1
|
Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 2017; 25:403-413. [DOI: 10.1007/s10787-017-0332-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
|
2
|
Jeon EJ, Davaatseren M, Hwang JT, Park JH, Hur HJ, Lee AS, Sung MJ. Effect of Oral Administration of 3,3'-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7702-7709. [PMID: 27700072 DOI: 10.1021/acs.jafc.6b02604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In patients with inflammatory bowel disease (IBD), inflammation is induced and maintained by lymphangiogenesis and angiogenesis. 3,3'-Diindolylmethane (DIM) is a natural product formed in acidic conditions from indole-3-carbinol in cruciferous vegetables, and it is known for its chemotherapeutic activity. This study evaluated DIM's effects on angiogenesis, lymphangiogenesis, and inflammation in a mouse colitis model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. DIM remarkably attenuated the clinical signs and histological characteristics in mice with DSS-induced colitis. DIM suppressed neutrophil infiltration and pro-inflammatory cytokines. Moreover, it significantly suppressed the expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)-2, indicating that the mechanism may be related to the repression of pro-angiogenesis activity. DIM also remarkably suppressed the expression of VEGF-C, VEGF-D, VEGFR-3, and angiopoietin-2; thus, the mechanism may also be related to the suppression of lymphangiogenesis. Therefore, DIM is a possible treatment option for inflammation of the intestine and associated angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University , Ansung, Keongki, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Haeng Jeon Hur
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Ae Sin Lee
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
3
|
Mucka P, Levonyak N, Geretti E, Zwaans BMM, Li X, Adini I, Klagsbrun M, Adam RM, Bielenberg DR. Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2803-2812. [PMID: 27751443 DOI: 10.1016/j.ajpath.2016.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.
Collapse
Affiliation(s)
- Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Nicholas Levonyak
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Elena Geretti
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Xiaoran Li
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
4
|
Virtej A, Papadakou P, Sasaki H, Bletsa A, Berggreen E. VEGFR-2 reduces while combined VEGFR-2 and -3 signaling increases inflammation in apical periodontitis. J Oral Microbiol 2016; 8:32433. [PMID: 27650043 PMCID: PMC5030260 DOI: 10.3402/jom.v8.32433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In apical periodontitis, oral pathogens provoke an inflammatory response in the apical area that induces bone resorptive lesions. In inflammation, angio- and lymphangiogenesis take place. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in these processes and are expressed in immune cells and endothelial cells in the lesions. OBJECTIVE We aimed at testing the role of VEGFR-2 and -3 in periapical lesion development and investigated their role in lymphangiogenesis in the draining lymph nodes. DESIGN We induced lesions by pulp exposure in the lower first molars of C57BL/6 mice. The mice received IgG injections or blocking antibodies against VEGFR-2 (anti-R2), VEGFR-3 (anti-R3), or combined VEGFR-2 and -3, starting on day 0 until day 10 or 21 post-exposure. RESULTS Lesions developed faster in the anti-R2 and anti-R3 group than in the control and anti-R2/R3 groups. In the anti-R2 group, a strong inflammatory response was found expressed as increased number of neutrophils and osteoclasts. A decreased level of pro-inflammatory cytokines was found in the anti-R2/R3 group. Lymphangiogenesis in the draining lymph nodes was inhibited after blocking of VEGFR-2 and/or -3, while the largest lymph node size was seen after anti-R2 treatment. CONCLUSIONS We demonstrate an anti-inflammatory effect of VEGFR-2 signaling in periapical lesions which seems to involve neutrophil regulation and is independent of angiogenesis. Combined signaling of VEGFR-2 and -3 has a pro-inflammatory effect. Lymph node lymphangiogenesis is promoted through activation of VEGFR-2 and/or VEGFR-3.
Collapse
Affiliation(s)
- Anca Virtej
- Department of Biomedicine, University of Bergen, Bergen, Norway;
| | | | - Hajime Sasaki
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Athanasia Bletsa
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ellen Berggreen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Wang XL, Zhao J, Qin L, Qiao M. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis. ACTA ACUST UNITED AC 2016; 49:e4738. [PMID: 27074165 PMCID: PMC4830025 DOI: 10.1590/1414-431x20154738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022]
Abstract
Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD.
Collapse
Affiliation(s)
- X L Wang
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - J Zhao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - L Qin
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - M Qiao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| |
Collapse
|
6
|
Angiogenesis in Inflammatory Bowel Disease. Int J Inflam 2015; 2015:970890. [PMID: 26839731 PMCID: PMC4709626 DOI: 10.1155/2015/970890] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature.
Collapse
|
7
|
Cui Y, Wilder J, Rietz C, Gigliotti A, Tang X, Shi Y, Guilmette R, Wang H, George G, Nilo de Magaldi E, Chu SG, Doyle-Eisele M, McDonald JD, Rosas IO, El-Chemaly S. Radiation-induced impairment in lung lymphatic vasculature. Lymphat Res Biol 2015; 12:238-50. [PMID: 25412238 DOI: 10.1089/lrb.2014.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The lymphatic vasculature has been shown to play important roles in lung injury and repair, particularly in lung fibrosis. The effects of ionizing radiation on lung lymphatic vasculature have not been previously reported. METHODS AND RESULTS C57Bl/6 mice were immobilized in a lead shield exposing only the thoracic cavity, and were irradiated with a single dose of 14 Gy. Animals were sacrificed and lungs collected at different time points (1, 4, 8, and 16 weeks) following radiation. To identify lymphatic vessels in lung tissue sections, we used antibodies that are specific for lymphatic vessel endothelial receptor 1 (LYVE-1), a marker of lymphatic endothelial cells (LEC). To evaluate LEC cell death and oxidative damage, lung tissue sections were stained for LYVE-1 and with TUNEL staining, or 8-oxo-dG respectively. Images were imported into ImageJ v1.36b and analyzed. Compared to a non-irradiated control group, we observed a durable and progressive decrease in the density, perimeter, and area of lymphatic vessels over the study period. The decline in the density of lymphatic vessels was observed in both subpleural and interstitial lymphatics. Histopathologically discernible pulmonary fibrosis was not apparent until 16 weeks after irradiation. Furthermore, there was significantly increased LEC apoptosis and oxidative damage at one week post-irradiation that persisted at 16 weeks. CONCLUSIONS There is impairment of lymphatic vasculature after a single dose of ionizing radiation that precedes architectural distortion and fibrosis, suggesting important roles for the lymphatic circulation in the pathogenesis of the radiation-induced lung injury.
Collapse
Affiliation(s)
- Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lucchese A, Gentile E, Capone G, De Vico G, Serpico R, Landini G. Fractal analysis of mucosal microvascular patterns in oral lichen planus: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:609-15. [PMID: 26320682 DOI: 10.1016/j.oooo.2015.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The objective of this study was to assess local vascular architecture in atrophic-erosive oral lichen planus (OLP). MATERIALS AND METHODS We investigated the capillary structure of the oral mucosa in 31 patients with OLP and 32 healthy controls. Capillaries images were captured in vivo through a capillaroscope. We applied fractal analysis to quantify the microvasculature morphometric changes in the oral mucosa of atrophic-erosive OLP patients in terms of their fractal dimension (D). RESULTS The oral vascular networks of atrophic-erosive OLP lesions had a significantly higher D, both in buccal mucosae (D=1.167, P=.019) and in tongue (D=1.196, P=.038), compared with the control population (1.123 for both locations, respectively). CONCLUSIONS The present study confirms previous literature data on a close relationship between abnormal vascular architecture and atrophic-erosive OLP. Fractal analysis provided a quantitative descriptor of the complexity of the vascular patterns, which increases in the OLP samples. These data may provide new information on the OLP pathogenesis, as well as serve as morphologic quantifiers for monitoring treatment strategies.
Collapse
Affiliation(s)
- Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy.
| | - Enrica Gentile
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari, Bari, Italy
| | - Gionata De Vico
- Department of Biological Sciences, Naples University Federico II, Naples, Italy
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Gabriel Landini
- Oral Pathology Unit, School of Dentistry, The University of Birmingham, Birmingham, England
| |
Collapse
|
9
|
Chen X, Zhou HJ, Huang Q, Lu L, Min W. Novel action and mechanism of auranofin in inhibition of vascular endothelial growth factor receptor-3-dependent lymphangiogenesis. Anticancer Agents Med Chem 2015; 14:946-54. [PMID: 24913775 DOI: 10.2174/1871520614666140610102651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/05/2023]
Abstract
Auranofin is a gold compound initially developed for the treatment of rheumatoid arthritis. Recent data suggest that auranofin has promise in the treatment of other inflammatory and proliferative diseases. However, the mechanisms of action of auranofin have not been well defined. In the present study, we identify vascular endothelial growth factor receptor-3 (VEGFR3), an endothelial cell (EC) surface receptor essential for angiogiogenesis and lymphangiogenesis, as a novel target of auranofin. In both primary EC and EC cell lines, auranofin induces downregulation of VEGFR3 in a dose-dependent manner. Auranofin at high doses (≥1 µM) decreases cellular survival protein thioredoxin reductase (TrxR2), TrxR2-dependent Trx2 and transcription factor NF-κB whereas increases stress signaling p38MAPK, leading to EC apoptosis. However, auranofin at low doses (≤0.5 µM) specifically induces downregulation of VEGFR3 and VEGFR3-mediated EC proliferation and migration, two critical steps required for in vivo lymphangiogenesis. Mechanistically, we show that auranofin-induced VEGFR3 downregulation is blocked by antioxidant N-acetyl-L-cysteine (NAC) and lysosome inhibitor chloroquine, but is promoted by proteasomal inhibitor MG132. These results suggest that auranofin induces VEGFR3 degradation through a lysosome-dependent pathway. Auranofin may be a potent therapeutic agent for the treatment of lymphangiogenesis-dependent diseases such as lymphedema and cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520.
| |
Collapse
|
10
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
11
|
Bianchi R, Teijeira A, Proulx ST, Christiansen AJ, Seidel CD, Rülicke T, Mäkinen T, Hägerling R, Halin C, Detmar M. A transgenic Prox1-Cre-tdTomato reporter mouse for lymphatic vessel research. PLoS One 2015; 10:e0122976. [PMID: 25849579 PMCID: PMC4388455 DOI: 10.1371/journal.pone.0122976] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023] Open
Abstract
The lymphatic vascular system plays an active role in immune cell trafficking, inflammation and cancer spread. In order to provide an in vivo tool to improve our understanding of lymphatic vessel function in physiological and pathological conditions, we generated and characterized a tdTomato reporter mouse and crossed it with a mouse line expressing Cre recombinase under the control of the lymphatic specific promoter Prox1 in an inducible fashion. We found that the tdTomato fluorescent signal recapitulates the expression pattern of Prox1 in lymphatic vessels and other known Prox1-expressing organs. Importantly, tdTomato co-localized with the lymphatic markers Prox1, LYVE-1 and podoplanin as assessed by whole-mount immunofluorescence and FACS analysis. The tdTomato reporter was brighter than a previously established red fluorescent reporter line. We confirmed the applicability of this animal model to intravital microscopy of dendritic cell migration into and within lymphatic vessels, and to fluorescence-activated single cell analysis of lymphatic endothelial cells. Additionally, we were able to describe the early morphological changes of the lymphatic vasculature upon induction of skin inflammation. The Prox1-Cre-tdTomato reporter mouse thus shows great potential for lymphatic research.
Collapse
Affiliation(s)
- Roberta Bianchi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Ailsa J. Christiansen
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Catharina D. Seidel
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Thomas Rülicke
- Institute of Laboratory Animal Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - René Hägerling
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
13
|
Chaudhary S, Garg T, Murthy RSR, Rath G, Goyal AK. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target 2014; 22:871-82. [PMID: 25148607 DOI: 10.3109/1061186x.2014.950664] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymphatic system is a key target in research field due to its distinctive makeup and huge contributing functions within the body. Intestinal lymphatic drug transport (chylomicron pathway) is intensely described in research field till date because it is considered to be the best for improving oral drug delivery by avoiding first pass metabolism. The lymphatic imaging techniques and potential therapeutic candidates are engaged for evaluating disease states and overcoming these conditions. The novel drug delivery systems such as self-microemulsifying drug delivery system, nanoparticles, liposomes, nano-lipid carriers, solid lipid carriers are employed for delivering drugs through lymphatic system via various routes such as subcutaneous route, intraperitoneal route, pulmonary route, gastric sub-mucosal injection, intrapleural and intradermal. Among these colloidal particles, lipid-based delivery system is considered to be the best for lymphatic delivery. From the last few decades, mesenteric lymph duct cannulation and thoracic lymph duct cannulation are followed to assess lymphatic uptake of drugs. Due to their limitations, chylomicrons inhibitors and in-vitro models are employed, i.e. lipolysis model and permeability model. Currently, research on this topic still continues and drainage system used to deliver the drugs against lymphatic disease as well as targeting other organs by modulating the chylomicron pathway.
Collapse
Affiliation(s)
- Shilpa Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | | | | | |
Collapse
|
14
|
Aebischer D, Willrodt AH, Halin C. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity. PLoS One 2014; 9:e99297. [PMID: 24911791 PMCID: PMC4050031 DOI: 10.1371/journal.pone.0099297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ann-Helen Willrodt
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Schröder-Braunstein J, Gras J, Brors B, Schwarz S, Szikszai T, Lasitschka F, Wabnitz G, Heidtmann A, Lee YS, Schiessling S, Leowardi C, Al-Saeedi M, Ulrich A, Engelke A, Winter J, Samstag Y, Giese T, Meuer S. Initiation of an inflammatory response in resident intestinal lamina propria cells -use of a human organ culture model. PLoS One 2014; 9:e97780. [PMID: 24841635 PMCID: PMC4026413 DOI: 10.1371/journal.pone.0097780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/22/2014] [Indexed: 01/30/2023] Open
Abstract
Resident human lamina propria immune cells serve as powerful effectors in host defense. Molecular events associated with the initiation of an intestinal inflammatory response in these cells are largely unknown. Here, we aimed to characterize phenotypic and functional changes induced in these cells at the onset of intestinal inflammation using a human intestinal organ culture model. In this model, healthy human colonic mucosa was depleted of epithelial cells by EDTA treatment. Following loss of the epithelial layer, expression of the inflammatory mediators IL1B, IL6, IL8, IL23A, TNFA, CXCL2, and the surface receptors CD14, TLR2, CD86, CD54 was rapidly induced in resident lamina propria cells in situ as determined by qRT-PCR and immunohistology. Gene microarray analysis of lamina propria cells obtained by laser-capture microdissection provided an overview of global changes in gene expression occurring during the initiation of an intestinal inflammatory response in these cells. Bioinformatic analysis gave insight into signalling pathways mediating this inflammatory response. Furthermore, comparison with published microarray datasets of inflamed mucosa in vivo (ulcerative colitis) revealed a significant overlap of differentially regulated genes underlining the in vivo relevance of the organ culture model. Furthermore, genes never been previously associated with intestinal inflammation were identified using this model. The organ culture model characterized may be useful to study molecular mechanisms underlying the initiation of an intestinal inflammatory response in normal mucosa as well as potential alterations of this response in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Judith Gras
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Schwarz
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Timea Szikszai
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Heidtmann
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Young-Seon Lee
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Serin Schiessling
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Leowardi
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Johannes Winter
- Department of Surgery, St. Vincentius Hospital, Speyer, Germany
| | - Yvonne Samstag
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Meuer
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Samokhvalov IM. Deconvoluting the ontogeny of hematopoietic stem cells. Cell Mol Life Sci 2014; 71:957-78. [PMID: 23708646 PMCID: PMC11113969 DOI: 10.1007/s00018-013-1364-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/15/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Two different models describe the development of definitive hematopoiesis and hematopoietic stem cells (HSCs). In one of these, the visceral yolk sac serves as a starting point of relatively lengthy developmental process culminating in the fetal liver hematopoiesis. In another, the origin of adult hematopoiesis is split between the yolk sac and the dorsal aorta, which has a peculiar capacity to generate definitive HSCs. Despite a large amount of experimental data consistent with the latter view, it becomes increasingly unsustainable in the light of recent cell tracing studies. Moreover, analysis of the published studies supporting the aorta-centered version uncovers significant caveats in standard experimental approach and argumentation. As a result, the theory cannot offer feasible cellular mechanisms of the HSC emergence. This review summarizes key efforts to discern the developmental pathway of the adult-type HSCs and attempts to put forward a hypothesis on the inflammatory mechanisms of hematopoietic ontogenesis.
Collapse
Affiliation(s)
- Igor M Samokhvalov
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China,
| |
Collapse
|
17
|
Relationship between levels of angiogenic and lymphangiogenic factors and the endoscopic, histological and clinical activity, and acute-phase reactants in patients with inflammatory bowel disease. J Crohns Colitis 2013; 7:e569-79. [PMID: 23642997 DOI: 10.1016/j.crohns.2013.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenic and lymphangiogenic factors (ALFs) may play an important role in inflammatory bowel disease (IBD). Our aims were to evaluate levels of ALFs in serum and the colonic mucosa culture supernatant (MCS) of patients with active and quiescent IBD and healthy subjects and to correlate them with the endoscopic, clinical and histological activity and with acute-phase reactants. METHODS This is a prospective study of 28 controls and 72 IBD patients. Serum and MCS concentration of VEGFA, VEGFC, VEGFD, VEGFR1, VEGFR2, VEGFR3, PlGF, Ang1, Ang2 and Tie2 were measured by ELISA. Activity was established by specific indexes (CDAI, Mayo score, SES-CD, D'Haens scale and Riley index). Acute-phase reactants were routinely measured. RESULTS MCS levels of all ALFs except VEGFR3 were higher in patients with endoscopic (p<0.05), clinical (p<0.05) and histological (p<0.01) activity than in those without it. In serum, VEGFA, VEGFC and Ang1 and VEGFA and Ang1 levels were lower in patients in remission than in patients with clinical and histological activity, respectively (p<0.05). There was a correlation between serum and MCS concentrations for VEGFD, VEGFR3, PlGF and Tie2 (r=0.25, r=0.48, r=-0.45 and r=0.36; p<0.05). Ang2 in MCS was the best predictor for the diagnosis of endoscopic, histological and clinical activity (area under ROC curve>0.8). CONCLUSIONS MCS determination suggests a local increase in ALFs that correlates with IBD activity. Although the correlation between ALFs in serum and MCS was not good, the study of some of these factors as possible targets of new drugs for IBD constitutes a key new line of research.
Collapse
|
18
|
Dieterich LC, Seidel CD, Detmar M. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 2013; 17:359-71. [PMID: 24212981 DOI: 10.1007/s10456-013-9406-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Strasse 10, HCI H 303, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis 2013; 17:383-93. [PMID: 24154862 DOI: 10.1007/s10456-013-9404-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
20
|
Truman LA, A-Gonzalez N, Bentley KL, Ruddle NH. Lymphatic vessel function in head and neck inflammation. Lymphat Res Biol 2013; 11:187-92. [PMID: 24044758 PMCID: PMC3780307 DOI: 10.1089/lrb.2013.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Serious infections of the head and neck cause lymphedema that can lead to airway compromise and oropharyngeal obstruction. Lymphangiogenesis occurs in the head and neck during infection and after immunization. The goal of this project was to develop tools to image lymphatic vessels in living animals and to be able to isolate individual lymphatic endothelial cells in order to quantify changes in single cells caused by inflammation. METHODS The ProxTom transgenic red-fluorescent reporter mouse was developed specifically for the purpose of imaging lymphatic vessels in vivo. Prox1 is a transcription factor that is necessary for lymphangiogenesis in development and for the maintenance of lymphatics in adulthood. Mice were immunized and their lymphatic vessels in lymph nodes were imaged in vivo. Individual lymphatic endothelial cells were isolated by means of their fluorescence. RESULTS The ProxTom transgene has the red-fluorescent reporter td-Tomato under the control of Prox1 regulatory elements. tdTomato was faithfully expressed in lymphatic vessels coincident with endogenous Prox1 expression. We show lymphangiogenesis in vivo after immunization and demonstrate a method for the isolation of lymphatic endothelial cells by their tdTomato red-fluorescence. CONCLUSIONS The faithful expression of the red-fluorescent reporter in the lymphatic vessels of ProxTom means that these mice have proven utility for in vivo study of lymphatic vessels in the immune response. ProxTom has been made available for distribution from the Jackson Laboratory: http://jaxmice.jax.org/strain/018128.html .
Collapse
Affiliation(s)
- Lucy A. Truman
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Noelia A-Gonzalez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin L. Bentley
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Abstract
The cytokine interleukin (IL)-7 exerts essential roles in lymph node (LN) organogenesis and lymphocyte development and homeostasis. Recent studies have identified lymphatic endothelial cells (LECs) as a major source of IL-7 in LNs. Here, we report that LECs not only produce IL-7, but also express the IL-7 receptor chains IL-7Rα and CD132. Stimulation with recombinant IL-7 enhanced LEC in vitro activity and induced lymphangiogenesis in the cornea of wild-type (WT) mice. Whereas in IL-7Rα(-/-) mice, dermal lymphatic vessels (LVs) were abnormally organized and lymphatic drainage was compromised, transgenic overexpression of IL-7 in mice resulted in an expanded dermal LV network with increased drainage function. Moreover, systemic treatment with recombinant IL-7 enhanced lymphatic drainage in the skin of WT mice and of mice devoid of lymphocytes. Experiments in IL-7Rα(-/-) bone marrow chimeras demonstrated that the drainage-enhancing activity of IL-7 was exclusively dependent on IL-7Rα expression in stromal but not in hematopoietic cells. Finally, near-infrared in vivo imaging performed in IL-7Rα(-/-) mice revealed that the pumping activity of collecting vessels was normal but fluid uptake into lymphatic capillaries was defective. Overall, our data point toward an unexpected new role for IL-7 as a potential autocrine mediator of lymphatic drainage.
Collapse
|
22
|
Abstract
BACKGROUND In contrast to the prominent function of the blood vasculature in promoting tissue inflammation, the role of lymphatic vessels in inflammation has been scarcely studied in vivo. To investigate whether modulating lymphatic vessel function might affect the course of chronic inflammation, the major lymphangiogenic receptor, vascular growth factor receptor 3 (VEGFR-3, FLT4), was blocked in an established model of inflammatory bowel disease. METHODS Interleukin 10 (IL10)-deficient mice that spontaneously develop inflammatory bowel disease were treated with a blocking antibody to VEGFR-3 for 18 days, and the inflammatory changes in colon tissue and the blood and lymphatic vascularization were quantitatively analyzed. RESULTS We found a significant increase in the severity of colon inflammation in anti-VEGFR-3-treated mice. This was accompanied by an increased number of enlarged and tortuous lymphatic vessels and edema in colon submucosa, indicating impaired lymphatic function. In contrast, no major effects of the treatment on the blood vasculature were observed. CONCLUSIONS These results indicate that therapies aimed at promoting lymphatic function, e.g., with prolymphangiogenic factors, such as VEGF-C, might provide a novel strategy for the treatment of inflammatory conditions, such as inflammatory bowel disease.
Collapse
|
23
|
Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 2013; 64:362-9. [PMID: 23764549 DOI: 10.1016/j.cyto.2013.05.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/05/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
The response of the lymphatic system to inflammatory insult and infection is not completely understood. Using a near-infrared fluorescence (NIRF) imaging system to noninvasively document propulsive function, we noted the short-term cessation of murine lymphatic propulsion as early as 4h following LPS injection. Notably, the effects were systemic, displaying bilateral lymphatic pumping cessation after a unilateral insult. Furthermore, IL-1β, TNF-α, and IL-6, cytokines that were found to be elevated in serum during lymphatic pumping cessation, were shown separately to acutely and systemically decrease lymphatic pulsing frequency and velocity following intradermal administration. Surprisingly, marked lymphatic vessel dilation and leakiness were noted in limbs contralateral to IL-1β intradermal administration, but not in ipsilateral limbs. The effects of IL-1β on lymphatic pumping were abated by pre-treatment with an inhibitor of inducible nitric oxide synthase, L-NIL (N-iminoethyl-L-lysine). The results suggest that lymphatic propulsion is systemically impaired within 4h of acute inflammatory insult, and that some cytokines are major effectors of lymphatic pumping cessation through nitric oxide-mediated mechanisms. These findings may help in understanding the actions of cytokines as mediators of lymphatic function in inflammatory and infectious states.
Collapse
Affiliation(s)
- Melissa B Aldrich
- The Center for Molecular Imaging, Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center-Houston, 1825 Pressler, 330-07, Houston, TX 77030, United States.
| | | |
Collapse
|
24
|
Scott DJA, Allen CJ, Honstvet CA, Hanby AM, Hammond C, Johnson AB, Perry SL, Jones PF. Lymphangiogenesis in abdominal aortic aneurysm. Br J Surg 2013; 100:895-903. [DOI: 10.1002/bjs.9128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/05/2022]
Abstract
Abstract
Background
Ongoing angiogenesis is implicated in the inflammatory environment that characterizes abdominal aortic aneurysm (AAA). Although lymphangiogenesis has been associated with chronic inflammatory conditions, it has yet to be demonstrated in AAA. The aim was to determine the presence of lymphangiogenesis and to delineate the relationship between inflammation and neovascularization in AAA tissue.
Methods
AAA samples and preoperative computed tomography images were obtained from patients undergoing elective AAA repair. Control samples were age-matched abdominal aortic tissue. Specific immunostains for blood vessels (CD31, CD105), lymphatic vessels (D2-40), vascular endothelial growth factor (VEGF) A and VEGF receptor (VEGFR) 3 allowed characterization and quantitation of vasculature.
Results
The AAA wall contained high levels of inflammatory infiltrate; microvascular densities of blood (P < 0·001) and lymphatic (P = 0·003) vessels were significantly increased in AAA samples compared with controls. Maximal AAA vascularity was observed in inflammatory areas, with vessels that stained positively for CD31 (ρ = 0·625, P = 0·017), CD105 (ρ = 0·692, P = 0·009) and D2-40 (ρ = 0·675, P = 0·008) correlating positively with the extent of inflammation. Increased VEGFR-3 and VEGF-A expression was also evident within inflammatory AAA areas.
Conclusion
These findings demonstrated lymphatic vessel involvement in end-stage AAA disease, which was associated with the degree of inflammation, and confirmed the involvement of neovascularization.
Collapse
Affiliation(s)
- D J A Scott
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - C J Allen
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C A Honstvet
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - A M Hanby
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C Hammond
- Department of Vascular Radiology, Leeds General Infirmary, Leeds, UK
| | - A B Johnson
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - S L Perry
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - P F Jones
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
25
|
Park JY, Amankwah EK, Anic GM, Lin HY, Walls B, Park H, Krebs K, Madden M, Maddox K, Marzban S, Fang S, Chen W, Lee JE, Wei Q, Amos CI, Messina JL, Sondak VK, Sellers TA, Egan KM. Gene variants in angiogenesis and lymphangiogenesis and cutaneous melanoma progression. Cancer Epidemiol Biomarkers Prev 2013; 22:827-34. [PMID: 23462921 PMCID: PMC3708315 DOI: 10.1158/1055-9965.epi-12-1129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Angiogenesis and lymphangiogenesis are important in the progression of melanoma. We investigated associations between genetic variants in these pathways with sentinel lymph node (SLN) metastasis and mortality in 2 independent series of patients with melanoma. METHODS Participants at Moffitt Cancer Center were 552 patients, all Caucasian, with primary cutaneous melanoma referred for SLN biopsy. A total of 177 patients had SLN metastasis, among whom 60 died from melanoma. Associations between 238 single-nucleotide polymorphisms (SNP) in 26 genes and SLN metastasis were estimated as ORs and 95% confidence intervals (CI) using logistic regression. Competing risk regression was used to estimate HRs and 95% CI for each SNP and melanoma-specific mortality. We attempted to replicate significant findings using data from a genome-wide association study comprising 1,115 patients with melanoma who were referred for SLN biopsy from MD Anderson Cancer Center (MDACC), among whom 189 patients had SLN metastasis and 92 patients died from melanoma. RESULTS In the Moffitt dataset, we observed significant associations in 18 SNPs with SLN metastasis and 17 SNPs with mortality. Multiple SNPs in COL18A1, EGF receptor (EGFR), FLT1, interleukin (IL)-10, platelet-derived growth factor D (PDGFD), PIK3CA, and toll-like receptor (TLR)-3 were associated with the risk of SLN metastasis and/or patient mortality. The MDACC data set replicated an association between mortality and rs2220377 in PDGFD. Furthermore, in a meta-analysis, 3 additional SNPs were significantly associated with SLN metastasis (EGFR rs723526 and TLR3 rs3775292) and melanoma-specific death (TLR3 rs7668666). CONCLUSIONS These findings suggest that genetic variation in angiogenesis and lymphangiogenesis contributes to regional nodal metastasis and progression of melanoma. IMPACT Additional research attempting to replicate these results is warranted.
Collapse
Affiliation(s)
- Jong Y Park
- Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Virtej A, Løes SS, Berggreen E, Bletsa A. Localization and signaling patterns of vascular endothelial growth factors and receptors in human periapical lesions. J Endod 2013; 39:605-11. [PMID: 23611377 DOI: 10.1016/j.joen.2012.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key players in vasculogenesis and are also involved in pathologic conditions with bone destruction. Vasculogenesis is critical for disease progression, and bone resorption is a hallmark of apical periodontitis. However, the localization of VEGFs and VEGFRs and their gene signaling pathways in human apical periodontitis have not been thoroughly investigated. The aim of this study was to localize VEGFs and VEGFRs and analyze their gene expression as well as signaling pathways in human periapical lesions. METHODS Tissue was collected after endodontic surgery from patients diagnosed with chronic apical periodontitis. Periodontal ligament samples from extracted healthy wisdom teeth was also collected and used as control tissue. In lesion cryosections, VEGFs/VEGFRs were identified by immunohistochemistry/double immunofluorescence by using specific antibodies. A human VEGF signaling polymerase chain reaction array system was used for gene expression analysis comparing lesions with periodontal ligament samples. RESULTS The histologic evaluation revealed heterogeneous morphology of the periapical lesions with various degrees of inflammatory infiltrates. In the lesions, all investigated factors and receptors were identified in blood vessels and various immune cells. No lymphatic vessels were detected. Gene expression analysis revealed up-regulation of VEGF-A and VEGFR-3, although not significant. Phosphatidylinositol-3-kinases, protein kinase C, mitogen-activated protein kinases, and phospholipases, all known to be involved in VEGF-mediated angiogenic activity, were significantly up-regulated. CONCLUSIONS The cellular and vascular expressions of VEGFs and VEGFRs in chronic apical periodontitis, along with significant alterations of genes mediating VEGF-induced angiogenic responses, suggest ongoing vascular remodeling in established chronic periapical lesions.
Collapse
Affiliation(s)
- Anca Virtej
- Institute of Biomedicine, Faculty of Medicine-Dentistry, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
27
|
Proulx ST, Luciani P, Alitalo A, Mumprecht V, Christiansen AJ, Huggenberger R, Leroux JC, Detmar M. Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo. Angiogenesis 2013; 16:525-40. [PMID: 23325334 DOI: 10.1007/s10456-013-9332-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/03/2013] [Indexed: 12/28/2022]
Abstract
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.
Collapse
Affiliation(s)
- Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli-Str. 10, HCI H303, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One 2013; 8:e51752. [PMID: 23335955 PMCID: PMC3546056 DOI: 10.1371/journal.pone.0051752] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022] Open
Abstract
It is thought that a Th1/Th17-weighted immune response plays a predominant role in the pathogenesis of psoriasis. Our findings now indicate a link between IL-9, a Th2 and Th9 cytokine, and Th17 pathway in psoriasis. In K5.hTGF-β1 transgenic mice, exhibiting a psoriasis-like phenotype, we found increased IL-9R and IL-9 expression in the skin and intradermal IL-9 injection induced Th17-related inflammation. IL-9 also promoted angiogenesis and VEGF and CD31 overexpression in mice in vivo and increased tube formation of human endothelial cells in vitro. Injecting anti-IL-9 antibody into K5.hTGF-β1 transgenic mice not only diminished inflammation (including skin infiltration by T cells, monocytes/macrophages, and mast cells) and angiogenesis but also delayed the psoriasis-like skin phenotype. Notably, injection of anti-psoriatic acting anti-IL-17 antibody reduced skin IL-9 mRNA and serum IL-9 protein levels in K5.hTGF-β1 transgenic mice and prevented IL-9-induced epidermal hyperplasia and inflammation of the skin of wild type mice. In addition, we observed that IL-9R expression in lesional skin from psoriasis patients was markedly higher than in healthy skin from control subjects. Moreover, IL-9 significantly enhanced IL-17A production by cultured human peripheral blood mononuclear cells or CD4+ T cells, especially in psoriasis patients. Thus, IL-9 may play a role in the development of psoriatic lesions through Th17-associated inflammation and angiogenesis.
Collapse
|
29
|
Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, Halin C. Novel role for ALCAM in lymphatic network formation and function. FASEB J 2012; 27:978-90. [PMID: 23169771 DOI: 10.1096/fj.12-217844] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adhesion molecules play an important role in vascular biology because they mediate vascular stability, permeability, and leukocyte trafficking to and from tissues. Performing microarray analyses, we have recently identified activated leukocyte cell adhesion molecule (ALCAM) as an inflammation-induced gene in lymphatic endothelial cells (LECs). ALCAM belongs to the immunoglobulin superfamily and engages in homophilic as well as heterophilic interactions. In this study, we found ALCAM to be expressed at the protein level in human and murine lymphatic and blood vascular endothelial cells in vitro and in the vasculature of human and murine tissues in vivo. Functional in vitro experiments revealed that ALCAM mediates adhesive interactions, migration, and tube formation in LECs, suggesting a role for ALCAM in lymphatic vessel (LV) stability and in lymphangiogenesis. Furthermore, ALCAM supported dendritic cell (DC) adhesion to lymphatic endothelium. In agreement with these findings, experiments performed in ALCAM mice detected reduced LEC numbers in various tissues and defects in the formation of an organized LV network. Moreover, DC migration from lung to draining lymph nodes was compromised in ALCAM mice. Collectively, our data reveal a novel role for ALCAM in stabilizing LEC-LEC interactions and in the organization and function of the LV network.
Collapse
Affiliation(s)
- Maria Iolyeva
- Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Preoperative Cholangitis and Metastatic Lymph Node Have a Negative Impact on Survival After Resection of Extrahepatic Bile Duct Cancer. World J Surg 2012; 36:1842-7. [DOI: 10.1007/s00268-012-1594-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Vascular endothelial growth factors and receptors are up-regulated during development of apical periodontitis. J Endod 2012; 38:628-35. [PMID: 22515891 DOI: 10.1016/j.joen.2012.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/05/2012] [Accepted: 01/08/2012] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Apical periodontitis is a common inflammatory disease caused by persistent root canal infection and is characterized by bone resorption. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) have been described in many pathologic and inflammatory conditions, but their involvement in the development of apical periodontitis has not been thoroughly investigated. The aim of this study was to quantify gene expression and localize VEGF-A, VEGF-C, and VEGF-D and VEGFR-2 and VEGFR-3 in a rat model of apical periodontitis. METHODS Molar pulps were unilaterally exposed to the oral cavity for 10 or 21 days. Jaw sections were used for localization of VEGFs and VEGFRs with immunohistochemistry and identification of cells with double immunofluorescence. Gene expression analysis for VEGF-A, VEGF-C, and VEGFR-3 of periapical tissues was performed with quantitative real-time polymerase chain reaction. RESULTS All investigated factors and receptors were expressed immunohistochemically in blood vessels at the periodontal ligament of control teeth and were up-regulated during lesion development. In apical lesions, macrophages and neutrophils expressed all studied factors and receptors, with macrophages being an important source of VEGF-C and VEGF-D. Osteoclasts expressed VEGFR-2 and VEGFR-3, and the latter was also identified in fibroblast-like cells in the lesions. VEGF-A and VEGFR-3 gene expression was up-regulated at days 10 and 21 (P < .05). CONCLUSIONS The current findings indicate that the VEGF family and receptors are involved in vascular remodeling and immune functions during disease development. The presence of VEGFR-2 and VEGFR-3 on osteoclasts indicates that bone resorbing activity is influenced by VEGFs.
Collapse
|
32
|
Li J, Zhou Q, Wood RW, Kuzin I, Bottaro A, Ritchlin CT, Xing L, Schwarz EM. CD23(+)/CD21(hi) B-cell translocation and ipsilateral lymph node collapse is associated with asymmetric arthritic flare in TNF-Tg mice. Arthritis Res Ther 2011; 13:R138. [PMID: 21884592 PMCID: PMC3239381 DOI: 10.1186/ar3452] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/26/2011] [Accepted: 08/31/2011] [Indexed: 12/21/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic autoimmune disease with episodic flares in affected joints. However, how arthritic flare occurs only in select joints during a systemic autoimmune disease remains an enigma. To better understand these observations, we developed longitudinal imaging outcomes of synovitis and lymphatic flow in mouse models of RA, and identified that asymmetric knee flare is associated with ipsilateral popliteal lymph node (PLN) collapse and the translocation of CD23+/CD21hi B-cells (B-in) into the paracortical sinus space of the node. In order to understand the relationship between this B-in translocation and lymph drainage from flaring joints, we tested the hypothesis that asymmetric tumor necrosis factor (TNF)-induced knee arthritis is associated with ipsilateral PLN and iliac lymph node (ILN) collapse, B-in translocation, and decreased afferent lymphatic flow. Methods TNF transgenic (Tg) mice with asymmetric knee arthritis were identified by contrast-enhanced (CE) magnetic resonance imaging (MRI), and PLN were phenotyped as "expanding" or "collapsed" using LNcap threshold = 30 (Arbitrary Unit (AU)). Inflammatory-erosive arthritis was confirmed by histology. Afferent lymphatic flow to PLN and ILN was quantified by near infrared imaging of injected indocyanine green (NIR-ICG). The B-in population in PLN and ILN was assessed by immunohistochemistry (IHC) and flow cytometry. Linear regression analyses of ipsilateral knee synovial volume and afferent lymphatic flow to PLN and ILN were performed. Results Afferent lymph flow to collapsed nodes was significantly lower (P < 0.05) than flow to expanding nodes by NIR-ICG imaging, and this occurred ipsilaterally. While both collapsed and expanding PLN and ILN had a significant increase (P < 0.05) of B-in compared to wild type (WT) and pre-arthritic TNF-Tg nodes, B-in of expanding lymph nodes (LN) resided in follicular areas while B-in of collapsed LN were present within LYVE-1+ lymphatic vessels. A significant correlation (P < 0.002) was noted in afferent lymphatic flow between ipsilateral PLN and ILN during knee synovitis. Conclusions Asymmetric knee arthritis in TNF-Tg mice occurs simultaneously with ipsilateral PLN and ILN collapse. This is likely due to translocation of the expanded B-in population to the lumen of the lymphatic vessels, resulting in a dramatic decrease in afferent lymphatic flow. PLN collapse phenotype can serve as a new biomarker of knee flare.
Collapse
Affiliation(s)
- Jie Li
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 2011; 118:205-15. [PMID: 21596851 DOI: 10.1182/blood-2010-12-326447] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines and adhesion molecules up-regulated in lymphatic endothelial cells (LECs) during tissue inflammation are thought to enhance dendritic cell (DC) migration to draining lymph nodes, but the in vivo control of this process is not well understood. We performed a transcriptional profiling analysis of LECs isolated from murine skin and found that inflammation induced by a contact hypersensitivity (CHS) response up-regulated the adhesion molecules ICAM-1 and VCAM-1 and inflammatory chemokines. Importantly, the lymphatic markers Prox-1, VEGFR3, and LYVE-1 were significantly down-regulated during CHS. By contrast, skin inflammation induced by complete Freund adjuvant induced a different pattern of chemokine and lymphatic marker gene expression and almost no ICAM-1 up-regulation in LECs. Fluorescein isothiocyanate painting experiments revealed that DC migration to draining lymph nodes was more strongly increased in complete Freund adjuvant-induced than in CHS-induced inflammation. Surprisingly, DC migration did not correlate with the induction of CCL21 and ICAM-1 protein in LECs. Although the requirement for CCR7 signaling became further pronounced during inflammation, CCR7-independent signals had an additional, albeit moderate, impact on enhancing DC migration. Collectively, these findings indicate that DC migration in response to inflammation is stimulus-specific, mainly CCR7-dependent, and overall only moderately enhanced by LEC-induced genes other than CCL21.
Collapse
|
34
|
Abstract
In contrast to the established role of blood vessel remodeling in inflammation, the biologic function of the lymphatic vasculature in acute inflammation has remained less explored. We studied 2 established models of acute cutaneous inflammation, namely, oxazolone-induced delayed-type hypersensitivity reactions and ultraviolet B irradiation, in keratin 14-vascular endothelial growth factor (VEGF)-C and keratin 14-VEGF-D transgenic mice. These mice have an expanded network of cutaneous lymphatic vessels. Transgenic delivery of the lymphangiogenic factors VEGF-C and the VEGFR-3 specific ligand mouse VEGF-D significantly limited acute skin inflammation in both experimental models, with a strong reduction of dermal edema. Expression of VEGFR-3 by lymphatic endothelium was strongly down-regulated at the mRNA and protein level in acutely inflamed skin, and no VEGFR-3 expression was detectable on inflamed blood vessels and dermal macrophages. There was no major change of the inflammatory cell infiltrate or the composition of the inflammatory cytokine milieu in the inflamed skin of VEGF-C or VEGF-D transgenic mice. However, the increased network of lymphatic vessels in these mice significantly enhanced lymphatic drainage from the ear skin. These results provide evidence that specific lymphatic vessel activation limits acute skin inflammation via promotion of lymph flow from the skin and reduction of edema formation.
Collapse
|
35
|
Zibert JR, Wallbrecht K, Schön M, Mir LM, Jacobsen GK, Trochon-Joseph V, Bouquet C, Villadsen LS, Cadossi R, Skov L, Schön MP. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. J Clin Invest 2010; 121:410-21. [PMID: 21135506 DOI: 10.1172/jci41295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/20/2010] [Indexed: 12/30/2022] Open
Abstract
Dysregulated angiogenesis is a hallmark of chronic inflammatory diseases, including psoriasis, a common skin disorder that affects approximately 2% of the population. Studying both human psoriasis in 2 complementary xenotransplantation models and psoriasis-like skin lesions in transgenic mice with epidermal expression of human TGF-β1, we have demonstrated that antiangiogenic non-viral somatic gene therapy reduces the cutaneous microvasculature and alleviates chronic inflammatory skin disorders. Transient muscular expression of the recombinant disintegrin domain (RDD) of metargidin (also known as ADAM-15) by in vivo electroporation reduced cutaneous angiogenesis and vascularization in all 3 models. As demonstrated using red fluorescent protein-coupled RDD, the treatment resulted in muscular expression of the gene product and its deposition within the cutaneous hyperangiogenic connective tissue. High-resolution ultrasound revealed reduced cutaneous blood flow in vivo after electroporation with RDD but not with control plasmids. In addition, angiogenesis- and inflammation-related molecular markers, keratinocyte proliferation, epidermal thickness, and clinical disease scores were downregulated in all models. Thus, non-viral antiangiogenic gene therapy can alleviate psoriasis and may do so in other angiogenesis-related inflammatory skin disorders.
Collapse
Affiliation(s)
- John R Zibert
- Department of Dermato-Allergology, University of Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fritz JH, Gommerman JL. Cytokine/stromal cell networks and lymphoid tissue environments. J Interferon Cytokine Res 2010; 31:277-89. [PMID: 21133813 DOI: 10.1089/jir.2010.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Initiation of an effective adaptive immune response against a foreign pathogen requires orchestrated encounters between lymphocytes and antigen-presenting cells. The tissues of the lymphoid system provide the ideal environment for increasing the efficiency of these encounters. Within the spleen, the mucosal-associated lymphoid tissues, and the lymph nodes, an intricate network of stromal cells, collagen fibers, and extracellular matrix exists that effectively compartmentalizes immune cells as they transit through these tissues. The stromal cells within lymphoid tissues are by no means homogenous, and it is now clear that these cells are not merely sessile bystanders during immune responses. Indeed, stromal cells within lymphoid tissues are the source of important cytokines and chemokines that guide and polarize immune cells. Here, we review the cytokines that maintain the integrity of this important stromal scaffold system within the lymphoid tissue, paying particular attention to the Lymphotoxin pathway, which is an important player in stromal cell biology. How cytokines maintain the organization of lymphoid tissues during development, in the adult animal, during inflammation and during disease will be discussed in sequence, and the clinical implications of targeting cytokines that regulate lymphoid tissue stroma will be considered.
Collapse
Affiliation(s)
- Jörg H Fritz
- Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Papalas JA, Robboy SJ, Burchette JL, Foo WC, Selim MA. Acquired vulvar lymphangioma circumscriptum: a comparison of 12 cases with Crohn's associated lesions or radiation therapy induced tumors. J Cutan Pathol 2010; 37:958-65. [PMID: 20653826 DOI: 10.1111/j.1600-0560.2010.01569.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lymphangioma circumscriptum (LC) is a benign lesion of lymphatic origin. Vulvar involvement occurs in various clinical settings. METHODS We present 12 cases, and compare lesions in patients with Crohn's disease and those associated with pelvic radiation. RESULTS The average age at presentation was 49 years. Thirty-three percent of the patients had Crohn's disease, 58% had radiation therapy and 9% had no significant medical history. Sixty-seven percent of the patients had multifocal lesions in anatomically distinct regions. Patients presented on average 16 years after onset of predisposing factors. Presenting complaints were pruritus, wetness and vulvar edema. Lesions were clinically heterogeneous, often found on the labia majora. Lesions consisted of dilated lymphatic channels at the junction of the reticular and papillary dermis. The cells lining these spaces lacked cytologic atypicality or mitotic activity. All lesions so examined were immunoreactive for D240. Patients were most often treated with surgical excision followed by laser ablation. Four of twelve patients, all with radiation-associated lesions, experienced disease progression necessitating additional surgery. CONCLUSIONS Patients with LC secondary to radiation, when compared to those with Crohn's disease, were 10 years younger, more likely to have associated co-morbidities, and frequently experienced disease progression needing additional surgeries. Acquired vulvar LC has multiple causes with differing prognosis.
Collapse
Affiliation(s)
- John A Papalas
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
38
|
Kim TH, Lee JY, Lee HM, Lee SH, Cho WS, Ju YH, Park EH, Kim KW, Lee SH. Remodelling of nasal mucosa in mild and severe persistent allergic rhinitis with special reference to the distribution of collagen, proteoglycans, and lymphatic vessels. Clin Exp Allergy 2010; 40:1742-54. [PMID: 20860724 DOI: 10.1111/j.1365-2222.2010.03612.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Small leucine-rich repeat proteoglycans (decorin, biglycan, and lumican), collagen, and lymphangiogenesis are involved in tissue remodelling of various organs with inflammatory diseases. OBJECTIVE We determined the expression level and the distribution pattern of small leucine-rich repeat proteoglycans (decorin, biglycan, and lumican), collagen and lymphatic vessels in healthy, mild, and severe persistent allergic nasal mucosa. METHODS The distribution pattern of collagen, proteoglycans, and lymphatic vessels in healthy, mild, and severe persistent allergic nasal mucosa was evaluated by the van Gieson staining, immunohistochemistry, RT-PCR, and Western blotting. Quantitative analyses of collagen deposition were calculated as the median of the total percentage area in the tissue specimen. For the evaluation of proteoglycans, the percentage area stained and median optical density were measured for each image. Lymphatic vessels were identified by D2-40 antibody and calculated using the lymphatic vessel density and endothelial length density in tissue specimens. The expression of MMP 2 and 9, TIMP1 and 2 was evaluated with RT-PCR and Western blotting. RESULTS In mild and severe persistent allergic nasal mucosa, compared with healthy nasal mucosa, collagen showed more intense staining in the superficial and submucosal layer. In healthy and allergic nasal mucosa, decorin was lightly stained without significant differences in the percentage area and optical density of staining. However, lumican and biglycan showed strong immunoreactivity in mild and severe persistent allergic nasal mucosa, which was verified by Western blotting. The number and endothelial length density of lymphatic vessels were increased in mild and severe persistent allergic nasal mucosa compared with healthy nasal mucosa. The expression of MMP 9 was increased in severe persistent allergic rhinitis. CONCLUSION AND CLINICAL RELEVANCE These results suggest that the altered distribution pattern of collagen, proteoglycans, and lymphatic vessels could potentially modulate the remodelling of nasal mucosa in mild and severe persistent allergic nasal mucosa.
Collapse
Affiliation(s)
- T H Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Melrose J, Little CB. Immunolocalization of lymphatic vessels in human fetal knee joint tissues. Connect Tissue Res 2010; 51:289-305. [PMID: 20334573 DOI: 10.3109/03008200903318287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We immunolocalized lymphatic and vascular blood vessels in 12- and 14-week-old human fetal knee joint tissues using a polyclonal antibody to a lymphatic vascular endothelium specific hyaluronan receptor (LYVE-1) and a monoclonal antibody to podoplanin (mAb D2-40). A number of lymphatic vessels were identified in the stratified connective tissues surrounding the cartilaginous knee joint femoral and tibial rudiments. These tissues also contained small vascular vessels with entrapped red blood cells which were imaged using Nomarsky DIC microscopy. Neither vascular nor lymphatic vessels were present in the knee joint cartilaginous rudiments. The menisci in 12-week-old fetal knees were incompletely demarcated from the adjacent tibial and femoral cartilaginous rudiments which was consistent with the ongoing joint cavitation process at the femoral-tibial junction. At 14 weeks of age the menisci were independent structural entities; they contained a major central blood vessel containing red blood cells and numerous communicating vessels at the base of the menisci but no lymphatic vessels. In contrast to the 12-week-old menisci, the 14-week meniscal rudiments contained abundant CD-31 and CD-34 positive but no lymphatic vessels. Isolated 14-week-old meniscal cells also were stained with the CD-31 and CD 34 antibodies; CD-68 +ve cells, also abundant in the 14-week-old menisci, were detectable to a far lesser degree in the 12-week menisci and were totally absent from the femoral and tibial rudiments. The distribution of lymphatic vessels and tissue macrophages in the fetal joint tissues was consistent with their roles in the clearance of metabolic waste and extracellular matrix breakdown products arising from the rapidly remodelling knee joint tissues.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, Australia.
| | | |
Collapse
|
40
|
Yao LC, Baluk P, Feng J, McDonald DM. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1525-41. [PMID: 20093490 DOI: 10.2353/ajpath.2010.090909] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiogenesis and lymphangiogenesis participate in many inflammatory diseases, and their reversal is thought to be beneficial. However, the extent of reversibility of vessel remodeling is poorly understood. We exploited the potent anti-inflammatory effects of the corticosteroid dexamethasone to test the preventability and reversibility of vessel remodeling in Mycoplasma pulmonis-infected mice using immunohistochemistry and quantitative RT-PCR. In this model robust immune responses drive rapid and sustained changes in blood vessels and lymphatics. In infected mice not treated with dexamethasone, capillaries enlarged into venules expressing leukocyte adhesion molecules, sprouting angiogenesis and lymphangiogenesis occurred, and the inflammatory cytokines tumor necrosis factor and interleukin-1 increased. Concurrent dexamethasone treatment largely prevented the remodeling of blood vessels and lymphatics. Dexamethasone also significantly reduced cytokine expression, bacterial burden, and leukocyte influx into airways and lungs over 4 weeks of infection. In contrast, when infection was allowed to proceed untreated for 2 weeks and then was treated with dexamethasone for 4 weeks, most blood vessel changes reversed but lymphangiogenesis did not, suggesting that different survival mechanisms apply. Furthermore, dexamethasone significantly reduced the bacterial burden and influx of lymphocytes but not of neutrophils or macrophages or cytokine expression. These findings show that lymphatic remodeling is more resistant than blood vessel remodeling to corticosteroid-induced reversal. We suggest that lymphatic remodeling that persists after the initial inflammatory response has resolved may influence subsequent inflammatory episodes in clinical situations.
Collapse
Affiliation(s)
- Li-Chin Yao
- Department of Anatomy, University of California, 513 Parnassus Ave., Room S1363, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Work on the lymphatic system began in the 17th century, and by the beginning of the 19th century the anatomy of most of the lymphatic system had been described. One of the most important questions in this field has been the determination of the embryological origin of the lymphatic endothelium. Two theories were proposed. The first suggested that lymphatic endothelium derived by sprouting from venous endothelium, the so-called centrifugal theory. The second, the so-called centripetal theory, suggested that lymphatic endothelium differentiates in situ from primitive mesenchyme, and secondarily acquires connection with the vascular system. More recent evidence has provided support for both hypotheses.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Italy.
| | | |
Collapse
|
42
|
Henno A, Blacher S, Lambert CA, Deroanne C, Noël A, Lapière C, de la Brassinne M, Nusgens BV, Colige A. Histological and transcriptional study of angiogenesis and lymphangiogenesis in uninvolved skin, acute pinpoint lesions and established psoriasis plaques: an approach of vascular development chronology in psoriasis. J Dermatol Sci 2010; 57:162-9. [PMID: 20071151 DOI: 10.1016/j.jdermsci.2009.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/03/2009] [Accepted: 12/09/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dysregulation of angiogenesis and lymphangiogenesis could participate in psoriasis pathogenesis. Analysis of nascent psoriasis lesions should help at identifying early vascular anomalies. OBJECTIVE To analyse vascular development, angiogenesis and lymphangiogenesis markers expression in uninvolved skin in psoriatic patients (N), early psoriasis lesions or pinpoints (PP) and psoriasis plaques (PSO). METHODS Skin biopsies were taken in 17 patients in N and in PSO and/or PP. The mRNA steady-state level of angiogenesis and lymphangiogenesis markers was measured by RT-PCR. Immunohistochemistry was performed for von Willebrand factor, podoplanin, Ki-67 and VEGFR3. Blood (BV) and lymphatic (LV) vessels expansion was measured by computer-assisted morphometry. RESULTS Clinical and epidermal aspects indicated that PP are intermediate between N and PSO. While total BV area was already increased in PP similarly to PSO as compared to N, LV area in PP was intermediate between N and PSO. Mean LV size was identical in N and PP and increased in PSO, mean BV size in PP being intermediate between N and PSO. VEGF-A 189 variant was increased in PP as compared to N and PSO. As compared to N, angiogenesis markers (VEGF-A isoforms, PlGF, VEGFR2, NRP-1), VEGF-C and NRP-2 were similarly increased in PP and PSO. Keratin 16 and the lymphangiogenesis markers (VEGFR3, prox-1) were intermediate in PP. CONCLUSION These data suggest that the expansion of lymphatic vessels occurs after blood vascular development in psoriasis. Expansion of BV in PP could be followed by vessel enlargement during progression to PSO, in parallel with a decreased VEGF-A 189/VEGF-A 121 balance in plaques.
Collapse
Affiliation(s)
- Audrey Henno
- Department of Dermatology, University Hospital of Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim JA, Kang YR, Thapa D, Lee JS, Park MA, Lee KH, Lyoo WS, Lee YR. Anti-Invasive and Anti-Angiogenic Effects of Xanthohumol and Its Synthetic Derivatives. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.4.422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Affiliation(s)
- Françoise Bruyère
- Laboratory of Tumor and Development BiologyGroupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer)University of LiegeLiegeBelgium
| | - Agnès Noël
- Laboratory of Tumor and Development BiologyGroupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer)University of LiegeLiegeBelgium
| |
Collapse
|