1
|
Hu Y, Yi L, Yang Y, Wu Z, Kong M, Kang Z, Yang Z. Acetylation of FOXO1 activates Bim expression involved in CVB3 induced cardiomyocyte apoptosis. Apoptosis 2024; 29:1271-1287. [PMID: 38127284 PMCID: PMC11263423 DOI: 10.1007/s10495-023-01924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Lu Yi
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yeyi Yang
- Department of Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhixiang Wu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Min Kong
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhijuan Kang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
2
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Miao X, Koch G, Shen S, Wang X, Li J, Shen X, Qu J, Straubinger RM, Jusko WJ. Systems Pharmacodynamic Model of Combined Gemcitabine and Trabectedin in Pancreatic Cancer Cells. Part II: Cell Cycle, DNA Damage Response, and Apoptosis Pathways. J Pharm Sci 2024; 113:235-245. [PMID: 37918792 PMCID: PMC10902796 DOI: 10.1016/j.xphs.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Despite decades of research efforts, pancreatic adenocarcinoma (PDAC) continues to present a formidable clinical challenge, demanding innovative therapeutic approaches. In a prior study, we reported the synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells. To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, liquid chromatography-mass spectrometry-based proteomic analysis was performed, and a systems pharmacodynamics model (SPD) was developed to capture pancreatic cancer cell responses to gemcitabine and trabectedin, alone and combined, at the proteome level. Companion report Part I describes the proteomic workflow and drug effects on the upstream portion of the SPD model related to cell growth and migration, specifically the RTK-, integrin-, GPCR-, and calcium-signaling pathways. This report presents Part II of the SPD model. Here we describe drug effects on pathways associated with cell cycle, DNA damage response (DDR), and apoptosis, and provide insights into underlying mechanisms. Drug combination effects on protein changes in the cell cycle- and apoptosis pathways contribute to the synergistic effects observed between gemcitabine and trabectedin. The SPD model was subsequently incorporated into our previously-established cell cycle model, forming a comprehensive, multi-scale quantification platform for evaluating drug effects across multiple scales, spanning the proteomic-, cellular-, and subcellular levels. This approach provides a quantitative mechanistic framework for evaluating drug-drug interactions in combination chemotherapy, and could potentially serve as a tool to predict combinatorial efficacy and assist in target selection.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics Research Center, University of Basel, Children's Hospital, Basel, Switzerland
| | - Shichen Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA; Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jun Li
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA
| | - Xiaomeng Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, USA; Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
4
|
Jorfi S, Ansa-Addo EA, Mariniello K, Warde P, Bin Senian AA, Stratton D, Bax BE, Levene M, Lange S, Inal JM. A Coxsackievirus B1-mediated nonlytic Extracellular Vesicle-to-cell mechanism of virus transmission and its possible control through modulation of EV release. J Gen Virol 2023; 104. [PMID: 37665326 DOI: 10.1099/jgv.0.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.
Collapse
Affiliation(s)
- Samireh Jorfi
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Ephraim Abrokwa Ansa-Addo
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: Pelotonia Institute for Immuno-Oncology, The James, Ohio State University, Columbus, OH 43210, USA
| | - Katia Mariniello
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - Purva Warde
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Ahmad Asyraf Bin Senian
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
- Present address: Clinical Research Centre, Sarawak General Hospital, Kuching, Malaysia
| | - Dan Stratton
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes MK7 6AE, UK
| | - Bridget E Bax
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, 116, New Cavendish St., London, UK
- University College London School of Pharmacy, Brunswick Sq., London, UK
| | - Jameel Malhador Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
5
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Li Y, Fan Y, Zhou Y, Jiang N, Xue M, Meng Y, Liu W, Zhang J, Lin G, Zeng L. Bcl-xL Reduces Chinese Giant Salamander Iridovirus-Induced Mitochondrial Apoptosis by Interacting with Bak and Inhibiting the p53 Pathway. Viruses 2021; 13:v13112224. [PMID: 34835028 PMCID: PMC8622046 DOI: 10.3390/v13112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023] Open
Abstract
Chinese giant salamander iridovirus (GSIV) infection could lead to mitochondrial apoptosis in this animal, a process that involves B-cell lymphoma-2 (BCL-2) superfamily molecules. The mRNA expression level of Bcl-xL, a crucial antiapoptotic molecule in the BCL-2 family, was reduced in early infection and increased in late infection. However, the molecular mechanism remains unknown. In this study, the function and regulatory mechanisms of Chinese giant salamander (Andrias davidianus) Bcl-xL (AdBcl-xL) during GSIV infection were investigated. Western blotting assays revealed that the level of Bcl-xL protein was downregulated markedly as the infection progressed. Plasmids expressing AdBcl-xL or AdBcl-xL short interfering RNAs were separately constructed and transfected into Chinese giant salamander muscle cells. Confocal microscopy showed that overexpressed AdBcl-xL was translocated to the mitochondria after infection with GSIV. Additionally, flow cytometry analysis demonstrated that apoptotic progress was reduced in both AdBcl-xL-overexpressing cells compared with those in the control, while apoptotic progress was enhanced in cells silenced for AdBcl-xL. A lower number of copies of virus major capsid protein genes and a reduced protein synthesis were confirmed in AdBcl-xL-overexpressing cells. Moreover, AdBcl-xL could bind directly to the proapoptotic molecule AdBak with or without GSIV infection. In addition, the p53 level was inhibited and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-xL-overexpressing cells during GSIV infection. These results suggest that AdBcl-xL plays negative roles in GSIV-induced mitochondrial apoptosis and virus replication by binding to AdBak and inhibiting p53 activation.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- Correspondence: ; Tel.: +86-027-81785190
| |
Collapse
|
7
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
8
|
Liu M, Zheng B, Liu P, Zhang J, Chu X, Dong C, Shi J, Liang Y, Chu L, Liu Y, Han X. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide‑induced acute liver injury. Mol Med Rep 2021; 23:438. [PMID: 33846815 PMCID: PMC8060806 DOI: 10.3892/mmr.2021.12077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO)-induced hepatotoxicity limits the therapeutic effect of acute myelogenous leukemia treatment. Magnesium isoglycyrrhizinate (MgIG) is a natural compound extracted from licorice and a hepatoprotective drug used in liver injury. It exhibits anti-oxidant, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to identify the protective action and underlying mechanism of MgIG against ATO-induced hepatotoxicity. A total of 50 mice were randomly divided into five groups (n=10/group): Control; ATO; MgIG and high- and low-dose MgIG + ATO. Following continuous administration of ATO for 7 days, the relative weight of the liver, liver enzyme, histological data, antioxidant enzymes, pro-inflammatory cytokines, cell apoptosis and changes in Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) signaling pathway were observed. MgIG decreased liver injury, decreased the liver weight and liver index, inhibited oxidative stress and decreased the activity of glutathione, superoxide dismutase and catalase, production of reactive oxygen species and levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α. Western blotting showed a decrease in Bax and caspase-3. There was decreased cleaved caspase-3 expression and increased Bcl-2 expression. MgIG notably activated ATO-mediated expression of Keap1 and Nrf2 in liver tissue. MgIG administration was an effective treatment to protect the liver from ATO-induced toxicity. MgIG maintained the level of Nrf2 in the liver and protected the antioxidative defense system to attenuate oxidative stress and prevent ATO-induced liver injury.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Panpan Liu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jianping Zhang
- Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunhui Dong
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Shi
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yingran Liang
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Chu
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yanshuang Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Pharmacology, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
9
|
Development of Conformational Antibodies to Detect Bcl-xL's Amyloid Aggregates in Metal-Induced Apoptotic Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21207625. [PMID: 33076337 PMCID: PMC7589975 DOI: 10.3390/ijms21207625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Bcl-xL, a member of the Bcl-2 family, is a pro-survival protein involved in apoptosis regulation. We have previously reported the ability of Bcl-xL to form various types of fibers, from native to amyloid conformations. Here, we have mimicked the effect of apoptosis-induced caspase activity on Bcl-xL by limited proteolysis using trypsin. We show that cleaved Bcl-xL (ΔN-Bcl-xL) forms fibers that exhibit the features of amyloid structures (BclxLcf37). Moreover, three monoclonal antibodies (mAbs), produced by mouse immunization and directed against ΔN-Bcl-xL or Bcl-xL fibers, were selected and characterized. Our results show that these mAbs specifically target ΔN-Bcl-xL in amyloid fibers in vitro. Upon metal-stress-induced apoptosis, these mAbs are able to detect the presence of Bcl-xL in amyloid aggregates in neuroblastoma SH-SY5Y cell lines. In conclusion, these specific mAbs directed against amyloidogenic conformations of Bcl-xL constitute promising tools for studying, in vitro and in cellulo, the contribution of Bcl-xL in apoptosis. These mAbs may further help in developing new diagnostics and therapies, considering Bcl-xL as a strategic target for treating brain lesions relevant to stroke and neurodegenerative diseases.
Collapse
|
10
|
Mitochondria focused neurotherapeutics for spinal cord injury. Exp Neurol 2020; 330:113332. [DOI: 10.1016/j.expneurol.2020.113332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
|
11
|
Li R, Zou X, Zhu T, Xu H, Li X, Zhu L. Destruction of Neutrophil Extracellular Traps Promotes the Apoptosis and Inhibits the Invasion of Gastric Cancer Cells by Regulating the Expression of Bcl-2, Bax and NF-κB. Onco Targets Ther 2020; 13:5271-5281. [PMID: 32606746 PMCID: PMC7293391 DOI: 10.2147/ott.s227331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction This study aimed to investigate the effects of Neutrophil extracellular traps (NETs) destruction on the apoptosis and invasion of gastric cancer cells and the involved mechanisms. Methods Primary human neutrophils were isolated and co-cultured with three gastric cancer cells (BGC-823, SGC7901 and MKN28), and phorbol-12-myristate-13-acetate was added to generate NETs. Expression of NETs (SPINK5/LEKTI) and Cit Histone H3 were examined by immunofluorescent analysis and Western blot. Cancer cells were then divided into five groups: Control, NETs, Neutrophil, Amidine and DNase I. Cell apoptosis and invasion were examined by Transwell assay and flow cytometry, respectively. Expression of NF-κB p65, Bcl-2 and Bax was determined by RT-PCR, immunofluorescent analysis and Western blot. Results The expression of NETs (SPINK5/LEKTI) and Cit Histone H3 after co-culture increased significantly (P < 0.05), suggesting that gastric cancer cells could promote NETs generation. The Control, NETs and Neutrophil groups exhibited similar apoptosis and invasion of gastric cancer cells and similar mRNA and protein levels of NF-κB p65, Bcl-2 and Bax. However, compared with the Control group, the apoptosis and invasion of gastric cancer cells in both Amidine and DNase I groups were enhanced and weakened, respectively (P < 0.05). Moreover, both Amidine and DNase I groups showed much higher mRNA and protein levels of NF-κB p65 and Bax and lower mRNA and protein levels of Bcl-2 than the Control group (P < 0.05). Conclusion NETs destruction promoted the apoptosis and inhibited the invasion of gastric cancer cells by regulating the expression of Bcl-2, Bax and NF-κB.
Collapse
Affiliation(s)
- Rong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xiaoming Zou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Tong Zhu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Haiyan Xu
- Department of Medicine, Central Hospital of Prison Administration Bureau of Heilongjiang Province, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xiaolin Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| | - Lei Zhu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| |
Collapse
|
12
|
Shree A, Islam J, Vafa A, Mohammad Afzal S, Sultana S. Gallic acid prevents 1, 2-Dimethylhydrazine induced colon inflammation, toxicity, mucin depletion, and goblet cell disintegration. ENVIRONMENTAL TOXICOLOGY 2020; 35:652-664. [PMID: 31925992 DOI: 10.1002/tox.22900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
1,2-Dimethylhydrazine (DMH), an environmental toxicant specifically targets the colon. The present study was aimed to evaluate the efficacy of gallic acid (GA) against colon toxicity induced by DMH in Wistar rats. GA, a phenolic acid has numerous beneficial properties, which include antiviral, antifungal and antioxidant properties which help cells to overcome oxidative stress and balance the redox homeostasis. GA was administered orally at two doses (25 and 50 mg/kg body weight) once daily for 14 days and a single dose (40 mg/kg body weight) of DMH was administered subcutaneously on 14th day. Animals were sacrificed on the 15th day and we could find that GA at both the doses significantly ameliorates DMH-induced increased toxicity markers and also substantially increases the glutathione content level and activities of detoxifying enzymes. It also ameliorates the expression of proliferation, inflammation, apoptosis, goblet cell disintegration, and mucin depletion in the colon that was elevated upon administration of DMH. Histological alterations provide further confirmation of the protective role of GA against DMH-induced colon toxicity. The results of this study clearly indicate supplementation of GA is beneficial in ameliorating DMH-induced oxidative stress, inflammation, proliferation, apoptosis, mucin depletion, and goblet cell disintegration in colon of Wistar rats.
Collapse
Affiliation(s)
- Alpa Shree
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Johirul Islam
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Abul Vafa
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | | | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Zhang XM, Li YC, Chen P, Ye S, Xie SH, Xia WJ, Yang JH. MG-132 attenuates cardiac deterioration of viral myocarditis via AMPK pathway. Biomed Pharmacother 2020; 126:110091. [PMID: 32278272 DOI: 10.1016/j.biopha.2020.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is the primary cause of infectious myocarditis. Aggressive immunological activation and apoptosis of myocytes contributes to progressive dysfunction of cardiac contraction and poor prognosis. MG-132, a proteasome inhibitor, regulates mitochondrial-mediated intrinsic myocardial apoptosis and downregulates NF-κB-mediated inflammation. Here, we determined whether AMPK pathway participates in MG-132-mediated myocardial protection in viral-induced myocarditis. METHODS AND RESULTS Acute viral myocarditis models were established by intraperitoneal inoculation of CVB3 in male BALB/c mice. Myocarditis and age-matched control mice were administered MG-132 and/or BML-275 dihydrochloride (BML) (AMPK antagonist) intraperitoneally daily from the day following CVB3 inoculation. MG-132 improved hemodynamics and inhibited the structural remodeling of the ventricle in mice with myocarditis, while BML largely blunted these effects. TUNEL staining and immunochemistry suggested that MG-132 exerts anti-apoptotic and anti-inflammatory effects against CVB3-induced myocardial injuries. BML attenuated the effects of MG-132 on anti-apoptosis and anti-inflammation. CONCLUSION MG-132 modulated apoptosis and inflammation, improved hemodynamics, and inhibited the structural remodeling of ventricles in a myocarditis mouse model via regulation of the AMPK signal pathway.
Collapse
Affiliation(s)
- Xin-Min Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue-Chun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sheng Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shang-He Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Jie Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun-Hua Yang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
14
|
Lithium chloride confers protection against viral myocarditis via suppression of coxsackievirus B3 virus replication. Microb Pathog 2020; 144:104169. [PMID: 32205210 PMCID: PMC7102605 DOI: 10.1016/j.micpath.2020.104169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Viral myocarditis (VMC) is a type of inflammation affecting myocardial cells caused by viral infection and has been an important cause of dilated cardiomyopathy (DCM) worldwide. Type B3 coxsackievirus (CVB3), a non-enveloped positive-strand RNA virus of the Enterovirus genus, is one of most common agent of viral myocarditis. Till now, effective treatments for VMC are lacking due to lack of drugs or vaccine. Lithium chloride (LiCl) is applied in the clinical management of manic depressive disorders. Accumulating evidence have demonstrated that LiCl, also as an effective antiviral drug, exhibited antiviral effects for specific viruses. However, there are few reports of evaluating LiCl's antiviral effect in mice model. Here, we investigated the inhibitory influence of LiCl on the CVB3 replication in vitro and in vivo and the development of CVB3-induced VMC. We found that LiCl significantly suppressed CVB3 replication in HeLa via inhibiting virus-induced cell apoptosis. Moreover, LiCl treatment in vivo obviously inhibited virus replication within the myocardium and alleviated CVB3-induced acute myocarditis. Collectively, our data demonstrated that LiCl inhibited CVB3 replication and negatively regulated virus-triggered inflammatory responses. Our finding further expands the antiviral targets of LiCl and provides an alternative agent for viral myocarditis.
Collapse
|
15
|
He F, Xiao Z, Yao H, Li S, Feng M, Wang W, Liu Z, Liu Z, Wu J. The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway. J Transl Med 2019; 17:335. [PMID: 31585536 PMCID: PMC6778380 DOI: 10.1186/s12967-019-2077-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China
| | - Zonghui Xiao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Miao Feng
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Wei Wang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhewei Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China. .,Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| |
Collapse
|
16
|
Wang XY, Wu KH, Pang HL, Xu PZ, Li MW, Zhang GZ. Study on the Role of Cytc in Response to BmNPV Infection in Silkworm, Bombyx mori (Lepidoptera). Int J Mol Sci 2019; 20:E4325. [PMID: 31487808 PMCID: PMC6770455 DOI: 10.3390/ijms20184325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens of the silkworm. Cytochrome c (cytc) showed a significant response to BmNPV infection in our previous transcriptome study. However, little is known about the role of Bombyx mori cytc (Bmcytc) in resistance to BmNPV infection. In this study, the expression levels analysis of Bmcytc showed stable expression levels in selected tissues of the resistant strain AN following BmNPV infection, while there was downregulation in the susceptible strain p50, except in the malpighian tubule. To further study the role of Bmcytc in viral infection, Bmcytc was knocked down with siRNA in vitro, resulting in significant downregulation of selected downstream genes of the mitochondrial pathway, including Bmapaf, Bmcaspase-Nc, and Bmcaspase-1; this was also confirmed by overexpression of Bmcytc using the pIZT/V5-His-mCherry insect vector, except Bmcaspase-1. Moreover, knockdown of Bmcytc significantly promoted the infection process of BmNPV in vitro, while the infection was inhibited by overexpression of Bmcytc at the early stage and subsequently increased rapidly. Based on these results, we concluded that Bmcytc plays a vital role in BmNPV infection by regulating the mitochondrial apoptosis pathway. Our work provides valuable data for the clarification of the mechanism of silkworm resistance to BmNPV infection.
Collapse
Affiliation(s)
- Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Jiangsu, China.
| | - Kang-Hui Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
| | - Hui-Lin Pang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
| | - Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Jiangsu, China.
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Jiangsu, China.
| | - Guo-Zheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China.
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Jiangsu, China.
| |
Collapse
|
17
|
Andersen NSB, Larsen SM, Nissen SK, Jørgensen SE, Mardahl M, Christiansen M, Kay L, Mogensen TH. Host Genetics, Innate Immune Responses, and Cellular Death Pathways in Poliomyelitis Patients. Front Microbiol 2019; 10:1495. [PMID: 31354645 PMCID: PMC6629967 DOI: 10.3389/fmicb.2019.01495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose Poliovirus (PV) is one of the most studied viruses. Despite efforts to understand PV infection within the host, fundamental questions remain unanswered. These include the mechanisms determining the progression to viremia, the pathogenesis of neuronal infection and paralysis in only a minority of patients. Because of the rare disease phenotype of paralytic poliomyelitis (PPM), we hypothesize that a genetic etiology may contribute to the disease course and outcome. Methods We used whole-exome sequencing (WES) to investigate the genetic profile of 18 patients with PPM. Functional analyses were performed on peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MdMs). Results We identified rare variants in host genes involved in interferon signaling, viral replication, apoptosis, and autophagy. Upon PV infection of MdMs, we observed a tendency toward increased viral burden in patients compared to controls, suggesting reduced control of PV infection. In MdMs from patients, the IFNβ response correlated with the viral burden. Conclusion We suggest that genetic variants in innate immune defenses and cell death pathways contribute to the clinical presentation of PV infection. Importantly, this study is the first to uncover the genetic profile in patients with PPM combined with investigations of immune responses and viral burden in primary cells.
Collapse
Affiliation(s)
- Nanna-Sophie B Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Simon M Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sara K Nissen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maibritt Mardahl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Kay
- Specialized Hospital for Polio- and Accident Patients, Rødovre, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Zhang Z, Liu S, Huang S. Thymosin β4 prevents oxygen-glucose deprivation/reperfusion-induced injury in rat cortical neurons. Neuropsychiatr Dis Treat 2019; 15:2385-2393. [PMID: 31692484 PMCID: PMC6710540 DOI: 10.2147/ndt.s208600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/23/2019] [Indexed: 01/02/2023] Open
Abstract
PURPOSE This study investigated whether thymosin (T) β4 protects against oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat cortical neurons, as well as the underlying mechanisms. METHODS Primary rat cortical neurons were transfected with Tβ4 overexpression plasmid; the transfection efficiency was confirmed by detecting Tβ4 expression by fluorescence quantitative PCR and Western blotting. The OGD/R model was established and apoptotic cells were quantified by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling. Structural changes in the endoplasmic reticulum were visualized by transmission electron microscopy. The expression levels of 78-kDa glucose-regulated protein (GRP) 78, C/EBP-homologous protein (CHOP), B-cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) were determined by Western blotting. The effect of Tβ4 on OGD/R injury was evaluated by adding exogenous Tβ4 to neuronal cultures. RESULTS Cortical neurons were identified by the expression of neuron-specific enolase. In OGD/R cells, the rate of apoptosis was increased and GRP78, CHOP, and Bax were upregulated whereas Bcl-2 was downregulated relative to the control group. These effects were reversed by Tβ4 overexpression. Endoplasmic reticulum (ER) stress was observed in the OGD/R group, but this was abolished in neurons overexpressing Tβ4. The protective effect of Tβ4 against OGD/R injury was also demonstrated in cells treated with exogenous Tβ4 (10 ng/mL), which blocked OGD/R-induced apoptosis by inhibiting ER stress-related and pro-apoptotic protein expression. CONCLUSION Tβ4 prevents OGD/R-induced ER stress-dependent apoptosis in cortical neurons, and is a potential treatment for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Neurology, The 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, People's Republic of China
| | - Shuangfeng Liu
- Department of Neurology, The 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, People's Republic of China
| | - Sichun Huang
- Department of Neurology, The 6th Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, People's Republic of China
| |
Collapse
|
20
|
Nutritional Regulators of Bcl-xL in the Brain. Molecules 2018; 23:molecules23113019. [PMID: 30463183 PMCID: PMC6278276 DOI: 10.3390/molecules23113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/12/2023] Open
Abstract
B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain.
Collapse
|
21
|
Chen YC, Cheng CY, Liu CT, Sue YM, Chen TH, Hsu YH, Hwang PA, Chen CH. Alleviative effect of fucoxanthin-containing extract from brown seaweed Laminaria japonica on renal tubular cell apoptosis through upregulating Na +/H + exchanger NHE1 in chronic kidney disease mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:391-399. [PMID: 29920359 DOI: 10.1016/j.jep.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brown seaweed is a common food for Asians, and the bioactive ingredient fucoxanthin exerts anti-apoptotic activities in several cell types. Renal tubular cell apoptosis is one of the common cellular events leading to renal fibrosis and chronic kidney disease (CKD). However, the influence of fucoxanthin-containing brown seaweed extract on CKD is still unknown. We intended to evaluate the inhibitory effect of fucoxanthin-containing extract from brown seaweed on renal apoptosis under CKD condition and its molecular mechanism. MATERIALS AND METHODS The fucoxanthin-containing brown seaweed extract (LJE) was prepared from Laminaria japonica. We investigated how LJE influences on both doxorubicin-treated rat renal tubular cells (NRK-52E) and the renal symptoms of nephrectomy-induced CKD mice. RESULTS LJE inhibited doxorubicin-induced apoptosis and upregulated Na+/H+ exchanger isoform 1 (NHE1) expression in NRK-52E cells, which were blocked by the NHE1 inhibitor cariporide. LJE also upregulated peroxisome proliferator-activated receptor alpha (PPARα). PPARα siRNA transfection inhibited LJE-induced NHE1 expression and anti-apoptotic effect. In CKD mice, LJE increased NHE1 expression in renal tubules and reduced apoptotic renal tubular cells, but not in PPARα knockout mice. The inhibitory effect of LJE on apoptosis also reduced renal tubulointerstitial fibrosis and improved renal function in CKD mice. CONCLUSION We demonstrated that LJE inhibits renal apoptosis via NHE1 upregulation. The anti-apoptotic effect of LJE also improves renal function in CKD mice. Therefore, fucoxanthin-containing brown seaweed may have a therapeutic potential for CKD patients.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Te Liu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
22
|
Li-Sha G, Li L, De-Pu Z, Zhe-Wei S, Xiaohong G, Guang-Yi C, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. Ivabradine Treatment Reduces Cardiomyocyte Apoptosis in a Murine Model of Chronic Viral Myocarditis. Front Pharmacol 2018; 9:182. [PMID: 29556195 PMCID: PMC5844961 DOI: 10.3389/fphar.2018.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
This study was designed to explore the effects of ivabradine on cardiomyocyte apoptosis in a murine model of chronic viral myocarditis (CVMC). Mice were inoculated intraperitoneally with Coxsackievirus B3 at days 1, 14, and 28, respectively. On day 42, the mice were gavaged with ivabradine for 30 days until the 72nd day. The heart of infected mice was dilated and a large number of interstitial fibroblasts infiltrated into the myocardium on day 42. Compared with the untreated CVMC mice, mice treated with ivabradine showed a significant reduction in heart rate and less impairment of left ventricular function on day 72. The positive apoptosis of myocardial cells in the untreated CVMC group was significantly higher than that of the normal group and was significantly reduced after treatment with ivabradine. The expression levels of Bax and Caspase-3 in the untreated CVMC group were significantly higher than those of the normal group and were apparently reduced in the ivabradine-treated group versus the untreated CVMC group. Bcl-2 showed a high expression in the normal group and low expression in the untreated CVMC group, but its expression level in the ivabradine-treated group were higher than that of the untreated CVMC group. These results indicate that ivabradine could attenuate the expression of Caspase-3 by downregulation of Bax and upregulation of Bcl-2 to prevent the deterioration of cardiac function resulting from ventricular myocyte loss by cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatric Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Zhou De-Pu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Zhe-Wei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gu Xiaohong
- Children's Heart Center and Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Guang-Yi
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Jia
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Jia-Feng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chu Maoping
- Children's Heart Center and Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Lötzerich M, Roulin PS, Boucke K, Witte R, Georgiev O, Greber UF. Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death Dis 2018; 9:272. [PMID: 29449668 PMCID: PMC5833640 DOI: 10.1038/s41419-018-0306-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Apoptosis and programmed necrosis (necroptosis) determine cell fate, and antagonize infection. Execution of these complementary death pathways involves the formation of receptor-interacting protein kinase 1 (RIPK1) containing complexes. RIPK1 binds to adaptor proteins, such as TRIF (Toll-IL-1 receptor-domain-containing-adaptor-inducing interferon-beta factor), FADD (Fas-associated-protein with death domain), NEMO (NF-κB regulatory subunit IKKγ), SQSTM1 (sequestosome 1/p62), or RIPK3 (receptor-interacting protein kinase 3), which are involved in RNA sensing, NF-κB signaling, autophagosome formation, apoptosis, and necroptosis. We report that a range of rhinoviruses impair apoptosis and necroptosis in epithelial cells late in infection. Unlike the double-strand (ds) RNA mimetic poly I:C (polyinosinic:polycytidylic acid), the exposure of dsRNA to toll-like receptor 3 (TLR3) in rhinovirus-infected cells did not lead to apoptosis execution. Accordingly, necroptosis and the production of ROS (reactive oxygen species) were not observed late in infection, when RIPK3 was absent. Instead, a virus-induced alternative necrotic cell death pathway proceeded, which led to membrane rupture, indicated by propidium iodide staining. The impairment of dsRNA-induced apoptosis late in infection was controlled by the viral 3C-protease (3Cpro), which disrupted RIPK1-TRIF/FADD /SQSTM1 immune-complexes. 3Cpro and 3C precursors were found to coimmuno-precipitate with RIPK1, cleaving the RIPK1 death-domain, and generating N-terminal RIPK1 fragments. The depletion of RIPK1 or chemical inhibition of its kinase at the N-terminus did not interfere with virus progeny formation or cell fate. The data show that rhinoviruses suppress apoptosis and necroptosis, and release progeny by an alternative cell death pathway, which is controlled by viral proteases modifying innate immune complexes.
Collapse
Affiliation(s)
- Mark Lötzerich
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Hussman Institute for Autism, 801 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Pascal S Roulin
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karin Boucke
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oleg Georgiev
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
24
|
Zhao L, Li X, Niu P, Li L. The effect of shear on the cytoskeleton remodeling and physiological performance of myocardium cells through Tmod1. RSC Adv 2018; 8:33347-33353. [PMID: 35548140 PMCID: PMC9086437 DOI: 10.1039/c8ra05982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/09/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: mechanical stimulation alters cell metabolism, but little is known about the effects of mechanical strain on the cytoskeleton of myocardium cells. This study was to investigate the changes of F-actin, a cytoskeleton protein of myocardium cells, and to provide a theoretical basis for further investigation of the mechanism of myocardium-remodeling. Methods: we examined the effects of fluid shear stress on the Tmod1 expression and F-actin cytoskeleton remodeling. Then, after myocardial cells, silenced by si-Tmod1, were treated by fluid shear stress, the change of intracellular calcium ion concentration, ROS in myocardial cells, cytochrome C, and the amount of F-actin, LDH and T-SOD MDA were evaluated with laser light confocal microscopy, western blot, and ELISA, respectively. Results: fluid shear stress can induce F-actin cytoskeleton remodeling and upregulate Tmod1 expression. After myocardial cells were under the conditions of Tmod1 inhibition, shear stress can significantly reduce the increase of ROS levels and calcium content, decrease the release of cells cytochrome C and LDH, decrease the MDA content, and increase the level of T-SOD. Conclusion: in conclusion, shear treatment can remodel the cytoskeleton through Tmod1, and its mechanism may be related to scavenging oxidative stress products, ROS and MDA, the increase of intracellular antioxidant enzyme activity of SOD and improvement in mitochondrial dysfunction. F-actin cytoskeleton remodeling observed by laser scanning confocal microscopy was induced by shear stress in cardiac myocytes (A), and the F-actin content change was manifested in (B).![]()
Collapse
Affiliation(s)
- Liang Zhao
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Institute of Life Science and Health
- College of Life Sciences and Technology
| | - Xiafei Li
- Institute of Life Science and Health
- College of Life Sciences and Technology
- Xinxiang Medical University
- Xinxiang
- China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| | - Li Li
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| |
Collapse
|
25
|
Kaese S, Larbig R, Rohrbeck M, Frommeyer G, Dechering D, Olligs J, Schönhofer-Merl S, Wessely R, Klingel K, Seebohm G, Eckardt L. Electrophysiological alterations in a murine model of chronic coxsackievirus B3 myocarditis. PLoS One 2017. [PMID: 28644868 PMCID: PMC5482483 DOI: 10.1371/journal.pone.0180029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Coxsackievirus B3 (CVB3) is known to induce acute and chronic myocarditis. Most infections are clinically unapparent but some patients suffer from ventricular arrhythmias (VA) and sudden cardiac death (SCD). Studies showed that acute CVB3 infection may cause impaired function of cardiac ion channels, creating a proarrhythmic substrate. However, it is unknown whether low level CVB3+ expression in myocytes may cause altered cardiac electrophysiology leading to VA. METHODS Cellular electrophysiology was used to analyze cellular action potentials (APs) and occurrence of afterdepolarizations from isolated cardiomyocytes of wildtype (WT) and transgenic CVB3ΔVP0 (CVB3+) mice. Further, we studied surface ECGs, monophasic APs, ventricular effective refractory period (VERP) and inducibility of VAs in Langendorff-perfused whole hearts. All used cardiomyocytes and whole hearts originated from male mice. RESULTS Cellular action potential duration (APD) in WT and CVB3+ myocytes was unchanged. No difference in mean occurrence or amplitude of afterdepolarizations in WT and CVB3+ myocytes was found. Interestingly, resting membrane potential in CVB3+ myocytes was significantly hyperpolarized (WT: -90.0±2.2 mV, n = 7; CVB3+: -114.1±3.0 mV, n = 14; p<0.005). Consistently, in Langendorff-perfused hearts, APDs were also not different between WT and CVB3+ whole hearts. Within both groups, we found a heart rate dependent shortening of ADP90 with increasing heart rate in Langendorff-perfused hearts. VERP was significantly prolonged in CVB3+ hearts compared to WT (WT: 36.0±2.7 ms, n = 5; CVB3+: 47.0±2.0 ms, n = 7; p = 0.018). Resting heart rate (HR) in Langendorff-perfused hearts was not significantly different between both genotypes. Electrical pacing protocols induced no VA in WT and CVB3+ hearts. CONCLUSION In CVB3+ mice, prolonged ventricular refractoriness and hyperpolarized resting membrane potentials in presence of unchanged APD were observed, suggesting that low level CVB3 expression does not promote VA by altered cardiac electrophysiology in this type of chronic myocarditis. These findings may suggest that other mechanisms such as chronic myocardial inflammation or fibrosis may account for arrhythmias observed in patients with chronic enteroviral myocarditis.
Collapse
Affiliation(s)
- Sven Kaese
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- * E-mail:
| | - Robert Larbig
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Matthias Rohrbeck
- The IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Faculty of Medicine, University of Münster, Münster, Germany
| | - Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Jan Olligs
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Sabine Schönhofer-Merl
- Deutsches Herzzentrum and Medizinische Klinik, Klinikum rechts der Isar, University of Technology, Munich, Germany
| | - Rainer Wessely
- Deutsches Herzzentrum and Medizinische Klinik, Klinikum rechts der Isar, University of Technology, Munich, Germany
- Zentrum für Herz- und Gefäßmedizin, Im Mediapark 2, Köln, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Guiscard Seebohm
- The IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Faculty of Medicine, University of Münster, Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Reza Etemadi M, Ling KH, Zainal Abidin S, Chee HY, Sekawi Z. Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells. PLoS One 2017; 12:e0176947. [PMID: 28558071 PMCID: PMC5448745 DOI: 10.1371/journal.pone.0176947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Human rhinovirus (HRV) is the common virus that causes acute respiratory infection (ARI) and is frequently associated with lower respiratory tract infections (LRTIs). We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B). RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi) and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated) were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35) at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.
Collapse
Affiliation(s)
- Mohammad Reza Etemadi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Serdang, Selangor, Malaysia
| | - Shahidee Zainal Abidin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Serdang, Selangor, Malaysia
| | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
- * E-mail:
| |
Collapse
|
27
|
Shahid A, Ali R, Ali N, Kazim Hasan S, Barnwal P, Mohammad Afzal S, Vafa A, Sultana S. Methanolic bark extract of Acacia catechu ameliorates benzo(a)pyrene induced lung toxicity by abrogation of oxidative stress, inflammation, and apoptosis in mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1566-1577. [PMID: 28032951 DOI: 10.1002/tox.22382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
Benzo(a)pyrene [B(a)P] is a well-known carcinogen present in the environment. In this study, we evaluated the protective potential of methanolic bark extract of Acacia catechu Willd. (MEBA) against the lung toxicity induced by B(a)P in Swiss albino mice. To determine the protective efficacy of MEBA, it was orally administered to the mice at two doses (200 and 400 mg/kg body weight) once daily for 7 days. Mice were also exposed (orally) to B(a)P at a dose of 125 mg/kg body weight on 7th day. Administration of B(a)P increased the activities of toxicity markers such as LDH, LPO, and XO with a subsequent decrease in the activities of tissue anti-oxidant armory (CAT, SOD, GST, GPx, GR, QR, and GSH). It also caused activation of the apoptotic and inflammatory pathway by upregulation of TNF-α, NF-kB, COX-2, p53, bax, caspase-3, and downregulating Bcl-2. Pretreatment with MEBA at two different doses (200 and 400 mg/kg body weight) significantly ameliorates B(a)P-induced increased toxicity markers and activities of detoxifying enzymes along with the levels of glutathione content. It also significantly attenuated expression of apoptotic and inflammatory markers in the lungs. Histological results further confirmed the protective role of MEBA against B(a)P-induced lung toxicity. The results indicate that MEBA may be beneficial in ameliorating the B(a)P-induced oxidative stress, inflammation, and apoptosis in the lungs of mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1566-1577, 2017.
Collapse
Affiliation(s)
- Ayaz Shahid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Rashid Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Nemat Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Syed Kazim Hasan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Preeti Barnwal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Shekh Mohammad Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Abul Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
28
|
Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis. Biochem Biophys Res Commun 2017; 484:550-556. [PMID: 28131843 DOI: 10.1016/j.bbrc.2017.01.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
Viral myocarditis (VMC) is closely related to apoptosis, oxidative stress, innate immunity, and energy metabolism, which are all linked to mitochondrial dysfunction. A close nexus between mitochondrial dynamics and cardiovascular disease with mitochondrial dysfunction has been deeply researched, but there is still no relevant report in viral myocarditis. In this study, we aimed to explore the role of Dynamin-related protein 1 (Drp1)-linked mitochondrial fission in VMC. Mice were inoculated with the Coxsackievirus B3 (CVB3) and treated with mdivi1 (a Drp1 inhibitor). Protein expression of Drp1 was increased in mitochondria while decreased in cytoplasm and accompanied by excessive mitochondrial fission in VMC mice. In addition, midivi1 treatment attenuate inflammatory cells infiltration in myocardium of the mice, serum Cardiac troponin I (CTnI) and Creatine kinase-MB (CK-MB) level. Mdivi1 also could improved the survival rate of mice and mitochondrial dysfunction reflected as the up-regulated mitochondrial marker enzymatic activities of succinate dehydrogenase (SDH), cytochrome c oxidase (COX) and mitochondrial membrane potential (MMP). At the same time, mdivi1 rescued the body weight loss, myocardial injury and apoptosis of cardiomyocyte. Furthermore, decease in LVEDs and increase in EF and FS were detected by echocardiogram, which indicated the improved myocardial function. Thus, Drp1-linked excessive mitochondrial fission contributed to VMC and midivi1 may be a potential therapeutic approach.
Collapse
|
29
|
Abstract
The B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial anti-apoptotic protein that plays a role in neuroprotection. However, during excitotoxic stimulation, Bcl-xL undergoes caspase-dependent cleavage and produces a fragmented form, ΔN-Bcl-xL. Accumulation of ΔN-Bcl-xL is associated with mitochondrial dysfunction and neuronal death. Therefore, strategies to inhibit the activity or formation of ΔN-Bcl-xL protect the brain against excitotoxic injuries. Our team found that the pharmacological inhibitor ABT-737 exerts dose dependent effects in primary neurons. When primary hippocampal neurons were treated with 1 μM ABT-737, glutamate-mediated mitochondrial damage and neuronal death were exacerbated, whereas 10 nM ABT-737, a 100-fold lower concentration, protected mitochondrial function and enhanced neuronal viability against glutamate toxicity. In addition, we suggested acute vs. prolonged formation of ΔN-Bcl-xL may have different effects on mitochondrial or neuronal functions. Unlike acute production of ΔN-Bcl-xL by glutamate, overexpression of ΔN-Bcl-xL did not cause drastic changes in neuronal viability. We predicted that neurons undergo adaptation and may activate altered metabolism to compensate for ΔN-Bcl-xL-mediated mitochondrial dysfunction. Although the detailed mechanism of ABT-mediated neurotoxicity neuroprotection is still unclear, our study shows that the mitochondrial membrane protein ΔN-Bcl-xL is a central target for interventions.
Collapse
Affiliation(s)
- Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Science, The University of Alabama, Tuscaloosa, AL; Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Ahmad Z, Kratzke RA. Novel oncolytic viral therapies in patients with thoracic malignancies. Oncolytic Virother 2016; 6:1-9. [PMID: 28053943 PMCID: PMC5189707 DOI: 10.2147/ov.s116012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy is the use of replication-competent viruses to treat malignancies. The potential of oncolytic virotherapy as an approach to cancer therapy is based on historical evidence that certain viral infections can cause spontaneous remission of both hematologic and solid tumor malignancies. Oncolytic virotherapy may eliminate cancer cells through either direct oncolysis of infected tumor cells or indirect immune-mediated oncolysis of uninfected tumor cells. Recent advances in oncolytic virotherapy include the development of a wide variety of genetically attenuated RNA viruses with precise cellular tropism and the identification of cell-surface receptors that facilitate viral transfer to the tissue of interest. Current research is also focused on targeting metastatic disease by sustaining the release of progeny viruses from infected tumor cells and understanding indirect tumor cell killing through immune-mediated mechanisms of virotherapy. The purpose of this review is to critically evaluate recent evidence on the clinical development of tissue-specific viruses capable of targeting tumor cells and eliciting secondary immune responses in lung cancers and mesothelioma.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
31
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
32
|
Shahid A, Ali R, Ali N, Hasan SK, Rashid S, Majed F, Sultana S. Attenuation of genotoxicity, oxidative stress, apoptosis and inflammation by rutin in benzo(a)pyrene exposed lungs of mice: plausible role of NF-κB, TNF-α and Bcl-2. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 13:17-29. [PMID: 26829483 DOI: 10.1515/jcim-2015-0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Benzo(a)pyrene [B(a)P] is an environmental contaminant and potential carcinogenic agent that causes lung injuries which leads to lung cancer. Rutin, a well-known flavonoid present in various natural sources, possesses biological activities such as anti-oxidative and anti-inflammatory properties. The aim of this study was to evaluate the protective effects of rutin against B(a)P-induced genotoxicity, oxidative stress, apoptosis and inflammation in Swiss albino mice. METHODS Pretreatment of rutin was given by oral gavage at doses of 40 and 80 mg/kg body weight (b.wt.) for 7 days before the administration of a single oral dose of B(a)P (125 mg/kg b.wt.). The ameliorative effect of rutin on oxidative stress, apoptotic and inflammatory markers in lung tissues and genotoxicity was studied using an alkaline unwinding assay and DNA fragmentation. RESULTS B(a)P enhanced lipid peroxidation, xanthine oxidase, H2O2 generation and lactate dehydrogenase (LDH) activity; depleted activities of anti-oxidant enzymes and glutathione content; induced DNA strand breaks and fragmentation; disrupted normal histopathological architecture and also showed abnormal expression of NF-κB, COX-2, IL-6, TNF-α and Bcl-2. Rutin pretreatment caused a significant reduction in lipid peroxidation and LDH activity; increased glutathione content; restored antioxidant enzyme activity; reduced DNA strand breaks and fragmentation; modulated the expression of inflammatory, and apoptotic markers and restored the histopathological structure. CONCLUSIONS The findings of the present study supported the protective effect of rutin against B(a)P-induced lung toxicity and genotoxicity.
Collapse
|
33
|
Neurotropic Enterovirus Infections in the Central Nervous System. Viruses 2015; 7:6051-66. [PMID: 26610549 PMCID: PMC4664993 DOI: 10.3390/v7112920] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023] Open
Abstract
Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.
Collapse
|
34
|
Chen CH, Chen TH, Wu MY, Chen JR, Hong LY, Zheng CM, Chiu IJ, Lin YF, Hsu YH. Peroxisome Proliferator-Activated Receptor α Protects Renal Tubular Cells from Gentamicin-Induced Apoptosis via Upregulating Na +/H + Exchanger NHE1. Mol Med 2015; 21:886-889. [PMID: 26623927 DOI: 10.2119/molmed.2015.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α is a transcription factor that has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na+/H+ exchanger-1 (NHE1) expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na+/H+ exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM short interfering RNA (siRNA) transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the prosurvival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jia-Rung Chen
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Yu Hong
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Inhibition of Histone Deacetylase Activity Aggravates Coxsackievirus B3-Induced Myocarditis by Promoting Viral Replication and Myocardial Apoptosis. J Virol 2015; 89:10512-23. [PMID: 26269170 PMCID: PMC4580191 DOI: 10.1128/jvi.01028-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Viral myocarditis, which is most prevalently caused by coxsackievirus B3 (CVB3), is a serious clinical condition characterized by excessive myocardial inflammation. Recent studies suggest that regulation of protein acetylation levels by inhibiting histone deacetylase (HDAC) activity modulates inflammatory response and shows promise as a therapy for several inflammatory diseases. However, the role of HDAC activity in viral myocarditis is still not fully understood. Here, we aim to investigate the role of HDAC activity in viral myocarditis and its underlying mechanism. CVB3-infected BALB/c mice were treated with the HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) or trichostatin A (TSA). We found inhibition of HDAC activity aggravated rather than ameliorated the severity of CVB3-induced myocarditis, which was contrary to our expectations. The aggravated myocarditis by HDACI treatment seemed not to be caused by an elevated inflammatory response but by the increased CVB3 replication. Further, it was revealed that the increased CVB3 replication was closely associated with the HDACI-enhanced autophagosome formation. Inhibition of autophagosome formation by wortmannin or ATG5 short hairpin RNA dramatically suppressed the HDACI-increased CVB3 replication. The increased viral replication subsequently elevated CVB3-induced myocardial apoptosis. Conversely, inhibition of CVB3 replication and ensuing myocardial apoptosis by the antiviral drug ribavirin significantly reversed the HDACI-aggravated viral myocarditis. In conclusion, we elucidate that the inhibition of HDAC activity increases CVB3 replication and ensuing myocardial apoptosis, resulting in aggravated viral myocarditis. Possible adverse consequences of administering HDACI should be considered in patients infected (or coinfected) with CVB3. IMPORTANCE Viral myocarditis, which is most prevalently caused by CVB3, is characterized by excessive myocardial inflammation. Inhibition of HDAC activity was originally identified as a powerful anti-cancer therapeutic strategy and was recently found to be implicated in the regulation of inflammatory response. HDACI has been demonstrated to be efficacious in animal models of several inflammatory diseases. Thus, we hypothesize that inhibition of HDAC activity also protects against CVB3-induced viral myocarditis. Surprisingly, we found inhibition of HDAC activity enhanced myocardial autophagosome formation, which led to the elevated CVB3 viral replication and ensuing increased myocardial apoptosis. Viral myocarditis was eventually aggravated rather than ameliorated by HDAC inhibition. In conclusion, we elucidate the role of HDAC activity in viral myocarditis. Moreover, given the importance of HDACI in preclinical and clinical treatments, the possible unfavorable effect of HDACI should be carefully evaluated in patients infected with viruses, including CVB3.
Collapse
|
36
|
Liu X, Guo C, Huang Y, Zhang X, Chen Y. Inhibition of porcine reproductive and respiratory syndrome virus by Cecropin D in vitro. INFECTION GENETICS AND EVOLUTION 2015; 34:7-16. [PMID: 26102162 DOI: 10.1016/j.meegid.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Although vaccines are commercially available for the control of PRRSV infection, no vaccination regimen has been proved sustained success in terms of generating a protective immune response. Therefore, the development of novel antivirals is urgently needed. Antimicrobial peptides display broad-spectrum antimicrobial activities against bacteria, fungi, and viruses and play an important role in host innate immune response. Here, we tested whether Cecropin D (CD) could inhibit PRRSV infection and replication in vitro. The inhibitory effect of CD occurred during viral attachment and the early period of viral entry into Marc-145 cells. CD also attenuated virus-induced apoptosis during the late phase of PRRSV infection and suppressed virus release in Marc-145 cells, which might contribute to the inhibition of PRRSV infection. Similar inhibitory effects on PRRSV infection were also found with CD treatment in porcine alveolar macrophages, the major target cell type of PRRSV infection in pigs in vivo. These findings suggest that CD has the potential to develop a new therapeutic agent against PRRSV infection.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Yumao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Xiaoyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
37
|
Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats. Mol Cell Biochem 2015; 406:9-20. [DOI: 10.1007/s11010-015-2400-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
|
38
|
Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis. Cell Death Differ 2015; 22:2087-97. [PMID: 25976304 DOI: 10.1038/cdd.2015.58] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/29/2015] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin-protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection.
Collapse
|
39
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
40
|
Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol 2014; 177:330-339. [PMID: 25449464 DOI: 10.1016/j.ijcard.2014.09.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Heart disease is the leading cause of death in humans, and myocarditis is one predominant cause of heart failure in young adults. Patients affected with myocarditis can develop dilated cardiomyopathy (DCM), a common reason for heart transplantation, which to date is the only viable option for combatting DCM. Myocarditis/DCM patients show antibodies to coxsackievirus B (CVB)3 and cardiac antigens, suggesting a role for CVB-mediated autoimmunity in the disease pathogenesis; however, a direct causal link remains to be determined clinically. Experimentally, myocarditis can be induced in susceptible strains of mice using the human isolates of CVB3, and the disease pathogenesis of postinfectious myocarditis resembles that of human disease, making the observations made in animals relevant to humans. In this review, we discuss the complex nature of CVB3-induced myocarditis as it relates to the damage caused by both the virus and the host's response to infection. Based on recent data we obtained in the mouse model of CVB3 infection, we provide evidence to suggest that CVB3 infection accompanies the generation of cardiac myosin-specific CD4 T cells that can transfer the disease to naïve recipients. The therapeutic implications of these observations are also discussed.
Collapse
Affiliation(s)
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of health, Bethesda, MD
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
41
|
Ao D, Sun SQ, Guo HC. Topology and biological function of enterovirus non-structural protein 2B as a member of the viroporin family. Vet Res 2014; 45:87. [PMID: 25163654 PMCID: PMC4155101 DOI: 10.1186/s13567-014-0087-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/08/2014] [Indexed: 02/01/2023] Open
Abstract
Viroporins are a group of transmembrane proteins with low molecular weight that are encoded by many animal viruses. Generally, viroporins are composed of 50–120 amino acid residues and possess a minimum of one hydrophobic region that interacts with the lipid bilayer and leads to dispersion. Viroporins are involved in destroying the morphology of host cells and disturbing their biological functions to complete the life cycle of the virus. The 2B proteins encoded by enteroviruses, which belong to the family Picornaviridae, can form transmembrane pores by oligomerization, increase the permeability of plasma membranes, disturb the homeostasis of calcium in cells, induce apoptosis, and cause autophagy; these abilities are shared among viroporins. The present paper introduces the structure and biological characteristics of various 2B proteins encoded by enteroviruses of the family Picornaviridae and may provide a novel idea for developing antiviral drugs.
Collapse
|
42
|
Harris KG, Coyne CB. Death waits for no man--does it wait for a virus? How enteroviruses induce and control cell death. Cytokine Growth Factor Rev 2014; 25:587-96. [PMID: 25172372 DOI: 10.1016/j.cytogfr.2014.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/29/2022]
Abstract
Enteroviruses (EVs) are the most common human viral pathogens. They cause a variety of pathologies, including myocarditis and meningoencephalopathies, and have been linked to the onset of type I diabetes. These pathologies result from the death of cells in the myocardium, central nervous system, and pancreas, respectively. Understanding the role of EVs in inducing cell death is crucial to understanding the etiologies of these diverse pathologies. EVs both induce and delay host cell death, and their exquisite control of this balance is crucial for their success as human viral pathogens. Thus, EVs are tightly involved with cell death signaling pathways and interact with host cell signaling at multiple points. Here, we review the literature detailing the mechanisms of EV-induced cell death. We discuss the mechanisms by which EVs induce cell death, the signaling pathways involved in these pathways, and the strategies by which EVs antagonize cell death pathways. We also discuss the role of cell death in both the resulting pathology in the host and in the facilitation of viral spread.
Collapse
Affiliation(s)
- Katharine G Harris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Carolyn B Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, United States.
| |
Collapse
|
43
|
Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 2014; 109:30-41. [PMID: 24971492 DOI: 10.1016/j.antiviral.2014.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a member of genus Enterovirus in Picornaviridae family, which is one of the major causative agents for hand, foot and mouth disease (HFMD), and sometimes associated with severe central nervous system diseases in children. Currently there are no effective therapeutic medicines or vaccines for the disease. In this report, we found that apigenin and luteolin, two flavones that differ only in the number of hydroxyl groups could inhibit EV71-mediated cytopathogenic effect (CPE) and EV71 replication with low cytotoxicity. Both molecules also showed inhibitory effect on the viral polyprotein expression. They prevented EV71-induced cell apoptosis, intracellular reactive oxygen species (ROS) generation and cytokines up-regulation. Time-of-drug addition study demonstrated that apigenin and luteolin acted after viral entry. We examined the effect of apigenin and luteolin on 2A(pro) and 3C(pro) activity, two viral proteases responsible for viral polyprotein processing, and found that they showed less inhibitory activity on 2A(pro) or 3C(pro). Further studies demonstrated that apigenin, but not luteolin could interfere with viral IRES activity. Also, apigenin inhibited EV71-induced c-Jun N-terminal kinase (JNK) activation which is critical for viral replication, in contrast to luteolin that did not. This study demonstrated that apigenin may inhibit EV71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. It also provided evidence that one hydroxyl group difference in the B ring between apigenin and luteolin resulted in the distinct antiviral mechanisms. This study will provide the basis for better drug development and further identification of potential drug targets.
Collapse
Affiliation(s)
- Xiaowen Lv
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China; Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Min Qiu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China.
| |
Collapse
|
44
|
Xin L, Xiao Z, Ma X, He F, Yao H, Liu Z. Coxsackievirus B3 induces crosstalk between autophagy and apoptosis to benefit its release after replicating in autophagosomes through a mechanism involving caspase cleavage of autophagy-related proteins. INFECTION GENETICS AND EVOLUTION 2014; 26:95-102. [PMID: 24836289 DOI: 10.1016/j.meegid.2014.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023]
Abstract
Coxsackievirus B3 (CVB3) is known to induce both autophagy and apoptosis, but whether a relationship exists between these processes upon infection, and whether and how they influence the viral life cycle are currently unknown. We observed here that while autophagosome formation increased in CVB3-infected HeLa cells at the early stage of infection, it decreased at the late stage of infection along with increased apoptosis. Examining whether a functional relationship existed between autophagy and apoptosis during CVB3 infection, we found that increasing levels of autophagy inhibited apoptosis and that some apoptotic proteins in the endogenous and exogenous apoptosis pathways played a role in the transition from autophagy to apoptosis by cleaving the autophagy-related proteins Beclin-1 and Atg5. However, the transcription and translation of full-length Atg5 and Beclin-1 also increased, which likely counteracted the cleavage effect in order to prevent cells from dying too early and to ensure that CVB3 replication was complete in the autophagosomes. Using pharmacological inducers and inhibitors of autophagy as well as inhibitors of apoptosis, we found that while CVB3 replication relied on the autophagosomes, its release from the cell depended on apoptosis. Therefore, autophagy and apoptosis are two important processes that interact with each other during CVB3 infection, promoting the CVB3 life cycle.
Collapse
Affiliation(s)
- Le Xin
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, China; Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Zonghui Xiao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Xiaolin Ma
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Feng He
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Hailan Yao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Zhewei Liu
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, China; Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| |
Collapse
|
45
|
Shi J, Fung G, Piesik P, Zhang J, Luo H. Dominant-negative function of the C-terminal fragments of NBR1 and SQSTM1 generated during enteroviral infection. Cell Death Differ 2014; 21:1432-41. [PMID: 24769734 DOI: 10.1038/cdd.2014.58] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/23/2014] [Accepted: 03/27/2014] [Indexed: 12/16/2022] Open
Abstract
Coxsackievirus infection induces an abnormal accumulation of ubiquitin aggregates that are generally believed to be noxious to the cells and have a key role in viral pathogenesis. Selective autophagy mediated by autophagy adaptor proteins, including sequestosome 1 (SQSTM1/p62) and neighbor of BRCA1 gene 1 protein (NBR1), are an important pathway for disposing of misfolded/ubiquitin conjugates. We have recently demonstrated that SQSTM1 is cleaved after coxsackievirus infection, resulting in the disruption of SQSTM1 function in selective autophagy. NBR1 is a functional homolog of SQSTM1. In this study, we propose to test whether NBR1 can compensate for the compromise of SQSTM1 after viral infection. Of interest, we found that NBR1 was also cleaved after coxsackievirus infection. This cleavage took place at two sites mediated by virus-encoded protease 2A(pro) and 3C(pro), respectively. In addition to the loss-of-function, we further investigated whether cleavage of SQSTM1/NBR1 leads to the generation of toxic gain-of-function mutants. We showed that the C-terminal fragments of SQSTM1 and NBR1 exhibited a dominant-negative effect against native SQSTM1/NBR1, probably by competing for LC3 and ubiquitin chain binding. Finally, we demonstrated a positive, mutual regulatory relationship between SQSTM1 and NBR1 during viral infection. We showed that knockdown of SQSTM1 resulted in reduced expression of NBR1, whereas overexpression of SQSTM1 led to increased level of NBR1, and vice versa, further excluding the possible compensation of NBR1 for the loss of SQSTM1. Taken together, the findings in this study suggest a novel mechanism through which coxsackievirus infection induces increased accumulation of ubiquitin conjugates and subsequent viral damage.
Collapse
Affiliation(s)
- J Shi
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Fung
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Piesik
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Zhang
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
The adapter protein c-Cbl-associated protein (CAP) protects from acute CVB3-mediated myocarditis through stabilization of type I interferon production and reduced cytotoxicity. Basic Res Cardiol 2014; 109:411. [PMID: 24763933 DOI: 10.1007/s00395-014-0411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 12/24/2022]
Abstract
c-Cbl-associated protein (CAP), also called Sorbs1 or ponsin, has been described as an essential adapter protein in the insulin-signalling pathway. Here, we describe for the first time a unique protective role for CAP in viral myocarditis. Mortality and heart failure development were increased in CAP(-/-) mice compared to CAP(+/+) littermates after Coxsackievirus (CVB3) infection. Mechanistically, CAP protected from tissue apoptosis because of reduced CD8(+) T and natural killer cell cytotoxicity. Despite reduced cytotoxic elimination of CVB3-infected cells in CAP(+/+) hearts, however, CAP enhanced interferon regulatory factor 3 (IRF3)-dependent antiviral type I interferon production and decreased viral proliferation in vitro by binding to the cytoplasmic RIG-I-like receptor melanoma differentiation-associated protein 5 (MDA5). Taken together, these findings reveal a novel modulatory role for CAP in the heart as a key protein stabilizing antiviral type I interferon production, while protecting from excessive cytotoxic responses. Our study will help to define future strategies to develop treatments to limit detrimental responses during viral heart inflammation.
Collapse
|
47
|
Sridharan H, Upton JW. Programmed necrosis in microbial pathogenesis. Trends Microbiol 2014; 22:199-207. [DOI: 10.1016/j.tim.2014.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/14/2023]
|
48
|
Characterization of coxsackievirus B3 replication in human umbilical vein endothelial cells. Med Microbiol Immunol 2014; 203:217-29. [DOI: 10.1007/s00430-014-0333-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
49
|
Wang CQ, Li X, Wang MQ, Qian J, Zheng K, Bian HW, Han N, Wang JH, Pan JW, Zhu MY. Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic Res 2014; 48:435-44. [PMID: 24437935 DOI: 10.3109/10715762.2014.885116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In mammals, the mitochondrial electron transfer components (ETC) complex III and cytochrome c (cyt c) play essential roles in reactive oxygen species (ROS)-induced apoptosis. However, in yeast, the functions of cyt c and other ETC components remain unclear. In this study, three ETC-defective yeast mutants qcr7Δ, cyc1Δcyc7Δ, and cox12Δ, lacking cyt c oxidoreductase (complex III), cyt c, and cyt c oxidase (complex IV), respectively, were used to test the roles of these proteins in the response of cells to hydrogen peroxide (H₂O₂). Mutants qcr7Δ and cyc1Δcyc7Δ displayed greater H₂O₂ sensitivity than the wild-type or cox12Δ mutant. Consistent with this, qcr7Δ and cyc1Δcyc7Δ produced higher ROS levels, displayed derepressed expression of the proapoptotic genes AIF1, NUC1, and NMA111, but not YCA1, at the mRNA level, and were more vulnerable to H₂O₂-induced apoptosis. Interestingly, mutants lacking these proapoptotic genes displayed enhanced H₂O₂ tolerance, but unaffected ROS accumulation. Furthermore, the overexpression of antiapoptotic genes (Bcl-2, Ced-9, AtBI-1, and PpBI-1) reduced the levels of AIF1, NUC1, and NMA111 mRNAs, and reduced H₂O₂-induced cell death. Our findings identify two ETC components as early-inhibitory members of the ROS-mediated apoptotic pathway, suggesting their essential roles in metabolizing H₂O₂, probably by providing reduced cyt c, allowing cyt c peroxidase to remove H₂O₂ from the cells.
Collapse
Affiliation(s)
- Chao-qun Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/β-catenin signal pathways. Cell Mol Life Sci 2013; 70:4631-44. [PMID: 23811937 PMCID: PMC11113642 DOI: 10.1007/s00018-013-1411-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
Coxsackievirus B3 (CVB3) is one of the most prevalent causes of viral myocarditis and is associated with many other pathological conditions. CVB3 replication relies on host cellular machineries and causes direct damage to host cells. MicroRNAs have been found to regulate viral infections but their roles in CVB3 infection are still poorly understood. Here we describe a novel mechanism by which miR-126 regulates two signal pathways essential for CVB3 replication. We found that CVB3-induced ERK1/2 activation triggered the phosphorylation of ETS-1 and ETS-2 transcription factors, which induced miR-126 upregulation. By using both microRNA mimics and inhibitors, we proved that the upregulated miR-126 suppressed sprouty-related, EVH1 domain containing 1 (SPRED1) and in turn enhanced ERK1/2 activation. This positive feedback loop of ERK1/2-miR-126-ERK1/2 promoted CVB3 replication. Meanwhile, miR-126 expression stimulated GSK-3β activity and induced degradation of β-catenin through suppressing LRP6 and WRCH1, two newly identified targets in the Wnt/β-catenin pathway, which sensitized the cells to virus-induced cell death and increased viral progeny release to initiate new infections. Our results demonstrate that upregulated miR-126 upon CVB3 infection targets SPRED1, LRP6, and WRCH1 genes, mediating cross-talk between ERK1/2 and Wnt/β-catenin pathways, and thus promoting viral replication and contributes to the viral cytopathogenicity.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Maged Gomaa Hemida
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Paul J. Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, Rm 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| |
Collapse
|