1
|
Wang C, Ma C, Xu Y, Chang S, Wu H, Yan C, Chen J, Wu Y, An S, Xu J, Han Q, Jiang Y, Jiang Z, Chu X, Gao H, Zhang X, Chang Y. Dynamics of the mammalian pyruvate dehydrogenase complex revealed by in-situ structural analysis. Nat Commun 2025; 16:917. [PMID: 39843418 PMCID: PMC11754459 DOI: 10.1038/s41467-025-56171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography. The organization of peripheral E1 and E3 components varies substantially among the observed PDHcs, with an average of 21 E1 surrounding each PDHc core, and up to 12 E3 locating primarily along the pentagonal openings. In addition, we observed dynamic interactions of the substrate translocating lipoyl domains (LDs) with both E1 and E2, and the interaction interfaces were further analyzed by molecular dynamics simulations. By revealing intrinsic dynamics of PDHc peripheral compositions, our findings indicate a distinctive activity regulation mechanism, through which the number of E1, E3 and functional LDs may be coordinated to meet constantly changing demands of metabolism.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Ma
- Protein Facility, Core Facilities, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenghai Chang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunlan Yan
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongping Wu
- College of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Shaoya An
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Xu
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Han
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yujie Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yunjie Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Infectious Diseases of Sir Run Run Shaw Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Merchant S, Paul A, Reyes A, Cassidy D, Leach A, Kim D, Muh S, Grabowski G, Hoxhaj G, Zhao Z, Morrison SJ. Different effects of fatty acid oxidation on hematopoietic stem cells based on age and diet. Cell Stem Cell 2024:S1934-5909(24)00413-2. [PMID: 39708796 DOI: 10.1016/j.stem.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Fatty acid oxidation is of uncertain importance in most stem cells. We show by 14C-palmitate tracing and metabolomic analysis that hematopoietic stem/progenitor cells (HSPCs) engage in long-chain fatty acid oxidation that depends upon carnitine palmitoyltransferase 1a (CPT1a) and hydroxyacyl-CoA dehydrogenase (HADHA) enzymes. CPT1a or HADHA deficiency had little or no effect on HSPCs or hematopoiesis in young adult mice. Young HSPCs had the plasticity to oxidize other substrates, including glutamine, and compensated for loss of fatty acid oxidation by decreasing pyruvate dehydrogenase phosphorylation, which should increase function. This metabolic plasticity declined as mice aged, when CPT1a or HADHA deficiency altered hematopoiesis and impaired hematopoietic stem cell (HSC) function upon serial transplantation. A high-fat diet increased fatty acid oxidation and reduced HSC function. This was rescued by CPT1a or HADHA deficiency, demonstrating that increased fatty acid oxidation can undermine HSC function. Long-chain fatty acid oxidation is thus dispensable in young HSCs but necessary during aging and deleterious with a high-fat diet.
Collapse
Affiliation(s)
- Salma Merchant
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Animesh Paul
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda Reyes
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Cassidy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Leach
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerik Grabowski
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Wang JX, Zhang YY, Qian YC, Qian YF, Jin AH, Wang M, Luo Y, Qiao F, Zhang ML, Chen LQ, Du ZY. Inhibition of mitochondrial citrate shuttle alleviates metabolic syndromes induced by high-fat diet. Am J Physiol Cell Physiol 2024; 327:C737-C749. [PMID: 39069827 DOI: 10.1152/ajpcell.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yan-Yu Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yu-Cheng Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yi-Fan Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - An-Hui Jin
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mai Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Lavorato M, Iadarola D, Remes C, Kaur P, Broxton C, Mathew ND, Xiao R, Seiler C, Nakamaru-Ogiso E, Anderson VE, Falk MJ. dldhcri3 zebrafish exhibit altered mitochondrial ultrastructure, morphology, and dysfunction partially rescued by probucol or thiamine. JCI Insight 2024; 9:e178973. [PMID: 39163131 PMCID: PMC11457866 DOI: 10.1172/jci.insight.178973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disease caused by variants in DLD, the E3 subunit of mitochondrial α-keto (or 2-oxo) acid dehydrogenase complexes. DLD disease symptoms are multisystemic, variably manifesting as Leigh syndrome, neurodevelopmental disability, seizures, cardiomyopathy, liver disease, fatigue, and lactic acidemia. While most DLD disease symptoms are attributed to dysfunction of the pyruvate dehydrogenase complex, the effects of other α-keto acid dehydrogenase deficiencies remain unclear. Current therapies for DLD deficiency are ineffective, with no vertebrate animal model available for preclinical study. We created a viable Danio rerio (zebrafish) KO model of DLD deficiency, dldhcri3. Detailed phenotypic characterization revealed shortened larval survival, uninflated swim bladder, hepatomegaly and fatty liver, and reduced swim activity. These animals displayed increased pyruvate and lactate levels, with severe disruption of branched-chain amino acid catabolism manifest as increased valine, leucine, isoleucine, α-ketoisovalerate, and α-ketoglutarate levels. Evaluation of mitochondrial ultrastructure revealed gross enlargement, severe cristae disruption, and reduction in matrix electron density in liver, intestines, and muscle. Therapeutic modeling of candidate therapies demonstrated that probucol or thiamine improved larval swim activity. Overall, this vertebrate model demonstrated characteristic phenotypic and metabolic alterations of DLD disease, offering a robust platform to screen and characterize candidate therapies.
Collapse
Affiliation(s)
- Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Pediatrics and
| | - Donna Iadarola
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Cristina Remes
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Prabhjot Kaur
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Chynna Broxton
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Pediatrics and
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Pediatrics and
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Pediatrics and
| |
Collapse
|
5
|
Zdanowicz R, Afanasyev P, Pruška A, Harrison JA, Giese C, Boehringer D, Leitner A, Zenobi R, Glockshuber R. Stoichiometry and architecture of the human pyruvate dehydrogenase complex. SCIENCE ADVANCES 2024; 10:eadn4582. [PMID: 39018392 PMCID: PMC466950 DOI: 10.1126/sciadv.adn4582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
The pyruvate dehydrogenase complex (PDHc) is a key megaenzyme linking glycolysis with the citric acid cycle. In mammalian PDHc, dihydrolipoamide acetyltransferase (E2) and the dihydrolipoamide dehydrogenase-binding protein (E3BP) form a 60-subunit core that associates with the peripheral subunits pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3). The structure and stoichiometry of the fully assembled, mammalian PDHc or its core remained elusive. Here, we demonstrate that the human PDHc core is formed by 48 E2 copies that bind 48 E1 heterotetramers and 12 E3BP copies that bind 12 E3 homodimers. Cryo-electron microscopy, together with native and cross-linking mass spectrometry, confirmed a core model in which 8 E2 homotrimers and 12 E2-E2-E3BP heterotrimers assemble into a pseudoicosahedral particle such that the 12 E3BP molecules form six E3BP-E3BP intertrimer interfaces distributed tetrahedrally within the 60-subunit core. The even distribution of E3 subunits in the peripheral shell of PDHc guarantees maximum enzymatic activity of the megaenzyme.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Julian A. Harrison
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Christoph Giese
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Daniel Boehringer
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
7
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of pyruvate-dependent lactate metabolism by hexokinases in single cells. PLoS One 2023; 18:e0286660. [PMID: 37917627 PMCID: PMC10621844 DOI: 10.1371/journal.pone.0286660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Arp NL, Seim G, Josephson J, Fan J. Reactive nitrogen species inhibit branched chain alpha-ketoacid dehydrogenase complex and impact muscle cell metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551364. [PMID: 37577551 PMCID: PMC10418113 DOI: 10.1101/2023.07.31.551364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Branched chain α-ketoacid dehydrogenase complex (BCKDC) is the rate limiting enzyme in branched chain amino acid (BCAA) catabolism, a metabolic pathway with great importance for human health. BCKDC belongs to the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC). Here we revealed that BCKDC can be substantially inhibited by reactive nitrogen species (RNS) via a mechanism similar to what we recently discovered with PDHC and OGDC - modifying the lipoic arm on its E2 subunit. In addition, we showed that such reaction between RNS and the lipoic arm of the E2 subunit can further promote inhibition of the E3 subunits of α-ketoacid dehydrogenase complexes. We examined the impacts of this RNS-mediated BCKDC inhibition in muscle cells, an important site of BCAA metabolism, and demonstrated that the nitric oxide production induced by cytokine stimulation leads to a strong inhibition of BCKDC activity and BCAA oxidation in myotubes and myoblasts. More broadly, nitric oxide production reduced the level of functional lipoic arms across the multiple α-ketoacid dehydrogenases and led to intracellular accumulation of their substrates (α-ketoacids), reduction of their products (acyl-CoAs), and a lower cellular energy charge. This work revealed a new mechanism for BCKDC regulation, demonstrated its biological significance, and elucidated the mechanistic connection between RNS-driven inhibitory modifications on the E2 and E3 subunits of α-ketoacid dehydrogenases. Together with previous work, we revealed a general mechanism for RNS to inhibit all α-ketoacid dehydrogenases, which has numerous physiological implications across multiple cell types.
Collapse
Affiliation(s)
- Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI 53715
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, 53715
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Gretchen Seim
- Morgridge Institute for Research, Madison, WI 53715
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715
| | | | - Jing Fan
- Morgridge Institute for Research, Madison, WI 53715
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, 53715
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
9
|
Zhang X, Zhou Y, Hu J, Yu X, Xu H, Ba Z, Zhang H, Sun Y, Wang R, Du X, Mou R, Li X, Zhu J, Xie R. Comprehensive analysis identifies cuproptosis-related gene DLAT as a potential prognostic and immunological biomarker in pancreatic adenocarcinoma. BMC Cancer 2023; 23:560. [PMID: 37330494 DOI: 10.1186/s12885-023-11042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuxin Zhou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiahe Hu
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuefeng Yu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichang Ba
- Medical Imaging Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Haoxin Zhang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanan Sun
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Rongfang Wang
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinlian Du
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ruishu Mou
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xuedong Li
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiuxin Zhu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
10
|
Kim MJ, Lee H, Chanda D, Thoudam T, Kang HJ, Harris RA, Lee IK. The Role of Pyruvate Metabolism in Mitochondrial Quality Control and Inflammation. Mol Cells 2023; 46:259-267. [PMID: 36756776 PMCID: PMC10183795 DOI: 10.14348/molcells.2023.2128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 02/10/2023] Open
Abstract
Pyruvate metabolism, a key pathway in glycolysis and oxidative phosphorylation, is crucial for energy homeostasis and mitochondrial quality control (MQC), including fusion/fission dynamics and mitophagy. Alterations in pyruvate flux and MQC are associated with reactive oxygen species accumulation and Ca2+ flux into the mitochondria, which can induce mitochondrial ultrastructural changes, mitochondrial dysfunction and metabolic dysregulation. Perturbations in MQC are emerging as a central mechanism for the pathogenesis of various metabolic diseases, such as neurodegenerative diseases, diabetes and insulin resistance-related diseases. Mitochondrial Ca2+ regulates the pyruvate dehydrogenase complex (PDC), which is central to pyruvate metabolism, by promoting its dephosphorylation. Increase of pyruvate dehydrogenase kinase (PDK) is associated with perturbation of mitochondria-associated membranes (MAMs) function and Ca2+ flux. Pyruvate metabolism also plays an important role in immune cell activation and function, dysregulation of which also leads to insulin resistance and inflammatory disease. Pyruvate metabolism affects macrophage polarization, mitochondrial dynamics and MAM formation, which are critical in determining macrophage function and immune response. MAMs and MQCs have also been intensively studied in macrophage and T cell immunity. Metabolic reprogramming connected with pyruvate metabolism, mitochondrial dynamics and MAM formation are important to macrophages polarization (M1/M2) and function. T cell differentiation is also directly linked to pyruvate metabolism, with inhibition of pyruvate oxidation by PDKs promoting proinflammatory T cell polarization. This article provides a brief review on the emerging role of pyruvate metabolism in MQC and MAM function, and how dysfunction in these processes leads to metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| | - Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| | - Hyeon-Ji Kang
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
11
|
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Sut S, Moro S, Gandin V, Diana P. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 21:md21050288. [PMID: 37233482 DOI: 10.3390/md21050288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
12
|
Hammerling U, Kim YK, Quadro L. Quantum chemistry rules retinoid biology. Commun Biol 2023; 6:227. [PMID: 36854887 PMCID: PMC9974979 DOI: 10.1038/s42003-023-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
This Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload. In contrast, the natural retinoid anhydroretinol irreversibly activates PKCδ. Its elongated conjugated-double-bond system limits the energy quantum absorbed by RET. Consequently, while capable of triggering the exergonic activating pathway, anhydroretinol fails to activate the endergonic silencing path, trapping PKCδ in the ON position and causing harmful levels of reactive oxygen species. However, physiological retinol levels displace anhydroretinol, buffer cyotoxicity and potentially render anhydroretinol useful for rapid energy generation. Intriguingly, apocarotenoids, the primary products of the mitochondrial β-carotene,9'-10'-oxygenase, have all the anhydroretinol-like features, including modulation of energy homeostasis. We predict significant conceptual advances to stem from further understanding of the retinoid-catalyzed RET.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
Huot JR, Baumfalk D, Resendiz A, Bonetto A, Smuder AJ, Penna F. Targeting Mitochondria and Oxidative Stress in Cancer- and Chemotherapy-Induced Muscle Wasting. Antioxid Redox Signal 2023; 38:352-370. [PMID: 36310444 PMCID: PMC10081727 DOI: 10.1089/ars.2022.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 12/31/2022]
Abstract
Significance: Cancer is frequently associated with the early appearance of cachexia, a multifactorial wasting syndrome. If not present at diagnosis, cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing the direct cause of death in up to one-third of all cancer patients. Cachexia, within its multiorgan affection, is characterized by severe loss of muscle mass and function, representing the most relevant subject of preclinical and clinical investigation. Recent Advances: The pathogenesis of muscle wasting in cancer- and chemotherapy-induced cachexia is complex, and encompasses heightened protein catabolism and reduced anabolism, disrupted mitochondria and energy metabolism, and even neuromuscular junction dismantling. The mechanisms underlying these alterations are still controversial, especially concerning the molecular drivers that could be targeted for anticachexia therapies. Inflammation and mitochondrial oxidative stress are among the principal candidates; the latter being extensively discussed in the present review. Critical Issues: Several approaches have been tested to modulate the redox homeostasis in tumor hosts, and to counteract cancer- and chemotherapy-induced muscle wasting, from exercise training to distinct classes of direct or indirect antioxidants. We herein report the most relevant results obtained from both preclinical and clinical trials. Future Directions: Including the assessment and the treatment of altered redox balance in the clinical management of cancer patients is still a big challenge. The available evidence suggests that fortifying the antioxidant defenses by either pharmacological or nonpharmacological strategies will likely improve cachexia and eventually the outcome of a broad cancer patient population. Antioxid. Redox Signal. 38, 352-370.
Collapse
Affiliation(s)
- Joshua R. Huot
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dryden Baumfalk
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Aridai Resendiz
- Department of Oncology, Surgical Oncology and Digestive Surgery Unit, S Luigi University Hospital, University of Torino, Torino, Italy
| | - Andrea Bonetto
- Department of Surgery and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Otolaryngology–Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, and Indiana University School of Medicine, Indianapolis, Indiana, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Usefulness of pyruvate dehydrogenase-E1α expression to determine SUVmax cut-off value of [ 18F]FDG-PET for predicting lymph node metastasis in lung cancer. Sci Rep 2023; 13:1565. [PMID: 36709375 PMCID: PMC9884208 DOI: 10.1038/s41598-023-28805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
A more accurate cut-off value of maximum standardized uptake value (SUVmax) in [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) is necessary to improve preoperative nodal staging in patients with lung cancer. Overall, 223 patients with lung cancer who had undergone [18F]FDG-PET/CT within 2 months before surgery were enrolled. The expression of glucose transporter-1, pyruvate kinase-M2, pyruvate dehydrogenase-E1α (PDH-E1α), and carbonic anhydrase-9 was evaluated by immunohistochemistry. Clinicopathological background was retrospectively investigated. According to PDH-E1α expression in primary lesion, a significant difference (p = 0.021) in SUVmax of metastatic lymph nodes (3.0 with PDH-positive vs 4.5 with PDH-negative) was found, but not of other enzymes. When the cut-off value of SUVmax was set to 2.5, the sensitivity and specificity were 0.529 and 0.562, respectively, and the positive and negative predictive values were 0.505 and 0.586, respectively. However, when the cut-off value of SUVmax was set according to PDH-E1α expression (2.7 with PDH-positive and 3.2 with PDH-negative), the sensitivity and specificity were 0.441 and 0.868, respectively, and the positive and negative predictive values were 0.738 and 0.648, respectively. The SUVmax cut-off value for metastatic lymph nodes depends on PDH-E1α expression in primary lung cancer. The new SUVmax cut-off value according to PDH-E1α expression showed higher specificity for [18F]FDG-PET in the diagnosis of lymph node metastasis.
Collapse
|
15
|
Martins Pinto M, Paumard P, Bouchez C, Ransac S, Duvezin-Caubet S, Mazat JP, Rigoulet M, Devin A. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148931. [PMID: 36367492 DOI: 10.1016/j.bbabio.2022.148931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells display an altered energy metabolism, which was proposed to be the root of cancer. This early discovery was done by O. Warburg who conducted one of the first studies of tumor cell energy metabolism. Taking advantage of cancer cells that exhibited various growth rates, he showed that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation. Warburg's results and hypothesis generated controversies that are persistent to this day. It is thus of great importance to understand the mechanisms by which cancer cells can reversibly regulate the two pathways of their energy metabolism as well as the functioning of this metabolism in cell proliferation. In this review, we discuss of the origin of the decrease in cell respiratory rate, whether the Warburg effect is mandatory for an increased cell proliferation rate, the consequences of this effect on two major players of cell energy metabolism that are ATP and NADH, and the role of the microenvironment in the regulation of cellular respiration and metabolism both in cancer cell and in yeast.
Collapse
Affiliation(s)
- M Martins Pinto
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; CBMN, Allée de Geoffroy St Hilaire Bât, B1433600 Pessac, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
16
|
Luo Y, Zhou W, Li R, Limbu SM, Qiao F, Chen L, Zhang M, Du ZY. Inhibition of pyruvate dehydrogenase kinase improves carbohydrate utilization in Nile tilapia by regulating PDK2/4-PDHE1α axis and insulin sensitivity. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:25-37. [PMID: 36016966 PMCID: PMC9382415 DOI: 10.1016/j.aninu.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis plays an important role in regulating glucose metabolism in mammals. However, the regulatory function of PDKs-PDHE1α axis in the glucose metabolism of fish is not well known. This study determined whether PDKs inhibition could enhance PDHE1α activity, and improve glucose catabolism in fish. Nile tilapia fingerlings (1.90 ± 0.11 g) were randomly divided into 4 treatments in triplicate (30 fish each) and fed control diet without dichloroacetate (DCA) (38% protein, 7% lipid and 45% corn starch) and the control diet supplemented with DCA, which inhibits PDKs through binding the allosteric sites, at 3.75 (DCA3.75), 7.50 (DCA7.50) and 11.25 g/kg (DCA11.25), for 6 wk. The results showed that DCA3.75, DCA7.50 and DCA11.25 significantly increased weight gain, carcass ratio and protein efficiency ratio (P < 0.05) and reduced feed efficiency (P < 0.05) of Nile tilapia. To investigate the effects of DCA on growth performance of Nile tilapia, we selected the lowest dose DCA3.75 for subsequent analysis. Nile tilapia fed on DCA3.75 significantly reduced the mesenteric fat index, serum and liver triglyceride concentration and total lipid content in whole fish, and down-regulated the expressions of genes related to lipogenesis (P < 0.05) compared to the control. The DCA3.75 treatment significantly improved glucose oxidative catabolism and glycogen synthesis in the liver, but significantly reduced the conversion of glucose to lipid (P < 0.05). Furthermore, the DCA3.75 treatment significantly decreased the PDK2/4 gene and protein expressions (P < 0.05), accordingly stimulated PDHE1α activity by decreasing the phosphorylated PDHE1α protein level. In addition, DCA3.75 treatment significantly increased the phosphorylated levels of key proteins involved in insulin signaling pathway and glycogen synthase kinase 3β (P < 0.05). Taken together, the present study demonstrates that PDK2/4 inhibition by using DCA promotes glucose utilization in Nile tilapia by activating PDHE1α and improving insulin sensitivity. Our study helps to understand the regulatory mechanism of glucose metabolism for improving dietary carbohydrate utilization in farmed fish.
Collapse
Affiliation(s)
- Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenhao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruixin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Samwel M. Limbu
- University of Dar Es Salaam, Department of Aquaculture Technology, Dar Es Salaam 60091, Tanzania
- UDSM-ECNU Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Dar Es Salaam 60091, Tanzania
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
- ECNU-UDSM Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Shanghai 200241, China
| |
Collapse
|
17
|
Arai H, Inaba A, Ikezaki S, Kumakami-Sakano M, Azumane M, Ohshima H, Morikawa K, Harada H, Otsu K. Energy metabolic shift contributes to the phenotype modulation of maturation stage ameloblasts. Front Physiol 2022; 13:1062042. [PMID: 36523561 PMCID: PMC9745043 DOI: 10.3389/fphys.2022.1062042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.
Collapse
Affiliation(s)
- Haruno Arai
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Akira Inaba
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Marii Azumane
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
18
|
Mannelli M, Gamberi T, Garella R, Magherini F, Squecco R, Fiaschi T. Pyruvate prevents the onset of the cachectic features and metabolic alterations in myotubes downregulating
STAT3
signaling. FASEB J 2022; 36:e22598. [DOI: 10.1096/fj.202200848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Michele Mannelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Rachele Garella
- Dipartimento di Medicina Sperimentale e Clinica Università degli Studi di Firenze Florence Italy
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| | - Roberta Squecco
- Dipartimento di Medicina Sperimentale e Clinica Università degli Studi di Firenze Florence Italy
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche “Mario Serio” Università degli Studi di Firenze Florence Italy
| |
Collapse
|
19
|
Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness. Blood 2022; 140:1686-1701. [PMID: 35881840 DOI: 10.1182/blood.2022016112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.
Collapse
|
20
|
Changes in the Expression of MIF and Other Key Enzymes of Energy Metabolism in the Myocardia of Broiler Chickens with Ascites Syndrome. Animals (Basel) 2022; 12:ani12192488. [PMID: 36230229 PMCID: PMC9558964 DOI: 10.3390/ani12192488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Ascites syndrome (AS) is a metabolic disease observed mainly in fast-growing broilers. The heart is one of the most important target organs of the disease. The goal of this study was to evaluate the metabolic function of the right ventricles in clinical ascitic broilers. HE staining was performed to observe histopathological changes in the right ventricle of the heart, while Western blotting was used to detect the protein expression levels of macrophage migration inhibitory factor (MIF) and phosphorylated AMP-activated protein kinase (p-AMPK), as well as other key enzymes of energy metabolic pathways (i.e., glycolytic pathway: HK2, PFK1, PFK2, and PKM2; the tricarboxylic acid cycle (TCA cycle) pathway: OGDH, IDH2, and CS; and the fatty acid oxidation pathway: CPT-1A and ACC) in myocardial tissue. The histopathological examination of the myocardia of ascitic broilers revealed disoriented myocardial cells in the myofibril structure and a large number of blood cells deposited in the intermyofibrillar vessels, suggesting right heart failure in ascitic broilers. The Western blotting analysis demonstrated significantly increased levels of MIF and p-AMPK in the myocardia of ascitic broilers compared to those of the control group (p < 0.05). Additionally, the protein expression of key enzymes was dramatically increased in the glycolytic and fatty acid oxidation pathways, while the protein expression of key enzymes in the TCA cycle pathway was decreased in the ascitic broiler group. These findings suggest enhanced glycolysis and fatty acid oxidation metabolism, and a diminished TCA cycle, in the myocardia of broiler chickens with ascites syndrome.
Collapse
|
21
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Alpha-Lipoic Acid Protects Against Doxorubicin-Induced Cardiotoxicity by Regulating Pyruvate Dehydrogenase Kinase 4. Cardiovasc Toxicol 2022; 22:879-891. [PMID: 35930219 DOI: 10.1007/s12012-022-09766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
As a widely used anti-tumor anthracycline, the accumulation of Doxorubicin (DOX) in body causes irreparable cardiomyocyte damage and therefore is limited in clinical application. Strategies to prevent from DOX-associated cardiotoxicity are urgent for patients who undergo DOX-based chemotherapy. Since oxidative stress injury being the major reason for myocardial toxicity of DOX, here we demonstrated that, Alpha-lipoic acid (ALA), which is a reductive agent, plays a cardioprotective role in attenuating DOX-induced cardiotoxicity by inhibiting pyruvate dehydrogenase kinase 4 (PDK4) expression. In vivo, the beneficial effect of ALA was evidenced by increased survival rate, mechanical contraction, and oxidative phosphorylation, while decreased reactive oxidative species (ROS) and apoptosis. In vitro, PDK4 overexpression remarkably increased DOX-induced apoptosis and ROS production in H9C2 cells. Notably, the protective effect of ALA was abrogated by PDK4 overexpression. We further used PDK4 knockout mice to identify the role of PDK4 in DOX-induced cardiotoxicity. Results elicited that PDK4 deficiency showed a consistent effect in protecting DOX cardiotoxicity as ALA treatment, which was evidenced by restored redox homeostasis and mitochondrial metabolism, finally inhibited myocardial injury. In conclusion, the cardioprotective role of ALA against DOX cardiotoxicity was dependent on PDK4-mediated regulation of oxidative stress and mitochondria metabolism.
Collapse
|
23
|
Goyal M, Tomar A, Madhwal S, Mukherjee T. Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 2022; 149:273541. [PMID: 34850846 PMCID: PMC8733872 DOI: 10.1242/dev.199550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022]
Abstract
The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control. Summary: Ablation of olfactory receptor neurons reveals that odor-sensing and GABA are involved in myeloid reactive oxygen species regulation and hematopoietic growth control.
Collapse
Affiliation(s)
- Manisha Goyal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ajay Tomar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
24
|
Leuchtmann AB, Furrer R, Steurer SA, Schneider-Heieck K, Karrer-Cardel B, Sagot Y, Handschin C. Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice. J Cachexia Sarcopenia Muscle 2022; 13:1164-1176. [PMID: 35191221 PMCID: PMC8978011 DOI: 10.1002/jcsm.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interventions to preserve functional capacities at advanced age are becoming increasingly important. So far, exercise provides the only means to counteract age-related decrements in physical performance and muscle function. Unfortunately, the effectiveness of exercise interventions in elderly populations is hampered by reduced acceptance and compliance as well as disuse complications. We therefore studied whether application of interleukin-6 (IL-6), a pleiotropic myokine that is induced by skeletal muscle activity and exerts broad systemic effects in response to exercise, affects physical performance and muscle function alone or in combination with training in aged mice. METHODS Sedentary old male mice (Sed+Saline, n = 15) were compared with animals that received recombinant IL-6 (rIL-6) in an exercise-mimicking pulsatile manner (Sed+IL-6, n = 16), were trained with a moderate-intensity, low-volume endurance exercise regimen (Ex+Saline, n = 13), or were exposed to a combination of these two interventions (Ex+IL-6, n = 16) for 12 weeks. Before and at the end of the intervention, mice underwent a battery of tests to quantify endurance performance, muscle contractility in situ, motor coordination, and gait and metabolic parameters. RESULTS Mice exposed to enhanced levels of IL-6 during endurance exercise bouts showed superior improvements in endurance performance (33% more work and 12% greater peak power compared with baseline), fatigue resistance in situ (P = 0.0014 vs. Sed+Saline; P = 0.0199 vs. Sed+IL-6; and P = 0.0342 vs. Ex+Saline), motor coordination (rotarod performance, P = 0.0428), and gait (gait speed, P = 0.0053) following training. Pulsatile rIL-6 treatment in sedentary mice had only marginal effects on glucose tolerance and some gait parameters. No increase in adverse events or mortality related to rIL-6 treatment was observed. CONCLUSIONS Administration of rIL-6 paired with treadmill running bouts potentiates the adaptive response to a moderate-intensity low-volume endurance exercise regimen in old mice, while being safe and well tolerated.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves Sagot
- Sonnet Biotherapeutics CH SA, Geneva, Switzerland
| | | |
Collapse
|
25
|
Anwar S, DasGupta D, Shafie A, Alhumaydhi FA, Alsagaby SA, Shahwan M, Anjum F, Al Abdulmonem W, Sharaf SE, Imtaiyaz Hassan M. Implications of tempol in pyruvate dehydrogenase kinase 3 targeted anticancer therapeutics: Computational, spectroscopic, and calorimetric studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Acute RyR1 Ca 2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 2021; 12:7219. [PMID: 34893614 PMCID: PMC8664928 DOI: 10.1038/s41467-021-27422-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Collapse
|
27
|
Duarte IF, Caio J, Moedas MF, Rodrigues LA, Leandro AP, Rivera IA, Silva MFB. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell Mol Life Sci 2021; 78:7451-7468. [PMID: 34718827 PMCID: PMC11072406 DOI: 10.1007/s00018-021-03996-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete β-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.
Collapse
Affiliation(s)
- I F Duarte
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - J Caio
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F Moedas
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - L A Rodrigues
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - A P Leandro
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - I A Rivera
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M F B Silva
- The Research Institute for Medicines (iMed.ULisboa), Metabolism and Genetics Group, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
28
|
Mi S, Jiang H, Zhang L, Xie Z, Zhou J, Sun A, Jin H, Ge J. Regulation of Cardiac-Specific Proteins Expression by Moderate-Intensity Aerobic Exercise Training in Mice With Myocardial Infarction Induced Heart Failure Using MS-Based Proteomics. Front Cardiovasc Med 2021; 8:732076. [PMID: 34692783 PMCID: PMC8531249 DOI: 10.3389/fcvm.2021.732076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
This study aims to systematically reveal the changes in protein levels induced by regular exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid chromatography-mass spectrometry method to identify and quantify the protein profile in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated; 707 proteins down-regulated) were differentially expressed between the exercise group and the sedentary group, including numerous proteins related to energy metabolism. The significant alteration of the component (E1 component subunit alpha and subunit beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose] polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic insight of the influence of aerobic exercise on HF.
Collapse
Affiliation(s)
- Shouling Mi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hong Jin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Stomatological Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
van Doorn CLR, Schouten GK, van Veen S, Walburg KV, Esselink JJ, Heemskerk MT, Vrieling F, Ottenhoff THM. Pyruvate Dehydrogenase Kinase Inhibitor Dichloroacetate Improves Host Control of Salmonella enterica Serovar Typhimurium Infection in Human Macrophages. Front Immunol 2021; 12:739938. [PMID: 34552598 PMCID: PMC8450447 DOI: 10.3389/fimmu.2021.739938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Global increases in the prevalence of antimicrobial resistance highlight the urgent need for novel strategies to combat infectious diseases. Recent studies suggest that host metabolic pathways play a key role in host control of intracellular bacterial pathogens. In this study we explored the potential of targeting host metabolic pathways for innovative host-directed therapy (HDT) against intracellular bacterial infections. Through gene expression profiling in human macrophages, pyruvate metabolism was identified as potential key pathway involved in Salmonella enterica serovar Typhimurium (Stm) infections. Next, the effect of targeting pyruvate dehydrogenase kinases (PDKs) - which are regulators of the metabolic checkpoint pyruvate dehydrogenase complex (PDC) - on macrophage function and bacterial control was studied. Chemical inhibition of PDKs by dichloroacetate (DCA) induced PDC activation and was accompanied with metabolic rewiring in classically activated macrophages (M1) but not in alternatively activated macrophages (M2), suggesting cell-type specific effects of dichloroacetate on host metabolism. Furthermore, DCA treatment had minor impact on cytokine and chemokine secretion on top of infection, but induced significant ROS production by M1 and M2. DCA markedly and rapidly reduced intracellular survival of Stm, but interestingly not Mycobacterium tuberculosis, in human macrophages in a host-directed manner. In conclusion, DCA represents a promising novel HDT compound targeting pyruvate metabolism for the treatment of Stm infections.
Collapse
|
30
|
Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Front Cardiovasc Med 2021; 8:716213. [PMID: 34368265 PMCID: PMC8339264 DOI: 10.3389/fcvm.2021.716213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate in heart development and pathological processes mainly by silencing gene expression. Overwhelming evidence has suggested that miRNAs were involved in various cardiovascular pathological processes, including arrhythmias, ischemia-reperfusion injuries, dysregulation of angiogenesis, mitochondrial abnormalities, fibrosis, and maladaptive remodeling. Various miRNAs could regulate myocardial contractility, vascular proliferation, and mitochondrial function. Meanwhile, it was reported that miRNAs could manipulate nutrition metabolism, especially glucose and lipid metabolism, by regulating insulin signaling pathways, energy substrate transport/metabolism. Recently, increasing studies suggested that the abnormal glucose and lipid metabolism were closely associated with a broad spectrum of cardiovascular diseases (CVDs). Therefore, maintaining glucose and lipid metabolism homeostasis in the heart might be beneficial to CVD patients. In this review, we summarized the present knowledge of the functions of miRNAs in regulating cardiac glucose and lipid metabolism, as well as highlighted the miRNA-based therapies targeting cardiac glucose and lipid metabolism.
Collapse
Affiliation(s)
- Hengzhi Du
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mannelli M, Gamberi T, Magherini F, Fiaschi T. A Metabolic Change towards Fermentation Drives Cancer Cachexia in Myotubes. Biomedicines 2021; 9:biomedicines9060698. [PMID: 34203023 PMCID: PMC8234377 DOI: 10.3390/biomedicines9060698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Cachexia is a disorder associated with several pathologies, including cancer. In this paper, we describe how cachexia is induced in myotubes by a metabolic shift towards fermentation, and the block of this metabolic modification prevents the onset of the cachectic phenotype. Cachectic myotubes, obtained by the treatment with conditioned medium from murine colon carcinoma cells CT26, show increased glucose uptake, decreased oxygen consumption, altered mitochondria, and increased lactate production. Interestingly, the block of glycolysis by 2-deoxy-glucose or lactate dehydrogenase inhibition by oxamate prevents the induction of cachexia, thus suggesting that this metabolic change is greatly involved in cachexia activation. The treatment with 2-deoxy-glucose or oxamate induces positive effects also in mitochondria, where mitochondrial membrane potential and pyruvate dehydrogenase activity became similar to control myotubes. Moreover, in myotubes treated with interleukin-6, cachectic phenotype is associated with a fermentative metabolism, and the inhibition of lactate dehydrogenase by oxamate prevents cachectic features. The same results have been achieved by treating myotubes with conditioned media from human colon HCT116 and human pancreatic MIAPaCa-2 cancer cell lines, thus showing that what has been observed with murine-conditioned media is a wide phenomenon. These findings demonstrate that cachexia induction in myotubes is linked with a metabolic shift towards fermentation, and inhibition of lactate formation impedes cachexia and highlights lactate dehydrogenase as a possible new tool for counteracting the onset of this pathology.
Collapse
|
32
|
Niemi NM, Pagliarini DJ. The extensive and functionally uncharacterized mitochondrial phosphoproteome. J Biol Chem 2021; 297:100880. [PMID: 34144036 PMCID: PMC8267538 DOI: 10.1016/j.jbc.2021.100880] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
More than half a century ago, reversible protein phosphorylation was linked to mitochondrial metabolism through the regulation of pyruvate dehydrogenase. Since this discovery, the number of identified mitochondrial protein phosphorylation sites has increased by orders of magnitude, driven largely by technological advances in mass spectrometry-based phosphoproteomics. However, the majority of these modifications remain uncharacterized, rendering their function and relevance unclear. Nonetheless, recent studies have shown that disruption of resident mitochondrial protein phosphatases causes substantial metabolic dysfunction across organisms, suggesting that proper management of mitochondrial phosphorylation is vital for organellar and organismal homeostasis. While these data suggest that phosphorylation within mitochondria is of critical importance, significant gaps remain in our knowledge of how these modifications influence organellar function. Here, we curate publicly available datasets to map the extent of protein phosphorylation within mammalian mitochondria and to highlight the known functions of mitochondrial-resident phosphatases. We further propose models by which phosphorylation may affect mitochondrial enzyme activities, protein import and processing, and overall organellar homeostasis.
Collapse
Affiliation(s)
- Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University in St Louis, St Louis, Missouri, USA
| | - David J Pagliarini
- Departments of Cell Biology and Physiology, Biochemistry & Molecular Biophysics, and Genetics, Washington University in St Louis, St Louis, Missouri, USA; Morgridge Institute for Research, Madison, Wisconsin, USA; Department of Biochemistry, University of Madison-Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
33
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
34
|
Heinemann-Yerushalmi L, Bentovim L, Felsenthal N, Vinestock RC, Michaeli N, Krief S, Silberman A, Cohen M, Ben-Dor S, Brenner O, Haffner-Krausz R, Itkin M, Malitsky S, Erez A, Zelzer E. BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev Cell 2021; 56:1182-1194.e6. [PMID: 33773101 DOI: 10.1016/j.devcel.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Pyruvate dehydrogenase kinases (PDK1-4) inhibit the TCA cycle by phosphorylating pyruvate dehydrogenase complex (PDC). Here, we show that PDK family is dispensable for murine embryonic development and that BCKDK serves as a compensatory mechanism by inactivating PDC. First, we knocked out all four Pdk genes one by one. Surprisingly, Pdk total KO embryos developed and were born in expected ratios but died by postnatal day 4 because of hypoglycemia or ketoacidosis. Moreover, PDC was phosphorylated in these embryos, suggesting that another kinase compensates for PDK family. Bioinformatic analysis implicated branched-chain ketoacid dehydrogenase kinase (Bckdk), a key regulator of branched-chain amino acids (BCAAs) catabolism. Indeed, knockout of Bckdk and Pdk family led to the loss of PDC phosphorylation, an increase in PDC activity and pyruvate entry into the TCA cycle, and embryonic lethality. These findings reveal a regulatory crosstalk hardwiring BCAA and glucose catabolic pathways, which feed the TCA cycle.
Collapse
Affiliation(s)
| | - Lital Bentovim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Carmel Vinestock
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Michaeli
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marina Cohen
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
35
|
Hirawat R, Saifi MA, Godugu C. Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci 2021; 267:118923. [PMID: 33358906 PMCID: PMC7831473 DOI: 10.1016/j.lfs.2020.118923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Such testing and trying time probably never seen before in the human history. The novel coronavirus disease abbreviated as COVID-19 is the ongoing health crisis which entered into human life in late December 2019. The ease of transmission between humans and the undetectability in early stage makes COVID-19 frightening and unprecedented. The disease is characterised by pneumonia progressing to breathing difficulty, acute respiratory distress syndrome (ARDS) and multi-organ failure. Clinical studies suggest excessive release of inflammatory mediators leads to cytokine storm, a phenomenon which appears to be potentially life-threatening in COVID-19. Across the globe, when the world authorities are grappling to contain the virus, our review provides a glimpse on structure, pathophysiology of the virus and further sheds light on various clinical complications associated with the disease in order to open up/raise new horizons to explore various possible theoretical targets for COVID-19. The review also portrays a question and debates: Can targeting cytokine storm can be a feasible approach to combat COVID-19?
Collapse
Affiliation(s)
- Rishabh Hirawat
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
36
|
Otsu K, Ida-Yonemochi H, Ikezaki S, Ema M, Hitomi J, Ohshima H, Harada H. Oxygen regulates epithelial stem cell proliferation via RhoA-actomyosin-YAP/TAZ signal in mouse incisor. Development 2021; 148:dev.194787. [PMID: 33472844 DOI: 10.1242/dev.194787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are maintained in specific niches that strictly regulate their proliferation and differentiation for proper tissue regeneration and renewal. Molecular oxygen (O2) is an important component of the niche microenvironment, but little is known about how O2 governs epithelial stem cell (ESC) behavior. Here, we demonstrate that O2 plays a crucial role in regulating the proliferation of ESCs using the continuously growing mouse incisors. We have revealed that slow-cycling cells in the niche are maintained under relatively hypoxic conditions compared with actively proliferating cells, based on the blood vessel distribution and metabolic status. Mechanistically, we have demonstrated that, during hypoxia, HIF1α upregulation activates the RhoA signal, thereby promoting cortical actomyosin and stabilizing the adherens junction complex, including merlin. This leads to the cytoplasmic retention of YAP/TAZ to attenuate cell proliferation. These results shed light on the biological significance of blood-vessel geometry and the signaling mechanism through microenvironmental O2 to orchestrate ESC behavior, providing a novel molecular basis for the microenvironmental O2-mediated stem cell regulation during tissue development and renewal.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Jiro Hitomi
- Division of Human Embryology, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
37
|
Wei (魏彤) T, Gao (高晶) J, Huang (黄程淋) C, Song (宋蓓) B, Sun (孙孟炜) M, Shen (沈伟利) W. SIRT3 (Sirtuin-3) Prevents Ang II (Angiotensin II)-Induced Macrophage Metabolic Switch Improving Perivascular Adipose Tissue Function. Arterioscler Thromb Vasc Biol 2021; 41:714-730. [PMID: 33327751 DOI: 10.1161/atvbaha.120.315337] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1β secretion in myeloid SIRT3 knockout (SIRT3-/-) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow-derived macrophages induces IL-1β production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1β secretion. Furthermore, the blockade of IL-1β from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3-/-) mice exhibited reduced IL-1β production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. CONCLUSIONS SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.
Collapse
Affiliation(s)
- Tong Wei (魏彤)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Jing Gao (高晶)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Chenglin Huang (黄程淋)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Bei Song (宋蓓)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Mengwei Sun (孙孟炜)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Weili Shen (沈伟利)
- Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports
Science, China (M.S.)
| |
Collapse
|
38
|
Abbaszade Z, Bagca BG, Avci CB. Molecular biological investigation of temozolomide and KC7F2 combination in U87MG glioma cell line. Gene 2021; 776:145445. [PMID: 33484758 DOI: 10.1016/j.gene.2021.145445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Glioblastom Multiforme (GBM) is the most invasive and malignant member of the IV grade of the subclass Astrocytoma according to the last assessment of the 2016 WHO report. Due to the resistance to treatment and weak response, as well as the topographical structure of the blood brain barrier, the treatment is also difficult due to the severe clinical manifestation, and new treatment methods and new therapeutic agents are needed. Temozolomide (TMZ) is widely used in the treatment of glioblastoma and is considered as the primary treatment modality. TMZ, a member of the class of cognitive agents, is currently considered the most effective drug because it can easily pass through the blood brain barrier. Glucose metabolism is a complex energy producing machine that, a glucose molecule produces 38 molecules of ATP after full glycolytic catabolism. According to Otto Warburg's numerous studies cancer cells perform the first glycolytic step without entering the mitochondrial step. These cells produce lactic acid and make the micro-media more acidic even in aerobic conditions. This phenomenon is attributed to the Warburg hypothesis and either as aerobic glycolysis. Although glycolysis enzymes are the primary actors of this phenotypic expression, some genetic and epigenetic factors are no exception. We experimentally used KC7F2 active ingredient to target cancer metabolism. In our study, we evaluated cancer metabolism in combination with the effect of TMZ chemotherapeutic agent, examining the effect of two different agents separately and in combination to observe the effects of cancer cell proliferation, survival, apoptosis and expression of metabolism genes on expression. We observed that the combined effect of reduced the effective dose of the TMZ alkylating agent and that the effect was increased and the effect of the combined teraphy is assessed from a metabolic point of view and that it suppresses aerobic glycolysis.
Collapse
Affiliation(s)
- Zaka Abbaszade
- Kazımdirik, Ege Ünv. Hst. No:9, 35100 Bornova/Izmir, Turkey.
| | | | | |
Collapse
|
39
|
Patel MS, Mahmood S, Jung J, Rideout TC. Reprogramming of aerobic glycolysis in non-transformed mouse liver with pyruvate dehydrogenase complex deficiency. Physiol Rep 2021; 9:e14684. [PMID: 33400855 PMCID: PMC7785054 DOI: 10.14814/phy2.14684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
The Pyruvate Dehydrogenase Complex (PDC), a key enzyme in glucose metabolism, catalyzes an irreversible oxidative decarboxylation reaction of pyruvate to acetyl‐CoA, linking the cytosolic glycolytic pathway to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Earlier we reported a down‐regulation of several key hepatic lipogenic enzymes and their upstream regulators in liver‐specific PDC‐deficient mouse (L‐PDCKO model by deleting the Pdha1 gene). In this study we investigated gene expression profiles of key glycolytic enzymes and other proteins that respond to various metabolic stresses in liver from L‐PDCKO mice. Transcripts of several, such as hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase muscle‐type 2, and lactate dehydrogenase B as well as those for the nonglycolysis‐related proteins, CD‐36, C/EBP homologous protein, and peroxisome proliferator‐activated receptor γ, were up‐regulated in L‐PDCKO liver whereas hypoxia‐induced factor‐1α, pyruvate dehydrogenase kinase 1 and Sirtuin 1 transcripts were down‐regulated. The protein levels of pyruvate kinase muscle‐type 2 and lactate dehydrogenase B were increased whereas that of lactate dehydrogenase A was decreased in PDC‐deficient mouse liver. Analysis of endoplasmic reticulum and oxidative stress indicators suggests that the L‐PDCKO liver showed evidence of the former but not the latter. These findings indicate that (i) liver‐specific PDC deficiency is sufficient to induce “aerobic glycolysis characteristic” in mouse liver, and (ii) the mechanism(s) responsible for these changes appears distinct from that which induces the Warburg effect in some cancer cells.
Collapse
Affiliation(s)
- Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saleh Mahmood
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jiwon Jung
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
40
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
41
|
Lee J, Oh S, Bhattacharya S, Zhang Y, Florens L, Washburn MP, Workman JL. The plasticity of the pyruvate dehydrogenase complex confers a labile structure that is associated with its catalytic activity. PLoS One 2020; 15:e0243489. [PMID: 33370314 PMCID: PMC7769281 DOI: 10.1371/journal.pone.0243489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/21/2020] [Indexed: 12/04/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDC) is a multienzyme complex that plays a key role in energy metabolism by converting pyruvate to acetyl-CoA. An increase of nuclear PDC has been shown to be correlated with an increase of histone acetylation that requires acetyl-CoA. PDC has been reported to form a ~ 10 MDa macromolecular machine that is proficient in performing sequential catalytic reactions via its three components. In this study, we show that the PDC displays size versatility in an ionic strength-dependent manner using size exclusion chromatography of yeast cell extracts. Biochemical analysis in combination with mass spectrometry indicates that yeast PDC (yPDC) is a salt-labile complex that dissociates into sub-megadalton individual components even under physiological ionic strength. Interestingly, we find that each oligomeric component of yPDC displays a larger size than previously believed. In addition, we show that the mammalian PDC also displays this uncommon characteristic of salt-lability, although it has a somewhat different profile compared to yeast. We show that the activity of yPDC is reduced in higher ionic strength. Our results indicate that the structure of PDC may not always maintain its ~ 10 MDa organization, but is rather variable. We propose that the flexible nature of PDC may allow modulation of its activity.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Seunghee Oh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Saikat Bhattacharya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
43
|
Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Dev Biol 2020; 108:33-46. [DOI: 10.1016/j.semcdb.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
44
|
Zhang S, Wei Z, Zhao M, Chen X, Wu J, Kang K, Wu Y. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO 2 release during composting. BIORESOURCE TECHNOLOGY 2020; 318:124075. [PMID: 32920337 DOI: 10.1016/j.biortech.2020.124075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The aim of thisstudy was to explore the effects of malonic acid (MA), manganese dioxide (MnO2), malonic acid combined with manganese dioxide (MA + MnO2) additionon reducing CO2 emission and promoting humic substance (HS) formation during composting. The result showed that the addition of MA and MnO2 were an efficient way to reduce CO2 emission. Meanwhile, the CO2 emissions in the MA + MnO2 treatment was 36.8% less than that of the CK, and the amount of humic acid (HA) produced in the MnO2 treatment was 38.7% higher than that of the CK. Structural equation models demonstrated that the addition of exogenoussubstance promoted the conversion of amino acids and reducing sugars to HA. The addition of exogenous substances was the main reason for influencing the concentration of HA. In general, this research provided theoretical supports for the addition of exogenous substances to promote HA formation during composting.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Meiyang Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Yunying Wu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
45
|
Luo ZH, Liu ZW, Mao Y, Shu R, Fu LC, Yang RY, Hu YJ, Shen XL. Cajanolactone A, a stilbenoid from cajanus cajan, prevents ovariectomy-induced obesity and liver steatosis in mice fed a regular diet. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153290. [PMID: 32777485 DOI: 10.1016/j.phymed.2020.153290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Visceral obesity and fatty liver are prevalent in postmenopausal women. The stilbene-rich extract of Cajanus cajan (L.) Millsp. has been reported to prevent ovariectomy-induced and diet-induced weight gain in animal models, and stilbenoids from C. cajan are thought to have the potential to prevent postmenopausal obesity and fatty liver. PURPOSE Cajanolactone A (CLA) is the main stilbenoid from C. cajan with osteoblastogenic promoting activity. This study investigated the potential of CLA to prevent postmenopausal obesity and fatty liver. Underlying mechanisms were also investigated. METHOD Ovariectomized C57BL/6 mice fed a regular diet were used as mimics of postmenopausal women and given 10, 20, or 40 mg/kg/d of CLA, 0.1 mg/kg/d of estradiol valerate (EV, positive control), or vehicle (OVX) orally for 16 weeks. Mice of the same age subjected to a sham operation were used as control (Sham). Body weights were recorded every 2 weeks for 16 weeks. Body compositions were analyzed via micro-CT. Serum levels of lipids, adipocytokines and aminotransferases were measured using the relevant kits. mRNA levels of genes of interest were detected by RT-qPCR. Proteomic study of perigonadal white adipose tissue (pWAT) was performed using tandem-mass-tags-based proteomic technology combined with Parallel-Reaction-Monitoring (PRM) validation. RESULTS CLA showed potential equivalent to that of EV to prevent ovariectomy-induced overweight, obesity, dyslipidemia, liver steatosis and liver dysfunction, but did not prevent uterine atrophy. In the liver, CLA significantly inhibited ovariectomy-induced upregulation in expression of lipogenic genes SREBP-1c and ChREBP, and stimulated the mRNA expression of apolipoprotein B gene ApoB. In pWAT, CLA reversed, or partially reversed ovariectomy-induced downregulation in the expression of a number of metabolism- and mitochondrial-function-related proteins, including Ndufa3, Pcx, Pdhb, Acly, Acaca, Aldh2, Aacs and Echs1. In addition, ovariectomy-inhibited mRNA expression of Pdhb, Aacs, Acsm5, Echs1, and Aldh2 genes in pWAT was also reversed. CONCLUSION CLA was demonstrated to be a potential non-estrogen-like drug candidate for prevention of postmenopausal obesity and fatty liver. The underlying mechanism might involve the inhibition of lipogenesis and promotion of triglycerides output in the liver, and the promotion of metabolism and mitochondrial functions of visceral white adipose tissue.
Collapse
Affiliation(s)
- Zhuo-Hui Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Yu Mao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rong Shu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Lin-Chun Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Rui-Yi Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR China.
| |
Collapse
|
46
|
Sun H, Wang J, Xing Y, Pan YH, Mao X. Gut transcriptomic changes during hibernation in the greater horseshoe bat ( Rhinolophus ferrumequinum). Front Zool 2020; 17:21. [PMID: 32690984 PMCID: PMC7366455 DOI: 10.1186/s12983-020-00366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The gut is the major organ for nutrient absorption and immune response in the body of animals. Although effects of fasting on the gut functions have been extensively studied in model animals (e.g. mice), little is known about the response of the gut to fasting in a natural condition (e.g. hibernation). During hibernation, animals endure the long term of fasting and hypothermia. Results Here we generated the first gut transcriptome in a wild hibernating bat (Rhinolophus ferrumequinum). We identified 1614 differentially expressed genes (DEGs) during four physiological states (Torpor, Arousal, Winter Active and Summer Active). Gene co-expression network analysis assigns 926 DEGs into six modules associated with Torpor and Arousal. Our results reveal that in response to the stress of luminal nutrient deficiency during hibernation, the gut helps to reduce food intake by overexpressing genes (e.g. CCK and GPR17) that regulate the sensitivity to insulin and leptin. At the same time, the gut contributes energy supply by overexpressing genes that increase capacity for ketogenesis (HMGCS2) and selective autophagy (TEX264). Furthermore, we identified separate sets of multiple DEGs upregulated in Torpor and Arousal whose functions are involved in innate immunity. Conclusion This is the first gut transcriptome of a hibernating mammal. Our study identified candidate genes associated with regulation of food intake and enhance of innate immunity in the gut during hibernation. By comparing with previous studies, we found that two DEGs (CPE and HSPA8) were also significantly elevated during torpor in liver and brain of R. ferrumequinum and several DEGs (e.g. TXNIP and PDK1/4) were commonly upregulated during torpor in multiple tissues of different mammals. Our results support that shared expression changes may underlie the hibernation phenotype by most mammals.
Collapse
Affiliation(s)
- Haijian Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China
| | - Jiaying Wang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China.,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, 200062 China
| |
Collapse
|
47
|
Lee K, Moon S, Park MJ, Koh IU, Choi NH, Yu HY, Kim YJ, Kong J, Kang HG, Kim SC, Kim BJ. Integrated Analysis of Tissue-Specific Promoter Methylation and Gene Expression Profile in Complex Diseases. Int J Mol Sci 2020; 21:E5056. [PMID: 32709145 PMCID: PMC7404266 DOI: 10.3390/ijms21145056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether the promoter region of DNA methylation positively or negatively regulates tissue-specific genes (TSGs) and if it correlates with disease pathophysiology. We assessed tissue specificity metrics in five human tissues, using sequencing-based approaches, including 52 whole genome bisulfite sequencing (WGBS), 52 RNA-seq, and 144 chromatin immunoprecipitation sequencing (ChIP-seq) data. A correlation analysis was performed between the gene expression and DNA methylation levels of the TSG promoter region. The TSG enrichment analyses were conducted in the gene-disease association network (DisGeNET). The epigenomic association analyses of CpGs in enriched TSG promoters were performed using 1986 Infinium MethylationEPIC array data. A correlation analysis showed significant associations between the promoter methylation and 449 TSGs' expression. A disease enrichment analysis showed that diabetes- and obesity-related diseases were high-ranked. In an epigenomic association analysis based on obesity, 62 CpGs showed statistical significance. Among them, three obesity-related CpGs were newly identified and replicated with statistical significance in independent data. In particular, a CpG (cg17075888 of PDK4), considered as potential therapeutic targets, were associated with complex diseases, including obesity and type 2 diabetes. The methylation changes in a substantial number of the TSG promoters showed a significant association with metabolic diseases. Collectively, our findings provided strong evidence of the relationship between tissue-specific patterns of epigenetic changes and metabolic diseases.
Collapse
Affiliation(s)
- Kibaick Lee
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Mi-Jin Park
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - In-Uk Koh
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Nak-Hyeon Choi
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Ho-Yeong Yu
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Jinhwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28519, Korea; (K.L.); (S.M.); (M.-J.P.); (I.-U.K.); (N.-H.C.); (H.-Y.Y.); (Y.J.K.); (J.K.)
| |
Collapse
|
48
|
Jiang Y, Rosborough BR, Chen J, Das S, Kitsios GD, McVerry BJ, Mallampalli RK, Lee JS, Ray A, Chen W, Ray P. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight 2020; 5:135678. [PMID: 32554932 PMCID: PMC7406263 DOI: 10.1172/jci.insight.135678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/03/2020] [Indexed: 01/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) results from overwhelming pulmonary inflammation. Prior bulk RNA sequencing provided limited insights into ARDS pathogenesis. We used single cell RNA sequencing to probe ARDS at a higher resolution. PBMCs of patients with pneumonia and sepsis with early ARDS were compared with those of sepsis patients who did not develop ARDS. Monocyte clusters from ARDS patients revealed multiple distinguishing characteristics in comparison with monocytes from patients without ARDS, including downregulation of SOCS3 expression, accompanied by a proinflammatory signature with upregulation of multiple type I IFN-induced genes, especially in CD16+ cells. To generate an ARDS risk score, we identified upregulation of 29 genes in the monocytes of these patients, and 17 showed a similar profile in cells of patients in independent cohorts. Monocytes had increased expression of RAB11A, known to inhibit neutrophil efferocytosis; ATP2B1, a calcium pump that exports Ca2+ implicated in endothelial barrier disruption; and SPARC, associated with processing of procollagen to collagen. These data show that monocytes of ARDS patients upregulate expression of genes not just restricted to those associated with inflammation. Together, our findings identify molecules that are likely involved in ARDS pathogenesis that may inform biomarker and therapeutic development.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Brian R. Rosborough
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Jie Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Sudipta Das
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Rama K. Mallampalli
- Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart Lung Research Institute, Columbus, Ohio
| | - Janet S. Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, and,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Shah SI, Ullah G. The Function of Mitochondrial Calcium Uniporter at the Whole-Cell and Single Mitochondrion Levels in WT, MICU1 KO, and MICU2 KO Cells. Cells 2020; 9:E1520. [PMID: 32580385 PMCID: PMC7349584 DOI: 10.3390/cells9061520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial Ca2+ ([Ca2+]M) uptake through its Ca2+ uniporter (MCU) is central to many cell functions such as bioenergetics, spatiotemporal organization of Ca2+ signals, and apoptosis. MCU activity is regulated by several intrinsic proteins including MICU1, MICU2, and EMRE. While significant details about the role of MICU1, MICU2, and EMRE in MCU function have emerged recently, a key challenge for the future experiments is to investigate how these regulatory proteins modulate mitochondrial Ca2+ influx through MCU in intact cells under pathophysiological conditions. This is further complicated by the fact that several variables affecting MCU function change dynamically as cell functions. To overcome this void, we develop a data-driven model that closely replicates the behavior of MCU under a wide range of cytosolic Ca2+ ([Ca2+]C), [Ca2+]M, and mitochondrial membrane potential values in WT, MICU1 knockout (KO), and MICU2 KO cells at the single mitochondrion and whole-cell levels. The model is extended to investigate how MICU1 or MICU2 KO affect mitochondrial function. Moreover, we show how Ca2+ buffering proteins, the separation between mitochondrion and Ca2+-releasing stores, and the duration of opening of Ca2+-releasing channels affect mitochondrial function under different conditions. Finally, we demonstrate an easy extension of the model to single channel function of MCU.
Collapse
Affiliation(s)
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA;
| |
Collapse
|
50
|
Sun S, Li L, Dong L, Cheng J, Zhao C, Bao C, Wang H. Circulating mRNA and microRNA profiling analysis in patients with ischemic stroke. Mol Med Rep 2020; 22:792-802. [PMID: 32626985 PMCID: PMC7339759 DOI: 10.3892/mmr.2020.11143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
To provide insight into molecular diagnosis and individualized treatment of ischemic stroke (IS), several available datasets in IS were analyzed to identify the differentially expressed genes and microRNAs (miRNAs). Series matrix files from GSE22255 and GSE16561 (mRNA profiles), a well as GSE110993 (miRNA profile) were downloaded from the Gene Expression Omnibus database. System-level clustering was performed with GeneCluster 3.0 software, and gene annotation and pathway enrichment were performed with gene ontology analysis and Database for Annotation, Visualization and Integrated Discovery software. For a protein-protein interaction (PPI) network, Biological General Repository for Interaction Datasets and IntAct interaction information were integrated to determine the interaction of differentially expressed genes. The selected miRNA candidates were imported into the TargetScan, miRDB and miRecords databases for the prediction of target genes. The present study identified 128 upregulated and 231 downregulated genes in female stroke patients, and 604 upregulated and 337 downregulated genes in male stroke patients compared with sex- and age-matched controls. The construction of a PPI network demonstrated that male stroke patients exhibited YWHAE, CUL3 and JUN as network center nodes, and in female patients CYLD, FOS and PIK3R1 interactions were the strongest. Notably, these interactions are mainly involved in immune inflammatory response, apoptosis and other biological pathways, such as blood coagulation. Female and male upregulated genes were cross-validated with another set of Illumina HumanRef-8 v3.0 expression beadchip (GSE16561). Functional item association networks, gene function networks and transcriptional regulatory networks were successfully constructed, and the relationships between miRNAs and target genes were successfully predicted. The present study identified a number of transcription factors, including DEFA1, PDK4, SDPR, TCN1 and MMP9, and miRNAs, including miRNA (miR)-21, miR-143/145, miR-125-5p and miR-122, which may serve important roles in the development of cerebral stroke and may be important molecular indicators for the treatment of IS.
Collapse
Affiliation(s)
- Sujuan Sun
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Congying Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Chu Bao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050050, P.R. China
| |
Collapse
|