). Nicotinic enhancement was inhibited by mecamylamine and DHbetaE, suggesting an important role for non-alpha7 nAChRs. Tetrodotoxin (TTX) did not alter the prevalence or magnitude of the effect of nicotine, but the responses had a shorter duration. Nicotine did not alter evoked GABAergic IPSC amplitude, yet the long-term depression (LTD) induced by strong stimulation of inhibitory inputs was reduced when paired with nicotine. These results provide support for a mechanism of nicotinic analgesia dependent on both short and long-term modulation of GABAergic synaptic transmission in the spinal cord dorsal horn.
Collapse
Affiliation(s)
- Jonathan R Genzen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
44
|
Rowley TJ, Daniel D, Flood P. The Role of Adrenergic and Cholinergic Transmission in Volatile Anesthetic-Induced Pain Enhancement. Anesth Analg 2005; 100:991-995. [PMID: 15781512 DOI: 10.1213/01.ane.0000147708.73945.b3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Volatile anesthetic drugs have a biphasic effect on pain transmission. At very small concentrations they enhance pain sensitivity whereas at larger subanesthetic concentrations they have an analgesic effect. Previous work has suggested that nicotinic inhibition could mediate the pronociceptive action of isoflurane. Furthermore, activation of nicotinic receptors facilitates the release of norepinephrine in the spinal cord. We hypothesize that nicotinic modulation of norepinephrine release in the spinal cord mediates isoflurane's pronociceptive action. We used hindpaw withdrawal latency as a measure of pain sensitivity after inhibition of adrenergic activity or treatment with nicotine in mice. Isoflurane's effect on pain is separable by concentration. The 50% effective concentration for pain enhancement is 0.16% isoflurane whereas the 50% effective concentration for the antinociceptive action of isoflurane is 0.8%. Depletion of systemic norepinephrine with the neurotoxin DSP-4 caused a reduction in baseline withdrawal latencies and prevented isoflurane pronociception. Baseline latency was also reduced by intrathecal yohimbine. After treatment with yohimbine, isoflurane had no additional pronociceptive effect. Nicotine administered through intracerebroventricular injection increased baseline latency but did not prevent isoflurane pronociception. Conversely, intrathecal applications of nicotine caused a slight reduction in baseline latency and prevented isoflurane's pronociceptive effect. We conclude that spinal noradrenergic transmission seems to be necessary for isoflurane pronociception to occur. Isoflurane may act by inhibiting tonically active nicotinic receptors that modulate the release of norepinephrine in the spinal cord.
Collapse
Affiliation(s)
- Thomas J Rowley
- Department of Anesthesiology, Columbia University, New York, New York
| | | | | |
Collapse
|
45
|
|
46
|
Dubé GR, Kohlhaas KL, Rueter LE, Surowy CS, Meyer MD, Briggs CA. Loss of functional neuronal nicotinic receptors in dorsal root ganglion neurons in a rat model of neuropathic pain. Neurosci Lett 2004; 376:29-34. [PMID: 15694269 DOI: 10.1016/j.neulet.2004.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/22/2004] [Accepted: 11/11/2004] [Indexed: 11/17/2022]
Abstract
Recent evidence has suggested that the anti-allodynic effect of neuronal acetylcholine receptor (nAChR) agonists may have a peripheral component [L.E. Rueter, K.L. Kohlhaas, P. Curzon, C.S. Surowy, M.D. Meyer, Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain, Pain 103 (2003) 269-276]. In further studies of the peripheral anti-allodynic mechanisms of nAChR agonists, we investigated the function of nAChRs in acutely isolated dorsal root ganglion (DRG) neurons from allodynic [L5-L6 spinal nerve ligation (SNL)] and naive adult rats. Following determination of cell diameter and membrane capacitance, responses to rapid applications of nAChR agonists were recorded under whole cell patch clamp. nAChR inward currents were observed in approximately 60% of naive neurons, across small, medium, and large diameter cells. Evoked nAChR currents could be clustered into three broad classes: fast transient, biphasic, and slow desensitizing currents, consistent with multiple subtypes of nAChR expressed in DRG [J.R. Genzen, W. Van Cleve, D.S. McGehee, Dorsal root ganglion neurons express multiple nicotinic acetylcholine receptor subtypes, J. Neurophysiol. 86 (2001) 1773-1782]. In contrast, in neurons from allodynic animals, the occurrence and amplitude of responses to nAChR agonists were significantly reduced. Reduced responsiveness to nAChR agonists covered the range of DRG neuron sizes. The decrease in the responsiveness to nAChR agonists was not seen in neighboring uninjured L4 neurons. The significant decrease in the number of cells with nAChR agonist responses, compounded with the significant decrease in response amplitude, indicates that there is a marked down regulation of functional nAChRs in DRG somata associated with SNL.
Collapse
Affiliation(s)
- Gilles R Dubé
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, AP9/1125, 100 Abbott Park Rd., Abbott Park, IL 60064-6118, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Radek RJ, Curzon P, Decker MW. Supraspinal and systemic administration of the nicotinic-cholinergic agonist (±)-epibatidine has inhibitory effects on C-fiber reflexes in the rat. Brain Res Bull 2004; 64:323-30. [PMID: 15561467 DOI: 10.1016/j.brainresbull.2004.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
This study assessed the effects of the nicotinic agonist (+/-)-epibatidine (EPIB) on the C-fiber flexor reflex in the anesthetized rat. Electrical stimulation of the hindpaw produces a long latency (> 150 ms) C-fiber mediated electromyographic (EMG) burst in hindlimb flexor muscles. EPIB (0.01, 0.03 micromol/kg, i.p.) significantly reduced (p < 0.05) C-fiber -related EMG activity by 46 and 64%, respectively. This effect was similar to that produced by the opioid morphine (21.0 micromol/kg, i.p.) and the NMDA receptor antagonist MK-801 (3.0 micromol/kg, i.p.). Nicotinic receptor blockade with the antagonists mecamylamine (5.0 micromol/kg, i.p.) and chlorisondamine (23.0 nmol/rat, intracerebroventricular) attenuated the effects of systemic EPIB on the C-fiber reflex. EPIB injection (0.04 nmol/rat) into the nucleus raphe magnus significantly decreased C-fiber EMG activity by 67%, suggesting a supraspinal site of action. In contrast, EPIB (0.6 nmol/rat) administered into the lumbar spinal cord significantly increased the C-fiber reflex by 117%. In summary, systemic and supraspinal EPIB exerted an inhibitory effect on central pain transmitting pathways, while a stimulatory effect is elicited in the spinal cord. The inhibitory effects are consistent with the reported analgesic properties of EPIB. The excitatory effect may be related to the reported algogenic responses when EPIB is administered intrathecally.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Chlorisondamine/pharmacology
- Dizocilpine Maleate/pharmacology
- Drug Interactions
- Electric Stimulation/methods
- Electromyography/methods
- Excitatory Amino Acid Antagonists/pharmacology
- Injections, Intra-Arterial/methods
- Injections, Intraventricular/methods
- Injections, Spinal/methods
- Male
- Morphine/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Muscle, Skeletal/radiation effects
- Narcotics/pharmacology
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/radiation effects
- Nicotinic Agonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Pyridines/pharmacology
- Raphe Nuclei/drug effects
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/radiation effects
- Reflex/drug effects
- Reflex/physiology
Collapse
Affiliation(s)
- Richard J Radek
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | |
Collapse
|
48
|
Abelson KSP, Kommalage M, Höglund AU. Spinal cholinergic involvement after treatment with aspirin and paracetamol in rats. Neurosci Lett 2004; 368:116-20. [PMID: 15342146 DOI: 10.1016/j.neulet.2004.06.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 11/24/2022]
Abstract
Aspirin and paracetamol have been shown to suppress non-inflammatory pain conditions like thermal, visceral and mechanical pain in mice and rats. The non-inflammatory antinociception appears to be mediated by central receptor mechanisms, such as the cholinergic system. In this study, we tested the hypothesis that the non-inflammatory antinociception of aspirin and paracetamol could be mediated by an increase of intraspinal acetylcholine release. Microdialysis probes were placed intraspinally in anesthetized rats for acetylcholine sampling. Subcutaneously administered aspirin 100 and 300 mg/kg increased, while paracetamol 300 mg/kg decreased intraspinal acetylcholine release. Intraspinal drug administration did not affect acetylcholine release. Our results suggest that an increased intraspinal acetylcholine release could be involved in part of the non-inflammatory pain suppression by aspirin, but not by paracetamol.
Collapse
Affiliation(s)
- Klas S P Abelson
- Department of Neuroscience, Division of Comparative Medicine, Biomedical Center, Uppsala University, P.O. Box 572, S-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
49
|
Harte SE, Hoot MR, Borszcz GS. Involvement of the intralaminar parafascicular nucleus in muscarinic-induced antinociception in rats. Brain Res 2004; 1019:152-61. [PMID: 15306249 DOI: 10.1016/j.brainres.2004.05.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The thalamic contribution to cholinergic-induced antinociception was examined by microinjecting the acetylcholine (ACh) agonist carbachol into the intralaminar nucleus parafascicularis (nPf) of rats. Pain behaviors organized at spinal (spinal motor reflexes), medullary (vocalizations during shock), and forebrain (vocalization afterdischarges, VADs) levels of the neuraxis were elicited by noxious tailshock. Carbachol (0.5, 1, and 2 microg/side) administered into nPf produced dose-dependent elevations of vocalization thresholds, but failed to elevate spinal motor reflex threshold. Injections of carbachol into adjacent sites dorsal or ventral to nPf failed to alter vocalization thresholds. Elevations in vocalization thresholds produced by intra-nPf carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine (30 and 60 microg/side). These results provide the first direct evidence supporting the involvement of the intralaminar thalamus in muscarinic-induced antinociception. Results are discussed in terms of the contribution of nPf to the processing of the affective dimension of pain.
Collapse
Affiliation(s)
- Steven E Harte
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
50
|
Cheng J, Izenwasser S, Zhang C, Zhang S, Wade D, Trudell ML. Synthesis and nicotinic acetylcholine receptor binding affinities of 2- and 3-isoxazolyl-8-azabicyclo[3.2.1]octanes. Bioorg Med Chem Lett 2004; 14:1775-8. [PMID: 15026069 DOI: 10.1016/j.bmcl.2004.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
A series of epiboxidine homologues, 2- and 3-isoxazole substituted 8-azabicyclo[3.2.1]octane derivatives was synthesized and evaluated as potential ligands for neuronal nicotinic acetylcholine receptors in [(3)H]cytisine labeled rat brain. The 2beta-isoxazolyl-8-azabicyclo[3.2.1]octane 9b (K(i)=3 nM) was the most potent compound of the series with a binding affinity twice that of nicotine. The 3beta-isoxazolyl-8-azabicyclo[3.2.1]octane 15b (K(i)=148 nM) exhibited moderate affinity while the corresponding 2alpha- and 3alpha-isomers exhibited micromolar binding affinity.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|