1
|
Nemli DD, Jiang X, Jakob RP, Gloder LM, Schwardt O, Rabbani S, Maier T, Ernst B, Cramer J. Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics. J Med Chem 2024; 67:13813-13828. [PMID: 38771131 DOI: 10.1021/acs.jmedchem.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low μM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.
Collapse
Affiliation(s)
- Dilara D Nemli
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Roman P Jakob
- Department Biozentrum, Structural Area Focal Biology, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Laura Muñoz Gloder
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Said Rabbani
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Timm Maier
- Department Biozentrum, Structural Area Focal Biology, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Group Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
3
|
de Geus MAR, Groenewold GJM, Maurits E, Araman C, van Kasteren SI. Synthetic methodology towards allylic trans-cyclooctene-ethers enables modification of carbohydrates: bioorthogonal manipulation of the lac repressor. Chem Sci 2020; 11:10175-10179. [PMID: 34094281 PMCID: PMC8162276 DOI: 10.1039/d0sc03216f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
The inverse electron-demand Diels-Alder (IEDDA) pyridazine elimination is one of the key bioorthogonal bond-breaking reactions. In this reaction trans-cyclooctene (TCO) serves as a tetrazine responsive caging moiety for amines, carboxylic acids and alcohols. One issue to date has been the lack of synthetic methods towards TCO ethers from functionalized (aliphatic) alcohols, thereby restricting bioorthogonal utilization. Two novel reagents were developed to enable controlled formation of cis-cyclooctene (CCO) ethers, followed by optimized photochemical isomerization to obtain TCO ethers. The method was exemplified by the controlled bioorthogonal activation of the lac operon system in E. coli using a TCO-ether-modified carbohydrate inducer.
Collapse
Affiliation(s)
- Mark A R de Geus
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - G J Mirjam Groenewold
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Elmer Maurits
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Can Araman
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
4
|
Singh Y, Demchenko AV. Defining the Scope of the Acid-Catalyzed Glycosidation of Glycosyl Bromides. Chemistry 2020; 26:1042-1051. [PMID: 31614042 PMCID: PMC7675295 DOI: 10.1002/chem.201904185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Following the recent discovery that traditional silver(I) oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic TMSOTf, reported herein is a dedicated study of all major aspects of this reaction. A thorough investigation of numerous silver salts and careful refinement of the reaction conditions led to an improved mechanistic understanding. This, in turn, led to a significant reduction in the amount of silver salt required for these glycosylations. The progress of this reaction can be monitored by naked eye, and the completion of the reaction can be judged by the disappearance of characteristic dark color of Ag2 O. Further evidence on higher reactivity of benzoylated α-bromides in comparison to that of their benzylated counterparts has been acquired.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
5
|
Singh Y, Demchenko AV. Koenigs-Knorr Glycosylation Reaction Catalyzed by Trimethylsilyl Trifluoromethanesulfonate. Chemistry 2019; 25:1461-1465. [PMID: 30407673 PMCID: PMC6522226 DOI: 10.1002/chem.201805527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Abstract
The discovery that traditional silver(I)-oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic trimethylsilyl trifluoromethanesulfonate (TMSOTf) is reported. The reaction conditions are very mild that allowed for maintaining a practically neutral pH and, at the same time, providing high rates and excellent glycosylation yields. In addition, unusual reactivity trends among a series of differentially protected glycosyl bromides were documented. In particular, benzoylated α-bromides were much more reactive than their benzylated counterparts under these conditions.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis
| | | |
Collapse
|
6
|
Pote AR, Vannam R, Richard A, Gascón J, Peczuh MW. Formation of and Glycosylation with Per‐
O
‐Acetyl Septanosyl Halides: Rationalizing Complex Reactivity En Route to
p
‐Nitrophenyl Septanosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Aditya R. Pote
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 06269‐3060 Storrs CT USA
| | - Raghu Vannam
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 06269‐3060 Storrs CT USA
| | - Alissa Richard
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 06269‐3060 Storrs CT USA
| | - José Gascón
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 06269‐3060 Storrs CT USA
| | - Mark W. Peczuh
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 06269‐3060 Storrs CT USA
| |
Collapse
|
7
|
Lanz G, Madsen R. Glycosylation with Disarmed Glycosyl Bromides Promoted by Iodonium Ions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gyrithe Lanz
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Robert Madsen
- Department of Chemistry; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
8
|
Mastihubová M, Poláková M. A selective and mild glycosylation method of natural phenolic alcohols. Beilstein J Org Chem 2016; 12:524-30. [PMID: 27340444 PMCID: PMC4901888 DOI: 10.3762/bjoc.12.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Several bioactive natural p-hydroxyphenylalkyl β-D-glucopyranosides, such as vanillyl β-D-glucopyranoside, salidroside and isoconiferin, and their glycosyl analogues were prepared by a simple reaction sequence. The highly efficient synthetic approach was achieved by utilizing acetylated glycosyl bromides as well as aromatic moieties and mild glycosylation promoters. The aglycones, p-O-acetylated arylalkyl alcohols, were prepared by the reduction of the corresponding acetylated aldehydes or acids. Various stereoselective 1,2-trans-O-glycosylation methods were studied, including the DDQ-iodine or ZnO-ZnCl2 catalyst combination. Among them, ZnO-iodine has been identified as a new glycosylation promoter and successfully applied to the stereoselective glycoside synthesis. The final products were obtained by conventional Zemplén deacetylation.
Collapse
Affiliation(s)
- Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
9
|
Niedbal DA, Madsen R. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Hsieh HW, Davis RA, Hoch JA, Gervay-Hague J. Two-step functionalization of oligosaccharides using glycosyl iodide and trimethylene oxide and its applications to multivalent glycoconjugates. Chemistry 2014; 20:6444-54. [PMID: 24715520 PMCID: PMC4497529 DOI: 10.1002/chem.201400024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/05/2022]
Abstract
Oligosaccharide conjugates, such as glycoproteins and glycolipids, are potential chemotherapeutics and also serve as useful tools for understanding the biological roles of carbohydrates. With many modern isolation and synthetic technologies providing access to a wide variety of free sugars, there is increasing need for general methodologies for carbohydrate functionalization. Herein, we report a two-step methodology for the conjugation of per-O-acetylated oligosaccharides to functionalized linkers that can be used for various displays. Oligosaccharides obtained from both synthetic and commercial sources were converted to glycosyl iodides and activated with I2 to form reactive donors that were subsequently trapped with trimethylene oxide to form iodopropyl conjugates in a single step. The terminal iodide served as a chemical handle for further modification. Conversion into the corresponding azide followed by copper-catalyzed azide-alkyne cycloaddition afforded multivalent glycoconjugates of Gb3 for further investigation as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Hsiao-Wu Hsieh
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Ryan A. Davis
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Jessica A. Hoch
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616 (USA), Fax: (+ 1)530-754-6915
| |
Collapse
|
11
|
Kuo TY, Chien LA, Chang YC, Liou SY, Chang CC. Synthetic mimics of carbohydrate-based anticancer vaccines: preparation of carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands by controlled living radical polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra04907a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Under the conditions of nitroxide-mediated polymerizations, novel carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands could be achieved through a living radical process.
Collapse
Affiliation(s)
- Teng-Yuan Kuo
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Li-An Chien
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Ya-Chi Chang
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Shuang-Yu Liou
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| | - Che-Chien Chang
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City, Republic of China
| |
Collapse
|
12
|
Use of iodine for efficient and chemoselective glycosylation with glycosyl ortho-alkynylbenzoates as donor in presence of thioglycosides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Stachulski AV, Meng X. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep 2013; 30:806-48. [DOI: 10.1039/c3np70003h] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Aouadi K, Msaddek M, Praly JP. Cycloaddition of a chiral nitrone to allylic motifs: an access to enantiopure sugar-based amino acids displaying a stable glycosidic bond and to 4(S)-4-hydroxy-l-ornithine. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Xu W, Osei-Prempeh G, Lema C, Davis Oldham E, Aguilera RJ, Parkin S, Rankin SE, Knutson BL, Lehmler HJ. Synthesis, thermal properties, and cytotoxicity evaluation of hydrocarbon and fluorocarbon alkyl β-D-xylopyranoside surfactants. Carbohydr Res 2011; 349:12-23. [PMID: 22207000 DOI: 10.1016/j.carres.2011.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 11/18/2022]
Abstract
Alkyl β-d-xylopyranosides are highly surface active, biodegradable surfactants that can be prepared from hemicelluloses and are of interest for use as pharmaceuticals, detergents, agrochemicals, and personal care products. To gain further insights into their structure-property and structure-activity relationships, the present study synthesized a series of hydrocarbon (-C(6)H(13) to -C(16)H(33)) and fluorocarbon (-(CH(2))(2)C(6)F(13)) alkyl β-d-xylopyranosides in four steps from d-xylose by acylation or benzoylation, bromination, Koenigs-Knorr reaction, and hydrolysis, with the benzoyl protecting group giving better yields compared to the acyl group in the Koenigs-Knorr reaction. All alkyl β-d-xylopyranosides formed thermotropic liquid crystals. The phase transition of the solid crystalline phase to a liquid crystalline phase increased linearly with the length of the hydrophobic tail. The clearing points were near constant for alkyl β-d-xylopyranosides with a hydrophobic tail ⩾8, but occurred at a significantly lower temperature for hexyl β-d-xylopyranoside. Short and long-chain alkyl β-d-xylopyranosides displayed no cytotoxicity at concentration below their aqueous solubility limit. Hydrocarbon and fluorocarbon alkyl β-d-xylopyranosides with intermediate chain length displayed some toxicity at millimolar concentrations due to apoptosis.
Collapse
Affiliation(s)
- Wenjin Xu
- Department of Occupational and Environmental Health, The University of Iowa, UI Research Park, 124 IREH, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Programmable one-pot synthesis of tumor-associated carbohydrate antigens Lewis X dimer and KH-1 epitopes. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Harrison JA, Kartha KPR, Fournier EJL, Lowary TL, Malet C, Nilsson UJ, Hindsgaul O, Schenkman S, Naismith JH, Field RA. Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Org Biomol Chem 2011; 9:1653-60. [PMID: 21253654 PMCID: PMC3315775 DOI: 10.1039/c0ob00826e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/22/2010] [Indexed: 01/31/2023]
Abstract
Systematically modified octyl galactosides and octyl N-acetyllactosamines were assessed as inhibitors of, and substrates for, T. cruzi trans-sialidase (TcTS) in the context of exploring its acceptor substrate binding site. These studies show that TcTS, which catalyses the α-(2→3)-sialylation of non-reducing terminal β-galactose residues, is largely intolerant of substitution of the galactose 2 and 4 positions whereas substitution of the galactose 6 position is well tolerated. Further studies show that even the addition of a bulky sugar residue (glucose, galactose) does not impact negatively on TcTS binding and turnover, which highlights the potential of 'internal' 6-substituted galactose residues to serve as TcTS acceptor substrates. Results from screening a 93-membered thiogalactoside library highlight a number of structural features (notably imidazoles and indoles) that are worthy of further investigation in the context of TcTS inhibitor development.
Collapse
Affiliation(s)
- Jennifer A. Harrison
- Centre for Biomolecular Sciences , University of St Andrews , St Andrews , UK KY16 9ST
| | - K. P. Ravindranathan Kartha
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Sector 67 , SAS Nagar , Punjab 160 062 , India
| | - Eric J. L. Fournier
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G2G2 , Canada
| | - Todd L. Lowary
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G2G2 , Canada
| | - Carles Malet
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G2G2 , Canada
| | - Ulf J. Nilsson
- Department of Organic Chemistry , Lund University , Box 124 , SE-22100 , Lund , Sweden
| | - Ole Hindsgaul
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G2G2 , Canada
- Carlsberg Laboratory , Gamle Carlsberg Vej 10 , Valby-Copenhagen , DK-2500 , Denmark
| | - Sergio Schenkman
- Department of Microbiology , Immunology and Parasitology , Universidade Federal de São Paulo , Rua Botucatu 862 8 andar , 04023-062 , São Paulo , SP , Brazil
| | - James H. Naismith
- Centre for Biomolecular Sciences , University of St Andrews , St Andrews , UK KY16 9ST
| | - Robert A. Field
- Department of Biological Chemistry , John Innes Centre , Norwich , UK NR4 7TJ .
| |
Collapse
|
18
|
Jereb M, Vražič D, Zupan M. Iodine-catalyzed transformation of molecules containing oxygen functional groups. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.086] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
López JC, Bernal-Albert P, Uriel C, Gómez AM. Ready Transformation of Partially Unprotected Thioglycosides into Glycosyl Fluorides Mediated by NIS/HF-Pyridine or Et3N·3HF. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800754] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Kärkkäinen TS, Ravindranathan Kartha K, MacMillan D, Field RA. Iodine-mediated glycosylation en route to mucin-related glyco-aminoacids and glycopeptides. Carbohydr Res 2008; 343:1830-4. [DOI: 10.1016/j.carres.2008.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/20/2008] [Accepted: 03/29/2008] [Indexed: 11/30/2022]
|
21
|
Panchadhayee R, Kumar Misra A. Efficient Iodine‐Catalyzed Preparation of Benzylidene Acetals of Carbohydrate Derivatives. J Carbohydr Chem 2008. [DOI: 10.1080/07328300802030837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rajib Panchadhayee
- a Medicinal and Process Chemistry Division , Central Drug Research Institute , Lucknow , UP , India
| | - Anup Kumar Misra
- a Medicinal and Process Chemistry Division , Central Drug Research Institute , Lucknow , UP , India
| |
Collapse
|
22
|
Murakami T, Sato Y, Shibakami M. Stereoselective glycosylations using benzoylated glucosyl halides with inexpensive promoters. Carbohydr Res 2008; 343:1297-308. [DOI: 10.1016/j.carres.2008.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
23
|
Goodby JW, Görtz V, Cowling SJ, Mackenzie G, Martin P, Plusquellec D, Benvegnu T, Boullanger P, Lafont D, Queneau Y, Chambert S, Fitremann J. Thermotropic liquid crystalline glycolipids. Chem Soc Rev 2007; 36:1971-2032. [PMID: 17982519 DOI: 10.1039/b708458g] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Are the liquid crystalline properties of the materials of living systems important in biological structures, functions, diseases and treatments? There is a growing consciousness that the observed lyotropic, and often thermotropic liquid crystallinity, of many biological materials that possess key biological functionality might be more than curious coincidence. Rather, as the survival of living systems depends on the flexibility and reformability of structures, it seems more likely that it is the combination of softness and structure of the liquid-crystalline state that determines the functionality of biological materials. The richest sources of liquid crystals derived from living systems are found in cell membranes, of these glycolipids are a particularly important class of components. In this critical review, we will examine the relationship between chemical structure and the self-assembling and self-organising properties of glycolipids that ultimately lead to mesophase formation.
Collapse
Affiliation(s)
- J W Goodby
- Department of Chemistry, The University of York, York, UK YO10 5DD
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dumoulin F, Lafont D, Huynh TL, Boullanger P, Mackenzie G, West JJ, Goodby JW. Synthesis and Liquid Crystalline Properties of Mono-, Di- and Tri-O-alkyl Pentaerythritol Derivatives Bearing Tri-, Di- or Monogalactosyl Heads: The Effects of Curvature of Molecular Packing on Mesophase Formation. Chemistry 2007; 13:5585-600. [PMID: 17310498 DOI: 10.1002/chem.200601702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Self-organisation and self-assembly are critical to the stability of synthetic and biological membranes. Of particular importance is consideration of the packing arrangements of the various molecular species. Both phospho- and glycolipids can pack in ways in which curvature can be introduced into self-organised or self-assembled systems. For instance, it is known that the degree of curvature can affect the structures of any condensed phases that are formed. In this article we report on a systematic study in which we have varied the shapes of glycolipids and examined the condensed phases that they form. In doing so, we have also unified the shape dependency of lyotropic liquid crystals with those of thermotropic liquid crystals. In order to undertake this systematic study a range of different pentaerythritol derivatives was synthesized, which covers combinations of one to three alkyl chains of different lengths (6,7,9,10,11,12,14,16 carbon atoms) and three to one galactosyl heads. Mono- and di-O-galactosyl derivatives were prepared directly by glycosylation of the corresponding alcohols using 2,3,4,6-tetra-O-benzoyl or acetyl-alpha-D-galactopyranosyl trichloroacetimidate or bromide as the donors; the tri-O-galactosyl derivatives were synthesized from O-alkyl-O-benzyl di-O-galactosyl pentaerythritol intermediates, followed by de-O-benzylation and glycosylation steps. All of the fully deprotected products were obtained by standard methods, and their self-organising and self-assembling properties examined.
Collapse
Affiliation(s)
- Fabienne Dumoulin
- Université de Lyon, Laboratoire de Chimie Organique II, Unité Mixte de Recherche CNRS 5181, Université Lyon 1, Chimie Physique Electronique de Lyon, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Murakami T, Hirono R, Sato Y, Furusawa K. Efficient synthesis of ω-mercaptoalkyl 1,2-trans-glycosides from sugar peracetates. Carbohydr Res 2007; 342:1009-20. [PMID: 17362892 DOI: 10.1016/j.carres.2007.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/24/2022]
Abstract
Lewis acid-promoted reactions of peracetylated sugars (glucose, galactose, maltose, lactose) with omega-bromo-1-alkanols (C(8), C(12)) were investigated. ZnCl(2) was found to promote the 1,2-trans-glycosylation of the alcohols in toluene at about 60 degrees C in a stereocontrolled manner with better yields than commonly employed promoters such as SnCl(4). The omega-bromoalkyl acetylated glycosides were readily converted to omega-mercaptoalkyl glycosides, which are useful for the preparation of glycoclusters.
Collapse
Affiliation(s)
- Teiichi Murakami
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | |
Collapse
|
26
|
Williams JR, Gong H. Biological activities and syntheses of steroidal saponins: the shark-repelling pavoninins. Lipids 2006; 42:77-86. [PMID: 17393213 DOI: 10.1007/s11745-006-1002-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Steroidal saponins are complex compounds that have a steroid attached to a carbohydrate moiety. They are natural surfactants and detergents and exhibit a number of biological effects. Steroidal saponins have shown membrane-permeabilizing, hypocholesterolemic, immunostimulant, and anticancer properties. They have also been found to affect the growth, food intake and reproductive capabilities of animals. Furthermore, they have been shown to act as antiviral and antifungal agents. They have been isolated from many plants and some animals, especially sea cucumbers and starfish. Fish belonging to the species Pardachirus pavoninus excrete a mixture of six steroidal N-acetylglucosaminides, pavoninins 1-6, with shark-repelling properties. We report syntheses of the C-15alpha pavoninin-4 by both direct synthesis from diosgenin and by remote functionalization. A general solution for the glycosylation of hindered alcohols was developed using glycosyl fluorides as good glycosyl donors. The syntheses of two C-16beta structural analogs of OSW-1 are described.
Collapse
Affiliation(s)
- John R Williams
- Department of Chemistry, Temple University, 13 and Norris Sts., Philadelphia, PA 19122-2585, USA.
| | | |
Collapse
|
27
|
van Well RM, Kärkkäinen TS, Kartha KPR, Field RA. Contrasting reactivity of thioglucoside and selenoglucoside donors towards promoters: implications for glycosylation stereocontrol. Carbohydr Res 2006; 341:1391-7. [PMID: 16697999 DOI: 10.1016/j.carres.2006.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/15/2022]
Abstract
The stereochemical outcome of glycosylation reactions with model thioglycosides and selenoglycosides proved to be dependent on the source of promoter iodonium ion, with iodine giving different results to N-iodosuccinimide (NIS) alone or N-iodosuccinimide/trimethylsilyltrifluoromethanesulfonate (NIS/TMSOTf). In contrast to armed thioglycosides, which anomerise, and disarmed thioglycosides, which do not react, both armed and disarmed selenoglycosides give rise to the corresponding glycosyl iodides when reacted with iodine. Further, whilst the single electron transfer agent DDQ alone is an ineffective promoter, in combination with iodine it produces better acetonitrile-assisted beta-stereoselectivity with both thioglycosides and selenoglycosides than does tris(4-bromophenyl)aminium hexachloroantimonate (BAHA).
Collapse
Affiliation(s)
- Renate M van Well
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
28
|
Abstract
We reported that dicyanoketene acetals (DCKA), in which gem-dicyano groups of tetracyanoethylene (TCNE) are displaced with alkoxyl groups, function as pi-acid catalysts, and that a polymer (poly-DCKA-1) derived by copolymerization of a monomer, in which the alkoxyl group at the omega-position is modified with a styrene moiety, with ethyleneglycol dimethacrylate also shows high level of activities as a pi-acid. In this research, the effects of dicyanoketene ethylene acetal (DCKEA), polymers previously developed (poly-DCKA-1 and 2), new monomers, in which the alkoxyl group at the omega-position is modified with an ethereal moiety, and the corresponding polymers (poly-DCKA-3 and 4) were investigated on catalytic activities. Among the catalysts, the polymer (poly-DCKA-1) had the most efficient activity in monothioacetalization, cyanation, and Mukaiyama aldol reaction of acetals, two-component and three-component Mannich-type reaction, hydrolysis of acetals and silyl ethers, and two-component and three-component inverse electron demand Aza-Diels-Alder reaction. Remarkably, the polymer catalyst works more efficiently in water than in organic solvents and is recyclable.
Collapse
|
29
|
Gonçalves AG, Noseda MD, Duarte MER, Grindley TB. Regioselective synthesis of long-chain ethers and their sulfates derived from methyl beta-D-galactopyranoside and derivatives via dibutylstannylene acetal intermediates. Carbohydr Res 2005; 340:2245-50. [PMID: 16084504 DOI: 10.1016/j.carres.2005.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
A number of different conditions were investigated for the alkylation of the dibutylstannylene acetals of methyl beta-d-galactopyranoside with long-chain primary alkyl bromides, decyl, dodecyl, and tetradecyl bromide. The best yields of the major products, the 3-O-alkyl ethers, were obtained by reaction of the alkyl bromide with the monodibutylstannylene acetal in DMF in the presence of cesium fluoride for extended periods of time at moderate temperatures (65 degrees C). These products were always accompanied by minor amounts of the 3,6-di-O-alkyl derivative. Performing the reaction with excess alkyl halide on the bis(dibutylstannylene) acetal resulted in more of the 3,6-di-O-alkyl derivative, particularly for the shorter alkyl bromides, but this product was never predominant. Sulfation of the dibutylstannylene acetal of methyl 3-O-tetradecyl-beta-D-galactopyranoside resulted in the 6-sulfate in 96% yield.
Collapse
Affiliation(s)
- Alan G Gonçalves
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3
| | | | | | | |
Collapse
|
30
|
Mukhopadhyay B, Collet B, Field RA. Glycosylation reactions with ‘disarmed’ thioglycoside donors promoted by N-iodosuccinimide and HClO4–silica. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.06.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
van Well R, Ravindranathan Kartha K, Field R. Iodine Promoted Glycosylation with Glycosyl Iodides: α‐Glycoside Synthesis. J Carbohydr Chem 2005. [DOI: 10.1081/car-200067028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Abstract
Rapid assembly of starch fragment analogues was achieved using "click chemistry". Specifically, two hexadecasaccharide mimics containing two parallel maltoheptaosyl chains linked via [1,2,3]-triazoles to a maltose core were synthesized using Cu(i)-catalyzed [3 + 2] dipolar cycloaddition of azido saccharides and 6,6'- and 4',6'-dipropargylated p-methoxyphenyl maltoside.
Collapse
Affiliation(s)
- Laurence Marmuse
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UKNR4 7TJ
| | | | | |
Collapse
|
33
|
Harding JR, King CD, Perrie JA, Sinnott D, Stachulski AV. Glucuronidation of steroidal alcohols using iodosugar and imidate donors. Org Biomol Chem 2005; 3:1501-7. [PMID: 15827648 DOI: 10.1039/b412217h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a study of the glucuronidation of a number of important steroidal secondary alcohols. The alcohols studied are androsterone 7, epiandrosterone 8, 17-acetoxy-androstane-3alpha,17beta-diol 9, 11alpha-hydroxyprogesterone 10, and 3-benzoylestradiol 11. These were first glucuronidated using the Schmidt trichloroacetimidate method with variations in acyl substituent (viz. derivatives 2 and 3), Lewis acid catalyst and order of addition. The results are contrasted with those obtained using our recently described glycosyl iodide donor 4, catalysed either by N-iodosuccinimide (NIS) or various metal salts.
Collapse
Affiliation(s)
- John R Harding
- AstraZeneca UK Ltd., Drug Metabolism and Pharmacokinetics Department, Mereside, Cheshire, UK
| | | | | | | | | |
Collapse
|
34
|
Wei G, Du Y, Linhardt RJ. New potent insecticidal agent: 4′-fucosyl avermectin derivative. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.07.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
|
36
|
Carvalho I, Scheuerl SL, Ravindranathan Kartha KP, Field RA. Practical synthesis of the 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucosides of Fmoc-serine and Fmoc-threonine and their benzyl esters. Carbohydr Res 2003; 338:1039-43. [PMID: 12706969 DOI: 10.1016/s0008-6215(03)00071-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercuric bromide-promoted glycosylation of Fmoc-Ser-OBn and Fmoc-Thr-OBn with 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-alpha-D-glucopyranosyl chloride in refluxing 1,2-dichloroethane gave the corresponding beta-glycosides in good yields (64 and 62%, respectively). Direct coupling of the commercially available Fmoc-Ser-OH and Fmoc-Thr-OH carboxylic acids under similar conditions gave the corresponding beta-glycosides, possessing free carboxyl groups, in moderate yields (50 and 40%, respectively).
Collapse
Affiliation(s)
- Ivone Carvalho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
37
|
|
38
|
Affiliation(s)
- A R Vaino
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
39
|
Takeuchi K, Tamura T, Jona H, Mukaiyama T. A Novel Activating Agents of ‘Disarmed’ Thioglycosides, Combination of Trityl Tetrakis(pentafluorophenyl)borate, Iodine and 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ). CHEM LETT 2000. [DOI: 10.1246/cl.2000.692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Kartha K, Cura P, Aloui M, Readman S, Rutherford TJ, Field RA. Observations on the activation of methyl thioglycosides by iodine and its interhalogen compounds. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00501-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Iodine, a versatile reagent in carbohydrate chemistry. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1874-5296(00)80015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Schmid U, Waldmann H. O-Glycoside Synthesis with Glycosyl Iodides under Neutral Conditions in 1 M LiClO4 in CH2Cl2. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/jlac.199719971223] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ravindranathan Kartha K, Field RA. Glycosylation chemistry promoted by iodine monobromide: Efficient synthesis of glycosyl bromides from thioglycosides, and O-glycosides from ‘disarmed’ thioglycosides and glycosyl bromides. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)10124-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Kartha K, Field RA. Iodine: A versatile reagent in carbohydrate chemistry IV. Per-O-acetylation, regioselective acylation and acetolysis. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00742-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|