1
|
Zheng M, Li Y, Dong W, Zhang Q, Wang W. Regioselective enzymatic depolymerization of aromatic-aliphatic polyester revealed by computational modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134797. [PMID: 38865921 DOI: 10.1016/j.jhazmat.2024.134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is widely utilized in the production of food packaging and mulch films. Its extensive application has contributed significantly to global solid waste, posing numerous environmental challenges. Recently, enzymatic recycling has emerged as a promising eco-friendly solution for the management of plastic waste. Here, we systematically investigate the depolymerization mechanism of PBAT catalyzed by cutinase TfCutSI with molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations. Although the binding affinities for acid ester and terephthalic acid ester bonds are similar, a regioselective depolymerization mechanism and a "chain-length" effect on regioselectivity were proposed and evidenced. The regioselectivity is highly associated with specific structural parameters, namely Substrate@O4-Met@H7 and Substrate@C1-Ser@O1 distances. Notably, the binding mode of BTa captured by X-ray crystallography does not facilitate subsequent depolymerization. Instead, a previously unanticipated binding mode, predicted through computational analysis, is confirmed to play a crucial role in BTa depolymerization. This finding proves the critical role of computational modelling in refining experimental results. Furthermore, our results revealed that both the hydrogen bond network and enzyme's intrinsic electric field are instrumental in the formation of the final product. In summary, these novel molecular insights into the PBAT depolymerization mechanism offer a fundamental basis for enzyme engineering to enhance industrial plastic recycling.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Sathiaseelan JJ, Afifah NMR, Abdullah AAA, Ramakrishna S, Vigneswari S, Bhubalan K. Exploring the advantages and limitations of degradation for various biodegradable micro-bioplastic in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121777. [PMID: 39018857 DOI: 10.1016/j.jenvman.2024.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Biodegradable plastics are being the substitute for synthetic plastics and widely been used in order to combat plastic pollution. Yet not all biodegradable plastics are degradable especially when it does not meet its favourable conditions, and also when it comes to aquatic environments. Therefore, this review is intended to highlight the types of various biodegradable plastic synthesized and commercialised and identify the limitations and advantages of these micro-bioplastics or residual bioplastic upon degradation in various aquatic environments. This review paper highlights on biodegradable plastic, degradation of biodegradable plastic in aquatic environments, application of biodegradable plastic, polylactic acid (PLA), Polyhydroxyalkanoates (PHA), Polysaccharide derivatives, Poly (amino acid), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate terephthalate (PBA/T), limitations and advantages of biodegradable plastic degradation in aquatic environment. There is no limit on the period for literature search as this field is continuously being studied and there is no wide range of studies. Biodegradable plastic that is commercially available has its own advantages and limitations respectively upon degradation in both freshwater and marine environments. There is a growing demand for bioplastic as an alternative to synthetic plastic which causes plastic waste pollution. Thus, it is crucial to understand the biodegradation of biodegradable plastic in depth especially in aquatic environments. Moreover, there are also very few studies investigating the degradation and migration of micro-bioplastics in aquatic environments.
Collapse
Affiliation(s)
| | - Nurul Mohd Ridzuan Afifah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Amirul Al-Ashraf Abdullah
- School of Biological Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 119260, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
3
|
Fernandes M, Salvador AF, Vicente AA. Biodegradation of PHB/PBAT films and isolation of novel PBAT biodegraders from soil microbiomes. CHEMOSPHERE 2024; 362:142696. [PMID: 38925517 DOI: 10.1016/j.chemosphere.2024.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are important candidates for replacing petroleum-based plastics. This transition is urgent for the development of a biobased economy and to protect human health and natural ecosystems. PHAs are biobased and biodegradable polyesters that when blended with other polymers, such as poly(butylene adipate-co-terephthalate) (PBAT), acquire remarkable improvements in their properties, which allow them to comply with the requirements of packaging applications. However, the biodegradation of such blends should be tested to evaluate the impact of those polymers in the environment. For instance, PBAT is a compostable aliphatic-aromatic copolyester, and its biodegradation in natural environments, such as soil, is poorly studied. In this work, we evaluated the biodegradation of a bilayer film composed of PHB and PBAT, by a soil microbiome. The bilayer film reached 47 ± 1 % mineralization in 180 days and PHB was no longer detected after this period. The increased crystallinity of the PBAT residue was a clear sign of biodegradation, indicating that the amorphous regions were preferentially biodegraded. Seven microorganisms were isolated, from which 4 were closely related to microorganisms already known as PHB degraders, but the other 3 species, closely related to Streptomyces coelicoflavus, Clonostachys rosea and Aspergillus insuetus, were found for the first time as PHB degraders. Most remarkably, two fungi closely related to Purpureocillium lilacinum and Aspergillus pseudodeflectus (99.83 % and 100 % identity by ITS sequencing) were isolated and identified as PBAT degraders. This is very interesting due to the rarity of isolating PBAT-degrading microorganisms. These results show that the bilayer film can be biodegraded in soil, at mesophilic temperatures, showing its potential to replace synthetic plastics in food packaging.
Collapse
Affiliation(s)
- Miguel Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Martínez A, Perez-Sanchez E, Caballero A, Ramírez R, Quevedo E, Salvador-García D. PBAT is biodegradable but what about the toxicity of its biodegradation products? J Mol Model 2024; 30:273. [PMID: 39023540 PMCID: PMC11258070 DOI: 10.1007/s00894-024-06066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT Poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable plastic. It was introduced to the plastics market in 1998 and since then has been widely used around the world. The main idea of this research is to perform quantum chemical calculations to study the potential toxicity of PBAT and its degradation products. We analyzed the electron transfer capacity to determine its potential toxicity. We found that biodegradable products formed with benzene rings are as good electron acceptors as PBAT and OOH•. Our results indicate that the biodegradation products are potentially as toxic as PBAT. This might explain why biodegradation products alter the photosynthetic system of plants and inhibit their growth. From this and other previous investigations, we can think that biodegradable plastics could represent a potential environmental risk. METHODS All DFT computations were performed using the Gaussian16 at M062x/6-311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as response functions.
Collapse
Affiliation(s)
- Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México.
| | - Emiliano Perez-Sanchez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México
| | - Alexis Caballero
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México
| | - Rodrigo Ramírez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México
| | - Esperanza Quevedo
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México
| | - Diana Salvador-García
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N. Ciudad Universitaria, 04510, CDMX, Mexico City, México
| |
Collapse
|
5
|
Aarsen C, Liguori A, Mattsson R, Sipponen MH, Hakkarainen M. Designed to Degrade: Tailoring Polyesters for Circularity. Chem Rev 2024; 124:8473-8515. [PMID: 38936815 PMCID: PMC11240263 DOI: 10.1021/acs.chemrev.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A powerful toolbox is needed to turn the linear plastic economy into circular. Development of materials designed for mechanical recycling, chemical recycling, and/or biodegradation in targeted end-of-life environment are all necessary puzzle pieces in this process. Polyesters, with reversible ester bonds, are already forerunners in plastic circularity: poly(ethylene terephthalate) (PET) is the most recycled plastic material suitable for mechanical and chemical recycling, while common aliphatic polyesters are biodegradable under favorable conditions, such as industrial compost. However, this circular design needs to be further tailored for different end-of-life options to enable chemical recycling under greener conditions and/or rapid enough biodegradation even under less favorable environmental conditions. Here, we discuss molecular design of the polyester chain targeting enhancement of circularity by incorporation of more easily hydrolyzable ester bonds, additional dynamic bonds, or degradation catalyzing functional groups as part of the polyester chain. The utilization of polyester circularity to design replacement materials for current volume plastics is also reviewed as well as embedment of green catalysts, such as enzymes in biodegradable polyester matrices to facilitate the degradation process.
Collapse
Affiliation(s)
- Celine
V. Aarsen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Anna Liguori
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rebecca Mattsson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106
91 Stockholm, Sweden
| | - Minna Hakkarainen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Peñalver R, Martín de la Fuente A, Arroyo-Manzanares N, Campillo N, Viñas P, Ros M, Pascual JA. Analytical strategy to assess the microbial degradation of poly(butylene-adipate-co-terephthalate)/poly(lactic acid) films. CHEMOSPHERE 2024; 359:142311. [PMID: 38735500 DOI: 10.1016/j.chemosphere.2024.142311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic is widely used in agricultural applications, but its waste has an adverse environmental impact and a long-term detrimental effect. The development of biodegradable plastics for agricultural use is increasing to mitigate plastic waste. The most commonly used biodegradable plastic is poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymer. In this study, an analytical procedure based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) in combination with chemometrics has been optimized to assess the degradation level of PBAT/PLA films by monitoring their characteristic degradation products. Carboxylic acids (benzoic, phthalic, adipic, heptanoic, and octadecanoic acids) and 1,4-butanediol have been found to be potential markers of PBAT/PLA degradation. The DLLME-GC-MS analytical approach has been applied for the first time to assess the degradation efficiency of several microorganisms used as degradation accelerators of PBAT/PLA based on the assigned potential markers. This analytical strategy has shown higher sensitivity and precision than standard techniques, such as elemental analysis, allowing us to detect low degradation levels.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Alba Martín de la Fuente
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| | - Margarita Ros
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Jose Antonio Pascual
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
7
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Karimi A, Rahmatabadi D, Baghani M. Direct Pellet Three-Dimensional Printing of Polybutylene Adipate-co-Terephthalate for a Greener Future. Polymers (Basel) 2024; 16:267. [PMID: 38257066 PMCID: PMC10820913 DOI: 10.3390/polym16020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The widespread use of conventional plastics in various industries has resulted in increased oil consumption and environmental pollution. To address these issues, a combination of plastic recycling and the use of biodegradable plastics is essential. Among biodegradable polymers, poly butylene adipate-co-terephthalate (PBAT) has attracted significant attention due to its favorable mechanical properties and biodegradability. In this study, we investigated the potential of using PBAT for direct pellet printing, eliminating the need for filament conversion. To determine the optimal printing temperature, three sets of tensile specimens were 3D-printed at varying nozzle temperatures, and their mechanical properties and microstructure were analyzed. Additionally, dynamic mechanical thermal analysis (DMTA) was conducted to evaluate the thermal behavior of the printed PBAT. Furthermore, we designed and printed two structures with different infill percentages (40% and 60%) to assess their compressive strength and energy absorption properties. DMTA revealed that PBAT's glass-rubber transition temperature is approximately -25 °C. Our findings demonstrate that increasing the nozzle temperature enhances the mechanical properties of PBAT. Notably, the highest nozzle temperature of 200 °C yielded remarkable results, with an elongation of 1379% and a tensile strength of 7.5 MPa. Moreover, specimens with a 60% infill density exhibited superior compressive strength (1338 KPa) and energy absorption compared with those with 40% infill density (1306 KPa). The SEM images showed that with an increase in the nozzle temperature, the quality of the print was greatly improved, and it was difficult to find microholes or even a layered structure for the sample printed at 200 °C.
Collapse
Affiliation(s)
- Armin Karimi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
- Department of Aerospace Engineering, Sharif University of Technology, Tehran P.O. Box 11155-9567, Iran
| | - Davood Rahmatabadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-9567, Iran (D.R.)
| |
Collapse
|
9
|
Yan X, Chen Q, Zhang Z, Fu Y, Huo Z, Wu Y, Shi H. Chemical features and biological effects of degradation products of biodegradable plastics in simulated small waterbody environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166829. [PMID: 37673271 DOI: 10.1016/j.scitotenv.2023.166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
A plethora of research has focused on the biosafety of biodegradable plastics (BPs), including their microplastic formation and additives leaching; however, relatively fewer studies have explored biodegradation products. This study aims to investigate the biological effects and chemical features of degradation products from three kinds of BPs, namely polyglycolic acid (PGA), poly (butylene adipate-co-terephthalate) (PBAT), and the blends of PGA/PBAT without the addition of additives, in a simulated small waterbody environment with extracted soil solution for three months. Results showed that exposure to the whole degradation remnants of three BPs had no lethal effects on zebrafish at the current BP environmental concentrations (from 0.24 to 12.72 mg plastic/L) in small waterbodies. However, from the calculated BPs environmental concentrations (from 0.57 to 43.82 mg plastic/L) in 2026, PGA and PGA/PBAT blends may cause adverse effects on the cardiovascular system such as heartbeat rate suppression in zebrafish embryos, and also lead to reduced body length and pericardial edema and spinal curvature in fish larvae. We further qualitatively analyzed the composition of degradation products, and quantitatively measured four dominant degradation monomers (glycolic acid (GA), adipic acid (A), 1,4-butanediol (B), and terephthalic acid (T)) in the degradation remnants. It was found that the observed toxicities were probably due to the presence of GA, A, and T monomers, and their concentrations can reach 0.776, 0.034, and 0.6 mg/L under the calculated future scenario, respectively. It is worth mentioning that either GA or T monomers at the above concentrations were found to cause suppressed heartbeat rate in zebrafish embryos. Collectively, though the degradation products of BPs are temporarily safe at current environmental concentrations, they may lead to non-negligible toxicity with increasing production and continual improper recycling and/or BP waste management.
Collapse
Affiliation(s)
- Xiaoyun Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 200241, China.
| | - Zhuolan Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Ye Fu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Zhanbin Huo
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Degli-Innocenti F, Breton T, Chinaglia S, Esposito E, Pecchiari M, Pennacchio A, Pischedda A, Tosin M. Microorganisms that produce enzymes active on biodegradable polyesters are ubiquitous. Biodegradation 2023; 34:489-518. [PMID: 37354274 DOI: 10.1007/s10532-023-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Biodegradability standards measure ultimate biodegradation of polymers by exposing the material under test to a natural microbial inoculum. Available tests developed by the International Organization for Standardization (ISO) use inoculums sampled from different environments e.g. soil, marine sediments, seawater. Understanding whether each inoculum is to be considered as microbially unique or not can be relevant for the interpretation of tests results. In this review, we address this question by consideration of the following: (i) the chemical nature of biodegradable plastics (virtually all biodegradable plastics are polyesters) (ii) the diffusion of ester bonds in nature both in simple molecules and in polymers (ubiquitous); (iii) the diffusion of decomposers capable of producing enzymes, called esterases, which accelerate the hydrolysis of esters, including polyesters (ubiquitous); (iv) the evidence showing that synthetic polyesters can be depolymerized by esterases (large and growing); (v) the evidence showing that these esterases are ubiquitous (growing and confirmed by bioinformatics studies). By combining the relevant available facts it can be concluded that if a certain polyester shows ultimate biodegradation when exposed to a natural inoculum, it can be considered biodegradable and need not be retested using other inoculums. Obviously, if the polymer does not show ultimate biodegradation it must be considered recalcitrant, until proven otherwise.
Collapse
Affiliation(s)
| | - Tony Breton
- Novamont S.p.A., via Fauser 8, 28100, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Xu PY, Wang PL, Liu TY, Zhen ZC, Lu B, Huang D, Wang GX, Ji JH. All-natural environmentally degradable poly (butylene terephthalate-co-caprolactone): A theoretical and experimental study of its degradation properties and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165980. [PMID: 37543331 DOI: 10.1016/j.scitotenv.2023.165980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The design and production of materials with excellent mechanical properties and biodegradability face significant challenges. Poly (butylene terephthalate-co-caprolactone) copolyesters (PBTCL) is obtained by modifying the engineering plastic polybutylene terephthalate (PBT) with a simple one-pot process using readily biodegradable ε-caprolactone (ε-CL). The material has mechanical properties comparable to those of commercial biodegradable copolyester PBAT. Besides, this copolyester exhibited remarkable degradability in natural environments such as soil and ocean, for example, PBTCL1.91 lost >40 % of its weight after 6 months of immersion in the Bohai Sea. The effect and diversity of specific microorganisms acting on degradation in the ocean were analyzed by 16 s rDNA gene sequencing. Theoretical calculations such as Fukui function and DFT, and experimental studies on water-soluble intermediates and residual matrixes produced after degradation, confirmed that the insertion CL units not only act as active sites themselves susceptible to hydrolysis reactions, but also promote the reactivity of ester bonds between aromatic segments. This work provides insight for the development of novel materials with high performance and environmental degradability.
Collapse
Affiliation(s)
- Peng-Yuan Xu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Li Wang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Tian-Yuan Liu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Chao Zhen
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Bo Lu
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Dan Huang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China
| | - Ge-Xia Wang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China.
| | - Jun-Hui Ji
- National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China.
| |
Collapse
|
12
|
de las Heras RB, Ayala SF, Salazar EM, Carrillo F, Cañavate J, Colom X. Circular Economy Insights on the Suitability of New Tri-Layer Compostable Packaging Films after Degradation in Storage Conditions. Polymers (Basel) 2023; 15:4154. [PMID: 37896398 PMCID: PMC10611226 DOI: 10.3390/polym15204154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The environmental degradation of the films used in packaging is a key factor in their commercial use. Industrial and academic research is aimed at obtaining materials that have degradation features that ensure their eco-sustainability but, at the same time, preserve their use properties during storage and distribution periods. This study analyzes the degradability behavior over time of commercial packaging that meets the requirements of the UNE 13432 standard and the prEN 17427 (2020) home composting certification requirements under standard storage conditions. The study attempts to provide insight into the durability of the films under standard storage conditions, verifying that this type of packaging has a useful life of more than 12 months and that after this storage period it still retains the usability properties for which it was conceived. The analyzed sample has been manufactured using a three-layer technology under some commercial formulations based on PBAT + STARCH + PLA and has been analyzed monthly for 12 consecutive months. The macroscopic monitoring of the degradation of the sample has been carried out through the evolution of the mechanical properties and the quantification of the color changes (very important in films) via colorimetry. The nature of the observed variations has been justified at the microstructural level from the data obtained in calorimetric analysis (DSC) and from the characterization using FTIR. The results indicate a loss of properties in the tensile, elongation and impact tests and a behavior of stability or improvement in the tear properties of the film. Analyzing the microstructural changes, it is observed that the degradation of a hydrolytic and thermo-oxidative type occurs in the amorphous part of the film. The conclusion of this study is that the proposed packaging, focused on domestic composting and stored under standard conditions, has a useful life of more than 12 months. This period should be sufficient to cover the stages of production, storage and final use.
Collapse
Affiliation(s)
- Ricardo Ballestar de las Heras
- Research Department of Sphere Group Spain, P.I El Pradillo 3 C/Sphere, Parcela 9, 50690 Pedrola, Zaragoza, Spain; (R.B.d.l.H.); (S.F.A.); (E.M.S.)
- Department of Chemical Engineering ESEIAAT, Universitat Politècnica de Catalunya BarcelonaTech. Colom 1, 08222 Terrassa, Barcelona, Spain; (F.C.); (J.C.)
| | - Sergio Fernández Ayala
- Research Department of Sphere Group Spain, P.I El Pradillo 3 C/Sphere, Parcela 9, 50690 Pedrola, Zaragoza, Spain; (R.B.d.l.H.); (S.F.A.); (E.M.S.)
| | - Estefanía Molina Salazar
- Research Department of Sphere Group Spain, P.I El Pradillo 3 C/Sphere, Parcela 9, 50690 Pedrola, Zaragoza, Spain; (R.B.d.l.H.); (S.F.A.); (E.M.S.)
| | - Fernando Carrillo
- Department of Chemical Engineering ESEIAAT, Universitat Politècnica de Catalunya BarcelonaTech. Colom 1, 08222 Terrassa, Barcelona, Spain; (F.C.); (J.C.)
| | - Javier Cañavate
- Department of Chemical Engineering ESEIAAT, Universitat Politècnica de Catalunya BarcelonaTech. Colom 1, 08222 Terrassa, Barcelona, Spain; (F.C.); (J.C.)
| | - Xavier Colom
- Department of Chemical Engineering ESEIAAT, Universitat Politècnica de Catalunya BarcelonaTech. Colom 1, 08222 Terrassa, Barcelona, Spain; (F.C.); (J.C.)
| |
Collapse
|
13
|
Tseng WS, Lee MJ, Wu JA, Kuo SL, Chang SL, Huang SJ, Liu CT. Poly(butylene adipate-co-terephthalate) biodegradation by Purpureocillium lilacinum strain BA1S. Appl Microbiol Biotechnol 2023; 107:6057-6070. [PMID: 37526695 DOI: 10.1007/s00253-023-12704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT), a promising biodegradable aliphatic-aromatic copolyester material, can be applied as an alternative material to reduce the adverse effects of conventional plastics. However, the degradation of PBAT plastics in soil is time-consuming, and effective PBAT-degrading microorganisms have rarely been reported. In this study, the biodegradation properties of PBAT by an elite fungal strain and related mechanisms were elucidated. Four PBAT-degrading fungal strains were isolated from farmland soils, and Purpureocillium lilacinum strain BA1S showed a prominent degradation rate. It decomposed approximately 15 wt.% of the PBAT films 30 days after inoculation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Liquid chromatography mass spectrometry (LC‒MS) were conducted to analyze the physicochemical properties and composition of the byproducts after biodegradation. In the presence of PBAT, the lipolytic enzyme activities of BA1S were remarkably induced, and its cutinase gene was also significantly upregulated. Of note, the utilization of PBAT in BA1S cells was closely correlated with intracellular cytochrome P450 (CYP) monooxygenase. Furthermore, CreA-mediated carbon catabolite repression was confirmed to be involved in regulating PBAT-degrading hydrolases and affected the degradation efficiency. This study provides new insight into the degradation of PBAT by elite fungal strains and increases knowledge on the mechanism, which can be applied to control the biodegradability of PBAT films in the future. KEY POINTS: • Purpureocillium lilacinum strain BA1S was isolated from farmland soils and degraded PBAT plastic films at a prominent rate. • The lipolytic enzyme activities of strain BA1S were induced during coculture with PBAT, and the cutinase gene was significantly upregulated during PBAT degradation. • CreA-mediated carbon catabolite repression of BA1S plays an essential role in regulating the expression of PBAT-degrading hydrolases.
Collapse
Affiliation(s)
- Wei-Sung Tseng
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St, Taipei, 106, Taiwan
| | - Min-Jia Lee
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St, Taipei, 106, Taiwan
| | - Jin-An Wu
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Kuang Fu Rd., Section 2, Hsinchu, Taiwan
| | - Shin-Liang Kuo
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Kuang Fu Rd., Section 2, Hsinchu, Taiwan
| | - Sheng-Lung Chang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Kuang Fu Rd., Section 2, Hsinchu, Taiwan
| | - Shu-Jiuan Huang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Kuang Fu Rd., Section 2, Hsinchu, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St, Taipei, 106, Taiwan.
- Department of Agricultural Chemistry, National Taiwan University No, 1, Sec. Roosevelt Road, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, No.128, Sec.2, Academia Rd., Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
14
|
Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, Nelson K, Majumder ELW, Huber GW. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem Rev 2023; 123:9915-9939. [PMID: 37470246 DOI: 10.1021/acs.chemrev.2c00876] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Zheng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Microbiology Doctoral Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Klier
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kevin Nelson
- Amcor, Neenah Innovation Center, Neenah, Wisconsin 54956, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Shadmani N, Gohari S, Kadkhodamanesh A, Ghaderinia P, Hassani M, Sharifyrad M. The synthesis and development of poly(ε-caprolactone) conjugated polyoxyethylene sorbitan oleate-based micelles for curcumin drug release: an in vitro study on breast cancer cells. RSC Adv 2023; 13:23449-23460. [PMID: 37546220 PMCID: PMC10401665 DOI: 10.1039/d3ra03660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND it is now known that curcumin (Cur) has a broad range of biological properties; however, photosensitivity, as well as low bioavailability and short half-life, have limited its clinical application. To overcome these problems the synthesis of poly(ε-caprolactone)-Tween 80 (PCL-T) copolymers was performed. METHODS the copolymers of PCL-T were created using the solvent evaporation/extraction technique. Then Cur was loaded in PCL-T micelles (PCL-T-M) by a self-assembly method. The characterization of copolymer and micelles was assessed by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1HNMR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and dynamic light scattering (DLS) methods. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to indicate the cytotoxicity of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M. RESULTS TEM analysis showed monodispersed and spherical shapes with a size of about 90 nm. Cur was released from PCL-T-M at pH 7.4 (45%) and 5.5 (90%) during 6 days. After 24 and 48 h, the IC50 of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M on MCF-7 cells were 80.86 and 54.45 μg mL-1, 278.30 and 236.19 μg mL-1, 45.47 and 19.05 μg mL-1, respectively. CONCLUSION this study showed that, in the same concentration, the effectiveness of the Cur-loaded PCL-T-M is more than the free Cur, and the nano-system has been able to overcome delivery obstacles of Cur drug. Thus, PCL-T-M can be a candidate as a drug carrier for the delivery of Cur and future therapeutic investigations on breast cancer.
Collapse
Affiliation(s)
- Nasim Shadmani
- Trita Nanomedicine Research & Technology Development Center (TNRTC) Zanjan Health Technology Park Zanjan Iran
| | - Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Azin Kadkhodamanesh
- School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Parivash Ghaderinia
- Research and Technology Development Center of the Motahar Zist Gostar, Islamic Azad University Zanjan Branch Zanjan Iran 45156-58145 +98 9191815229
- Department of Microbiology, Islamic Azad University Zanjan Branch Zanjan Iran
| | - Maryam Hassani
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Motahare Sharifyrad
- Research and Technology Development Center of the Motahar Zist Gostar, Islamic Azad University Zanjan Branch Zanjan Iran 45156-58145 +98 9191815229
| |
Collapse
|
16
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
17
|
Liu TY, Zhen ZC, Zang XL, Xu PY, Wang GX, Lu B, Li F, Wang PL, Huang D, Ji JH. Fluorescence tracing the degradation process of biodegradable PBAT: Visualization and high sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131572. [PMID: 37148790 DOI: 10.1016/j.jhazmat.2023.131572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Biodegradable plastics have emerged as a potential solution to the mounting plastic pollution crisis. However, current methods for evaluating the degradation of these plastics are limited in detecting structural changes rapidly and accurately, particularly for PBAT, which contains worrying benzene rings. Inspired by the fact that the aggregation of conjugated groups can endow polymers with intrinsic fluorescence, this work found that PBAT emits a bright blue-green fluoresces under UV irradiation. More importantly, we pioneered a degradation evaluation approach to track the degradation process of PBAT via fluorescence. A blue shift of fluorescence wavelength as the thickness and molecular weight of PBAT film decreased during degradation in an alkali solution was observed. Additionally, the fluorescence intensity of the degradation solution increased gradually as the degradation progressed, and was found to be exponentially correlated with the concentration of benzene ring-containing degradation products following filtration with the correlation coefficient is up to 0.999. This study proposes a promising new strategy for monitoring the degradation process with visualization and high sensitivity.
Collapse
Affiliation(s)
- Tian-Yuan Liu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Chao Zhen
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Ling Zang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Peng-Yuan Xu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Xia Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Lu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping-Li Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dan Huang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun-Hui Ji
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
18
|
Yang Y, Min J, Xue T, Jiang P, Liu X, Peng R, Huang JW, Qu Y, Li X, Ma N, Tsai FC, Dai L, Zhang Q, Liu Y, Chen CC, Guo RT. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases. Nat Commun 2023; 14:1645. [PMID: 36964144 PMCID: PMC10039075 DOI: 10.1038/s41467-023-37374-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT), a polyester made of terephthalic acid (TPA), 1,4-butanediol, and adipic acid, is extensively utilized in plastic production and has accumulated globally as environmental waste. Biodegradation is an attractive strategy to manage PBAT, but an effective PBAT-degrading enzyme is required. Here, we demonstrate that cutinases are highly potent enzymes that can completely decompose PBAT films in 48 h. We further show that the engineered cutinases, by applying a double mutation strategy to render a more flexible substrate-binding pocket exhibit higher decomposition rates. Notably, these variants produce TPA as a major end-product, which is beneficial feature for the future recycling economy. The crystal structures of wild type and double mutation of a cutinase from Thermobifida fusca in complex with a substrate analogue are also solved, elucidating their substrate-binding modes. These structural and biochemical analyses enable us to propose the mechanism of cutinase-mediated PBAT degradation.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Ting Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Pengcheng Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Rouming Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Yingying Qu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, 430062, Wuhan, People's Republic of China
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, 430062, Wuhan, People's Republic of China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072, Wuhan, People's Republic of China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072, Wuhan, People's Republic of China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, People's Republic of China.
| |
Collapse
|
19
|
A Practical Tool for the Assessment of Polymer Biodegradability in Marine Environments Guides the Development of Truly Biodegradable Plastics. Polymers (Basel) 2023; 15:polym15040974. [PMID: 36850256 PMCID: PMC9965661 DOI: 10.3390/polym15040974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Environmental persistence is one of the few shortcomings of plastic materials. As a consequence, alternative plastics labeled as compostable are replacing polyolefins in some commercial applications, such as food bags and trash bags. A rapid, high-throughput, and environmentally relevant method to assess the potential biodegradability in marine conditions is used to assess these materials already on the market, as well as novel bio-based polymers still in development. By fitting experimental data to a non-linear logistic model, ultimate biodegradability can be calculated without regard for incubation time. Whereas the commercial products show negligible or very low marine biodegradability, one of the novel materials exceeds the 20% biodegradation threshold relative to fully marine biodegradable PHB after 28 days. In addition, the sensitivity of the method can be enhanced and its duration reduced, at the expense of labor-demanding preconditioning of the microbial inoculum, by increasing the bacterial density in the incubation vessels. In contrast, pre-exposure of the inoculum to plastic, either in laboratory or field conditions, does not enhance the performance of the test.
Collapse
|
20
|
Bang J, Park S, Hwang SW, Oh JK, Yeo H, Jin HJ, Kwak HW. Biodegradable and hydrophobic nanofibrous membranes produced by solution blow spinning for efficient oil/water separation. CHEMOSPHERE 2023; 312:137240. [PMID: 36379429 DOI: 10.1016/j.chemosphere.2022.137240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The development of nanofibrous oil-water separation materials is explosively progressing, but the remarkably low productivity is the main factor hindering their practical application. In this study, biodegradable polybutylene succinate (PBS) nanofibers with excellent productivity (27.0 g/h per nozzle) were successfully fabricated using the solution blow spinning (SBS) process, breaking away from the conventional electrospinning method. The prepared PBS nanofibers exhibited extremely thin fiber diameters (130 nm) with high porosity (97.4%). Without any chemical modification or inorganic/organic hybrid materialization, the PBS nanofibrous membrane showed excellent oil adsorption capacity (minimum: 18.7 g/g and maximum: 38.5 g/g) and separation efficiency; water and oil mixtures (99.4-99.98%) and emulsions (98.1-99.5%) compared to conventional organic polymer-based nanofibers. In terms of disposal after use, this biodegradable nanofibrous membrane was able to return to nature through hydrolysis and biodegradation processes.
Collapse
Affiliation(s)
- Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Subong Park
- Fisheries Engineering Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Sung-Wook Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung-Kwon Oh
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hwanmyeong Yeo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyoung-Joon Jin
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, 22212, South Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
21
|
Chandran GU, Parappanal AS, S H, Sambhudevan S, Shankar B. A critical review on cellulose nano structures based polymer nanocomposites for packaging applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2086813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Greeshma U Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | | | - Hema S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| |
Collapse
|
22
|
Mansoor Z, Tchuenbou-Magaia F, Kowalczuk M, Adamus G, Manning G, Parati M, Radecka I, Khan H. Polymers Use as Mulch Films in Agriculture-A Review of History, Problems and Current Trends. Polymers (Basel) 2022; 14:polym14235062. [PMID: 36501456 PMCID: PMC9740682 DOI: 10.3390/polym14235062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization's Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.
Collapse
Affiliation(s)
- Zinnia Mansoor
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Fideline Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Georgina Manning
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Mattia Parati
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| | - Habib Khan
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| |
Collapse
|
23
|
Zhou Q, Zhang J, Zhang M, Wang X, Zhang D, Pan X. Persistent versus transient, and conventional plastic versus biodegradable plastic? -Two key questions about microplastic-water exchange of antibiotic resistance genes. WATER RESEARCH 2022; 222:118899. [PMID: 35940152 DOI: 10.1016/j.watres.2022.118899] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous microplastics (MPs) in water environment play an important role in the dissemination of antibiotic resistance genes (ARGs) due to their exchange between floating MPs and receiving waters. However, whether the ARG exchange is persistent or transient and what are the differences in ARG exchange between conventional plastics and biodegradable plastics are the two key issues to be addressed. In this study, biodegradable PBAT and non-biodegradable PET MPs were chosen to explore the MP-water ARG exchange after the MPs floated to the receiving waters. The results demonstrated that the active exchange of ARGs between MPs and receiving waters occurred, which, however, were transient for most of ARGs. The relative abundance of ARGs both on the MPs and in the waters rapidly decreased to the initial or lower levels within 4 weeks. Approximately 25-50% (ARG subtype number ratio) of studied ARG subtypes were introduced into the receiving waters by MPs, and 35-65% of studied ARG subtypes went through fluctuation in terms of abundance on MPs and in the receiving water. ARGs tended to converge between MPs and the receiving waters with time. Furthermore, the ARG exchange between MPs and waters facilitated horizontal gene transfer (HGT). IntI1 and tnpA05 played the crucial roles in HGT, which was indicated by their correlated change with most ARGs; in contrast, tnpA04 showed the obvious lagging responses. The biodegradable MP of PBAT generally accumulated higher levels of most ARGs including multidrug resistant genes than the non-biodegradable MP of PET. The transient exchange of most ARGs between MPs and water implies that the on-off hitchhiking of ARGs on MPs in aquatic environment may not exert significant influence on ARG transmission. However, compared with the conventional plastics, the biodegradable MPs might pose much higher ARG dissemination risks due to the higher enrichment of ARGs particularly with people's ever-increasingly usage. Enough attention must be paid to this emerging issue.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
24
|
Membrane Supported Poly(butylene adipate-co-terephthalate) Nanofibrous Matrices As Cardiac Patch: Effect of Basement Membrane for the Fiber Deposition and Cellular Behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Quade J, López-Ibáñez S, Beiras R. Mesocosm trials reveal the potential toxic risk of degrading bioplastics to marine life. MARINE POLLUTION BULLETIN 2022; 179:113673. [PMID: 35489090 DOI: 10.1016/j.marpolbul.2022.113673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
If biodegradable plastics tackle the marine plastic pollution problem sufficiently remains questionable. To gain more insight in degradability, performance, and the impact of degradation on the toxicity, commercial bags made from two biodegradable plastics and one conventional plastic (PE) were exposed for 120 days in a mesocosm featuring benthic, pelagic, and littoral habitat simulations. Degradability was assessed as weight loss, and specimens were tested for toxicity using Paracentrotus lividus sea-urchin larvae after different exposure times. Both biodegradable bags showed degradation within 120 days, with the littoral simulation showing the highest and the pelagic simulation the lowest decay. Disregarding habitat, the home-compostable plastic showed higher marine degradation than the industrial-compostable material. The relevant initial toxicity of both biopolymers was lost within 7 days of exposure, pointing towards easily leachable chemical additives as its cause. Interestingly, littoral exposed specimens gained toxicity after 120 days, suggesting UV- induced modifications that increase biopolymer toxicity.
Collapse
Affiliation(s)
- Jakob Quade
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; ECOTOX Group, ECIMAT-CIM, Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain.
| | - Sara López-Ibáñez
- ECOTOX Group, ECIMAT-CIM, Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain
| | - Ricardo Beiras
- ECOTOX Group, ECIMAT-CIM, Universidade de Vigo, Illa de Toralla, 36331 Vigo, Galicia, Spain
| |
Collapse
|
26
|
Analysis of oligomers in poly (butylene succinate) and poly (butylene adipate-co-terephthalate). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04268-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
BOIKO V, RIABOV S, KOBRINA L, DMITRIEVA T. REVIEW OF EVALUATION METHODS FOR BIODEGRADABILITY OF POLYMERIC MATERIALS. Polym J 2022. [DOI: 10.15407/polymerj.44.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Development and further use of biodegradable polymeric materials requires prior assessment the degree of their biodegradation. There are a large number of methods developed taking into account the specifics of the destruction of polymeric materials. The purpose of this review is to systematize scientific and technical information regarding methods for assessing the biodegradation of polymeric materials. Laboratory methods of researches, including the following: influence of abiotic factors (temperature, moisture, UV irradiation), impact of microorganisms (fungi, bacteria, yeast), respiratory methods (Sturm, Zahn-Wellness, etc.), conditions of composting, enzyme analysis methods, ecotoxicity tests are given. Test methods in both aqueous and solid media are also presented. The parameters of biodegradability, which determine the degree of destruction (mass, strain strength, molecular weight distribution, temperature characteristics, macro-and microstructure of samples, etc.) or the composition and properties of the biological system in which biodegradation takes place (acidity, respiratory activity, chemical and microbiological composition of soil or other biological environment, etc.) are considered as well. Advantages of laboratory methods for studying the biodegradation of polymeric materials could be realized in the given directions: varying of the experimental conditions (temperature, humidity, UV and IR radiation, the presence of aggressive media, etc.), biochemical compositions of the environment; study of the ability of individual strains of microorganisms to dispose of polymer composites and targeted selection of the most active microbial associations (in particular, for the manufacture of special biocomposts); utilize of simple and fast methodical approaches and modern devices for evaluation experiments. However, laboratory methods do not always allow modeling a set of endogenous and exogenous factors that define the process of biodegradation in the natural environment. Therefore, this review also considers methods for assessing biodegradation in the environment. So, the essence of the test regarding the samples’ burial in the ground is given. International standards governing methods for assessing the biodegradability of organic substances and polymeric materials are summarized. Applying different test methods, one can evaluate the whole process of biodegradation of polymeric materials, consisting of several stages, which occur regardless the type of microorganisms and accompanying abiotic factors, and can be represented as follows: adhesion → colonization → biodeterioration → biofragmentation → assimilation → mineralization. Thus, the adhesion and colonization of microorganisms can be estimated by visual, bioindicator and spectral methods. Abiotic degradation and biodeterioration are associated with physical tests (e.g., thermal and physico-mechanical). Biofragmentation is detected by identifying fragments of lower molecular weight (i.e. by chromatographic methods). In turn, assimilation is assessed by the amount of metabolites produced using, for example, respirometric methods or involving analysis of microbial biomass (e.g., macroscopic and microscopic observations). The most productive should be considered a comprehensive approach to the study of biodegradation of polymers. To determine the reliable kinetic parameters and link the mechanism of this process, it is necessary to carry out a comparative analysis of the results of physical, chemical, microbiological experiments, which are carried out in both laboratory and natural conditions.
Collapse
|
28
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
29
|
Polymer pollution and its solutions with special emphasis on Poly (butylene adipate terephthalate (PBAT)). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04065-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Screening and characterization of novel lipase producing Bacillus species from agricultural soil with high hydrolytic activity against PBAT poly (butylene adipate co terephthalate) co-polyesters. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Zubkiewicz A, Szymczyk A, Sablong RJ, Soccio M, Guidotti G, Siracusa V, Lotti N. Bio-based aliphatic/aromatic poly(trimethylene furanoate/sebacate) random copolymers: Correlation between mechanical, gas barrier performances and compostability and copolymer composition. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. CHEMSUSCHEM 2021; 14:4167-4175. [PMID: 34363734 PMCID: PMC8518687 DOI: 10.1002/cssc.202101226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Indexed: 05/16/2023]
Abstract
Nowadays the issues related to the end of life of traditional plastics are very urgent due to the important pollution problems that plastics have caused. Biodegradable plastics can help to try to mitigate these problems, but even bioplastics need much attention to carefully evaluate the different options for plastic waste disposal. In this Minireview, three different end-of-life scenarios (composting, recycling, and upcycling) were evaluated in terms of literature review. As a result, the ability of bioplastics to be biodegraded by composting has been related to physical variables and materials characteristics. Hence, it is possible to deduce that the process is mature enough to be a good way to minimize bioplastic waste and valorize it for the production of a fertilizer. Recycling and upcycling options, which could open up many interesting new scenarios for the production of high-value materials, are less studied. Research in this area can be strongly encouraged.
Collapse
Affiliation(s)
- Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Greta Giacobazzi
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
33
|
Ellingford C, Samantaray PK, Farris S, McNally T, Tan B, Sun Z, Huang W, Ji Y, Wan C. Reactive extrusion of biodegradable
PGA
/
PBAT
blends to enhance flexibility and gas barrier properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry UK
| | - Paresh Kumar Samantaray
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry UK
| | - Stefano Farris
- Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
| | - Tony McNally
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry UK
| | - Bowen Tan
- PJIM Polymer Scientific Co., Ltd. Shanghai China
| | - Zhaoyang Sun
- PJIM Polymer Scientific Co., Ltd. Shanghai China
| | - Weijie Huang
- PJIM Polymer Scientific Co., Ltd. Shanghai China
| | - Yang Ji
- PJIM Polymer Scientific Co., Ltd. Shanghai China
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick Coventry UK
| |
Collapse
|
34
|
Meyer-Cifuentes IE, Öztürk B. Mle046 Is a Marine Mesophilic MHETase-Like Enzyme. Front Microbiol 2021; 12:693985. [PMID: 34381429 PMCID: PMC8351946 DOI: 10.3389/fmicb.2021.693985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulation of plastics in the oceans presents a major threat to diverse ecosystems. The introduction of biodegradable plastics into the market aims to alleviate the ecological burden caused by recalcitrant plastics. Poly (butylene adipate-co-terephthalate) (PBAT) is a biodegradable commercial plastic that can be biodegraded similarly to polyethylene terephthalate (PET) by PETase-like enzymes and MHETases. The role of MHETases is to hydrolyze the intermediate degradation product of PET, mono-2-hydroxyethyl terephthalate (MHET) to its monomers. We recently identified a homolog of the MHETase of the PET-degrading bacterium Ideonella sakaiensis, Mle046, from a marine microbial consortium. In this consortium, Mle046 was highly expressed when a PBAT-based blend film (PF) was supplied as the sole carbon source. In this study, we recombinantly expressed and biochemically characterized Mle046 under different conditions. Mle046 degrades MHET but also 4-(4-hydroxybutoxycarbonyl) benzoic acid (Bte), the intermediate of PF degradation. Mle046 is a mesophilic enzyme adapted to marine conditions, which rapidly degrades MHET to terephthalate and ethylene glycol at temperatures between 20 and 40°C. Mle046 degradation rates were similar for Bte and MHET. Despite its mesophilic tendency, Mle046 retains a considerable amount of activity at temperatures ranging from 10 to 60°C. In addition, Mle046 is active at a range of pH values from 6.5 to 9. These characteristics make Mle046 a promising candidate for biotechnological applications related to plastic recycling.
Collapse
Affiliation(s)
- Ingrid E Meyer-Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
35
|
Chen H, Wang F, Chen H, Fang H, Feng W, Wei Y, Wang F, Su H, Mi Y, Zhou M, Li X, Doni S, Corti A. Specific biotests to assess eco-toxicity of biodegradable polymer materials in soil. J Environ Sci (China) 2021; 105:150-162. [PMID: 34130832 DOI: 10.1016/j.jes.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Eco-toxicity investigation of polymer materials was considered extremely necessary for their potential menace, which was widely use as mulching materials in agricultural. In this study, polyethylene (PE), polystyrene (PS) and synthetic biomaterials-Ecoflex and cellulose were applying into soil cultivated with two potential indicator plants species: oat (Avena sativa) and red radish (Raphanus sativum). Variety of chemical, biochemical parameters and enzyme activity in soil were proved as effective approach to evaluate polymers phytotoxicity in plant-soil mesocosm. The F-value of biomass, pH, heavy metal and electoral conductivity of Raphanus behaved significant different from T0. Significant analysis results indicated biodegradation was fast in PE than PS, besides, heavy metals were dramatically decrease in the end implied the plant absorption may help decrease heavy metal toxicity. The increase value at T2 of Dehydrogenase activity (0.84 higher than average value for Avena & 0.91 higher for Raphanus), Metabolic Index (3.12 higher than average value for Avena & 3.81 higher for Raphanus) means during soil enzyme activity was promoted by biodegradation for its heterotrophic organisms' energy transportation was stimulated. Statistics analysis was carried on Biplot PC1 (24.2% of the total variance), PC2 (23.2% of the total variance), versus PC3 (22.8% of the total variance), which indicated phosphatase activity and metabolic index was significant correlated, and high correlation of ammonium and protease activity. Furthermore, the effects were more evident in Raphanus treatments than in Avena, suggesting the higher sensitivity of Raphanus to polymers treatment, which indicate biodegradation of polymers in Raphanus treatment has produced intermediate phytotoxic compounds.
Collapse
Affiliation(s)
- Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - HongDa Fang
- Water Treatment Engineering Research Center of Jimei University, Fujian 361021, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China.
| | - FanFan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - HaiLei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - YiDong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - XinRu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Serena Doni
- Eco-toxicology Laboratory, National Research Council (CNR)-Institute of Ecosystem Study (ISE), Via Moruzzi 1, Pisa 56124, Italy
| | - Andrea Corti
- INSTM Unit, Department of Chemistry and Industrial Chemistry, University of Pisa, via Risorgimento 35, 56126, Italy BIOlab, via Vecchia Livornese 1291 Loc. S. Piero a Grado (Pi), Pisa 56122, Italy
| |
Collapse
|
36
|
Ahmed MB, Rahman MS, Alom J, Hasan MS, Johir MAH, Mondal MIH, Lee DY, Park J, Zhou JL, Yoon MH. Microplastic particles in the aquatic environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145793. [PMID: 33631597 DOI: 10.1016/j.scitotenv.2021.145793] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) pollution has become one of the most severe environmental concerns today. MPs persist in the environment and cause adverse effects in organisms. This review aims to present a state-of-the-art overview of MPs in the aquatic environment. Personal care products, synthetic clothing, air-blasting facilities and drilling fluids from gas-oil industries, raw plastic powders from plastic manufacturing industries, waste plastic products and wastewater treatment plants act as the major sources of MPs. For MPs analysis, pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), Py-MS methods, Raman spectroscopy, and FT-IR spectroscopy are regarded as the most promising methods for MPs identification and quantification. Due to the large surface area to volume ratio, crystallinity, hydrophobicity and functional groups, MPs can interact with various contaminants such as heavy metals, antibiotics and persistent organic contaminants. Among different physical and biological treatment technologies, the MPs removal performance decreases as membrane bioreactor (> 99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (> 90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separations, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of MP removal. Hybrid treatment technologies show the highest removal efficacies of MPs. Finally, future research directions for MPs are elaborated.
Collapse
Affiliation(s)
- Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Md Saifur Rahman
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jahangir Alom
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M A H Johir
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - M Ibrahim H Mondal
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Da-Young Lee
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaeil Park
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia.
| | - Myung-Han Yoon
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
37
|
DSouza GC, Sheriff RS, Ullanat V, Shrikrishna A, Joshi AV, Hiremath L, Entoori K. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon 2021; 7:e07008. [PMID: 34036194 PMCID: PMC8138607 DOI: 10.1016/j.heliyon.2021.e07008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
Low-Density polyethylene is subject to biodegradation using a fungal consortium comprising of Aspergillus niger, Aspergillus flavus and Aspergillus oryzae under laboratory conditions. The extent of biodegradation has been compared with the use of potato dextrose broth and czapek dox broth media and also in the presence and absence of Tween 80 additive. Biodegradation was performed replacing the sucrose in czapek dox broth with shredded Low-Density polyethylene as well. The biodegradation was carried out for a period of 55 days. The degree of biodegradation has been analyzed using the loss of weight, FT-IR, and SEM analysis. A maximum weight loss of 26.15% was obtained by using potato dextrose broth over a period of 55 days.
Collapse
Affiliation(s)
- Glen Cletus DSouza
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ryna Shireen Sheriff
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Varun Ullanat
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Aniruddh Shrikrishna
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA 32603
| | - Anupama V Joshi
- Department of Chemical Engineering, R V College of Engineering, Bengaluru, 560059 India
| | - Lingayya Hiremath
- Department of Biotechnology, R V College of Engineering, Bengaluru, 560059 India
| | - Keshamma Entoori
- Department of Biochemistry, Maharani's Science College for Women, Bengaluru, 560001 India
| |
Collapse
|
38
|
Pokhrel S, Sigdel A, Lach R, Slouf M, Sirc J, Katiyar V, Bhattarai DR, Adhikari R. Starch-based biodegradable film with poly(butylene adipate- co-terephthalate): preparation, morphology, thermal and biodegradation properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1920838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shanta Pokhrel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Amrita Sigdel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Ralf Lach
- PolymerService GmbH Merseburg, Merseburg, Germany
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Guwahati, India
| | - Dhruba Raj Bhattarai
- National Outreach Research Centre, Nepal Agricultural Research Council (NARC), Lalitpur, Nepal
| | | |
Collapse
|
39
|
Affiliation(s)
- Jonathan M. Millican
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
40
|
Cai W, Liu P, Bai S, Li S. A one‐step method to manufacture biodegradable poly (butylene adipate‐co‐terephthalate) bead foam parts. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenrui Cai
- School of Chemical Engineering, Sichuan University Chengdu China
| | - Pengju Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu China
| | - Sai Li
- School of Chemical Engineering, Sichuan University Chengdu China
| |
Collapse
|
41
|
Kan Y, He L, Luo Y, Bao R. IsPETase Is a Novel Biocatalyst for Poly(ethylene terephthalate) (PET) Hydrolysis. Chembiochem 2021; 22:1706-1716. [PMID: 33434375 DOI: 10.1002/cbic.202000767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Indexed: 02/05/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, but also a major cause of plastic pollution. Because the chemical degradation of PET would be uneconomical and rather burdensome, considerable efforts have been devoted to exploring enzymatic processes for the disposal of PET waste. Many PET-hydrolyzing enzymes have been reported in recent decades, some of which demonstrate excellent potential for industrial applications. This review sets out to summarize the state of investigation into IsPETase, a cutinase-like enzyme from Ideonella sakaiensis possessing ability to degrade crystalline PET, and to gain further insight into the structure-function relationship of IsPETase. Benefiting from the continuing identification of novel cutinase-like proteins and growing availability of the engineered IsPETase, we may anticipate future developments in this type of enzyme would generate suitable biocatalyst for industrial use.
Collapse
Affiliation(s)
- Yeyi Kan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| | - Lihui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| | - Yunzi Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| |
Collapse
|
42
|
Soulenthone P, Tachibana Y, Suzuki M, Mizuno T, Ohta Y, Kasuya KI. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the mesophilic actinobacteria Rhodococcus fascians. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Anderson G, Shenkar N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115364. [PMID: 33152630 DOI: 10.1016/j.envpol.2020.115364] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 05/22/2023]
Abstract
With conventional plastics posing a great threat to marine organisms, and potentially also to humans, bio-based, biodegradable plastics are being offered as an ecological solution by which to reduce the environmental impact. Inside compost facilities, bioplastics that comply with the EN 13432:2000 international standard biodegrade almost completely within 180 days. However, outside compost facilities, and specifically in marine environments, these bioplastics may have a similar effect to that of fossil-fuel based plastics. Here we investigated the effects of polyethylene terephthalate (PET) and polylactic acid (PLA) single-use cups and plates on a solitary ascidian's biological and ecological features. Both PET and PLA microparticles reduced the fertilization rate of Microcosmus exasperatus, with no significant difference between materials. Accumulation rates in adult M. exasperatus exposed to micronized PET and PLA particles at two concentrations were similar for both the bioplastic material and the conventional plastic particles, with no significant difference between the two materials. A microbial-based digestive protocol was developed in order to recover the bioplastic material from ascidian tissue and reduce any material-loss caused by the known digestion protocols. Finally, PET plates submerged for three months in the Red Sea exhibited a significantly higher community richness and cover area in comparison to PLA plates, which did not provide a firm substrate for settlers. Indeed, coverage by the solitary ascidian Herdmania momus was significantly higher on PET plates. The current study demonstrates that discarded bioplastic products may have similar effects to those of conventional plastics on marine organism fertilization and biological accumulation, emphasizing the need to revise both the production and marketing of "biodegradable" and "compostable" plastics in order to prevent a further negative impact on ecosystems due to the mismanagement of bioplastic products.
Collapse
Affiliation(s)
- Guillermo Anderson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
44
|
Characterization of a mesophilic actinobacteria that degrades poly(butylene adipate-co-terephthalate). Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Šerá J, Kadlečková M, Fayyazbakhsh A, Kučabová V, Koutný M. Occurrence and Analysis of Thermophilic Poly(butylene adipate-co-terephthalate)-Degrading Microorganisms in Temperate Zone Soils. Int J Mol Sci 2020; 21:ijms21217857. [PMID: 33113973 PMCID: PMC7660229 DOI: 10.3390/ijms21217857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
The ubiquity and character of thermophilic poly(butylene adipate-co-terephthalate) (PBAT)-degrading microorganisms in soils were investigated and compared to the process in an industrial composting plant. PBAT degraders were sought in 41 temperate zone soils. No mesophilic degraders were found by the employed method, but roughly 102 colony-forming units (CFUs) of thermophilic degraders per gram of soil were found in nine soils, and after an enrichment procedure, the PBAT-degrading consortia were isolated from 30 out of 41 soils. Thermophilic actinomycetes, Thermobispora bispora in particular, together with bacilli proved to be the key constituents of the isolated and characterized PBAT-degrading consortia, with bacilli comprising from about 30% to over 90% of the retrieved sequences. It was also shown that only consortia containing both constituents were able to decompose PBAT. For comparison, a PBAT film together with two types of PBAT/starch films were subjected to biodegradation in compost and the degrading microorganisms were analyzed. Bacilli and actinobacteria were again the most common species identified on pure PBAT film, especially at the beginning of biodegradation. Later, the composition of the consortia on all three tested materials became very similar and more diverse. Since waste containing PBAT-based materials is often intended to end up in composting plants, this study increases our confidence that thermophilic PBAT degraders are rather broadly present in the environment and the degradation of the material during the composting process should not be limited by the absence of specific microorganisms.
Collapse
Affiliation(s)
- Jana Šerá
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryka Square 5555, 760 01 Zlín, Czech Republic; (J.Š.); (V.K.); (M.K.)
| | - Markéta Kadlečková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryka Square 5555, 760 01 Zlín, Czech Republic;
| | - Ahmad Fayyazbakhsh
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryka Square 5555, 760 01 Zlín, Czech Republic; (J.Š.); (V.K.); (M.K.)
- Correspondence: ; Tel.: +420-776847-055
| | - Veronika Kučabová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryka Square 5555, 760 01 Zlín, Czech Republic; (J.Š.); (V.K.); (M.K.)
| | - Marek Koutný
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, T. G. Masaryka Square 5555, 760 01 Zlín, Czech Republic; (J.Š.); (V.K.); (M.K.)
| |
Collapse
|
46
|
Botaro VR, de Freitas RRM, do Carmo KP, Raimundo IF. A simple and efficient technique to prepare aromatic polyhydroxibutirate/polybutylene adipate terephthalate blends. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03378-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Souza PMS, Sommaggio LRD, Marin-Morales MA, Morales AR. PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. CHEMOSPHERE 2020; 256:126985. [PMID: 32445994 DOI: 10.1016/j.chemosphere.2020.126985] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 05/06/2023]
Abstract
Biodegradable mulch films are an alternative to polyethylene films used in agriculture for weed control, improving crop productivity. This change could minimize the residue production and costs related to the final disposal. Nevertheless, the environmental safety of these biodegradable products is scarcely investigated. In this work, samples of poly(butylene adipate-co-terephthalate)-PBAT mulch films, with and without UV stabilizer additives, were prepared. Aqueous extracts of soil samples, where mulch films were disposed, were investigated using bioassays with Lactuca sativa, Allium cepa, and cell culture HepG2/C3A. As PBAT is expected to suffer photodegradation and biodegradation, soil samples mixed with films before and after these processes were evaluated. Soil aqueous extracts promoted root grown (mainly hypocotyl) of L. sativa, probably due to presence of nutrients. So, to evaluate toxicity potential, in this case it was necessary to use aqueous extract prepared with soil instead of ultrapure water as the control. After doing this analysis it was observed that no adverse impacts due to PBAT films occurred. No chromosomal abnormalities were observed in A. cepa bioassay for any of tested samples. The absence of genotoxic potential was confirmed by comet assay and micronucleus test using human hepatocarcinoma cell line HepG2/C3A. These results showed that the soil did not induce damage to the tested organisms, before and after degradation of PBAT films.
Collapse
Affiliation(s)
- Patrícia Moraes Sinohara Souza
- Department of Materials Engineering and Bioprocess, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Ana Rita Morales
- Department of Materials Engineering and Bioprocess, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
48
|
Golbaz R, Khoei S, Khoee S, Shirvalilou S, Safa M, Mahdavi SR, Karimi MR. Apoptosis pathway in the combined treatment of x-ray and 5-FU-loaded triblock copolymer-coated magnetic nanoparticles. Nanomedicine (Lond) 2020; 15:2255-2270. [PMID: 32975155 DOI: 10.2217/nnm-2020-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: In this study, the effects of ionizing radiation and 5-fluorouracil (5-FU)-loaded triblock copolymer-coated magnetic nanoparticles (NPs) on the induction of apoptosis in HT-29 and HCT-116 were investigated. Materials & methods: The percentage of apoptotic cells and alteration of the expression of apoptotic-related proteins were evaluated in treated cells by flow cytometry and western blot analysis, respectively. Results: Combination treatment with 5-FU and radiation had a stronger effect on decreasing Bcl-2 expression and increasing expression of Bax, cleaved caspase-9, cleaved caspase-3, cleaved PARP compared with each treatment alone. Conclusion: The combination of radiation and triblock copolymer-coated magnetic NPs as 5-FU drug carriers works by triggering apoptosis to improve in vitro treatment efficacy. Additional study may present the NPs as an effective approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Rezvan Golbaz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology & Blood Transfusion, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seied R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Karimi
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
|
50
|
Lim JY, Lee CL, Kim GH, Bang YJ, Rhim JW, Yoon KS. Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. J Dairy Sci 2020; 103:8761-8770. [PMID: 32713695 DOI: 10.3168/jds.2020-18349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022]
Abstract
Various cheese products are involved in outbreaks of listeriosis worldwide due to high consumption and prolonged refrigerated storage. The objective of this study was to determine the efficacy of using lactic acid bacteria and packaging with grapefruit seed extract (GSE) for controlling Listeria monocytogenes growth in soft cheese. Leuconostoc mesenteroides and Lactobacillus curvatus isolated from kimchi were used as a starter culture to make a soft cheese, which was inoculated with a cocktail strain of L. monocytogenes. The soft cheese was packed with low-density polyethylene, biodegradable polybutylene adipate-co-terephthalate (PBAT), low-density polyethylene with GSE, or PBAT with GSE and stored at 10°C and 15°C. Leuconostoc mesenteroides (LcM) better inhibited the growth of L. monocytogenes than Lb. curvatus. The PBAT with GSE film showed the best control for the growth of L. monocytogenes. When both LcM and PBAT with GSE were applied to the soft cheese, the growth of L. monocytogenes was inhibited significantly more than the use of LcM or PBAT with GSE alone. In all test groups, water activity, pH, and moisture on a fat-free basis decreased, and titratable acidity increased compared with the control group. These results suggest that LcM isolated from kimchi and PBAT with GSE packaging film can be used as a hurdle technology to lower the risk of L. monocytogenes in soft cheese at the retail market.
Collapse
Affiliation(s)
- J Y Lim
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - C L Lee
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - G H Kim
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Y J Bang
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - J W Rhim
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - K S Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|