1
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
2
|
Guzmán EA, Peterson TA, Winder PL, Francis KT, McFarland M, Roberts JC, Sandle J, Wright AE. An Assessment of Potential Threats to Human Health from Algae Blooms in the Indian River Lagoon (USA) 2018-2021: Unique Patterns of Cytotoxicity Associated with Toxins. Toxins (Basel) 2023; 15:664. [PMID: 37999526 PMCID: PMC10675324 DOI: 10.3390/toxins15110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The Indian River Lagoon (IRL), a 156-mile-long estuary located on the eastern coast of Florida, experiences phytoplankton bloom events due to increased seasonal temperatures coupled with anthropogenic impacts. This study aimed to gather data on the toxicity to human cells and to identify secondary metabolites found in water samples collected in the IRL. Water samples from 20 sites of the IRL were collected during the wet and dry seasons over a three-year period. A panel of cell lines was used to test cytotoxicity. Hemagglutination, hemolysis, and inhibition of protein phosphatase 2A (PP2A) were also measured. Cytotoxic blooms were seen both in the south (Microcystis) and the north (Pyrodinium) of the IRL. Each toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. During blooms, cytotoxicity due to a single type of toxin is obvious from this pattern. In the absence of blooms, the cytotoxicity seen reflected either a mixture of toxins or it was caused by an unidentified toxin. These observations suggest that other toxins with the potential to be harmful to human health may be present in the IRL. Moreover, the presence of toxins in the IRL is not always associated with blooms of known toxin-producing organisms.
Collapse
Affiliation(s)
- Esther A. Guzmán
- The Florida Center for Coastal and Human Health, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; (T.A.P.); (P.L.W.); (K.T.F.); (M.M.); (J.C.R.); (J.S.); (A.E.W.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea. Mar Drugs 2019; 17:md17100595. [PMID: 31652521 PMCID: PMC6835248 DOI: 10.3390/md17100595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels' haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Collapse
|
4
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Swan SC, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: azaspiracids and yessotoxins. HARMFUL ALGAE 2019; 87:101629. [PMID: 31349886 DOI: 10.1016/j.hal.2019.101629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Sarah C Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
5
|
Fu LL, Zhao XY, Ji LD, Xu J. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 2019; 160:1-7. [DOI: 10.1016/j.toxicon.2018.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
6
|
Farabegoli F, Blanco L, Rodríguez LP, Vieites JM, Cabado AG. Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans. Mar Drugs 2018; 16:E188. [PMID: 29844286 PMCID: PMC6025170 DOI: 10.3390/md16060188] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Massive phytoplankton proliferation, and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks: filter-feeding mollusks, such as shellfish, mussels, oysters or clams, can accumulate these toxins throughout the food chain and present a threat for consumers' health. Particular environmental and climatic conditions favor this natural phenomenon, called harmful algal blooms (HABs); the phytoplankton species mostly involved in these toxic events are dinoflagellates or diatoms belonging to the genera Alexandrium, Gymnodinium, Dinophysis, and Pseudo-nitzschia. Substantial economic losses ensue after HABs occurrence: the sectors mainly affected include commercial fisheries, tourism, recreational activities, and public health monitoring and management. A wide range of symptoms, from digestive to nervous, are associated to human intoxication by biotoxins, characterizing different and specific syndromes, called paralytic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning, and neurotoxic shellfish poisoning. This review provides a complete and updated survey of phycotoxins usually found in marine invertebrate organisms and their relevant properties, gathering information about the origin, the species where they were found, as well as their mechanism of action and main effects on humans.
Collapse
Affiliation(s)
- Federica Farabegoli
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Lucía Blanco
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Laura P Rodríguez
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Juan Manuel Vieites
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| | - Ana García Cabado
- Food Safety and Industrial Hygiene Division, ANFACO-CECOPESCA. 16, Crta. Colexio Universitario, 36310 Vigo (Pontevedra), Spain.
| |
Collapse
|
7
|
Kim JH, Tillmann U, Adams NG, Krock B, Stutts WL, Deeds JR, Han MS, Trainer VL. Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. HARMFUL ALGAE 2017; 68:152-167. [PMID: 28962976 DOI: 10.1016/j.hal.2017.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.
Collapse
Affiliation(s)
- Joo-Hwan Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Urban Tillmann
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Nicolaus G Adams
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Vera L Trainer
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Silvia Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Serena Silvestro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Zhang Z, Chen Y, Adu-Ampratwum D, Okumu AA, Kenton NT, Forsyth CJ. Synthesis of the C22–C40 Domain of the Azaspiracids. Org Lett 2016; 18:1824-7. [DOI: 10.1021/acs.orglett.6b00557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhigao Zhang
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yong Chen
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Adu-Ampratwum
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Antony Akura Okumu
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel T. Kenton
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig J. Forsyth
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Zou L, Wu C, Wang Q, Zhou J, Su K, Li H, Hu N, Wang P. An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor. Biosens Bioelectron 2015; 67:458-64. [DOI: 10.1016/j.bios.2014.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/23/2014] [Accepted: 09/02/2014] [Indexed: 11/26/2022]
|
11
|
Chevallier OP, Graham SF, Alonso E, Duffy C, Silke J, Campbell K, Botana LM, Elliott CT. New insights into the causes of human illness due to consumption of azaspiracid contaminated shellfish. Sci Rep 2015; 5:9818. [PMID: 25928256 PMCID: PMC4415421 DOI: 10.1038/srep09818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Azaspiracid (AZA) poisoning was unknown until 1995 when shellfish harvested in Ireland caused illness manifesting by vomiting and diarrhoea. Further in vivo/vitro studies showed neurotoxicity linked with AZA exposure. However, the biological target of the toxin which will help explain such potent neurological activity is still unknown. A region of Irish coastline was selected and shellfish were sampled and tested for AZA using mass spectrometry. An outbreak was identified in 2010 and samples collected before and after the contamination episode were compared for their metabolite profile using high resolution mass spectrometry. Twenty eight ions were identified at higher concentration in the contaminated samples. Stringent bioinformatic analysis revealed putative identifications for seven compounds including, glutarylcarnitine, a glutaric acid metabolite. Glutaric acid, the parent compound linked with human neurological manifestations was subjected to toxicological investigations but was found to have no specific effect on the sodium channel (as was the case with AZA). However in combination, glutaric acid (1mM) and azaspiracid (50nM) inhibited the activity of the sodium channel by over 50%. Glutaric acid was subsequently detected in all shellfish employed in the study. For the first time a viable mechanism for how AZA manifests itself as a toxin is presented.
Collapse
Affiliation(s)
- O P Chevallier
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - S F Graham
- Beaumont Research Institute, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073
| | - E Alonso
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C Duffy
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - J Silke
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - K Campbell
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - L M Botana
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C T Elliott
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
12
|
Zhuo L, Fu W, Yang Y, Qiu B, Lin Z, Shan L, Zheng L, Li J, Chen G. Simultaneous determination of biotoxins DSP and AZAs in bivalve molluscs and fish by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1479-1488. [PMID: 24861598 DOI: 10.1002/rcm.6900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE A method has been developed for simultaneous determination of the toxins OA, DTX-1, AZA-1, AZA-2 and AZA-3 in various aquatic products as these can cause diarrhoetic shellfish poisoning (DSP) in humans, an intoxication characterized by vomiting and diarrhea. METHODS Separation of the toxins was achieved on a C18 column (150 mm × 2.1 mm, 3.5 µm) using an acetonitrile/water gradient with formic acid as an eluent modifier. Electrospray ionisation (ESI) in negative mode was used to generate the molecule related ion [M-H](-), for OA and DTX-1, while ESI in positive mode was used to generate the molecule related ion [M+H](+) for AZAs. Samples were extracted with 80% methanol, followed by partitioning with ethyl acetate, purified on a Poly-Sery MAX cartridge and finally analyzed by LC/ESI-MS/MS in the multiple reaction monitoring (MRM) mode. RESULTS The limit of detection (LOD) and limit of qualification (LOQ) of the method were in the range of 0.02-0.79 µg/kg and 0.07-2.64 µg/kg in Scomberomorus niphonius, blood clam and oyster, respectively, recoveries of the toxins at three fortification levels ranged from 71.3% to 104.8% with relative standard deviation from 1.0% to 12.5%. The calibration curves were well linear between the LC peak area of the selected ion pair and the concentration of the toxins, with the correlation coefficient over 0.99. CONCLUSIONS The method was sufficiently sensitive to permit the determination of the toxins DSP and AZA in sea food.
Collapse
Affiliation(s)
- Liyang Zhuo
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety (Fuzhou University), Fujian Province Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, 350002, China; Quality Inspection Institute of Quanzhou, Quanzhou, Fujian, 362000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 2014; 406:5589-612. [DOI: 10.1007/s00216-014-7968-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
|
14
|
Automated, high performance, flow-through chemiluminescence microarray for the multiplexed detection of phycotoxins. Anal Chim Acta 2013; 787:211-8. [DOI: 10.1016/j.aca.2013.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 02/05/2023]
|
15
|
Aune T, Espenes A, Aasen JAB, Quilliam MA, Hess P, Larsen S. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon 2012; 60:895-906. [PMID: 22750012 DOI: 10.1016/j.toxicon.2012.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
Abstract
Toxins from the okadaic acid (OA) and azaspiracid (AZA) group cause considerable negative health effects in consumers when present in shellfish above certain levels. The main symptoms, dominated by diarrhoea, are caused by damage to the gastrointestinal (GI) tract. Even though OA and AZAs exert toxicity via different mechanisms, it is important to find out whether they may enhance the health effects if present together since they act on the same organs and are regulated individually. In this study, the main issue was the possibility of enhanced lethality in mice upon combined oral exposure to OA and AZA1. In addition, pathological effects in several organs and effects on absorption from the GI tract were studied. Although the number of mice was small due to low availability of AZA1, the results indicate no additive or synergistic effect on lethality when AZA1 and OA were given together. Similar lack of increased toxicity was observed concerning pathological effects that were restricted to the GI-tract. OA and AZA1 were absorbed from the GI-tract to a very low degree, and when given together, uptake was reduced. Taken together, these results indicate that the present practice of regulating toxins from the OA and AZA group individually does not present an unwanted increased risk for consumers of shellfish.
Collapse
Affiliation(s)
- Tore Aune
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Ledreux A, Sérandour AL, Morin B, Derick S, Lanceleur R, Hamlaoui S, Furger C, Biré R, Krys S, Fessard V, Troussellier M, Bernard C. Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part II: application to shellfish extracts spiked with lipophilic marine toxins. Anal Bioanal Chem 2012; 403:1995-2007. [DOI: 10.1007/s00216-012-6029-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
|
17
|
Fieber LA, Greer JB, Guo F, Crawford DC, Rein KS. GENE EXPRESSION PROFILING OF HUMAN LIVER CARCINOMA (HepG2) CELLS EXPOSED TO THE MARINE TOXIN OKADAIC ACID. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2012; 24:1805-1821. [PMID: 23172983 PMCID: PMC3500632 DOI: 10.1080/02772248.2012.730199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis.
Collapse
Affiliation(s)
- Lynne A. Fieber
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Justin B. Greer
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Fujiang Guo
- Department of Chemistry and Biochemistry, 11200 SW 8 St, Florida International University, Miami, FL, USA33199
| | - Douglas C. Crawford
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA 33149
| | - Kathleen S. Rein
- Department of Chemistry and Biochemistry, 11200 SW 8 St, Florida International University, Miami, FL, USA33199
| |
Collapse
|
18
|
Novel cytotoxicity associated with Anabaena circinalis 131C. Toxicon 2011; 58:689-92. [DOI: 10.1016/j.toxicon.2011.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 11/20/2022]
|
19
|
Bernard C, Froscio S, Campbell R, Monis P, Humpage A, Fabbro L. Novel toxic effects associated with a tropical Limnothrix/Geitlerinema-like cyanobacterium. ENVIRONMENTAL TOXICOLOGY 2011; 26:260-270. [PMID: 19950362 DOI: 10.1002/tox.20552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The presence of a toxic strain of a fine filamentous cyanobacterium belonging to the Oscillatorialean family Pseudanabaenacea was detected during a survey of cyanobacterial taxa associated with the presence of cylindrospermopsin in dams in Central Queensland (Australia). The strain, AC0243, was isolated and cultured, its genomic DNA extracted and 16S RNA gene sequenced. Phylogenetic analysis placed AC0243 with Limnothrix species, although this genus appears polyphyletic. Moreover, not all morphological characters are consistent with this genus but more closely fit the description of Geitlerinema unigranulatum (R.N. Singh) Komárek and Azevedo. The potential toxic effects of AC0243 extract were assessed chemically and biologically. Cell free protein synthesis was inhibited by the extract. Exposure of Vero cells to the extract resulted in a significant reduction in cellular ATP levels following 24-72 h incubation. The presence of cylindrospermopsin was excluded based on the nature of responses obtained in cell and cell-free assays; in addition, (i) it could not be detected by HPLC, LC-MS, or immunological assay, and (ii) no genes currently associated with the production of cylindrospermopsin were found in the genome. Other known cyanobacterial toxins were not detected. The apparent novelty of this toxin is discussed.
Collapse
Affiliation(s)
- Catherine Bernard
- Centre for Environmental Management, CQ University, Rockhampton, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Furey A, O'Doherty S, O'Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: Toxicological and health considerations. Toxicon 2010; 56:173-90. [DOI: 10.1016/j.toxicon.2009.09.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
21
|
Cañete E, Campàs M, de la Iglesia P, Diogène J. NG108-15 cell-based and protein phosphatase inhibition assays as alternative semiquantitative tools for the screening of lipophilic toxins in mussels. Okadaic acid detection. Toxicol In Vitro 2009; 24:611-9. [PMID: 19850120 DOI: 10.1016/j.tiv.2009.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 12/01/2022]
Abstract
We report the application of a cell-based assay (CBA) using NG108-15 a hybridoma cell strain and a protein phosphatase inhibition-based assay (PPIA) as alternative toxicological or functional semiquantitative tools, respectively, for the screening of lipophilic toxins in mussels (Mytilusgalloprovincialis). Acetonic extracts were directly tested by CBA and PPIA but severe matrix effects were observed. As a solution, a simple 17-fraction protocol with solid-phase extraction (SPE) cartridges was optimised and applied as a previous step to the CBA or the PPIA. LC-MS/MS analyses were performed in parallel to determine the lipophilic toxins content in mussel extracts. Evaluation of the SPE protocol by LC-MS/MS showed okadaic acid (OA) recovery above 90% and negligible effects of mussel matrix on the SPE performance. The whole methods provided limits of detection of 47 and 45mug OA equivalents/kg for CBA and PPIA, respectively. The combined strategy permitted the identification of OA toxicity in two fractions, and allowed us to clearly distinguish between negative and positive samples, the latter being either OA-spiked or naturally-contaminated samples at levels equal or above the regulatory limit. The combination of fractioning with CBA or PPIA allows the quantification of the toxic and functional effects of samples above these concentrations.
Collapse
Affiliation(s)
- Elisabeth Cañete
- IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | | | | | | |
Collapse
|
22
|
Yang WD, Wu MY, Liu JS, Peng XC, Li HY. Reporter gene assay for detection of shellfish toxins. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:419-422. [PMID: 20163067 DOI: 10.1016/s0895-3988(10)60020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the existing methods including HPLC and bioassay are inappropriate for identifying HAB toxins which poses a serious problem on human health and shellfish industry. METHODS A reporter plasmid pEGFP-c-fos containing c-fos promoter and EGFP was constructed and transfected into T24 cells using LipofectAMINE 2000. Positive transfectants were screened by G418 to produce a pEGFP-c-fos-T24 cell line. After addition of increasing neurotoxic shellfish poison (NSP) or GTX2,3, primary components of paralytic shellfish poison (PSP), changes in expression of EGFP in the cell line were observed under a laser scanning confocal microscope and quantified with Image-pro Plus software. RESULTS Dose-dependent changes in the intensity of green fluorescence were observed for NSP in a range from 0 to 10 ng/mL and for GTX2,3 from 0 to 16 ng/mL. CONCLUSION pEGFP-c-fos-T24 can be applied in detecting HAB toxins, and cell-based assay can be used as an alternative for screening sodium channel-specific HAB toxins.
Collapse
Affiliation(s)
- Wei-Dong Yang
- School of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| | | | | | | | | |
Collapse
|
23
|
Frederick MO, Janda KD, Nicolaou KC, Dickerson TJ. Monoclonal antibodies with orthogonal azaspiracid epitopes. Chembiochem 2009; 10:1625-9. [PMID: 19492388 PMCID: PMC2750835 DOI: 10.1002/cbic.200900201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Indexed: 12/29/2022]
Abstract
Azaspiracid antibodies: Immunization of azaspiracid immunoconjugates has elicited monoclonal antibodies with distinct epitopes on the marine toxin; this will open the way toward azaspiracid diagnostics and the detection of contaminated shellfish before they can enter the food supply.
Collapse
Affiliation(s)
- Michael O. Frederick
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute of Chemical Biology and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - K. C. Nicolaou
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
24
|
Azaspiracid Shellfish Poisoning: A Review on the Chemistry, Ecology, and Toxicology with an Emphasis on Human Health Impacts. Mar Drugs 2008. [DOI: 10.3390/md6020039] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs 2008; 6:39-72. [PMID: 18728760 PMCID: PMC2525481 DOI: 10.3390/md20080004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/21/2008] [Accepted: 03/18/2008] [Indexed: 01/05/2023] Open
Abstract
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs.
Collapse
|
26
|
Forsyth CJ, Xu J, Nguyen ST, Samdal IA, Briggs LR, Rundberget T, Sandvik M, Miles CO. Antibodies with Broad Specificity to Azaspiracids by Use of Synthetic Haptens. J Am Chem Soc 2006; 128:15114-6. [PMID: 17117862 DOI: 10.1021/ja066971h] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of general, sensitive, portable, and quantitative assays for the azaspiracid (AZA) class of marine toxins is urgently needed. Use of a synthetic hapten containing rings F-I of AZA to generate antibodies that cross-react with the AZAs via their common C28-C40 domain and use of these antibodies in ELISA and immunoaffinity columns are reported. This approach has many advantages over using intact azaspiracids (AZAs) derived from environmental samples or total synthesis as haptens for antibody development. A derivative of the levorotatory C28-C40 azaspiracid domain (1) was synthesized efficiently using a one-pot Staudinger reduction/intramolecular aza-Wittig reaction-imine capture sequence to form the H-I ring spiroaminal and a double intramolecluar hetero-Michael addition to assemble the F-G ring ketal. Conjugation of the hapten 1 to cBSA and immunization in sheep generated antibodies that recognized and bound to ovalbumin-conjugated 1 in the absence of AZA1. This binding was inhibited by 1 in a concentration-dependent manner. A mixture of AZA1, AZA2, AZA3, and AZA6 caused a degree of inhibition of antibody binding consistent with its total AZA content, rather than just its content of AZA1. This result suggests that the antibodies also have a similar affinity for AZA2, AZA3, and AZA6 as they do for AZA1 and that such antibodies are suitable for analysis of AZAs in shellfish samples.
Collapse
|
27
|
Alfonso A, Vieytes MR, Ofuji K, Satake M, Nicolaou KC, Frederick MO, Botana LM. Azaspiracids modulate intracellular pH levels in human lymphocytes. Biochem Biophys Res Commun 2006; 346:1091-9. [PMID: 16793022 DOI: 10.1016/j.bbrc.2006.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/05/2006] [Indexed: 11/30/2022]
Abstract
The azaspiracids (AZAs) are a group of marine toxins implicated in several intoxications whose mechanism of action is unknown. These phycotoxins include the five compounds shown in : AZA-1 (1), AZA-2 (2), AZA-3 (3), AZA-4 (4), and AZA-5 (5). The aim of this work was to study the effects of the five naturally occurring azaspiracids (AZA-1 to -5, Fig. 1) and four synthetic analogues (6-9, Fig. 2) on intracellular pH, and the influence of Ca2+ upon this effect. The AZAs (1-5) were found to modulate cytosolic Ca2+ levels in human lymphocytes, while some of them, but not all, had effects on the intracellular pH. AZA-1 (1) and AZA-2 (2) did not modify intracellular pH in a Ca2+-containing or a Ca2+-free medium. AZA-3 (3) increased intracellular pH by 0.16 units in the presence of extracellular Ca2+, an effect that was blocked when a 1 mM solution of Ni2+ was added. In a Ca2+-free medium, the increase in pH induced by AZA-3 (3) was reduced to 0.08 pH units. AZA-4 (4) inhibited the basal pH increase even in the presence of a 1 mM solution of Ni2+. In a Ca2+-free medium, the inhibition caused by AZA-4 (4) was small, but when Ca2+ was added back to the medium, the pH basal increase was again significantly inhibited. The alkalinization was also inhibited when AZA-4 (4) was added simultaneously, 10 min before or 10 min after thapsigargin (Tg), and also when the Ca2+-influx induced by Tg was inhibited by Ni2+. AZA-5 (5), on the other hand, did not modulate the intracellular pH profile in either a Ca2+-containing or a Ca2+-free medium. Finally, we investigated four synthetic analogues (6-9, Fig. 2) whose structures were based on the four originally proposed structures of azaspiracid-1, with an opened E-ring. Compound 6 induced a small cytosolic Ca2+ increase, but did not modify intracellular pH in saline solution. In a Ca2+-free medium, compound 6 blocked the pH fall when Ca2+ was added back to the medium. Compound 7 also did not modify intracellular pH in saline solutions, however it significantly blocked basal pH increases in a Ca2+-free medium. Compound 8 did not alter intracellular pH, however compound 9 induced a small acidification when Ca2+ was present in the extracellular medium. These results point to a structure-activity relationship in AZAs pH effect that affects the modulation and the coupling of intracellular pH and Ca2+.
Collapse
Affiliation(s)
- Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, USC, Campus Universitario s/n, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Kulagina NV, Twiner MJ, Hess P, McMahon T, Satake M, Yasumoto T, Ramsdell JS, Doucette GJ, Ma W, O'Shaughnessy TJ. Azaspiracid-1 inhibits bioelectrical activity of spinal cord neuronal networks. Toxicon 2006; 47:766-73. [PMID: 16626774 DOI: 10.1016/j.toxicon.2006.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/13/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Azaspiracid-1 (AZA-1) is a recently identified phycotoxin that accumulates in molluscs and can cause severe human intoxications. For this study, we utilized murine spinal cord and frontal cortex neuronal networks grown over 64 channel microelectrode arrays (MEAs) to gain insights into the mechanism of action of AZA-1 on neuronal cells. Extracellular recordings of spontaneous action potentials were performed by monitoring mean spike rate as an assay of the efficacy of AZA-1 to alter the bioelectrical activity of neurons in the networks. Via slow onset, AZA-1 decreased the mean spike rate of the spinal cord neurons with an IC(50) of ca. 2.1nM, followed by partial recovery of original activity when toxin was removed. Pre-treatment with the GABA(A) receptor antagonist bicuculline led to an increased response of the neuronal networks to AZA-1 exposure and resulted in an irreversible inhibition of spike rate. AZA-1 did not cause any changes in frontal cortex networks upon drug exposure. In addition, whole-cell patch clamp recordings from spinal cord neurons showed that AZA-1 had no significant effect on the voltage-gated sodium (Na(+)) or calcium (Ca(2+)) currents, suggesting that the toxin affected synaptic transmission in the neuronal networks through a mechanism independent of these voltage-gated channels.
Collapse
Affiliation(s)
- Nadezhda V Kulagina
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Code 6900, Washington, DC 20375, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Twiner MJ, Hess P, Dechraoui MYB, McMahon T, Samons MS, Satake M, Yasumoto T, Ramsdell JS, Doucette GJ. Cytotoxic and cytoskeletal effects of azaspiracid-1 on mammalian cell lines. Toxicon 2005; 45:891-900. [PMID: 15904684 DOI: 10.1016/j.toxicon.2005.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 02/10/2005] [Indexed: 11/25/2022]
Abstract
Azaspiracid-1 (AZA-1) is a newly identified phycotoxin reported to accumulate in molluscs from several northern European countries and documented to have caused severe human intoxications. The mechanism of action of AZA-1 is unknown. Our initial investigations have shown that AZA-1 is cytotoxic to a range of cell types. Cytotoxicity was evident in all seven cell types tested, suggesting a broad-spectrum mode of action, and was both time- and concentration-dependent. However, AZA-1 took an unusually long time (>24 h) to cause complete cytotoxicity in most cell types, with the exception of the rat pituitary GH(4)C(1). Extended exposure times did not always lower the EC(50) value for a given cell line, but always resulted in more complete cytotoxicity over a very narrow concentration range. The Jurkat cell line (human lymphocyte T) appeared to be very sensitive to AZA-1, although the EC(50) values (24-72 h) for all the cell types were in the low nanomolar range (0.9-16.8 nM). The effect of AZA-1 on membrane integrity was tested on Jurkat cells and these data confirm our visual observations of cytotoxicity and necrotic cell lysis following exposure of Jurkat cells to AZA-1 and suggest that AZA-1 has some properties unique among marine algal toxins. Additionally, there were dramatic effects of AZA-1 on the arrangement of F-actin with the concurrent loss of pseudopodia, cytoplasmic extensions that function in mobility and chemotaxis. Although these phycotoxin-specific effects of AZA-1 suggest a possible site of action, further work using cell-based approaches is needed to determine the precise mode of action of AZA-1.
Collapse
Affiliation(s)
- Michael J Twiner
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, NOAA/National Ocean Service, Charleston SC 29412, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. AMERICAN JOURNAL OF BOTANY 2004; 91:1523-34. [PMID: 21652307 DOI: 10.3732/ajb.91.10.1523] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, we focus on dinoflagellate ecology, toxin production, fossil record, and a molecular phylogenetic analysis of hosts and plastids. Of ecological interest are the swimming and feeding behavior, bioluminescence, and symbioses of dinoflagellates with corals. The many varieties of dinoflagellate toxins, their biological effects, and current knowledge of their origin are discussed. Knowledge of dinoflagellate evolution is aided by a rich fossil record that can be used to document their emergence and diversification. However, recent biogeochemical studies indicate that dinoflagellates may be much older than previously believed. A remarkable feature of dinoflagellates is their unique genome structure and gene regulation. The nuclear genomes of these algae are of enormous size, lack nucleosomes, and have permanently condensed chromosomes. This chapter reviews the current knowledge of gene regulation and transcription in dinoflagellates with regard to the unique aspects of the nuclear genome. Previous work shows the plastid genome of typical dinoflagellates to have been reduced to single-gene minicircles that encode only a small number of proteins. Recent studies have demonstrated that the majority of the plastid genome has been transferred to the nucleus, which makes the dinoflagellates the only eukaryotes to encode the majority of typical plastid genes in the nucleus. The evolution of the dinoflagellate plastid and the implications of these results for understanding organellar genome evolution are discussed.
Collapse
Affiliation(s)
- Jeremiah D Hackett
- Department of Biological Sciences and Center for Comparative Genomics, University of Iowa, Iowa City, Iowa 52242 USA
| | | | | | | |
Collapse
|
31
|
James KJ, Fidalgo Sáez MJ, Furey A, Lehane M. Azaspiracid poisoning, the food-borne illness associated with shellfish consumption. ACTA ACUST UNITED AC 2004; 21:879-92. [PMID: 15666982 DOI: 10.1080/02652030400002105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Azaspiracid poisoning (AZP) is a recently discovered toxic syndrome that was identified following severe gastrointestinal illness from the consumption of contaminated mussels (Mytilus edulis). The implicated toxins, azaspiracids, are polyethers with unprecedented structural features. Studies toward total toxin synthesis revealed that the initial published structures were incorrect and they have now been revised. These toxins accumulate in bivalve molluscs that feed on toxic microalgae of the genus Protoperidinium, previously considered to be toxicologically benign. Although first identified in shellfish from Ireland, azaspiracid contamination of several types of bivalve shellfish species has now been confirmed throughout the western coastline of Europe. Toxicological studies have indicated that azaspiracids can induce widespread organ damage in mice and that they are probably more dangerous than previously known classes of shellfish toxins. The exclusive reliance on live animal bioassays to monitor azaspiracids in shellfish failed to prevent human intoxications. This was a consequence of poor sensitivity of the assay and the fact that azaspiracids are not exclusively found in the shellfish digestive glands used for toxin testing. The strict regulatory control of azaspiracids in shellfish now requires frequent testing of shellfish using highly specific and sensitive methods involving liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- K J James
- Proteobio, Mass Spectrometry Centre for Proteomics and Biotoxin Research, Department of Chemistry, Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | | | | | | |
Collapse
|
32
|
Abstract
An overview is given of the different approaches that have been used to identify toxins responsible for seafood poisoning incidents, to investigate the origins of toxins, and to monitor seafood on a routine basis. It is shown that advancements in our knowledge of toxins and our ability to protect the public have often followed key developments in separation and analysis technologies. Specific examples of research in this field are presented to illustrate the significant role that chromatographic methods play. The presentation will be given in an order that reflects the typical sequence of investigations that follow a new toxin episode.
Collapse
Affiliation(s)
- Michael A Quilliam
- National Research Council Canada, Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada B3H 3Z1.
| |
Collapse
|
33
|
Xu J, Ma M, Purcell WM. Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies. I. Glucose metabolism and enzyme release as cytotoxic markers. Toxicol Appl Pharmacol 2003; 189:100-11. [PMID: 12781628 DOI: 10.1016/s0041-008x(03)00089-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytotoxicity endpoints, spontaneous glucose secretion/consumption and LDH and gamma-GT release, were characterised in rat liver and HepG2 spheroids as in vitro models for toxicology studies. Preprepared rat liver spheroids and HepG2 spheroids cultured in a six-well plate format were exposed to varying concentrations of galactosamine, propranolol, diclofenac, and paracetamol. All four model toxins significantly affected glucose secretion, which agreed well with LDH and/or gamma-GT release in rat liver spheroids. These toxins also significantly increased LDH and/or gamma-GT release in HepG2 spheroids. Whereas glucose consumption in HepG2 spheroids did not show conclusive results, LDH activities in both types of spheroids were similar and their levels were relatively high. Accordingly, the level of LDH leakage in both types of spheroids was much higher than gamma-GT after exposure to the toxins. In contrast, gamma-GT activity in HepG2 spheroids was sixfold higher than that in rat liver spheroids. This study revealed that galactosamine interfered with the gamma-GT assay and paracetamol interfered with the LDH assay. It demonstrated, for the first time, that glucose secretion by liver spheroids can be used as a functional indicator of cytotoxicity. Test compounds may interfere with enzymatic assays as indicated by LDH and gamma-GT release in this study. Combining functional parameters together with two or more indicators of enzyme releases can provide a reliable cytotoxicity evaluation. Liver and HepG2 spheroids as in vitro models showed good predictions in chemical-induced hepatic cytotoxicity.
Collapse
Affiliation(s)
- Jinsheng Xu
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol BS161QY, UK
| | | | | |
Collapse
|
34
|
Blay PKS, Brombacher S, Volmer DA. Studies on azaspiracid biotoxins. III. Instrumental validation for rapid quantification of AZA 1 in complex biological matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2153-2159. [PMID: 12955747 DOI: 10.1002/rcm.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Azaspiracids are neurotoxins produced by marine algae that have been detected in harvested mussels since 1995. They pose a significant threat to human health through the consumption of contaminated shellfish, and negatively impact the economy of areas where shellfish are harvested and processed. Regulatory agencies are beginning to advocate instrumental assays over traditional mouse bioassay methods. The development and validation of an assay method for AZA 1, the predominant azaspiracid toxin, and the production of a calibration standard and reference material will therefore be vital for quality control in monitoring laboratories worldwide. This report demonstrates a rapid and reproducible liquid chromatography/mass spectrometry (LC/MS) method for separation of all twelve known azaspiracids. Using a triple-quadrupole mass spectrometer, ultra-high sensitivity was obtained at the low-femtogram level injected on-column. At the same time, a linear response of three orders of magnitude was observed. We compared the results with those measured on an ion-trap mass spectrometer. The triple-quadrupole instrument was more sensitive, reliable and reproducible than the ion-trap instrument. The detection limit obtained on the ion-trap mass spectrometer was ten times higher than that obtained on the triple quadrupole. During the study, a new azaspiracid analog (AZA 7c) was discovered.
Collapse
Affiliation(s)
- Pearl K S Blay
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | | | | |
Collapse
|