1
|
Rollenske T, Murugan R, Wardemann H, Busse CE. Expression Cloning of Antibodies from Single Human B Cells. Methods Mol Biol 2025; 2865:103-124. [PMID: 39424722 DOI: 10.1007/978-1-0716-4188-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in B-cell chronic lymphocytic leukemia (CLL) have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows for unbiased characterization of the human antibody repertoire on single-cell level through the generation of recombinant monoclonal antibodies from primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells to the RT-PCR-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information about the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Tim Rollenske
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Rajagopal Murugan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Cleaver J, Ceronie B, Strippel C, Handel A, Irani SR. The immunology underlying CNS autoantibody diseases. Rev Neurol (Paris) 2024; 180:916-930. [PMID: 39289136 DOI: 10.1016/j.neurol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The past two decades have seen a considerable paradigm shift in the way autoimmune CNS disorders are considered, diagnosed, and treated; largely due to the discovery of novel autoantibodies directed at neuroglial surface or intracellular targets. This approach has enabled multiple bona fide CNS autoantibody-associated diseases to thoroughly infiltrate the sphere of clinical neurology, facilitating advances in patient outcomes. This review focusses on the fundamental immunological concepts behind CNS autoantibody-associated diseases. First, we briefly review the broad phenotypic profiles of these conditions. Next, we explore concepts around immune checkpoints and the related B cell lineage. Thirdly, the sources of autoantibody production are discussed alongside triggers of tolerance failure, including neoplasms, infections and iatrogenic therapies. Penultimately, the role of T cells and leucocyte trafficking into the CNS are reviewed. Finally, biological insights from responses to targeted immunotherapies in different CNS autoantibody-associated diseases are summarised. The continued and rapid expansion of the CNS autoantibody-associated field holds promise for further improved diagnostic and therapeutic paradigms, ultimately leading to further improvements in patient outcomes.
Collapse
Affiliation(s)
- J Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - B Ceronie
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - C Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - A Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Ono C, Kochi Y, Baba Y, Tanaka S. Humoral responses are enhanced by facilitating B cell viability by Fcrl5 overexpression in B cells. Int Immunol 2024; 36:529-540. [PMID: 38738271 DOI: 10.1093/intimm/dxae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/11/2024] [Indexed: 05/14/2024] Open
Abstract
B cell initial activity is regulated through a balance of activation and suppression mediated by regulatory molecules expressed in B cells; however, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the function of the Fc receptor-like (Fcrl) family molecule Fcrl5, which is constitutively expressed in naive B cells, in humoral immune responses. Our study demonstrated that B cell-specific overexpression of Fcrl5 enhanced antibody (Ab) production in both T cell-independent type 1 (TI1) and T cell-dependent (TD) responses. Additionally, it promoted effector B cell formation under competitive conditions in TD responses. Mechanistically, in vitro ligation of Fcrl5 by agonistic Abs reduced cell death and enhanced proliferation in lipopolysaccharide-stimulated B cells. In the presence of anti-CD40 Abs and IL-5, the Fcrl5 ligation not only suppressed cell death but also enhanced differentiation into plasma cells. These findings reveal a novel role of Fcrl5 in promoting humoral immune responses by enhancing B cell viability and plasma cell differentiation.
Collapse
Affiliation(s)
- Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Tanaka
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Stork EM, van Rijswijck DMH, van Schie KA, Hoek M, Kissel T, Scherer HU, Huizinga TWJ, Heck AJR, Toes REM, Bondt A. Antigen-specific Fab profiling achieves molecular-resolution analysis of human autoantibody repertoires in rheumatoid arthritis. Nat Commun 2024; 15:3114. [PMID: 38600082 PMCID: PMC11006680 DOI: 10.1038/s41467-024-47337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example. We show that each patient harbors a unique and diverse ACPA IgG1 repertoire dominated by only a few antibody clones. In contrast to the total plasma IgG1 antibody repertoire, the ACPA IgG1 sub-repertoire is characterised by an expansion of antibodies that harbor one, two or even more Fab glycans, and different glycovariants of the same clone can be detected. Together, our data indicate that the autoantibody response in a prominent human autoimmune disease is complex, unique to each patient and dominated by a relatively low number of clones.
Collapse
Affiliation(s)
- Eva Maria Stork
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23:563-579. [PMID: 36922638 PMCID: PMC10017071 DOI: 10.1038/s41577-023-00848-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Xu Z, Peng Q, Liu W, Demongeot J, Wei D. Antibody Dynamics Simulation-A Mathematical Exploration of Clonal Deletion and Somatic Hypermutation. Biomedicines 2023; 11:2048. [PMID: 37509687 PMCID: PMC10377040 DOI: 10.3390/biomedicines11072048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We have employed mathematical modeling techniques to construct a comprehensive framework for elucidating the intricate response mechanisms of the immune system, facilitating a deeper understanding of B-cell clonal deletion and somatic hypermutation. Our improved model introduces innovative mechanisms that shed light on positive and negative selection processes during T-cell and B-cell development. Notably, clonal deletion is attributed to the attenuated immune stimulation exerted by self-antigens with high binding affinities, rendering them less effective in eliciting subsequent B-cell maturation and differentiation. Secondly, our refined model places particular emphasis on the crucial role played by somatic hypermutation in modulating the immune system's functionality. Through extensive investigation, we have determined that somatic hypermutation not only expedites the production of highly specific antibodies pivotal in combating microbial infections but also serves as a regulatory mechanism to dampen autoimmunity and enhance self-tolerance within the organism. Lastly, our model advances the understanding of the implications of antibody in vivo evolution in the overall process of organismal aging. With the progression of time, the age-associated amplification of autoimmune activity becomes apparent. While somatic hypermutation effectively delays this process, mitigating the levels of autoimmune response, it falls short of reversing this trajectory entirely. In conclusion, our advanced mathematical model offers a comprehensive and scholarly approach to comprehend the intricacies of the immune system. By encompassing novel mechanisms for selection, emphasizing the functional role of somatic hypermutation, and illuminating the consequences of in vivo antibody evolution, our model expands the current understanding of immune responses and their implications in aging.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Qingzhi Peng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Weidong Liu
- Department of Physical Education, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
7
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Mashiko S, Shihab RR, See SB, Schahadat LGZ, Aguiar TFM, Roy P, Porcheray F, Zorn E. Broad responses to chemical adducts shape the natural antibody repertoire in early infancy. SCIENCE ADVANCES 2023; 9:eade8872. [PMID: 37172087 PMCID: PMC10181178 DOI: 10.1126/sciadv.ade8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Natural antibodies are an integral part of innate humoral immunity yet their development and polyreactive nature are still enigmatic. Here, we show that characteristic monoclonal natural antibodies recognize common chemical moieties or adducts, supporting the view that polyreactive antibodies may often correspond to anti-adduct antibodies. We next examined the development of immunoglobulin M (IgM) and IgG to 81 ubiquitous adducts from birth to old age. Newborn IgM only reacted to a limited number of consensus determinants. This highly restricted neonatal repertoire abruptly diversified around 6 months of age through the development of antibodies to environmental antigens and age-driven epigenetic modifications. In contrast, the IgG repertoire was diverse across the entire life span. Our studies reveal an unrecognized component of humoral immunity directed to common adducts. These findings set the ground for further investigations into the role of anti-adduct B cell responses in homeostatic functions and pathological conditions.
Collapse
Affiliation(s)
- Shunya Mashiko
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronzon R Shihab
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah B See
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Luca G Z Schahadat
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Talita F M Aguiar
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Poulomi Roy
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fabrice Porcheray
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Seeling M, Pöhnl M, Kara S, Horstmann N, Riemer C, Wöhner M, Liang C, Brückner C, Eiring P, Werner A, Biburger M, Altmann L, Schneider M, Amon L, Lehmann CHK, Lee S, Kunz M, Dudziak D, Schett G, Bäuerle T, Lux A, Tuckermann J, Vögtle T, Nieswandt B, Sauer M, Böckmann RA, Nimmerjahn F. Immunoglobulin G-dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin-1. Immunity 2023; 56:1046-1063.e7. [PMID: 36948194 DOI: 10.1016/j.immuni.2023.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.
Collapse
Affiliation(s)
- Michaela Seeling
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sibel Kara
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nathalie Horstmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carolina Riemer
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Miriam Wöhner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Brückner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anja Werner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Leon Altmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Schneider
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Meik Kunz
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Bernhardt Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
10
|
Zoghi S, Masoumi F, Rezaei N. The immune system. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Pelanda R, Greaves SA, Alves da Costa T, Cedrone LM, Campbell ML, Torres RM. B-cell intrinsic and extrinsic signals that regulate central tolerance of mouse and human B cells. Immunol Rev 2022; 307:12-26. [PMID: 34997597 PMCID: PMC8986553 DOI: 10.1111/imr.13062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.
Collapse
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lena M Cedrone
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Margaret L Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
12
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Zeng J, Aryal RP, Stavenhagen K, Luo C, Liu R, Wang X, Chen J, Li H, Matsumoto Y, Wang Y, Wang J, Ju T, Cummings RD. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance. SCIENCE ADVANCES 2021; 7:eabg9118. [PMID: 34613773 PMCID: PMC8494437 DOI: 10.1126/sciadv.abg9118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Factors regulating the induction and development of B cell–mediated autoimmunity are not well understood. Here, we report that targeted deletion in murine B cells of X-linked Cosmc, encoding the chaperone required for expression of core 1 O-glycans, causes the spontaneous development of autoimmune pathologies due to a breakdown of B cell tolerance. BC-CosmcKO mice display multiple phenotypic abnormalities, including severe weight loss, ocular manifestations, lymphadenopathy, and increased female-associated mortality. Disruption of B cell tolerance in BC-CosmcKO mice is manifested as elevated self-reactive IgM and IgG autoantibodies. Cosmc-deficient B cells exhibit enhanced basal activation and responsiveness to stimuli. There is also an elevated frequency of spontaneous germinal center B cells in BC-CosmcKO mice. Mechanistically, loss of Cosmc confers enhanced B cell receptor (BCR) signaling through diminished BCR internalization. The results demonstrate that Cosmc, through control of core 1 O-glycans, is a previously unidentified immune checkpoint gene in maintaining B cell tolerance.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Renyan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
16
|
Markmann C, Bhoj VG. On the road to eliminating long-lived plasma cells-"are we there yet?". Immunol Rev 2021; 303:154-167. [PMID: 34351644 DOI: 10.1111/imr.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Central to protective humoral immunity is the activation of B cells and their terminal differentiation into antibody-secreting plasma cells. Long-lived plasma cells (LLPC) may survive for years to decades. Such long-lived plasma cells are also responsible for producing pathogenic antibodies that cause a variety of challenges such as autoimmunity, allograft rejection, and drug neutralization. Up to now, various therapeutic strategies aimed at durably eliminating pathogenic antibodies have failed, in large part due to their inability to efficiently target LLPCs. Several antibody-based therapies have recently gained regulatory approval or are in clinical phases of development for the treatment of multiple myeloma, a malignancy of plasma cells. We discuss the exciting potential of using these emerging cancer immunotherapies to solve the antibody problem.
Collapse
Affiliation(s)
- Caroline Markmann
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
17
|
Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in hu-mice. Proc Natl Acad Sci U S A 2021; 118:2021570118. [PMID: 33850015 DOI: 10.1073/pnas.2021570118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.
Collapse
|
18
|
Kim HJ, Cantor H. From antibody specificity to T cell recognition. J Exp Med 2021; 218:e20202038. [PMID: 33710256 PMCID: PMC7961596 DOI: 10.1084/jem.20202038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Landsteiner's definition of human blood groups and the genetic rules that govern blood transfusion represents a milestone in human genetics and a historic event in public health. His research into the specificity of serological reactions, although less well known, has had a critical influence on the development of contemporary views on immune recognition, clonal selection, and immunological self-tolerance.
Collapse
|
19
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Kang SH, Lee CH. Development of Therapeutic Antibodies and Modulating the Characteristics of Therapeutic Antibodies to Maximize the Therapeutic Efficacy. BIOTECHNOL BIOPROC E 2021; 26:295-311. [PMID: 34220207 PMCID: PMC8236339 DOI: 10.1007/s12257-020-0181-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAb) have been used as therapeutic agents for various diseases, and immunoglobulin G (IgG) is mainly used among antibody isotypes due to its structural and functional properties. So far, regardless of the purpose of the therapeutic antibody, wildtype IgG has been mainly used, but recently, the engineered antibodies with various strategies according to the role of the therapeutic antibody have been used to maximize the therapeutic efficacy. In this review paper, first, the overall structural features and functional characteristics of antibody IgG, second, the old and new techniques for antibody discovery, and finally, several antibody engineering strategies for maximizing therapeutic efficacy according to the role of a therapeutic antibody will be introduced.
Collapse
Affiliation(s)
- Seung Hyun Kang
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Chang-Han Lee
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea ,Hongcheon, 25159 Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
21
|
Xiao C, Nemazee D, Gonzalez-Martin A. MicroRNA control of B cell tolerance, autoimmunity and cancer. Semin Cancer Biol 2020; 64:102-107. [PMID: 32522353 DOI: 10.1016/j.semcancer.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023]
Abstract
Since the discovery of the first microRNA (miRNA) in 1993, thousands of miRNAs have been identified in humans and mice and many of them have been shown to control a large variety of cellular processes in different cell types including those composing the immune system. MicroRNAs regulate virtually all aspects of immune cell development, differentiation and function. Studies have shown that these molecules are involved in the maintenance of lymphocyte tolerance and, when dysregulated, promote the development of autoimmune diseases. In this review, we focus on the current knowledge about the roles of miRNAs in B cell tolerance and their contribution to autoimmunity, highlighting additional roles for some of these miRNAs in T cell tolerance. Finally, we will comment on miRNAs that promote both autoimmunity and lymphoma.
Collapse
Affiliation(s)
- Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Alicia Gonzalez-Martin
- Department of Biochemistry, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomedicas Alberto Sols (CSIC-UAM), 28029, Madrid, Spain.
| |
Collapse
|
22
|
Huang D, Tran JT, Olson A, Vollbrecht T, Tenuta M, Guryleva MV, Fuller RP, Schiffner T, Abadejos JR, Couvrette L, Blane TR, Saye K, Li W, Landais E, Gonzalez-Martin A, Schief W, Murrell B, Burton DR, Nemazee D, Voss JE. Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells. Nat Commun 2020; 11:5850. [PMID: 33203876 PMCID: PMC7673113 DOI: 10.1038/s41467-020-19650-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 01/12/2023] Open
Abstract
HIV broadly neutralizing antibodies (bnAbs) can suppress viremia and protect against HIV infection. However, their elicitation is made difficult by low frequencies of appropriate precursor B cell receptors and the complex maturation pathways required to generate bnAbs from these precursors. Antibody genes can be engineered into B cells for expression as both a functional antigen receptor on cell surfaces and as secreted antibody. Here, we show that HIV bnAb-engineered primary mouse B cells can be adoptively transferred and vaccinated in immunocompetent mice resulting in the expansion of durable bnAb memory and long-lived plasma cells. Somatic hypermutation after immunization indicates that engineered cells have the capacity to respond to an evolving pathogen. These results encourage further exploration of engineered B cell vaccines as a strategy for durable elicitation of HIV bnAbs to protect against infection and as a contributor to a functional HIV cure.
Collapse
Affiliation(s)
- Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jenny Tuyet Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Olson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas Vollbrecht
- Department of Medicine, The University of California San Diego, La Jolla, CA, USA
| | - Mary Tenuta
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariia V Guryleva
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Roberta P Fuller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Justin R Abadejos
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Couvrette
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karen Saye
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Wenjuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alicia Gonzalez-Martin
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - William Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol 2020; 203:160-173. [PMID: 33090496 DOI: 10.1111/cei.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune rheumatic diseases (AIRD) are categorized seropositive or seronegative, dependent upon the presence or absence of specific autoreactive antibodies, including rheumatoid factor and anti-citrullinated protein antibodies. Autoantibody-based diagnostics have proved helpful in patient care, not only for diagnosis but also for monitoring of disease activity and prediction of therapy responsiveness. Recent work demonstrates that AIRD patients develop autoantibodies beyond those contained in the original categorization. In this study we discuss key mechanisms that underlie autoantibody development in AIRD: defects in early B cell development, genetic variants involved in regulating B cell and T cell tolerance, environmental triggers and antigen modification. We describe how autoantibodies can directly contribute to AIRD pathogenesis through innate and adaptive immune mechanisms, eventually culminating in systemic inflammation and localized tissue damage. We conclude by discussing recent insights that suggest distinct AIRD have incorrectly been denominated seronegative.
Collapse
Affiliation(s)
- J N Pouw
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F A Leijten
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
24
|
Simoni L, Presumey J, van der Poel CE, Castrillon C, Chang SE, Utz PJ, Carroll MC. Complement C4A Regulates Autoreactive B Cells in Murine Lupus. Cell Rep 2020; 33:108330. [PMID: 33147456 PMCID: PMC7927756 DOI: 10.1016/j.celrep.2020.108330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease mediated by pathogenic autoantibodies. While complement protein C4 is associated with SLE, its isoforms (C4A and C4B) are not equal in their impact. Despite being 99% homologous, genetic studies identified C4A as more protective than C4B. By generating gene-edited mouse strains expressing either human C4A or C4B and crossing these with the 564lgi lupus strain, we show that, overall, C4A-like 564Igi mice develop less humoral autoimmunity than C4B-like 564Igi mice. This includes a decrease in the number of GCs, autoreactive B cells, autoantibodies, and memory B cells. The higher efficiency of C4A in inducing self-antigen clearance is associated with the follicular exclusion of autoreactive B cells. These results explain how the C4A isoform is protective in lupus and suggest C4A as a possible replacement therapy in lupus. Simoni et al. address a long-standing question about how complement C4A and C4B isoforms differ in function in vivo in autoimmunity. They find that C4A leads to an increased protection in humoral autoimmunity relative to C4B. Autoantibody diversity is likewise dependent on the C4 protein isotype.
Collapse
Affiliation(s)
- Léa Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jessy Presumey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah E Chang
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Reyneveld GIJ, Savelkoul HFJ, Parmentier HK. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front Immunol 2020; 11:2139. [PMID: 33013904 PMCID: PMC7511776 DOI: 10.3389/fimmu.2020.02139] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Natural antibodies (NAb) are defined as germline encoded immunoglobulins found in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g., bacterial) and self-components and have been found in every vertebrate species tested. NAb likely act as a first-line immune defense against infections. A large part of NAb, so called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic, and necrotic cells. Such self-binding antibodies cannot, however, be considered as pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and their implications in health and disease are relatively well-described in humans and mice. NAb are present in veterinary (and wildlife) species, but their relation with diseases and disorders in veterinary species are much less known. Also, there is little known of IgA NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and homeostatic properties urging for more research on the importance of IgA NAb. Since NAb in humans were indicated to fulfill important functions in health and disease, their role in health of veterinary species should be investigated more often. Furthermore, it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be modulated. Veterinary species as models of choice fill in a niche between mice and (non-human) primates, and the study of NAb in veterinary species may provide valuable new insights that will likely improve health management. Below, examples of the involvement of NAb in several diseases in mostly humans are shown. Possibilities of intravenous immunoglobulin administration, targeted immunotherapy, immunization, diet, and genetic modulation are discussed, all of which could be well-studied using animal models. Arguments are given why veterinary immunology should obtain inspiration from human studies and why human immunology would benefit from veterinary models. Within the One Health concept, findings from veterinary (and wildlife) studies can be related to human studies and vice versa so that both fields will mutually benefit. This will lead to a better understanding of NAb: their origin, activation mechanisms, and their implications in health and disease, and will lead to novel health management strategies for both human and veterinary species.
Collapse
Affiliation(s)
- G. IJsbrand Reyneveld
- Faculty of Science, VU University, Amsterdam, Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
26
|
Abstract
The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.
Collapse
Affiliation(s)
- Michael P. Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Prigent J, Jarossay A, Planchais C, Eden C, Dufloo J, Kök A, Lorin V, Vratskikh O, Couderc T, Bruel T, Schwartz O, Seaman MS, Ohlenschläger O, Dimitrov JD, Mouquet H. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Rep 2019; 23:2568-2581. [PMID: 29847789 PMCID: PMC5990490 DOI: 10.1016/j.celrep.2018.04.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition.
Collapse
Affiliation(s)
- Julie Prigent
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Annaëlle Jarossay
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Cyril Planchais
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Caroline Eden
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Oxana Vratskikh
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thérèse Couderc
- Biology of Infection Unit, INSERM U1117, Department of Cell Biology and Infection, Institut Pasteur, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | | | | | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France.
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
28
|
Finney J, Watanabe A, Kelsoe G, Kuraoka M. Minding the gap: The impact of B-cell tolerance on the microbial antibody repertoire. Immunol Rev 2019; 292:24-36. [PMID: 31559648 PMCID: PMC6935408 DOI: 10.1111/imr.12805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022]
Abstract
B lymphocytes must respond to vast numbers of foreign antigens, including those of microbial pathogens. To do so, developing B cells use combinatorial joining of V-, D-, and J-gene segments to generate an extraordinarily diverse repertoire of B-cell antigen receptors (BCRs). Unsurprisingly, a large fraction of this initial BCR repertoire reacts to self-antigens, and these "forbidden" B cells are culled by immunological tolerance from mature B-cell populations. While culling of autoreactive BCRs mitigates the risk of autoimmunity, it also opens gaps in the BCR repertoire, which are exploited by pathogens that mimic the forbidden self-epitopes. Consequently, immunological tolerance, necessary for averting autoimmune disease, also acts to limit effective microbial immunity. In this brief review, we recount the evidence for the linkage of tolerance and impaired microbial immunity, consider the implications of this linkage for vaccine development, and discuss modulating tolerance as a potential strategy for strengthening humoral immune responses.
Collapse
Affiliation(s)
- Joel Finney
- Department of Immunology, Duke University, Durham, NC, USA
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC, USA
- Duke University Human Vaccine Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
29
|
Young RM, Phelan JD, Wilson WH, Staudt LM. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol Rev 2019; 291:190-213. [PMID: 31402495 PMCID: PMC6693651 DOI: 10.1111/imr.12792] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Signals emanating from the B-cell receptor (BCR) promote proliferation and survival in diverse forms of B-cell lymphoma. Precision medicine strategies targeting the BCR pathway have been generally effective in treating lymphoma, but often fail to produce durable responses in diffuse large B-cell lymphoma (DLBCL), a common and aggressive cancer. New insights into DLBCL biology garnered from genomic analyses and functional proteogenomic studies have identified novel modes of BCR signaling in this disease. Herein, we describe the distinct roles of antigen-dependent and antigen-independent BCR signaling in different subtypes of DLBCL. We highlight mechanisms by which the BCR cooperates with TLR9 and mutant isoforms of MYD88 to drive sustained NF-κB activity in the activated B-cell-like (ABC) subtype of DLBCL. Finally, we discuss progress in detecting and targeting oncogenic BCR signaling to improve the survival of patients with lymphoma.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/etiology
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/therapy
- Lymphoma/diagnosis
- Lymphoma/etiology
- Lymphoma/metabolism
- Lymphoma/therapy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan M. Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| |
Collapse
|
30
|
Johnson JL, Scholz JL, Marshak-Rothstein A, Cancro MP. Molecular pattern recognition in peripheral B cell tolerance: lessons from age-associated B cells. Curr Opin Immunol 2019; 61:33-38. [PMID: 31446338 DOI: 10.1016/j.coi.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/06/2023]
Abstract
Although central tolerance mechanisms purge self-reactive B cells during development based on BCR signal strength, mechanisms that block the differentiation of autoreactive effector and memory B cells from mature pools remain poorly understood. Prior observations implicate nucleic acid sensing TLRs in autoimmunity, and more recent findings show that TLR9 is also involved in maintaining peripheral tolerance. Studies of the immunological changes that occur during aging revealed a subset of B cells denoted Age-associated B cells which expands in settings of aging and in autoimmunity. Further studies demonstrated that TLR9 signals poise activated B cells to adopt an Age-associated B cell phenotype, but BCR-delivered TLR9 signals cause programmed cell death that, if circumvented by costimulation, allows continued differentiation to the ABC fate. Together, these observations suggest molecular pattern recognition, rather than BCR epitope specificity per se, is a fundamental mediator of tolerogenic outcomes in the peripheral B cell activation.
Collapse
Affiliation(s)
- John L Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Ann Marshak-Rothstein
- Department of Medicine/Rheumatology, University of Massachusetts School of Medicine, Worcester, MA, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Yadav S, Kashaninejad N, Masud MK, Yamauchi Y, Nguyen NT, Shiddiky MJ. Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosens Bioelectron 2019; 139:111315. [DOI: 10.1016/j.bios.2019.111315] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023]
|
32
|
Watanabe A, Su KY, Kuraoka M, Yang G, Reynolds AE, Schmidt AG, Harrison SC, Haynes BF, St Clair EW, Kelsoe G. Self-tolerance curtails the B cell repertoire to microbial epitopes. JCI Insight 2019; 4:122551. [PMID: 31092727 DOI: 10.1172/jci.insight.122551] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/11/2019] [Indexed: 02/01/2023] Open
Abstract
Immunological tolerance removes or inactivates self-reactive B cells, including those that also recognize cross-reactive foreign antigens. Whereas a few microbial pathogens exploit these "holes" in the B cell repertoire by mimicking host antigens to evade immune surveillance, the extent to which tolerance reduces the B cell repertoire to foreign antigens is unknown. Here, we use single-cell cultures to determine the repertoires of human B cell antigen receptors (BCRs) before (transitional B cells) and after (mature B cells) the second B cell tolerance checkpoint in both healthy donors and in patients with systemic lupus erythematosus (SLE) . In healthy donors, the majority (~70%) of transitional B cells that recognize foreign antigens also bind human self-antigens (foreign+self), and peripheral tolerance halves the frequency of foreign+self-reactive mature B cells. In contrast, in SLE patients who are defective in the second tolerance checkpoint, frequencies of foreign+self-reactive B cells remain unchanged during maturation of transitional to mature B cells. Patterns of foreign+self-reactivity among mature B cells from healthy donors differ from those of SLE patients. We propose that immune tolerance significantly reduces the scope of the BCR repertoire to microbial pathogens and that cross-reactivity between foreign and self epitopes may be more common than previously appreciated.
Collapse
Affiliation(s)
- Akiko Watanabe
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kuei-Ying Su
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Tzu Chi Medical Center, Hualien, Taiwan
| | - Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guang Yang
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexander E Reynolds
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aaron G Schmidt
- Deparment of Microbiology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Barton F Haynes
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Human Vaccine Institute and.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - E William St Clair
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Human Vaccine Institute and
| |
Collapse
|
33
|
Soni C, Sinha I, Fasnacht MJ, Olsen NJ, Rahman ZSM, Sinha R. Selenium supplementation suppresses immunological and serological features of lupus in B6.Sle1b mice. Autoimmunity 2019; 52:57-68. [PMID: 31006265 DOI: 10.1080/08916934.2019.1603297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.
Collapse
Affiliation(s)
- Chetna Soni
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Indu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Melinda J Fasnacht
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Nancy J Olsen
- c Department of Rheumatology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Raghu Sinha
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
34
|
Tipton CM, Hom JR, Fucile CF, Rosenberg AF, Sanz I. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: A B-cell immunomics approach. Immunol Rev 2019; 284:120-131. [PMID: 29944759 DOI: 10.1111/imr.12660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding antibody repertoires and in particular, the properties and fates of B cells expressing potentially pathogenic antibodies is critical to define the mechanisms underlying multiple immunological diseases including autoimmune and allergic conditions as well as transplant rejection. Moreover, an integrated knowledge of the antibody repertoires expressed by B cells and plasma cells (PC) of different functional properties and longevity is essential to develop new therapeutic strategies, better biomarkers for disease segmentation, and new assays to measure restoration of B-cell tolerance or, at least, of normal B-cell homeostasis. Reaching these goals, however, will require a more precise phenotypic, functional and molecular definition of B-cell and PC populations, and a comprehensive analysis of the antigenic reactivity of the antibodies they express. While traditionally hampered by technical and ethical limitations in human experimentation, new technological advances currently enable investigators to address these questions in a comprehensive fashion. In this review, we shall discuss these concepts as they apply to the study of Systemic Lupus Erythematosus.
Collapse
Affiliation(s)
- Christopher M Tipton
- Lowance Center for Human Immunology, Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jennifer R Hom
- Lowance Center for Human Immunology, Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL.,Department of Microbiology, University of Alabama, Birmingham, AL
| | - Inaki Sanz
- Lowance Center for Human Immunology, Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
35
|
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in chronic lymphocytic leukemia have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire at single-cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow-cytometric isolation of single human B cells to the reverse transcription-polymerase chain reaction (RT-PCR)-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Hedda Wardemann
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christian E Busse
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
37
|
Greaves SA, Peterson JN, Torres RM, Pelanda R. Activation of the MEK-ERK Pathway Is Necessary but Not Sufficient for Breaking Central B Cell Tolerance. Front Immunol 2018; 9:707. [PMID: 29686680 PMCID: PMC5900439 DOI: 10.3389/fimmu.2018.00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023] Open
Abstract
Newly generated bone marrow B cells are positively selected into the peripheral lymphoid tissue only when they express a B cell receptor (BCR) that is nonautoreactive or one that binds self-antigen with only minimal avidity. This positive selection process, moreover, is critically contingent on the ligand-independent tonic signals transduced by the BCR. We have previously shown that when autoreactive B cells express an active form of the rat sarcoma (RAS) oncogene, they upregulate the receptor for the B cell activating factor (BAFFR) and undergo differentiation in vitro and positive selection into the spleen in vivo, overcoming central tolerance. Based on the in vitro use of pharmacologic inhibitors, we further showed that this cell differentiation process is critically dependent on the activation of the mitogen-activated protein kinase kinase pathway MEK (MAPKK)-extracellular signal-regulated kinase (ERK), which is downstream of RAS. Here, we next investigated if activation of ERK is not only necessary but also sufficient to break central B cell tolerance and induce differentiation of autoreactive B cells in vitro and in vivo. Our results demonstrate that activation of ERK is critical for upregulating BAFFR and overcoming suboptimal levels of tonic BCR signals or low amounts of antigen-induced BCR signals during in vitro B cell differentiation. However, direct activation of ERK does not lead high avidity autoreactive B cells to increase BAFFR levels and undergo positive selection and differentiation in vivo. B cell-specific MEK-ERK activation in mice is also unable to lead to autoantibody secretion, and this in spite of a general increase of serum immunoglobulin levels. These findings indicate that additional pathways downstream of RAS are required for high avidity autoreactive B cells to break central and/or peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
38
|
|
39
|
The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:127-146. [DOI: 10.1007/978-981-13-0947-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med 2017; 4:e000239. [PMID: 29344386 PMCID: PMC5761306 DOI: 10.1136/lupus-2017-000239] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
SLE is a serious, debilitating autoimmune disease that affects various organs and body systems. Of all the heterogeneous autoimmune diseases, SLE is perhaps the most heterogeneous. Patients with SLE, who are primarily female, have diverse disease manifestations and severity. SLE is characterised by substantial concentrations of autoantibodies against nuclear antigens, which are thought to be caused by immune cell dysregulation. Until recently, several immunosuppressant agents were used to treat this disease. Efforts to develop drugs against targets potentially involved in disease mechanisms have resulted in the identification and use of BAFF (B-cell activating factor)/APRIL (a proliferation-inducing ligand) inhibitors to treat SLE. Drugs in late-stage development that focus on pathways that are dysregulated in SLE include those that target the interferon pathway, T-cell signalling and B-cell signalling. New therapeutic agents are still necessary because of the unmet medical needs associated with this disease, including insufficient disease control, poor health-related quality of life, comorbidities, toxicity of the majority of therapies and diminished survival. Despite the substantial long-term investment of research, clinical activity and resources for identifying new treatments for this disease, only one new therapy, the biological belimumab, has been approved in the past 50 years. Efforts to develop drugs to address these needs are challenged by problems associated with disease heterogeneity, variable disease mechanisms and trial design. This review provides an overview of current and future treatments, discusses challenges in the SLE drug development process and offers recommendations for overcoming these challenges.
Collapse
Affiliation(s)
- Zahi Touma
- Centre for Prognosis Studies in the Rheumatic Diseases, University of Toronto, Lupus Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Dafna D Gladman
- Centre for Prognosis Studies in the Rheumatic Diseases, University of Toronto, Lupus Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Kuraoka M, Snowden PB, Nojima T, Verkoczy L, Haynes BF, Kitamura D, Kelsoe G. BCR and Endosomal TLR Signals Synergize to Increase AID Expression and Establish Central B Cell Tolerance. Cell Rep 2017; 18:1627-1635. [PMID: 28199836 DOI: 10.1016/j.celrep.2017.01.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is required to purge autoreactive immature and transitional-1 (immature/T1) B cells at the first tolerance checkpoint, but how AID selectively removes self-reactive B cells is unclear. We now show that B cell antigen receptor (BCR) and endosomal Toll-like receptor (TLR) signals synergize to elicit high levels of AID expression in immature/T1 B cells. This synergy is restricted to ligands for endocytic TLR and requires phospholipase-D activation, endosomal acidification, and MyD88. The first checkpoint is significantly impaired in AID- or MyD88-deficient mice and in mice doubly heterozygous for AID and MyD88, suggesting interaction of these factors in central B cell tolerance. Moreover, administration of chloroquine, an inhibitor of endosomal acidification, results in a failure to remove autoreactive immature/T1 B cells in mice. We propose that a BCR/TLR pathway coordinately establishes central tolerance by hyper-activating AID in immature/T1 B cells that bind ligands for endosomal TLRs.
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Pilar B Snowden
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Takuya Nojima
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Immunology, Duke University, Durham, NC 27710, USA; Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
43
|
Gary EN, Kutzler MA. A Little Help From the Follicles: Understanding the Germinal Center Response to Human Immunodeficiency Virus 1 Infection and Prophylactic Vaccines. Clin Med Insights Pathol 2017; 10:1179555717695548. [PMID: 28469517 PMCID: PMC5398647 DOI: 10.1177/1179555717695548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/29/2017] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is the causative agent of AIDS. There are currently more than 35 million people living with HIV infection worldwide, and more than 2 million new infections occur each year. The global pandemic caused by HIV-1 is the subject of numerous research projects, with the development of a prophylactic vaccine and a therapeutic cure being the ultimate goals. The classic paradigms of vaccinology have proven incapable of producing a viable vaccine due to the complexity of the virus' replication cycle, its genetic diversity, and a lack of understanding of the immune correlates of protection. Here, we briefly discuss recent vaccine approaches and the immune correlates of protection from HIV-1 infection with a focus on the role of the germinal center as a reservoir of replication-competent virus and its role in the development of broadly neutralizing antibodies in response to vaccination.
Collapse
Affiliation(s)
- Ebony N Gary
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Michele A Kutzler
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
44
|
Abstract
Self-reactive B cells are tolerized at various stages of B-cell development and differentiation, including the immature B-cell stage (central tolerance) and the germinal center (GC) B-cell stage, and B-cell tolerance involves various mechanisms such as deletion, anergy, and receptor editing. Self-reactive B cells generated by random immunoglobulin variable gene rearrangements are tolerized by central tolerance and anergy in the periphery, and these processes involve apoptosis regulated by Bim, a pro-apoptotic member of the Bcl-2 family, and regulation of B-cell signaling by various phosphatases, including SHIP-1 and SHP-1. Self-reactive B cells generated by somatic mutations during GC reaction are also eliminated. Fas is not directly involved in this process but prevents persistence of GC reaction that allows generation of less stringently regulated B cells, including self-reactive B cells. Defects in self-tolerance preferentially cause lupus-like disease with production of anti-nuclear antibodies, probably due to the presence of a large potential B-cell repertoire reactive to nucleic acids and the presence of nucleic acid-induced activation mechanisms in various immune cells, including B cells and dendritic cells. A feed-forward loop composed of anti-nuclear antibodies produced by B cells and type 1 interferons secreted from nucleic acid-activated dendritic cells plays a crucial role in the development of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
45
|
Mao-Draayer Y, Sarazin J, Fox D, Schiopu E. The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases. Clin Immunol 2016; 175:10-15. [PMID: 27890706 DOI: 10.1016/j.clim.2016.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a prototype autoimmune disease of the central nervous system (CNS). Currently, there is no drug that provides a cure for MS. To date, all immunotherapeutic drugs target relapsing remitting MS (RR-MS); it remains a daunting medical challenge in MS to develop therapy for secondary progressive MS (SP-MS). Since the approval of the non-selective sphingosine-1-phosphate (S1P) receptor modulator FTY720 (fingolimod [Gilenya®]) for RR-MS in 2010, there have been many emerging studies with various selective S1P receptor modulators in other autoimmune conditions. In this article, we will review how S1P receptor may be a promising therapeutic target for SP-MS and other autoimmune diseases such as psoriasis, polymyositis and lupus.
Collapse
Affiliation(s)
- Yang Mao-Draayer
- Department of Neurology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 4015 Alfred Taubman Biomedical Sciences Research Bldg., 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
| | - Jeffrey Sarazin
- Department of Neurology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 4015 Alfred Taubman Biomedical Sciences Research Bldg., 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - David Fox
- Department of Neurology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 4015 Alfred Taubman Biomedical Sciences Research Bldg., 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - Elena Schiopu
- Department of Neurology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 4015 Alfred Taubman Biomedical Sciences Research Bldg., 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| |
Collapse
|
46
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
47
|
Natural autoantibodies in Bos taurus calves during the first twelve weeks of life. Vet Immunol Immunopathol 2016; 178:70-8. [PMID: 27496745 DOI: 10.1016/j.vetimm.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023]
Abstract
Natural autoantibodies (NAAb) have a role in maintaining physiological homeostasis and prevention of infections, and have been found in mammalian species tested so far. Albeit NAAb levels rise with age, little is known about the origin, function, regulation and initiation of NAAb in young animals. The present study addressed the presence of IgM and IgG NAAb binding glutamate dehydrogenase (GD), carbonic anhydrase (CA), myosin (MYO) and transferrin (TRANS) from before drinking colostrum until the first 12 weeks of life in plasma of female calves. In addition, NAAb to these four self-antigens were also measured in colostrum and in plasma of their mothers during three weeks before calving. Titers of NAAb binding GD, CA, MYO and TRANS were detected in plasma of cows before calving, in colostrum, and in plasma of calves before and after drinking of colostrum. Levels of NAAb in colostrum were positively related with levels of NAAb in plasma of cows. Before colostrum intake, levels of NAAb in plasma of calves were not related with levels of NAAb in plasma of their mother but were influenced by parity of their mother. After colostrum intake, levels of NAAb in plasma of calves in the first week of life were positively related with levels of NAAb in colostrum. Low NAAb levels in colostrum were related with low NAAb in plasma of calves in the first week of life, but after two weeks of life the relation between colostrum and plasma of calves was absent. In conclusion, NAAb are already present in the unborn calf, and levels of neonatal NAAb during the early weeks of life are affected by levels of maternal NAAb obtained via colostrum.
Collapse
|
48
|
Sisirak V, Sally B, D'Agati V, Martinez-Ortiz W, Özçakar ZB, David J, Rashidfarrokhi A, Yeste A, Panea C, Chida AS, Bogunovic M, Ivanov II, Quintana FJ, Sanz I, Elkon KB, Tekin M, Yalçınkaya F, Cardozo TJ, Clancy RM, Buyon JP, Reizis B. Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity. Cell 2016; 166:88-101. [PMID: 27293190 PMCID: PMC5030815 DOI: 10.1016/j.cell.2016.05.034] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.
Collapse
Affiliation(s)
- Vanja Sisirak
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Benjamin Sally
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vivette D'Agati
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Wilnelly Martinez-Ortiz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Z Birsin Özçakar
- Division of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Ankara University, Ankara, 06100, Turkey
| | - Joseph David
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ada Yeste
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Casandra Panea
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Asiya Seema Chida
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Milena Bogunovic
- Department of Microbiology and Immunology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | - Ivaylo I Ivanov
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inaki Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mustafa Tekin
- Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fatoş Yalçınkaya
- Division of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Ankara University, Ankara, 06100, Turkey
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert M Clancy
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jill P Buyon
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
49
|
DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A 2016; 113:E2636-45. [PMID: 27114511 PMCID: PMC4868480 DOI: 10.1073/pnas.1525510113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Collapse
Affiliation(s)
- Brandon J DeKosky
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Oana I Lungu
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Erik L Johnson
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | | | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
50
|
Zaenker P, Gray E, Ziman M. Autoantibody Production in Cancer—The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun Rev 2016; 15:477-83. [DOI: 10.1016/j.autrev.2016.01.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
|