1
|
Colautti L, Iannello P, Silveri MC, Giovagnoli AR, Elia AE, Pepe F, Magni E, Antonietti A. Deepening the decisional processes under value-based conditions in patients affected by Parkinson's disease: A comparative study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1167-1185. [PMID: 39266937 PMCID: PMC11525292 DOI: 10.3758/s13415-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
Patients affected by Parkinson's disease (PD) display a tendency toward making risky choices in value-based conditions. Possible causes may encompass the pathophysiologic characteristics of PD that affect neural structures pivotal for decision making (DM) and the dopaminergic medications that may bias choices. Nevertheless, excluding patients with concurrent impulse control disorders, results are few and mixed. Conversely, other factors, such as individual differences (e.g., emotional state, impulsivity, consideration for future consequences) and cognitive functioning, in particular executive functions (EFs), are involved, even though few studies investigated their possible role. The present study investigated (1) the differences in value-based DM between 33 patients with PD without impulse control disorders and 33 matched healthy controls, and (2) the relationships among decisional performances, EFs, and individual differences in a group of 42 patients with PD who regularly undertake dopaminergic medications. All participants underwent an individual assessment to investigate value-based DM, cognitive abilities, and individual differences associated with DM. Nonparametric analyses showed the presence of riskier decisions in patients compared with healthy controls, depending on the characteristics of the decisional situation. Moreover, parameters of the decisional tasks involving the number of risky choices were significantly related to the posology of dopaminergic medications, EFs, and individual differences. Findings were discussed, highlighting possible clinical implications.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy.
| | - Paola Iannello
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| | - Maria Caterina Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| | - Anna Rita Giovagnoli
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Emanuele Elia
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fulvio Pepe
- Department of Neuroscience, Fondazione Poliambulanza Istituto Ospedaliero Brescia, Milan, Italy
| | - Eugenio Magni
- Department of Neuroscience, Fondazione Poliambulanza Istituto Ospedaliero Brescia, Milan, Italy
| | - Alessandro Antonietti
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123, Milan, Italy
| |
Collapse
|
2
|
Prange S, Thobois S. Imaging of impulse control disorders in Parkinson's disease. Rev Neurol (Paris) 2024:S0035-3787(24)00596-4. [PMID: 39341756 DOI: 10.1016/j.neurol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Impulse control disorders (ICD) are frequent and cumbersome behavioral disorders in patients with Parkinson's disease (PD). Understanding their pathophysiological underpinnings is crucial. Molecular imaging using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) clearly indicates preexisting vulnerability and abnormal sensitization of the pre- and postsynaptic dopaminergic system. Functional magnetic resonance imaging (fMRI) studies reveal abnormal connectivity within the reward system involving the ventral striatum and orbitofrontal cortex. These alterations pinpoint the dysfunction of reinforcement learning in ICD, which is biased toward the overvaluation of reward and underestimation of risk, and the deficit in inhibitory control mechanisms related to abnormal connectivity within and between the limbic and the associative and motor networks.
Collapse
Affiliation(s)
- S Prange
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France.
| | - S Thobois
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France
| |
Collapse
|
3
|
Corbo I, Favieri F, Forte G, Casagrande M. Decision-making under uncertainty in healthy and cognitively impaired aging: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 129:105643. [PMID: 39369563 DOI: 10.1016/j.archger.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Decision-making (DM) is a complex cognitive behavior that involves gathering information and assessing options to identify choices under risky and uncertain conditions. Mild Cognitive Impairment (MCI) is a construct that includes a constellation of symptoms ranging from behavioral to cognitive impairments. This cluster of symptoms is frequently associated with poor decision-making. This study aimed to examine decision-making in pathological aging, specifically MCI. Therefore, we conducted a systematic review and meta-analysis to evaluate these relationships. According to the PRISMA 2020 Statement, nine studies were selected for the systematic review and eight for the meta-analysis. The results highlighted that MCI is associated with impaired decision-making in risky and ambiguous situations. The systematic review reported that MCI was associated with impaired decision-making in ambiguous and in risky conditions. In contrast, the meta-analysis showed significant differences in overall decision-making and particularly in ambiguous conditions. This difficulty may be due to different impairments that affect MCI. The difficulty in advantageous decision-making could be due to different brain alterations in MCI, which could lead to problems in tasks requiring feedback-based responses. These findings advance our understanding of decision-making in aging and suggest how decision-making alterations in MCI would affect the totality of executive functions and daily activities.
Collapse
Affiliation(s)
- Ilaria Corbo
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Francesca Favieri
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| |
Collapse
|
4
|
Béreau M, Garnier-Allain A, Servant M. Clinically established early Parkinson's disease patients do not show impaired use of priors in conditions of perceptual uncertainty. Neuropsychologia 2024; 202:108965. [PMID: 39097186 DOI: 10.1016/j.neuropsychologia.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The ability to use past learned experiences to guide decisions is an important component of adaptive behavior, especially when decision-making is performed under time pressure or when perceptual information is unreliable. Previous studies using visual discrimination tasks have shown that this prior-informed decision-making ability is impaired in Parkinson's disease (PD), but the mechanisms underlying this deficit and the precise impact of dopaminergic denervation within cortico-basal circuits remain unclear. To shed light on this problem, we evaluated prior-informed decision-making under various conditions of perceptual uncertainty in a sample of 13 clinically established early PD patients, and compared behavioral performance with healthy control (HC) subjects matched in age, sex and education. PD patients and HC subjects performed a random dot motion task in which they had to decide the net direction (leftward vs. rightward) of a field of moving dots and communicate their choices through manual button presses. We manipulated prior knowledge by modulating the probability of occurrence of leftward vs. rightward motion stimuli between blocks of trials, and by explicitly giving these probabilities to subjects at the beginning of each block. We further manipulated stimulus discriminability by varying the proportion of dots moving coherently in the signal direction and speed-accuracy instructions. PD patients used choice probabilities to guide perceptual decisions in both speed and accuracy conditions, and their performance did not significantly differ from that of HC subjects. An additional analysis of the data with the diffusion decision model confirmed this conclusion. These results suggest that the impaired use of priors during visual discrimination observed at more advanced stages of PD is independent of dopaminergic denervation, though additional studies with larger sample sizes are needed to more firmly establish this conclusion.
Collapse
Affiliation(s)
- Matthieu Béreau
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Département de neurologie, réseau NS-PARK/F-CRIN, CHU de Besançon, 25000 Besançon, France
| | | | - Mathieu Servant
- Université de Franche-Comté, UMR INSERM 1322 LINC, 25000 Besançon, France; Institut Universitaire de France, France.
| |
Collapse
|
5
|
Hapakova L, Necpal J, Kosutzka Z. The antisaccadic paradigm: A complementary neuropsychological tool in basal ganglia disorders. Cortex 2024; 178:116-140. [PMID: 38991475 DOI: 10.1016/j.cortex.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
This review explores the role of the antisaccadic task in understanding inhibitory mechanisms in basal ganglia disorders. It conducts a comparative analysis of saccadic profiles in conditions such as Parkinson's disease, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, and dystonia, revealing distinct patterns and proposing mechanisms for impaired performance. The primary focus is on two inhibitory mechanisms: global, pre-emptive inhibition responsible for suppressing prepotent responses, and slower, selective response inhibition. The antisaccadic task demonstrates practicality in clinical applications, aiding in differential diagnoses, treatment monitoring and reflecting gait control. To further enhance its differential diagnostic value, future directions should address issues such as the standardization of eye-tracking protocol and the integration of eye-tracking data with other disease indicators in a comprehensive dataset.
Collapse
Affiliation(s)
- Lenka Hapakova
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | - Jan Necpal
- Neurology Department, Hospital Zvolen, a. s., Zvolen, Slovakia.
| | - Zuzana Kosutzka
- 2nd Department of Neurology, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| |
Collapse
|
6
|
Papa EV, Tolman J, Meyerhoeffer C, Reierson K. Motivational Modulation Enhances Movement Performance in Parkinson's Disease: A Systematic Review. PHYSICAL THERAPY REVIEWS 2024; 29:117-127. [PMID: 39036073 PMCID: PMC11259181 DOI: 10.1080/10833196.2024.2365568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Background The assessment of motivation and its modulation during treatment are essential aspects of physical therapy practice. However, the modulation of motivation has been sparsely investigated in persons with Parkinson's disease (PD) and at present no studies have synthesized its effects on movement performance. Objectives 4The purpose of this study was to systematically examine the efficacy of motivational modulation on movement performance in PD and to provide recommendations for its role in physical therapy practice. Methods Systematic identification of published literature was performed adhering to PRISMA guidelines, from January 2005 to March 2023. Keywords were used in the following electronic databases: PubMed, Academic Search Complete, the Cochrane Database, Google Scholar, and the Physiotherapy Evidence Database (PEDro). A level of evidence rating was completed according to the scale provided by the American Academy of Cerebral Palsy and Development Medicine. Quality assessments were performed using the Modified Downs and Black checklist. Results Eight studies were included in this review, all achieving level III evidence. The methodological quality of studies was varied, with most studies attaining a fair rating. Persons with PD performed upper extremity movement tasks with greater intensity when incentivized with larger rewards compared to smaller incentives. Dopamine replacement medication, Deep Brain Stimulation, and a history of depression, had mediating effects on the response to motivational modulation. Conclusions Our findings suggest that it is plausible to improve adherence to exercise when physical therapists modulate motivation through computerized game achievements, gamification of tasks, or other forms of reward and non-rewarding stimuli.
Collapse
Affiliation(s)
- Evan V. Papa
- Department of Rehabilitation Sciences, Tufts University School of Medicine, Boston, USA
| | - Jason Tolman
- Acute Care Physical Therapy Residency University of Utah, Salt Lake City, USA
| | | | | |
Collapse
|
7
|
Saywell I, Foreman L, Child B, Phillips-Hughes AL, Collins-Praino L, Baetu I. Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review and multilevel meta-analysis. Neurosci Biobehav Rev 2024; 161:105672. [PMID: 38608829 DOI: 10.1016/j.neubiorev.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cognitive reserve has shown promise as a justification for neuropathologically unexplainable clinical outcomes in Alzheimer's disease. Recent evidence suggests this effect may be replicated in conditions like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. However, the relationships between cognitive reserve and different cognitive abilities, as well as motor outcomes, are still poorly understood in these conditions. Additionally, it is unclear whether the reported effects are confounded by medication. This review analysed studies investigating the relationship between cognitive reserve and clinical outcomes in these α-synucleinopathy cohorts, identified from MEDLINE, Scopus, psycINFO, CINAHL, and Web of Science. 85 records, containing 176 cognition and 31 motor function effect sizes, were pooled using multilevel meta-analysis. There was a significant, positive association between higher cognitive reserve and both better cognition and motor function. Cognition effect sizes differed by disease subtype, cognitive reserve measure, and outcome type; however, no moderators significantly impacted motor function. Review findings highlight the clinical implications of cognitive reserve and importance of engaging in reserve-building behaviours.
Collapse
Affiliation(s)
- Isaac Saywell
- School of Psychology, University of Adelaide, Adelaide 5005, Australia.
| | - Lauren Foreman
- School of Psychology, University of Adelaide, Adelaide 5005, Australia
| | - Brittany Child
- School of Psychology, University of Adelaide, Adelaide 5005, Australia
| | | | | | - Irina Baetu
- School of Psychology, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
8
|
Daniels C, Rodríguez-Antigüedad J, Jentschke E, Kulisevsky J, Volkmann J. Cognitive disorders in advanced Parkinson's disease: challenges in the diagnosis of delirium. Neurol Res Pract 2024; 6:14. [PMID: 38481336 PMCID: PMC10938698 DOI: 10.1186/s42466-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that is frequently associated with cognitive disorders. These can arise directly from the primary disease, or be triggered by external factors in susceptible individuals due to PD or other predisposing factors. The cognitive disorders encompass PD-associated cognitive impairment (PD-CI), delirium, PD treatment-associated cognitive side effects, cognitive non-motor fluctuations, and PD-associated psychosis. Accurate diagnosis of delirium is crucial because it often stems from an underlying disease that may be severe and require specific treatment. However, overlapping molecular mechanisms are thought to be involved in both delirium and PD, leading to similar clinical symptoms. Additionally, there is a bidirectional interaction between delirium and PD-CI, resulting in frequent concurrent processes that further complicate diagnosis. No reliable biomarker is currently available for delirium, and the diagnosis is primarily based on clinical criteria. However, the screening tools validated for diagnosing delirium in the general population have not been specifically validated for PD. Our review addresses the current challenges in the diagnosis of these cognitive disorders and highlights existing gaps within this field.
Collapse
Affiliation(s)
- Christine Daniels
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Sant Pau Hospital, Institut d'Investigacions Biomediques-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elisabeth Jentschke
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Jaime Kulisevsky
- Movement Disorders Unit, Sant Pau Hospital, Institut d'Investigacions Biomediques-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
9
|
Ivanov I, Krone B, Schulz K, Shaik RB, Parvaz MA, Newcorn JH. Effects of Stimulant Treatment on Changes in Brain Activation During Reward Notifications in Drug Naïve Youth With ADHD. J Atten Disord 2024; 28:847-860. [PMID: 38293912 DOI: 10.1177/10870547231219762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Research examining the potential effects of stimulant exposure in childhood on subsequent development of substance use disorder (SUD) have focused on differences in the brain reward system as a function of risk. METHODS 18 drug naïve children ages 7 to 12 years (11 High Risk [ADHD + ODD/CD]; 7 Low Risk [ADHD only]), underwent fMRI scans before and after treatment with mixed amphetamine salts, extended release (MAS-XR). We examined correlations between clinical ratings and fMRI activation at baseline and following treatment as a function of risk status. RESULTS High Risk children had higher activation than Low Risk children at baseline during both the Reward and Surprising Non-Reward conditions. Treatment produced strong differential effects on brain activation pertinent to group and reward outcome. CONCLUSIONS Findings support the hypothesized role of reward mechanisms in SUD risk, and suggest that stimulant treatment may have differential effects on reward processing in relation to SUD risk.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beth Krone
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurt Schulz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riaz B Shaik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
10
|
Parr AC, Riek HC, Coe BC, Pari G, Masellis M, Marras C, Munoz DP. Genetic variation in the dopamine system is associated with mixed-strategy decision-making in patients with Parkinson's disease. Eur J Neurosci 2023; 58:4523-4544. [PMID: 36453013 DOI: 10.1111/ejn.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Decision-making during mixed-strategy games requires flexibly adapting choice strategies in response to others' actions and dynamically tracking outcomes. Such decisions involve diverse cognitive processes, including reinforcement learning, which are affected by disruptions to the striatal dopamine system. We therefore investigated how genetic variation in dopamine function affected mixed-strategy decision-making in Parkinson's disease (PD), which involves striatal dopamine pathology. Sixty-six PD patients (ages 49-85, Hoehn and Yahr Stages 1-3) and 22 healthy controls (ages 54-75) competed in a mixed-strategy game where successful performance depended on minimizing choice biases (i.e., flexibly adapting choices trial by trial). Participants also completed a fixed-strategy task that was matched for sensory input, motor outputs and overall reward rate. Factor analyses were used to disentangle cognitive from motor aspects within both tasks. Using a within-subject, multi-centre design, patients were examined on and off dopaminergic therapy, and genetic variation was examined via a multilocus genetic profile score representing the additive effects of three single nucleotide polymorphisms (SNPs) that influence dopamine transmission: rs4680 (COMT Val158 Met), rs6277 (C957T) and rs907094 (encoding DARPP-32). PD and control participants displayed comparable mixed-strategy choice behaviour (overall); however, PD patients with genetic profile scores indicating higher dopamine transmission showed improved performance relative to those with low scores. Exploratory follow-up tests across individual SNPs revealed better performance in individuals with the C957T polymorphism, reflecting higher striatal D2/D3 receptor density. Importantly, genetic variation modulated cognitive aspects of performance, above and beyond motor function, suggesting that genetic variation in dopamine signalling may underlie individual differences in cognitive function in PD.
Collapse
Affiliation(s)
- Ashley C Parr
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heidi C Riek
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Giovanna Pari
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Movement Disorder Clinic, Kingston General Hospital, Kingston, Ontario, Canada
| | - Mario Masellis
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Connie Marras
- Movement Disorders Clinic, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Kricheldorff J, Ficke J, Debener S, Witt K. Impaired proactive cognitive control in Parkinson's disease. Brain Commun 2023; 5:fcad327. [PMID: 38130839 PMCID: PMC10733811 DOI: 10.1093/braincomms/fcad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Adaptive control has been studied in Parkinson's disease mainly in the context of proactive control and with mixed results. We compared reactive- and proactive control in 30 participants with Parkinson's disease to 30 age matched healthy control participants. The electroencephalographic activity of the participants was recorded over 128 channels while they performed a numerical Stroop task, in which we controlled for confounding stimulus-response learning. We assessed effects of reactive- and proactive control on reaction time-, accuracy- and electroencephalographic time-frequency data. Behavioural results show distinct impairments of proactive- and reactive control in participants with Parkinson's disease, when tested on their usual medication. Compared to healthy control participants, participants with Parkinson's disease were impaired in their ability to adapt cognitive control proactively and were less effective to resolve conflict using reactive control. Successful reactive and proactive control in the healthy control group was accompanied by a reduced conflict effect between congruent and incongruent items in midline-frontal theta power. Our findings provide evidence for a general impairment of proactive control in Parkinson's disease and highlight the importance of controlling for the effects of S-R learning when studying adaptive control. Evidence concerning reactive control was inconclusive, but we found that participants with Parkinson's disease were less effective than healthy control participants in resolving conflict during the reactive control task.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, 26046 Oldenburg, Germany
| | - Julia Ficke
- Department of Neurology, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, 26046 Oldenburg, Germany
| | - Stefan Debener
- Research Center of Neurosensory Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Science, Carl von Ossietzky University of Oldenburg, 26046 Oldenburg, Germany
- Research Center of Neurosensory Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Department of Neurology, Evangelical Hospital, 26121 Oldenburg, Germany
| |
Collapse
|
12
|
Pinto SR, Uchida N. Tonic dopamine and biases in value learning linked through a biologically inspired reinforcement learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566580. [PMID: 38014087 PMCID: PMC10680794 DOI: 10.1101/2023.11.10.566580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A hallmark of various psychiatric disorders is biased future predictions. Here we examined the mechanisms for biased value learning using reinforcement learning models incorporating recent findings on synaptic plasticity and opponent circuit mechanisms in the basal ganglia. We show that variations in tonic dopamine can alter the balance between learning from positive and negative reward prediction errors, leading to biased value predictions. This bias arises from the sigmoidal shapes of the dose-occupancy curves and distinct affinities of D1- and D2-type dopamine receptors: changes in tonic dopamine differentially alters the slope of the dose-occupancy curves of these receptors, thus sensitivities, at baseline dopamine concentrations. We show that this mechanism can explain biased value learning in both mice and humans and may also contribute to symptoms observed in psychiatric disorders. Our model provides a foundation for understanding the basal ganglia circuit and underscores the significance of tonic dopamine in modulating learning processes.
Collapse
Affiliation(s)
- Sandra Romero Pinto
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Marusic U, Peskar M, Šömen MM, Kalc M, Holobar A, Gramann K, Wollesen B, Wunderlich A, Michel C, Miladinović A, Catalan M, Buoite Stella A, Ajcevic M, Manganotti P. Neuromuscular assessment of force development, postural, and gait performance under cognitive-motor dual-tasking in healthy older adults and people with early Parkinson's disease: Study protocol for a cross-sectional Mobile Brain/Body Imaging (MoBI) study. OPEN RESEARCH EUROPE 2023; 3:58. [PMID: 38009088 PMCID: PMC10674089 DOI: 10.12688/openreseurope.15781.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
Background Neuromuscular dysfunction is common in older adults and more pronounced in neurodegenerative diseases. In Parkinson's disease (PD), a complex set of factors often prevents the effective performance of activities of daily living that require intact and simultaneous performance of the motor and cognitive tasks. Methods The cross-sectional study includes a multifactorial mixed-measure design. Between-subject factor grouping the sample will be Parkinson's Disease (early PD vs. healthy). The within-subject factors will be the task complexity (single- vs. dual-task) in each motor activity, i.e., overground walking, semi-tandem stance, and isometric knee extension, and a walking condition (wide vs. narrow lane) will be implemented for the overground walking activity only. To study dual-task (DT) effects, in each motor activity participants will be given a secondary cognitive task, i.e., a visual discrimination task for the overground walking, an attention task for the semi-tandem, and mental arithmetic for the isometric extension. Analyses of DT effects and underlying neuronal correlates will focus on both gait and cognitive performance where applicable. Based on an a priori sample size calculation, a total N = 42 older adults (55-75 years) will be recruited. Disease-specific changes such as laterality in motor unit behavior and cortical control of movement will be studied with high-density surface electromyography and electroencephalography during static and dynamic motor activities, together with whole-body kinematics. Discussion This study will be one of the first to holistically address early PD neurophysiological and neuromuscular patterns in an ecologically valid environment under cognitive-motor DT conditions of different complexities. The outcomes of the study aim to identify the biomarker for early PD either at the electrophysiological, muscular or kinematic level or in the communication between these systems. Clinical Trial Registration ClinicalTrials.Gov, NCT05477654. This study was approved by the Medical Ethical Committee (106/2021).
Collapse
Affiliation(s)
- Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea Evropski Center Maribor, Maribor, Slovenia
| | - Manca Peskar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universitat Berlin, Berlin, Berlin, Germany
| | - Maja Maša Šömen
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Miloš Kalc
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Klaus Gramann
- Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universitat Berlin, Berlin, Berlin, Germany
| | - Bettina Wollesen
- Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universitat Berlin, Berlin, Berlin, Germany
- Institute of Human Movement Science, Faculty of Psychology and Human Movement, University Hamburg, Hamburg, Germany
| | - Anna Wunderlich
- Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universitat Berlin, Berlin, Berlin, Germany
| | - Christoph Michel
- Functional Brain Mapping Lab, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Mauro Catalan
- Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Milos Ajcevic
- Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
14
|
Becker M, Yu Y, Cabeza R. The influence of insight on risky decision making and nucleus accumbens activation. Sci Rep 2023; 13:17159. [PMID: 37821507 PMCID: PMC10567742 DOI: 10.1038/s41598-023-44293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
During insightful problem solving, the solution appears unexpectedly and is accompanied by the feeling of an AHA!. Research suggests that this affective component of insight can have consequences beyond the solution itself by motivating future behavior, such as risky (high reward and high uncertainty) decision making. Here, we investigate the behavioral and neural support for the motivational role of AHA in decision making involving monetary choices. The positive affect of the AHA! experience has been linked to internal reward. Reward in turn has been linked to dopaminergic signal transmission in the Nucleus Accumbens (NAcc) and risky decision making. Therefore, we hypothesized that insight activates reward-related brain areas, modulating risky decision making. We tested this hypothesis in two studies. First, in a pre-registered online study (Study 1), we demonstrated the behavioral effect of insight-related increase in risky decision making using a visual Mooney identification paradigm. Participants were more likely to choose the riskier monetary payout when they had previously solved the Mooney image with high compared to low accompanied AHA!. Second, in an fMRI study (Study 2), we measured the effects of insight on NAcc activity using a similar Mooney identification paradigm to the one of Study 1. Greater NAcc activity was found when participants solved the Mooney image with high vs low AHA!. Taken together, our results link insight to enhanced NAcc activity and a preference for high but uncertain rewards, suggesting that insight enhances reward-related brain areas possibly via dopaminergic signal transmission, promoting risky decision making.
Collapse
Affiliation(s)
- Maxi Becker
- Department of Psychology, Humboldt University Berlin, 10099, Berlin, Germany.
| | - Yuhua Yu
- Department of Psychology, Northwestern University, Chicago, IL, 60637, USA.
| | - Roberto Cabeza
- Department of Psychology, Humboldt University Berlin, 10099, Berlin, Germany
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
15
|
Fallon SJ, Plant O, Tabi YA, Manohar SG, Husain M. Effects of cholinesterase inhibition on attention and working memory in Lewy body dementias. Brain Commun 2023; 5:fcad207. [PMID: 37545547 PMCID: PMC10404008 DOI: 10.1093/braincomms/fcad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Cholinesterase inhibitors are frequently used to treat cognitive symptoms in Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies). However, the selectivity of their effects remains unclear. In a novel rivastigmine withdrawal design, Parkinson's disease dementia and dementia with Lewy bodies patients were tested twice: once when taking rivastigmine as usual and once when they had missed one dose. In each session, they performed a suite of tasks (sustained attention, simple short-term recall, distractor resistance and manipulating the focus of attention) that allowed us to investigate the cognitive mechanisms through which rivastigmine affects attentional control. Consistent with previous literature, rivastigmine withdrawal significantly impaired attentional efficacy (quicker response latencies without a change in accuracy). However, it had no effects on cognitive control as assessed by the ability to withhold a response (inhibitory control). Worse short-term memory performance was also observed when patients were OFF rivastigmine, but these effects were delay and load independent, likely due to impaired visual attention. In contrast to previous studies that have examined the effects of dopamine withdrawal, cognitively complex tasks requiring control over the contents of working memory (ignoring, updating or shifting the focus of attention) were not significantly impaired by rivastigmine withdrawal. Cumulatively, these data support that the conclusion that cholinesterase inhibition has relatively specific and circumscribed-rather than global-effects on attention that may also affect performance on simple short-term memory tasks, but not when cognitive control over working memory is required. The results also indicate that the withdrawal of a single dose of rivastigmine is sufficient to reveal these impairments, demonstrating that cholinergic withdrawal can be an informative clinical as well as an investigative tool.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Younes A Tabi
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Kathofer M, Leder H, Crone JS. Bridging neurodegenerative diseases and artistic expressivity: The significance of testable models and causal inference: Comment on "Can we really 'read' art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease" by Pelowski et al. (2022). Phys Life Rev 2023; 45:66-70. [PMID: 37167925 DOI: 10.1016/j.plrev.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Affiliation(s)
| | - Helmut Leder
- Vienna Cognitive Science Hub, University of Vienna, Austria; Faculty of Psychology, University of Vienna, Austria
| | - Julia Sophia Crone
- Vienna Cognitive Science Hub, University of Vienna, Austria; University of California Los Angeles, Department of Psychology, USA
| |
Collapse
|
17
|
Sarmiento LF, Ríos-Flórez JA, Paez-Ardila HA, Lima de Sousa PS, Olivera-La Rosa A, Oliveira da Silva AMH, Gouveia A. Pharmacological Modulation of Temporal Discounting: A Systematic Review. Healthcare (Basel) 2023; 11:1046. [PMID: 37046974 PMCID: PMC10093895 DOI: 10.3390/healthcare11071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/14/2023] Open
Abstract
Temporal discounting is a phenomenon where a reward loses its value as a function of time (e.g., a reward is more valuable immediately than when it delays in time). This is a type of intertemporal decision-making that has an association with impulsivity and self-control. Many pathologies exhibit higher discounting rates, meaning they discount more the values of rewards, such as addictive behaviors, bipolar disorder, attention-deficit/hyperactivity disorders, social anxiety disorders, and major depressive disorder, among others; thus, many studies look for the mechanism and neuromodulators of these decisions. This systematic review aims to investigate the association between pharmacological administration and changes in temporal discounting. A search was conducted in PubMed, Scopus, Web of Science, Science Direct and Cochrane. We used the PICO strategy: healthy humans (P-Participants) that received a pharmacological administration (I-Intervention) and the absence of a pharmacological administration or placebo (C-Comparison) to analyze the relationship between the pharmacological administration and the temporal discounting (O-outcome). Nineteen studies fulfilled the inclusion criteria. The most important findings were the involvement of dopamine modulation in a U-shape for choosing the delayed outcome (metoclopradime, haloperidol, and amisulpride). Furthermore, administration of tolcapone and high doses of d-amphetamine produced a preference for the delayed option. There was a time-dependent hydrocortisone effect in the preference for the immediate reward. Thus, it can be concluded that dopamine is a crucial modulator for temporal discounting, especially the D2 receptor, and cortisol also has an important time-dependent role in this type of decision. One of the limitations of this systematic review is the heterogeneity of the drugs used to assess the effect of temporal discounting.
Collapse
Affiliation(s)
- Luis Felipe Sarmiento
- Laboratory of Neuroscience and Behavior, Federal University from Pará, Belém 66050-160, Brazil
| | - Jorge Alexander Ríos-Flórez
- Neuroanatomy Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Department of Psychology, Politécnico Grancolombiano University Institution, Medellín 745220, Colombia
| | - Hector Andres Paez-Ardila
- Laboratory of Neuroscience and Behavior, Federal University from Pará, Belém 66050-160, Brazil
- Department of Psychology, Universidad Manuela Beltran, Bucaramanga 680004, Colombia
| | | | - Antonio Olivera-La Rosa
- Department of Psychological and Social Sciences, Universidad Católica Luis Amigó, Medellín 050034, Colombia
- Human Evolution and Cognition Group, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | | | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, Federal University from Pará, Belém 66050-160, Brazil
| |
Collapse
|
18
|
Premorbid performances determine the deleterious effects of nigrostriatal degeneration and pramipexole on behavioural flexibility. NPJ Parkinsons Dis 2023; 9:31. [PMID: 36859454 PMCID: PMC9977907 DOI: 10.1038/s41531-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Subtle cognitive impairment can occur early in the course of Parkinson's disease (PD) and may manifest under different forms of executive dysfunction such as impaired cognitive flexibility. The precise contribution of nigrostriatal dopaminergic neurodegeneration to these non-motor features of the disease is poorly known. Whether such cognitive impairment associated with the disease process may also predate and contribute to the development of neuropsychiatric side-effects following dopamine replacement therapy remains largely unknown. To address these issues, we investigated the respective contributions of nigrostriatal degeneration and chronic treatment with the dopamine D3-preferring agonist pramipexole on behavioral flexibility in a rat model of PD. Flexible, intermediate and inflexible rats were identified based on baseline assessment of behavioral flexibility using an operant set-shifting task. Nigrostriatal degeneration was induced by bilateral viral-mediated expression of A53T mutated human α-synuclein in the substantia nigra pars compacta and behavioral flexibility was assessed after induction of nigrostriatal degeneration, and during chronic pramipexole treatment. Nigrostriatal degeneration impaired behavioral flexibility in flexible but not in inflexible rats. Pramipexole induced a decrease of behavioral flexibility that was exacerbated in lesioned rats and in the most flexible individuals. Furthermore, the deficits induced by pramipexole in lesioned rats affected different components of the task between flexible and inflexible individuals. This study demonstrates that nigrostriatal degeneration and pramipexole unequally impair behavioral flexibility, suggesting that the susceptibility to develop non-motor impairments upon treatment initiation could primarily depend on premorbid differences in behavioral flexibility.
Collapse
|
19
|
Saywell I, Child B, Foreman L, Collins-Praino L, Baetu I. Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review protocol. Ann N Y Acad Sci 2023; 1522:15-23. [PMID: 36740453 DOI: 10.1111/nyas.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cognitive reserve has been used to justify neuropathologically unexplainable mismatches in Alzheimer's disease outcomes. Recent evidence has suggested this effect may be replicable across other conditions. However, it is still unclear whether cognitive reserve applies to α-synucleinopathies or to motor outcomes, or if medication confounds effects. This review protocol follows PRISMA-P guidelines and aims to investigate whether cognitive reserve can predict both cognitive and motor outcomes for α-synucleinopathy patients. MEDLINE (via PubMed), Scopus, psycINFO (via Ovid), CINAHL (via EBSCO), and Web of Science have been searched. Cross-sectional, cohort, case-control, and longitudinal studies investigating the association between cognitive reserve and cognitive and/or motor outcomes for Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy will be included. Reviewers will independently perform screening, while also extracting data, assessing the risk of bias (using a version of the Quality in Prognostic Studies tool), and rating evidence quality (using GRADE). If possible, random-effects meta-analyses will be conducted for each unique outcome variable and α-synucleinopathy; otherwise, a narrative synthesis will be performed. Depending on the number of studies, exploratory analyses may involve meta-regression to assess potential confounding effects. Understanding the broader protective effect of cognitive reserve has significant implications for preventive interventions in the wider population.
Collapse
Affiliation(s)
- Isaac Saywell
- Faculty of Health and Medical Sciences, School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | - Brittany Child
- Faculty of Health and Medical Sciences, School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | - Lauren Foreman
- Faculty of Health and Medical Sciences, School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Irina Baetu
- Faculty of Health and Medical Sciences, School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Langer A, Lucke-Paulig L, Gassner L, Krüger R, Weiss D, Gharabaghi A, Zach H, Maetzler W, Hobert MA. Additive Effect of Dopaminergic Medication on Gait Under Single and Dual-Tasking Is Greater Than of Deep Brain Stimulation in Advanced Parkinson Disease With Long-Duration Deep Brain Stimulation. Neuromodulation 2023; 26:364-373. [PMID: 35227581 DOI: 10.1016/j.neurom.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Patients with advanced Parkinson disease (PD) often experience problems with mobility, including walking under single- (ST) and dual-tasking (DT) conditions. The effects of deep brain stimulation in the subthalamic nucleus (DBS) versus dopaminergic medication (Med) on these conditions are not well investigated. MATERIALS AND METHODS We used two ST and two DT-gait paradigms to evaluate the effect of DBS and dopaminergic medication on gait parameters in 14 PD patients (mean age 66 ± 8 years) under DBSOFF/MedON, DBSON/MedOFF, and DBSON/MedON conditions. They performed standardized 20-meter walks with convenient and fast speed. To test DT capabilities, they performed a checking-boxes and a subtraction task during fast-paced walking. Quantitative gait analysis was performed using a tri-axial accelerometer (Dynaport, McRoberts, The Netherlands). Dual-task costs (DTC) of gait parameters and secondary task performance were compared intraindividually between DBSOFF/MedON vs DBSON/MedON, and DBSON/MedOFF vs DBSON/MedON to estimate responsiveness. RESULTS Dopaminergic medication increased gait speed and cadence at convenient speed. It increased cadence and decreased number of steps at fast speed, and improved DTC of cadence during the checking boxes and DTC of cadence and number of steps during the subtraction tasks. DBS only improved DTC of cadence during the checking boxes and DTC of gait speed during the subtraction task. CONCLUSION Dopaminergic medication showed larger additional effects on temporal gait parameters under ST and DT conditions in advanced PD than DBS. These results, after confirmation in independent studies, should be considered in the medical management of advanced PD patients with gait and DT deficits.
Collapse
Affiliation(s)
- Agnes Langer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lara Lucke-Paulig
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Endocrinology, Diabetology and Geriatrics, Stuttgart General Hospital, Bad Cannstatt, Germany
| | - Lucia Gassner
- Department of Sport Physiology, Institute of Sports Sciences, University of Vienna, Vienna, Austria; Royal Melbourne Institute of Technology, Melbourne, Australia; HTA Austria - Austrian Institute for Health Technology Assessment GmbH, Vienna, Austria
| | - Rejko Krüger
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Luxembourg Institute of Health, Strassen, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Daniel Weiss
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Heidemarie Zach
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Maetzler
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Markus A Hobert
- Center for Neurology, Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany; Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
21
|
The effects of probiotics on risk and time preferences. Sci Rep 2022; 12:12152. [PMID: 35840611 PMCID: PMC9287413 DOI: 10.1038/s41598-022-16251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Animal models, human neuroimaging and lesion studies revealed that the gut microbiota can influence the interaction between the central and the enteric nervous systems via the gut–brain axis (GBA) and can affect brain regions linked to basic emotional and cognitive processes. The role of the gut microbiota in decision-making in healthy humans thus far remains largely unknown. Our study establishes a functional relationship between the gut microbiota and healthy humans’ decisions that involve risk and time. We conducted a between subjects’ placebo-controlled double-blinded design, with two groups and two sessions separated by 28 days, during which participants received daily doses of probiotics or a placebo. We investigated whether the prolonged and controlled intake of probiotics affects risk-taking behavior and intertemporal choices using incentivized economic tasks. We found a significant decrease in risk-taking behavior and an increase in future-oriented choices in the probiotics group as compared to the placebo group. These findings provide the first direct experimental evidence suggesting a potential functional role on the part of the microbiota-gut-brain axis in decision-making, creating a path for potential clinical applications and allowing for a better understanding of the underlying neural mechanisms of risk-taking behavior and intertemporal choices.
Collapse
|
22
|
Gattas S, Elias GA, Janecek J, Yassa MA, Fortin NJ. Proximal CA1 20-40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory. eLife 2022; 11:e55528. [PMID: 35532116 PMCID: PMC9170241 DOI: 10.7554/elife.55528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximodistal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed in trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgments and are consistent with a role for 20-40 Hz power in gating information processing.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of CaliforniaIrvineUnited States
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
| | - Gabriel A Elias
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - John Janecek
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Norbert J Fortin
- Center for the Neurobiology of Learning and Memory, University of CaliforniaIrvineUnited States
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| |
Collapse
|
23
|
Cools R, Tichelaar JG, Helmich RCG, Bloem BR, Esselink RAJ, Smulders K, Timmer MHM. Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:309-343. [PMID: 35248200 DOI: 10.1016/bs.pbr.2022.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is commonly treated with dopaminergic medication, which enhances some, while impairing other cognitive functions. It can even contribute to impulse control disorder and addiction. We describe the history of research supporting the dopamine overdose hypothesis, which accounts for the large within-patient variability in dopaminergic medication effects across different tasks by referring to the spatially non-uniform pattern of dopamine depletion in dorsal versus ventral striatum. However, there is tremendous variability in dopaminergic medication effects not just within patients across distinct tasks, but also across different patients. In the second part of this chapter we review recent studies addressing the large individual variability in the negative side effects of dopaminergic medication on functions that implicate dopamine, such as value-based learning and choice. These studies begin to unravel the mechanisms of dopamine overdosing, thus revising the strict version of the overdose hypothesis. For example, the work shows that the canonical boosting of reward-versus punishment-based choice by medication is greater in patients with depression and a non-tremor phenotype, which both implicate, among other pathology, more rather than less severe dysregulation of the mesolimbic dopamine system. Future longitudinal cohort studies are needed to identify how to optimally combine different clinical, personality, cognitive, neural, genetic and molecular predictors of detrimental medication effects in order to account for as much of the relevant variability as possible. This will provide a useful tool for precision neurology, allowing individual and contextual tailoring of (the dose of) dopaminergic medication in order to maximize its cognitive benefits, yet minimize its side effects.
Collapse
Affiliation(s)
- Roshan Cools
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jorryt G Tichelaar
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rick C G Helmich
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Katrijn Smulders
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Radboud university medical center, Department of Neurology, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Ivanov I, Bjork JM, Blair J, Newcorn JH. Sensitization-based risk for substance abuse in vulnerable individuals with ADHD: Review and re-examination of evidence. Neurosci Biobehav Rev 2022; 135:104575. [PMID: 35151770 PMCID: PMC9893468 DOI: 10.1016/j.neubiorev.2022.104575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Evidence of sensitization following stimulants administration in humans is just emerging, which prevents reaching more definitive conclusions in favor or against a purported protective role of stimulant treatments for ADHD for the development of substance use disorders. Existing evidence from both animal and human research suggest that stimulants produce neurophysiological changes in the brain reward system, some of which could be persistent. This could be relevant in choosing optimal treatments for young patients with ADHD who have additional clinical risk factors for substance abuse (e.g. conduct disorder (CD) and/or familial addictions). Here we stipulate that, while the majority of youth with ADHD greatly benefit from treatments with stimulants, there might be a subpopulation of individuals whose neurobiological profiles may confer risk for heightened vulnerability to the effects of stimulants on the responsiveness of the brain reward system. We propose that focused human research is needed to elucidate the unknown effects of prolonged stimulant exposure on the neurophysiology of the brain reward system in young patients with ADHD.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
25
|
Tiedt HO, Ehlen F, Klostermann F. Dopamine-Related Reduction of Semantic Spreading Activation in Patients With Parkinson's Disease. Front Hum Neurosci 2022; 16:837122. [PMID: 35431839 PMCID: PMC9008217 DOI: 10.3389/fnhum.2022.837122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Impaired performance in verbal fluency (VF) tasks is a frequent observation in Parkinson's disease (PD). As to the nature of the underlying cognitive deficit, it is commonly attributed to a frontal-type dysexecutive syndrome due to nigrostriatal dopamine depletion. Whereas dopaminergic medication typically improves VF performance in PD, e.g., by ameliorating impaired lexical switching, its effect on semantic network activation is unclear. Data from priming studies suggest that dopamine causes a faster decay of semantic activation spread. The aim of the current study was to examine the impact of dopaminergic medication on the dynamic change of word frequency during VF performance as a measure of semantic spreading activation. To this end, we performed a median split analysis of word frequency during phonemic and semantic VF task performance in a PD group tested while receiving dopaminergic medication (ON) as well as after drug withdrawal (i.e., OFF), and in a sample of age-matched healthy volunteers (both groups n = 26). Dopaminergic medication in the PD group significantly affected phonemic VF with improved word production as well as increased error-rates. The expected decrease of word frequency during VF task performance was significantly smaller in the PD group ON medication than in healthy volunteers across semantic and phonemic VF. No significant group-difference emerged between controls and the PD group in the OFF condition. The comparison between both treatment conditions within the PD group did not reach statistical significance. The observed pattern of results indicates a faster decay of semantic network activation during lexical access in PD patients on dopaminergic medication. In view of improved word generation, this finding is consistent with a concept of more focused neural activity by an increased signal-to-noise ratio due to dopaminergic neuromodulation. However, the effect of dopaminergic stimulation on VF output suggests a trade-off between these beneficial effects and increased error-rates.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Cavanagh JF, Ryman S, Richardson SP. Cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:137-152. [PMID: 35248192 DOI: 10.1016/bs.pbr.2022.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cognitive control is the ability to act according to plan. Problems with cognitive control are a primary symptom and a major decrement of quality of life in Parkinson's disease (PD). Individuals with PD have problems with seemingly different controlled processes (e.g., task switching, impulsivity, gait disturbance, apathetic motivation). We review how these varied processes all rely upon disease-related alteration of common neural substrates, particularly due to dopaminergic imbalance. A comprehensive understanding of the neural systems underlying cognitive control will hopefully lead to more concise and reliable explanations of distributed deficits. However, high levels of clinical heterogeneity and medication-invariant control deficiencies suggest the need for increasingly detailed elaboration of the neural systems underlying control in PD.
Collapse
Affiliation(s)
- James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| | - Sephira Ryman
- Mind Research Network, Albuquerque, NM, United States
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Neurology Service, New Mexico Veterans Affairs Healthcare System, Albuquerque, NM, United States
| |
Collapse
|
27
|
Rootes-Murdy K, Goldsmith DR, Turner JA. Clinical and Structural Differences in Delusions Across Diagnoses: A Systematic Review. Front Integr Neurosci 2022; 15:726321. [PMID: 35140591 PMCID: PMC8818879 DOI: 10.3389/fnint.2021.726321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Delusions are marked, fixed beliefs that are incongruent with reality. Delusions, with comorbid hallucinations, are a hallmark of certain psychotic disorders (e.g., schizophrenia). Delusions can present transdiagnostically, in neurodegenerative (e.g., Alzheimer's disease and fronto-temporal dementia), nervous system disorders (e.g., Parkinson's disease) and across other psychiatric disorders (e.g., bipolar disorder). The burden of delusions is severe and understanding the heterogeneity of delusions may delineate a more valid nosology of not only psychiatric disorders but also neurodegenerative and nervous system disorders. We systematically reviewed structural neuroimaging studies reporting on delusions in four disorder types [schizophrenia (SZ), bipolar disorder (BP), Alzheimer's disease (AD), and Parkinson's disease (PD)] to provide a comprehensive overview of neural changes and clinical presentations associated with delusions. Twenty-eight eligible studies were identified. This review found delusions were most associated with gray matter reductions in the dorsolateral prefrontal cortex (SZ, BP, and AD), left claustrum (SZ and AD), hippocampus (SZ and AD), insula (SZ, BP, and AD), amygdala (SZ and BP), thalamus (SZ and AD), superior temporal gyrus (SZ, BP, and AD), and middle frontal gyrus (SZ, BP, AD, and PD). However, there was a great deal of variability in the findings of each disorder. There is some support for the current dopaminergic hypothesis of psychosis, but we also propose new hypotheses related to the belief formation network and cognitive biases. We also propose a standardization of assessments to aid future transdiagnostic study approaches. Future studies should explore the neural and biological underpinnings of delusions to hopefully, inform future treatment.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David R. Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica A. Turner
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Hirschbichler ST, Rothwell JC, Manohar SG. Dopamine increases risky choice while D2 blockade shortens decision time. Exp Brain Res 2022; 240:3351-3360. [PMID: 36350356 PMCID: PMC9678996 DOI: 10.1007/s00221-022-06501-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Dopamine is crucially involved in decision-making and overstimulation within dopaminergic pathways can lead to impulsive behaviour, including a desire to take risks and reduced deliberation before acting. These behavioural changes are side effects of treatment with dopaminergic drugs in Parkinson disease, but their likelihood of occurrence is difficult to predict and may be influenced by the individual's baseline endogenous dopamine state, and indeed correlate with sensation-seeking personality traits. We here collected data on a standard gambling task in healthy volunteers given either placebo, 2.5 mg of the dopamine antagonist haloperidol or 100/25 mg of the dopamine precursor levodopa in a within-subject design. We found an increase in risky choices on levodopa. Choices were, however, made faster on haloperidol with no effect of levodopa on deliberation time. Shortened deliberation times on haloperidol occurred in low sensation-seekers only, suggesting a correlation between sensation-seeking personality trait and baseline dopamine levels. We hypothesise that levodopa increases risk-taking behaviour via overstimulation at both D1 and D2 receptor level, while a single low dose of haloperidol, as previously reported (Frank and O'Reilly 2006), may block D2 receptors pre- and post-synaptically and may paradoxically lead to higher striatal dopamine acting on remaining striatal D1 receptors, causing speedier decision without influencing risk tolerance. These effects could also fit with a recently proposed computational model of the basal ganglia (Moeller and Bogacz 2019; Moeller et al. 2021). Furthermore, our data suggest that the actual dopaminergic drug effect may be dependent on the individual's baseline dopamine state, which may influence our therapeutic decision as clinicians in the future.
Collapse
Affiliation(s)
- Stephanie T. Hirschbichler
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK ,Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100 St. Pölten, Austria ,Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Sanjay G. Manohar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK ,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU UK
| |
Collapse
|
29
|
Yang T, Liu Y, Li J, Xu H, Li S, Xiong L, Wang T. Advances in clinical basic research: Performance, treatments, and mechanisms of Parkinson disease. IBRAIN 2021; 7:362-378. [PMID: 37786563 PMCID: PMC10529016 DOI: 10.1002/ibra.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 02/05/2023]
Abstract
The loss of neuronal in the substantia nigra of the elderly contributes to striatal damage and plays a critical part in the common forms of neurodegenerative diseases such as Parkinson disease (PD). The deficit of dopamine is one of the most familiar neuropathological features of PD as well as α-Synuclein aggregation. The peripheral autonomic nervous system is also affected negatively during the course of the disease, although the subsistent of dyskinesias and else major motor characteristic deficits take significant role in the diagnostic methods during clinical practice, which is related to a number of non-motor symptoms that might increase aggregate risks. Multiple pathways and mechanisms are involved in the molecular pathogenesis: α-Synuclein, neuronal homeostasis, mitochondrial function, oxidative stress, as well as neuroinflammation. Investigations in the last few years for diagnostic biomarkers used neuroimaging, including single photon emission computed tomography as well as cutting-edge magnetic resonance imaging techniques, which has been presented to facilitate discrepant diagnosis. Pharmacological treatment is also important and efficient in equal measure. In addition to reliance on striatal dopamine replacement therapy, many solutions that are used for motor or nonmotor symptoms in these patients are available.
Collapse
Affiliation(s)
- Ting‐Ting Yang
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Cong Liu
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Shun‐Lian Li
- Department of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Translational Neuroscience Center, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
30
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
31
|
Lhost J, More S, Watabe I, Louber D, Ouagazzal AM, Liberge M, Amalric M. Interplay Between Inhibitory Control and Behavioural Flexibility: Impact of Dorsomedial Striatal Dopamine Denervation in Mice. Neuroscience 2021; 477:25-39. [PMID: 34634423 DOI: 10.1016/j.neuroscience.2021.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In Parkinson's disease, nigrostriatal dopamine (DA) degeneration is commonly associated with motor symptomatology. However, non-motor symptoms affecting cognitive function, such as behavioural flexibility and inhibitory control may also appear early in the disease. Here we addressed the role of DA innervation of the dorsomedial striatum (DMS) in mediating these functions in 6-hydroxydopamine (6-OHDA)-lesioned mice using instrumental conditioning in various tasks. Behavioural flexibility was studied in a simple reversal task (nose-poke discrimination) or in reversal of a two-step sequence of actions (central followed by lateral nose-poke). Our results show that mild DA lesions of the DMS induces behavioural flexibility deficits in the sequential reversal learning only. In the first sessions following reversal of contingency, lesioned mice enhanced perseverative sequence of actions to the initial rewarded side then produced premature responses directly to the correct side omitting the central response, thus disrupting the two-step sequence of actions. These deficits may be linked to increased impulsivity as 6-OHDA-lesioned mice were unable to inhibit a previously learned motor response in a cued response inhibition task assessing proactive inhibitory control. Our findings show that partial DA denervation restricted to DMS impairs behavioural flexibility and proactive response inhibition in mice. Such striatal DA lesion may thus represent a valuable animal model for exploring deficits in executive control documented in early stage of Parkinson's disease.
Collapse
Affiliation(s)
| | - Simon More
- Aix Marseille Univ, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
32
|
Keller M, Brennenstuhl H, Kuseyri Hübschmann O, Manti F, Julia Palacios NA, Friedman J, Yıldız Y, Koht JA, Wong SN, Zafeiriou DI, López-Laso E, Pons R, Kulhánek J, Jeltsch K, Serrano-Lomelin J, Garbade SF, Opladen T, Goez H, Burlina A, Cortès-Saladelafont E, Fernández Ramos JA, García-Cazorla A, Hoffmann GF, Kiat Hong ST, Honzík T, Kavecan I, Kurian MA, Leuzzi V, Lücke T, Manzoni F, Mastrangelo M, Mercimek-Andrews S, Mir P, Oppebøen M, Pearson TS, Sivri HS, Steel D, Stevanović G, Fung CW. Assessment of intellectual impairment, health-related quality of life, and behavioral phenotype in patients with neurotransmitter related disorders: Data from the iNTD registry. J Inherit Metab Dis 2021; 44:1489-1502. [PMID: 34245036 DOI: 10.1002/jimd.12416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Inherited disorders of neurotransmitter metabolism are a group of rare diseases, which are caused by impaired synthesis, transport, or degradation of neurotransmitters or cofactors and result in various degrees of delayed or impaired psychomotor development. To assess the effect of neurotransmitter deficiencies on intelligence, quality of life, and behavior, the data of 148 patients in the registry of the International Working Group on Neurotransmitter Related Disorders (iNTD) was evaluated using results from standardized age-adjusted tests and questionnaires. Patients with a primary disorder of monoamine metabolism had lower IQ scores (mean IQ 58, range 40-100) within the range of cognitive impairment (<70) compared to patients with a BH4 deficiency (mean IQ 84, range 40-129). Short attention span and distractibility were most frequently mentioned by parents, while patients reported most frequently anxiety and distractibility when asked for behavioral traits. In individuals with succinic semialdehyde dehydrogenase deficiency, self-stimulatory behaviors were commonly reported by parents, whereas in patients with dopamine transporter deficiency, DNAJC12 deficiency, and monoamine oxidase A deficiency, self-injurious or mutilating behaviors have commonly been observed. Phobic fears were increased in patients with 6-pyruvoyltetrahydropterin synthase deficiency, while individuals with sepiapterin reductase deficiency frequently experienced communication and sleep difficulties. Patients with BH4 deficiencies achieved significantly higher quality of life as compared to other groups. This analysis of the iNTD registry data highlights: (a) difference in IQ and subdomains of quality of life between BH4 deficiencies and primary neurotransmitter-related disorders and (b) previously underreported behavioral traits.
Collapse
Affiliation(s)
- Mareike Keller
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Natalia Alexandra Julia Palacios
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Jennifer Friedman
- UCSD Departments of Neuroscience and Pediatrics; Rady Children's Hospital Division of Neurology, Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Yılmaz Yıldız
- Hacettepe University, Faculty of Medicine, Department of Pediatrics, Section of Pediatric Metabolism, Ankara, Turkey
| | | | - Suet-Na Wong
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Dimitrios I Zafeiriou
- First Department of Pediatrics Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eduardo López-Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, IMIBIC and CIBERER, Córdoba, Spain
| | - Roser Pons
- First Department of Pediatrics of the University of Athens, Aghia Sofia Hospital, Athens, Greece
| | - Jan Kulhánek
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kathrin Jeltsch
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jesus Serrano-Lomelin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
- Dietmar-Hopp Metabolic Center, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Helly Goez
- Department of Pediatrics, University of Alberta, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Alberto Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Dipartimento della Salute della Donna e del Bambino, Azienda Ospedaliera Universitaria di Padova - Campus Biomedico Pietro d'Abano, Padova, Italy
| | - Elisenda Cortès-Saladelafont
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
- Inborn Errors of Metabolism and Child Neurology Unit, Department of Pediatrics, Hospital Germans Trias i Pujol, Badalona and Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Angeles García-Cazorla
- Inborn errors of metabolism Unit, Department of Neurology, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Stacey Tay Kiat Hong
- KTP-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Kavecan
- Faculty of Medicine, University of Novi Sad, Institute for Children and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street-Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Thomas Lücke
- University Children's Hospital, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Francesca Manzoni
- U.O.C. Malattie Metaboliche Ereditarie, Dipartimento della Salute della Donna e del Bambino, Azienda Ospedaliera Universitaria di Padova - Campus Biomedico Pietro d'Abano, Padova, Italy
| | - Mario Mastrangelo
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Genetics, University of Alberta, Women and Children's Health Research Institute, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Unidad de Gestión Clínica de Neurociencias Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mari Oppebøen
- Children's Department Division of Child Neurology Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - H Serap Sivri
- Hacettepe University, Faculty of Medicine, Department of Pediatrics, Section of Pediatric Metabolism, Ankara, Turkey
| | - Dora Steel
- Developmental Neurosciences, UCL Great Ormond Street-Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Galina Stevanović
- Clinic of Neurology and Psychiatry for Children and Youth, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Cheuk-Wing Fung
- Department of Pediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| |
Collapse
|
33
|
Colautti L, Iannello P, Silveri MC, Antonietti A. Decision making in Parkinson's disease: An analysis of the studies using the Iowa Gambling Task. Eur J Neurosci 2021; 54:7513-7549. [PMID: 34655122 PMCID: PMC9299644 DOI: 10.1111/ejn.15497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
In Parkinson's disease (PD) impairments in decision making can occur, in particular because of the tendency toward risky and rewarding options. The Iowa Gambling Task has been widely used to investigate decision processes involving these options. The task assesses the ability to manage risk and to learn from feedback. The present paper aims at critically examining those studies in which this task has been administered to PD patients, in order to understand possible anomalies in patients' decision processes and which variables are responsible for that. A meta‐analysis has been conducted as well. Features of the task, sociodemographic and clinical aspects (including daily drugs intake), cognitive conditions and emotional disorders of the patients have been taken into account. Neural correlates of decision‐making competences were considered. It emerged that PD patients show a trend of preference toward risky choices, probably due to an impairment in anticipating the unrewarding consequences or to an insensitiveness to punishment. The possible role played by dopamine medications in decision making under uncertain conditions, affecting basal ganglia and structures involved in the limbic loop, was discussed. Attention has been focused on some aspects that need to be investigated in further research, in order to delve into this issue and promote patients' quality of life.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Paola Iannello
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | | | | |
Collapse
|
34
|
O’Callaghan C, Hezemans FH, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Wolpe N, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain 2021; 144:2513-2526. [PMID: 33783470 PMCID: PMC7611672 DOI: 10.1093/brain/awab142] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Collapse
Affiliation(s)
- Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Catarina Rua
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge 04107, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Noham Wolpe
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EA, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
35
|
Antidepressant-Like Properties of Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2021; 13:toxins13070505. [PMID: 34357977 PMCID: PMC8310221 DOI: 10.3390/toxins13070505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s patients often suffer from depression and anxiety, for which there are no optimal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to the known improvement of motor performance. To quantify depression- and anxiety-like behavior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results in the forced swim test, open field test, and elevated plus maze test with the rotational behavior induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal injected BoNT-A may have some antidepressant-like effect on hemi-PD.
Collapse
|
36
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
37
|
D'Iorio A, Guida P, Maggi G, Redgrave P, Santangelo G, Obeso I. Neuropsychological spectrum in early PD: Insights from controlled and automatic behavioural regulation. Neurosci Biobehav Rev 2021; 126:465-480. [PMID: 33836213 DOI: 10.1016/j.neubiorev.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Initial changes in Parkinson's disease (PD) are marked by loss of automatic movements and decline of some cognitive functions. Yet, the exact profile and extent of cognitive impairments in early stages of PD as well as their mechanisms related to automatic motor dysfunction remain unclear. Our objective was to examine the neuropsychological changes in early PD and their association to automatic and controlled modes of behavioural control. Significant relationships between early PD and cognitive dysfunction in set-shifting, abstraction ability/concept formation, processing speed, visuospatial/constructional abilities and verbal-visual memory was found. We also noted that tests with a strong effortful and controlled component were similarly affected as automatic tests by early PD, particularly those testing verbal memory, processing speed and visuospatial/constructional functions. Our findings indicate that initial stages of PD sets constraints over most of the cognitive domains normally assessed and are not easily explained in terms of either automatic or controlled mechanisms, as both appear similarly altered in early PD.
Collapse
Affiliation(s)
- Alfonsina D'Iorio
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pasqualina Guida
- HM CINAC. Centro Integral de Neurociencias AC. HM Hospitales CEU San Pablo University, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain
| | - Gianpaolo Maggi
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Ignacio Obeso
- HM CINAC. Centro Integral de Neurociencias AC. HM Hospitales CEU San Pablo University, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain.
| |
Collapse
|
38
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
39
|
Palidis DJ, McGregor HR, Vo A, MacDonald PA, Gribble PL. Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference. J Neurophysiol 2021; 126:47-67. [PMID: 34038228 DOI: 10.1152/jn.00696.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on the reinforcement of rewarding actions. In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual error-based feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes. In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field or interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa. These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms that have been shown to be disrupted by levodopa during various cognitive tasks.NEW & NOTEWORTHY Motor adaptation relies on multiple processes including reinforcement of successful actions. Cognitive reinforcement learning is impaired by levodopa-induced disruption of dopamine function. We administered levodopa to healthy adults who participated in multiple motor adaptation tasks. We found no effects of levodopa on any component of motor adaptation. This suggests that motor adaptation may not depend on the same dopaminergic mechanisms as cognitive forms or reinforcement learning that have been shown to be impaired by levodopa.
Collapse
Affiliation(s)
- Dimitrios J Palidis
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrew Vo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
40
|
Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021; 127:158-170. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder associated primarily with overt motor symptoms. Several studies show that PD is additionally accompanied by impairments in covert cognitive processes underlying goal-directed motor functioning (e.g., action planning, conflict adaptation, inhibition), and that dopaminergic medication may modulate these action control components. In this review we aim to leverage findings from studies in this domain to elucidate the role of dopamine (DA) in action control. A qualitative review of studies that investigated the effects of medication status (on vs. off) on action control in PD suggests a component-specific role for DA in action control, although the expression of medication effects depends on characteristics of both the patients and experimental tasks used to measure action control. We discuss these results in the light of findings from other research lines examining the role of DA in action control (e.g., animal research, pharmacology), and recommend that future studies use multi-method, within-subject approaches to model DA effects on action control across different components as well as underlying striatal pathways (ventral vs. dorsal).
Collapse
Affiliation(s)
- M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - N C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - S A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - E L Abrahamse
- Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
41
|
Chen ZY, Yan HJ, Qi L, Zhen QX, Liu C, Wang P, Liu YH, Wang RD, Liu YJ, Fang JP, Su Y, Yan XY, Liu AX, Xi J, Fang B. C-Gait for Detecting Freezing of Gait in the Early to Middle Stages of Parkinson's Disease: A Model Prediction Study. Front Hum Neurosci 2021; 15:621977. [PMID: 33828470 PMCID: PMC8019899 DOI: 10.3389/fnhum.2021.621977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Efficient methods for assessing walking adaptability in individuals with Parkinson's disease (PD) are urgently needed. Therefore, this study aimed to assess C-Gait for detecting freezing of gait (FOG) in patients with early- to middle-stage PD. Method People with PD (PWP) diagnosis (Hoehn and Yahr stages 1-3) were recruited from April 2019 to November 2019 in Beijing Rehabilitation Hospital. The participants performed six items of walking adaptability on an instrumented treadmill augmented with visual targets and obstacles (C-Mill). The patient's walking adaptability was evaluated by C-Gait assessment and traditional walking tests, and FOG-related indexes were collected as outcome measures. Two discriminant models were established by stepwise discriminant analysis; area under the receiver operating characteristic (ROC) curve (AUC) was used to validate the models. Result In total, 53 patients were included in this study. Most C-Gait assessment items had no or low correlations with traditional walking tests. The obstacle avoidance (r = -0.639, P = 0.003) and speed of adaptation (r = -0.486, P = 0.035) items could lead to FOG with high sensitivity. In addition, the C-Gait assessment model (AUC = 0.755) had slightly better discrimination of freezers from non-freezers compared with traditional walking test models (AUC = 0.672); specifically, obstacle avoidance and speed of adaptation have uniquely discriminant potential. Conclusion C-gait assessment could provide additional value to the traditional walking tests for PD. Gait adaptability assessment, as measured by C-Gait, may be able to help identify freezers in a PD population.
Collapse
Affiliation(s)
- Zi-Yan Chen
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hong-Jiao Yan
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Qi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiao-Xia Zhen
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cui Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ping Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yong-Hong Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Rui-Dan Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jin-Ping Fang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Su
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiao-Yan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Ai-Xian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Abstract
Cognitive and behavioural flexibility permit the appropriate adjustment of thoughts and behaviours in response to changing environmental demands. Brain mechanisms enabling flexibility have been examined using non-invasive neuroimaging and behavioural approaches in humans alongside pharmacological and lesion studies in animals. This work has identified large-scale functional brain networks encompassing lateral and orbital frontoparietal, midcingulo-insular and frontostriatal regions that support flexibility across the lifespan. Flexibility can be compromised in early-life neurodevelopmental disorders, clinical conditions that emerge during adolescence and late-life dementias. We critically evaluate evidence for the enhancement of flexibility through cognitive training, physical activity and bilingual experience.
Collapse
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
43
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Reduced risk-taking behavior during frontal oscillatory theta band neurostimulation. Brain Res 2021; 1759:147365. [PMID: 33582119 DOI: 10.1016/j.brainres.2021.147365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Most of our decisions involve a certain degree of risk regarding the outcomes of our choices. People vary in the way they make decisions, resulting in different levels of risk-taking behavior. These differences have been linked to prefrontal theta band activity. However, a direct functional relationship between prefrontal theta band activity and risk-taking has not yet been demonstrated. OBJECTIVE We used noninvasive brain stimulation to test the functional relevance of prefrontal oscillatory theta activity for the regulatory control of risk-taking behavior. METHODS In a within-subject experiment, 31 healthy participants received theta (6.5 Hertz [Hz]), gamma (40 Hz), and sham transcranial alternating current stimulation (tACS) over the left prefrontal cortex (lPFC). During stimulation, participants completed a task assessing their risk-taking behavior as well as response times and sensitivity to value and outcome probabilities. Electroencephalography (EEG) was recorded before and immediately after stimulation to investigate possible long-lasting stimulation effects. RESULTS Theta band, but not gamma band or sham, tACS led to a significant reduction in risk-taking behavior, indicating a frequency-specific effect of prefrontal brain stimulation on the modulation of risk-taking behavior. Moreover, theta band stimulation led to increased response times and decreased sensitivity to reward values. EEG data analyses did not show an offline increase in power in the stimulated frequencies after the stimulation protocol. CONCLUSION These findings provide direct empirical evidence for the effects of prefrontal theta band stimulation on behavioral risk-taking regulation.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands; Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
45
|
Radlicka A, Kamińska K, Borczyk M, Piechota M, Korostyński M, Pera J, Lorenc-Koci E, Rodriguez Parkitna J. Effects of L-DOPA on Gene Expression in the Frontal Cortex of Rats with Unilateral Lesions of Midbrain Dopaminergic Neurons. eNeuro 2021; 8:ENEURO.0234-20.2020. [PMID: 33257528 PMCID: PMC7877460 DOI: 10.1523/eneuro.0234-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022] Open
Abstract
The development of Parkinson's disease (PD) causes dysfunction of the frontal cortex, which contributes to the hallmark motor symptoms and is regarded as one of the primary causes of the affective and cognitive impairments observed in PD. Treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) alleviates motor symptoms but has mixed efficacy in restoring normal cognitive functions, which is further complicated by the psychoactive effects of the drug. We investigated how L-DOPA affects gene expression in the frontal cortex in an animal model of unilateral PD. We performed RNA sequencing (RNA-Seq) analysis of gene expression in the frontal cortex of rats with 6-hydroxydopamine (6-OHDA)-induced unilateral dopaminergic lesions treated with L-DOPA, for two weeks. The analysis of variance identified 48 genes with a significantly altered transcript abundance after L-DOPA treatment. We also performed a weighted gene coexpression network analysis (WGCNA), which resulted in the detection of five modules consisting of genes with similar expression patterns. The analyses led to three primary observations. First, the changes in gene expression induced by L-DOPA were bilateral, although only one hemisphere was lesioned. Second, the changes were not restricted to neurons but also appeared to affect immune or endothelial cells. Finally, comparisons with databases of drug-induced gene expression signatures revealed multiple nonspecific effects, indicating that a part of the observed response is a common pattern activated by multiple types of drugs in different target tissues. Taken together, our results identify cellular mechanisms in the frontal cortex that are involved in the response to L-DOPA treatment.
Collapse
Affiliation(s)
- Anna Radlicka
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-503, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków 31-343, Poland
| |
Collapse
|
46
|
Crawford H, Scerif G, Wilde L, Beggs A, Stockton J, Sandhu P, Shelley L, Oliver C, McCleery J. Genetic modifiers in rare disorders: the case of fragile X syndrome. Eur J Hum Genet 2021; 29:173-183. [PMID: 32862204 PMCID: PMC7852869 DOI: 10.1038/s41431-020-00711-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Methods employed in genome-wide association studies are not feasible ways to explore genotype-phenotype associations in rare disorders due to limited statistical power. An alternative approach is to examine relationships among specific single nucleotide polymorphisms (SNPs), selected a priori, and behavioural characteristics. Here, we adopt this strategy to examine relationships between three SNPs (5-HTTLPR, MAOA, COMT) and specific clinically-relevant behaviours that are phenotypic of fragile X syndrome (FXS) but vary in severity and frequency across individuals. Sixty-four males with FXS participated in the current study. Data from standardised informant measures of challenging behaviour (defined as physical aggression, property destruction, stereotyped behaviour, and self-injury), autism symptomatology, attention-deficit-hyperactivity-disorder characteristics, repetitive behaviour and mood/interest and pleasure were compared between each SNP genotype. No association was observed between behavioural characteristics and either 5-HTTLPR (serotonin) or MAOA (monoamine oxidase) genotypes. However, compared to the COMT (dopamine) AG and GG genotypes, the AA genotype was associated with greater interest and pleasure in the environment, and with reduced risk for property destruction, stereotyped behaviour and compulsive behaviour. The results suggest that common genetic variation in the COMT genotype affecting dopamine levels in the brain may contribute to the variability of challenging and repetitive behaviours and interest and pleasure in this population. This study identifies a role for additional genetic risk in understanding the neural and genetic mechanisms contributing to phenotypic variability in neurodevelopmental disorders, and highlights the merit of investigating SNPs that are selected a priori on a theoretical basis in rare populations.
Collapse
Affiliation(s)
- Hayley Crawford
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
- Warwick Medical School, University of Warwick, Warwick, UK.
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Gaia Scerif
- Attention, Brain and Cognitive Development Group, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lucy Wilde
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
- The Open University, Milton Keynes, UK
| | - Andrew Beggs
- Surgical Research Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Joanne Stockton
- Surgical Research Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Pria Sandhu
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Lauren Shelley
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Joseph McCleery
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, USA
- Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
47
|
Brandão PRP, Munhoz RP, Grippe TC, Cardoso FEC, de Almeida E Castro BM, Titze-de-Almeida R, Tomaz C, Tavares MCH. Cognitive impairment in Parkinson's disease: A clinical and pathophysiological overview. J Neurol Sci 2020; 419:117177. [PMID: 33068906 DOI: 10.1016/j.jns.2020.117177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Cognitive dysfunction in Parkinson's disease (PD) has received increasing attention, and, together with other non-motor symptoms, exert a significant functional impact in the daily lives of patients. This article aims to compile and briefly summarize selected published data about clinical features, cognitive evaluation, biomarkers, and pathophysiology of PD-related dementia (PDD). The literature search included articles indexed in the MEDLINE/PubMed database, published in English, over the last two decades. Despite significant progress on clinical criteria and cohort studies for PD-mild cognitive impairment (PD-MCI) and PDD, there are still knowledge gaps about its exact molecular and pathological basis. Here we overview the scientific literature on the role of functional circuits, neurotransmitter systems (monoaminergic and cholinergic), basal forebrain, and brainstem nuclei dysfunction in PD-MCI. Correlations between neuroimaging and cerebrospinal fluid (CSF) biomarkers, clinical outcomes, and pathological results are described to aid in uncovering the neurodegeneration pattern in PD-MCI and PDD.
Collapse
Affiliation(s)
- Pedro Renato P Brandão
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Neurology Section, Medical Department, Chamber of Deputies of the Federal Republic of Brazil, Brasília, DF, Brazil.
| | - Renato Puppi Munhoz
- Toronto Western Hospital, Movement Disorders Centre, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Canada.
| | - Talyta Cortez Grippe
- Laboratory of Neuroscience and Behavior, Institute of Biological Sciences, Universidade de Brasília (UnB); Movement Disorders Group, Neurology Unit, Hospital de Base do Distrito Federal; School of Medicine, Centro Universitário de Brasília (UniCEUB), Brasília, DF, Brazil
| | - Francisco Eduardo Costa Cardoso
- Movement Disorders Unit, Internal Medicine Department, Neurology Service, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília/FAV, Brasília, DF, Brazil
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior and Graduate Program in Environment, CEUMA University - UniCEUMA, São Luís, MA, Brazil.
| | | |
Collapse
|
48
|
Abstract
Nootropics are drugs used to either treat or benefit cognition deficits. Among this class, methylphenidate is a popular agent, which acts through indirect dopaminergic and noradrenergic agonism and, therefore, is proposed to enhance performance in catecholamine-dependent cognitive domains such as attention, memory and prefrontal cortex-dependent executive functions. However, investigation into the efficacy of methylphenidate as a cognitive enhancer has yielded variable results across all domains, leading to debate within the scientific community surrounding its off-label use in healthy individuals seeking scholaristic benefit or increased productivity. Through analysis of experimental data and methodological evaluation, it is apparent that there are dose-, task- and domain-dependent considerations surrounding the use of methylphenidate in healthy individuals, whereby tailored dose administration is likely to provide benefit on an individual basis dependent on the domain of cognition in which benefit is required. Additionally, it is apparent that there are subjective effects of methylphenidate, which may increase user productivity irrespective of cognitive benefit. Whilst there is not extensive study in healthy older adults, it is plausible that there are dose-dependent benefits to methylphenidate in older adults in selective cognitive domains that might improve quality of life and reduce fall risk. Methylphenidate appears to produce dose-dependent benefits to individuals with attention-deficit/hyperactivity disorder, but the evidence for benefit in Parkinson's disease and schizophrenia is inconclusive. As with any off-label use of pharmacological agents, and especially regarding drugs with neuromodulatory effects, there are inherent safety concerns; epidemiological and experimental evidence suggests there are sympathomimetic, cardiovascular and addictive considerations, which might further restrict their use within certain demographics.
Collapse
|
49
|
Tiedt HO, Ehlen F, Klostermann F. Increased conceptual switching by dopaminergic treatment in patients with Parkinson's disease. Brain Cogn 2020; 144:105611. [PMID: 32858496 DOI: 10.1016/j.bandc.2020.105611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Cognitive changes including reduced word production in verbal fluency (VF) tasks are frequently observed in Parkinson's disease (PD) with ambiguous effects of dopaminergic medication on these symptoms. Here, we studied the impact of dopaminergic medication on specific cognitive components underlying VF task performance in 21 participants with PD on their regular medication and following dopamine withdrawal compared with healthy controls. We used temporal cluster analysis (TCA) to differentiate phases of VF output relating to fast automatic lexical activation ('clusters') and slower attention-demanding shifts ('switches'). Dopaminergic medication led to increased switching and, in non-alternating VF tasks, to the formation of smaller and shorter word clusters. The number of switches was correlated with higher cognitive scores and showed an inverse relationship with VF error rates. Increased switching operations during VF task performance can be interpreted in view of nigrostriatal dopaminergic roles for balancing system state versus change propensities. The additional effect on word clustering suggests a modulation of semantic spreading activation mechanisms underlying lexical search, presumably involving non-nigrostriatal, e.g., mesocortical dopaminergic networks.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Felicitas Ehlen
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203 Berlin, Germany; Jüdisches Krankenhaus Berlin, Department of Psychiatry, Heinz-Galinski-Str. 1, 13347 Berlin, Germany(1).
| | - Fabian Klostermann
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203 Berlin, Germany; Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|
50
|
Dopamine agonist treatment increases sensitivity to gamble outcomes in the hippocampus in de novo Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 28:102362. [PMID: 32798910 PMCID: PMC7453137 DOI: 10.1016/j.nicl.2020.102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Parkinson's disease is associated with severe nigro-striatal dopamine depletion, leading to motor dysfunction and altered reward processing. We previously showed that drug-naïve patients with Parkinson's disease had a consistent attenuation of reward signalling in the mesolimbic and mesocortical system. Here, we address the neurobiological effects of dopaminergic therapy on reward sensitivity in the mesolimbic circuitry, and how this may contribute to neuropsychiatric symptoms. OBJECTIVES We tested the hypothesis that (1) dopaminergic treatment would restore the attenuated, mesolimbic and mesocortical responses to reward; and (2) restoration of reward responsivity by dopaminergic treatment would predict motor performance and the emergence of impulse control symptoms. METHODS In 11 drug-naïve Parkinson patients, we prospectively assessed treatment-induced changes in reward processing before, and eight weeks after initiation of monotherapy with dopamine agonists. They were compared to 10 non-medicated healthy controls who were also measured longitudinally. We used whole-brain functional magnetic resonance imaging at 3 Tesla to assess the reward responsivity of the brain to monetary gains and losses, while participants performed a simple consequential gambling task. RESULTS In patients, dopaminergic treatment improved clinical motor symptoms without significantly changing task performance. Dopamine agonist therapy induced a stronger reward responsivity in the right hippocampus with higher doses being less effective. None of the patients developed impulse control disorders in the follow-up period of four years. CONCLUSIONS Short-term treatment with first-ever dopaminergic medication partially restores deficient reward-related processing in the hippocampus in de novo Parkinson's disease.
Collapse
|