1
|
Gambardella G, Notari S, Criscuolo E, Lai O, Nardoni A, Massoud R, Micheli L, Bocedi A, Ricci G. Quantitation of oxidized and reduced albumin in mammals. An intriguing analytical question. Arch Biochem Biophys 2024; 757:110038. [PMID: 38750920 DOI: 10.1016/j.abb.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Oxidized albumin is considered a short-term biomarker of oxidative stress and its measurement in blood contributes to evaluate the impact of diseases, drugs, dialytic treatments, physical activity, environmental contaminants etc. on the red-ox balance of humans as well as of other mammalians. Nevertheless, the most common methods for quantifying the oxidized and reduced albumins are costly and time-consuming. Furthermore, there is a dearth of information regarding the proper ways to store human serum or plasma samples in order to prevent inaccurate quantification of these various albumin forms. This paper explores these aspects and proposes a few spectrophotometric assay procedures which make the quantitation of oxidized and reduced albumin very fast, precise and un-expensive in various mammals.
Collapse
Affiliation(s)
- Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Emanuele Criscuolo
- Department of Biomedical Engineering, Eindhoven University of Technology, Institute for Complex Molecular Systems, Eindhoven, Netherlands
| | - Olga Lai
- Istituto Zooprofilattico Sperimentale Del Lazio e Della Toscana 'M. Aleandri', Via Appia Nuova 1411, 00182, Rome, Italy
| | - Antonella Nardoni
- Istituto Zooprofilattico Sperimentale Del Lazio e Della Toscana 'M. Aleandri', Via Appia Nuova 1411, 00182, Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; Department of Laboratory Medicine, "Tor Vergata" University Hospital, Viale Oxford 81, Rome, 00133, Italy
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Uzelac T, Smiljanić K, Takić M, Šarac I, Oggiano G, Nikolić M, Jovanović V. The Thiol Group Reactivity and the Antioxidant Property of Human Serum Albumin Are Controlled by the Joint Action of Fatty Acids and Glucose Binding. Int J Mol Sci 2024; 25:2335. [PMID: 38397014 PMCID: PMC10889162 DOI: 10.3390/ijms25042335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The binding of ubiquitous serum ligands (free fatty acids) to human serum albumin (HSA) or its glycation can affect thiol group reactivity, thus influencing its antioxidant activity. The effects of stearic acid (SA) and glucose binding on HSA structural changes and thiol group content and reactivity were monitored by fluoroscopy and the Ellman method during a 14-day incubation in molar ratios to HSA that mimic pathophysiological conditions. Upon incubation with 5 mM glucose, HSA glycation was the same as HSA without it, in three different HSA:SA molar ratios (HSA:SA-1:1-2-4). The protective effect of SA on the antioxidant property of HSA under different glucose regimes (5-10-20 mM) was significantly affected by molar ratios of HSA:SA. Thiol reactivity was fully restored with 5-20 mM glucose at a 1:1 HSA:SA ratio, while the highest thiol content recovery was in pathological glucose regimes at a 1:1 HSA:SA ratio. The SA affinity for HSA increased significantly (1.5- and 1.3-fold, p < 0.01) with 5 and 10 mM glucose compared to the control. These results deepen the knowledge about the possible regulation of the antioxidant role of HSA in diabetes and other pathophysiological conditions and enable the design of future HSA-drug studies which, in turn, is important for clinicians when designing information-based treatments.
Collapse
Affiliation(s)
- Tamara Uzelac
- Department of Biochemistry and Centre of Excellence for Molecular and Food Sciences, University of Belgrade—Faculty of Chemistry (UBFC), Studentski trg 12-16, 11158 Belgrade, Serbia; (T.U.); (K.S.); (M.N.)
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular and Food Sciences, University of Belgrade—Faculty of Chemistry (UBFC), Studentski trg 12-16, 11158 Belgrade, Serbia; (T.U.); (K.S.); (M.N.)
| | - Marija Takić
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia; (M.T.); (I.Š.); (G.O.)
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia; (M.T.); (I.Š.); (G.O.)
| | - Gordana Oggiano
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, National Institute of Republic of Serbia, Institute for Medical Research, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia; (M.T.); (I.Š.); (G.O.)
| | - Milan Nikolić
- Department of Biochemistry and Centre of Excellence for Molecular and Food Sciences, University of Belgrade—Faculty of Chemistry (UBFC), Studentski trg 12-16, 11158 Belgrade, Serbia; (T.U.); (K.S.); (M.N.)
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular and Food Sciences, University of Belgrade—Faculty of Chemistry (UBFC), Studentski trg 12-16, 11158 Belgrade, Serbia; (T.U.); (K.S.); (M.N.)
| |
Collapse
|
3
|
Schildboeck C, Harm S, Hartmann J. In vitro Removal of Protein-Bound Retention Solutes by Extracorporeal Blood Purification Procedures. Blood Purif 2024; 53:231-242. [PMID: 38262384 DOI: 10.1159/000534906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION When the kidneys or liver fail, toxic metabolites accumulate in the patient's blood, causing cardiovascular and neurotoxic complications and increased mortality. Conventional membrane-based extracorporeal blood purification procedures cannot remove these toxins efficiently. The aim of this in vitro study was to determine whether commercial hemoperfusion adsorbers are suitable for removing protein-bound retention solutes from human plasma and whole blood as well as to compare the removal to conventional hemodialysis. METHODS For in vitro testing of the removal of protein-bound substances, whole blood and plasma were spiked with uremic retention solutes (homocysteine, hippuric acid, indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and the toxins of liver failure (bilirubin, cholic acid, tryptophan, phenol). Subsequently, the protein binding of each retention solute was determined. The adsorption characteristics of the hemoperfusion adsorbers, Jafron HA and Biosky MG, both approved for the adsorption of protein-bound uremic retention solutes and Cytosorb, an adsorber recommended for adsorption of cytokines, were tested by incubating them in spiked whole blood or plasma for 1 h. Subsequently, the adsorption characteristics of the adsorbers were tested in a dynamic system. For this purpose, a 6-h in vitro hemoperfusion treatment was compared with an equally long in vitro hemodialysis treatment. RESULTS Hippuric acid, homocysteine, indoxyl sulfate, and tryptophan were most effectively removed by hemodialysis. Bilirubin and cholic acid were removed best by hemoperfusion with Cytosorb. A treatment with Jafron HA and Biosky MG showed similar results for the adsorption of the tested retention solutes and were best for removing phenol. 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid could not be removed with any treatment method. DISCUSSION/CONCLUSION A combination of hemodialysis with hemoperfusion seems promising to improve the removal of some toxic metabolites in extracorporeal therapies. However, some very strongly protein-bound metabolites cannot be removed adequately with the adsorbers tested.
Collapse
Affiliation(s)
- Claudia Schildboeck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Jens Hartmann
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
4
|
Inoue M, Iizuka Y, Nakamura K, Sato GE, Mizowaki T. Role of albumin Cys34 redox state in the progression of differentiated thyroid carcinoma and induction of ferroptosis. Free Radic Biol Med 2023; 209:108-115. [PMID: 37806598 DOI: 10.1016/j.freeradbiomed.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Differentiated thyroid cancer (DTC) is the most prevalent endocrine malignancy worldwide and requires effective prognostic markers and therapeutic targets to optimize patient outcomes. This study investigated the potential of human serum albumin (HSA) cysteine-34 (Cys34) redox state as a prognostic indicator and therapeutic avenue for DTC. A retrospective cohort study of 99 patients with DTC undergoing radioactive iodine therapy found that higher concentrations of HSA with the reduced form of Cys34 (i.e., human mercaptalbumin [HMA]) were associated with improved progression-free survival in metastatic DTC. In vitro experiments using a DTC cell line revealed that HMA induced cytotoxic effects by triggering ferroptosis, characterized by lipid peroxidation, intracellular ROS accumulation, and decreased cell viability. Ferroptosis inhibitors rescued cell viability, confirming their role in cytotoxicity. These results implicate the HSA-Cys34 redox state is a promising avenue for precision medicine in DTC, shedding light on the prognostic relevance and therapeutic potential of HMA-induced ferroptosis. They emphasize the opportunity for personalized treatment strategies to advance the management of patients with DTC.
Collapse
Affiliation(s)
- Minoru Inoue
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan.
| | - Yusuke Iizuka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan; Department of Radiation Oncology, Shizuoka City Shizuoka Hospital, 10-93, Ote-machi, Aoi-ku, Shizuoka-shi, Shizuoka, 420-8630, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Genki E Sato
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Paar M, Cvirn G, Hoerl G, Reibnegger G, Sourij H, Sourij C, Kojzar H, Oettl K. Albumin of People with Diabetes Mellitus Is More Reduced at Low HbA1c. Int J Mol Sci 2023; 24:16256. [PMID: 38003446 PMCID: PMC10671031 DOI: 10.3390/ijms242216256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is involved in the development, progression, and complications of diabetes mellitus (DM). Oxidative modification of human serum albumin's cysteine-34 is a marker for oxidative stress-related pathological conditions. We aimed to evaluate the redox state of albumin in patients with DM to investigate possible correlations with age, diabetes duration, and disease control status. Plasma aliquots were collected from 52 participants (26 type 1 and 26 type 2 DM). Patients were divided into two groups according to their glycated hemoglobin levels less than or equal to and greater than 58 mmol/L. Albumin redox state was assessed with high-performance liquid chromatography by fractionating it into human mercaptalbumin (HMA) and human nonmercaptalbumin 1 and 2 (HNA1 and HNA2). Albumin redox fractions were differently related to the age of study participants. In age-matched T1DM and T2DM groups, the albumin redox state was essentially the same. Irreversibly oxidized HNA2 was positively correlated with diabetes duration, especially in the T1DM group. HNA was increased in people with an increased HbA1c (>58 mmol/mol). Our results support the hypothesis that oxidative stress plays a crucial role in DM pathogenesis and emphasize the importance of diabetes control on systemic oxidative burden.
Collapse
Affiliation(s)
- Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.P.); (G.C.); (G.H.); (G.R.)
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.P.); (G.C.); (G.H.); (G.R.)
| | - Gerd Hoerl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.P.); (G.C.); (G.H.); (G.R.)
| | - Gilbert Reibnegger
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.P.); (G.C.); (G.H.); (G.R.)
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.S.); (H.K.)
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Harald Kojzar
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.S.); (H.K.)
| | - Karl Oettl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (M.P.); (G.C.); (G.H.); (G.R.)
| |
Collapse
|
6
|
Butt MF, Jalan R. Review article: Emerging and current management of acute-on-chronic liver failure. Aliment Pharmacol Ther 2023; 58:774-794. [PMID: 37589507 DOI: 10.1111/apt.17659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a clinically and pathophysiologically distinct condition from acutely decompensated cirrhosis and is characterised by systemic inflammation, extrahepatic organ failure, and high short-term mortality. AIMS To provide a narrative review of the diagnostic criteria, prognosis, epidemiology, and general management principles of ACLF. Four specific interventions that are explored in detail are intravenous albumin, extracorporeal liver assist devices, granulocyte-colony stimulating factor, and liver transplantation. METHODS We searched PubMed and Cochrane databases for articles published up to July 2023. RESULTS Approximately 35% of hospital inpatients with decompensated cirrhosis have ACLF. There is significant heterogeneity in the criteria used to diagnose ACLF; different definitions identify different phenotypes with varying mortality. Criteria established by the European Association for the Study of the Liver were developed in prospective patient cohorts and are, to-date, the most well validated internationally. Systemic haemodynamic instability, renal dysfunction, coagulopathy, neurological dysfunction, and respiratory failure are key considerations when managing ACLF in the intensive care unit. Apart from liver transplantation, there are no accepted evidence-based treatments for ACLF, but several different approaches are under investigation. CONCLUSION The recognition of ACLF as a distinct entity from acutely decompensated cirrhosis has allowed for better patient stratification in clinical settings, facilitating earlier engagement with the intensive care unit and liver transplantation teams. Research priorities over the next decade should focus on exploring novel treatment strategies with a particular focus on which, when, and how patients with ACLF should be treated.
Collapse
Affiliation(s)
- Mohsin F Butt
- Centre for Neuroscience, Trauma and Surgery, Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottinghamshire, UK
| | - Rajiv Jalan
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium, Barcelona, Spain
| |
Collapse
|
7
|
Boss K, Paar M, Waterstradt K, Schnurr K, Ickerott P, Wieneke U, Spitthöver R, Oettl K, Kribben A. Albumin redox state of maintenance haemodialysis patients is positively altered after treatment. BMC Nephrol 2023; 24:273. [PMID: 37723426 PMCID: PMC10506191 DOI: 10.1186/s12882-023-03317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND AND AIM Maintenance haemodialysis patients have increased morbidity and mortality which is mainly driven by an elevated inflammation level due to the uraemic milieu. A major part of this increased inflammation level is the degree of oxidative stress which can be assessed by albumin redox state (ARS). Aim of this study was to evaluate how the ARS is affected by a haemodialysis treatment and different dialyzer properties. METHODS ARS was determined before and after haemodialysis treatment by fractionating it into reduced human mercaptalbumin (HMA), reversibly oxidized human non-mercaptalbumin 1 (HNA-1), and irreversibly oxidized human non-mercaptalbumin 2 (HNA-2) by high-performance liquid chromatography. In healthy individuals, albumin circulates in the following proportions: HMA 70-80%, HNA-1 20-30% and HNA-2 2-5%. High flux (FX 100 [Fresenius Medical Care], BG 1.8 [Toray], Xevonta Hi 18 [B. Braun], CTA-2000 [Kawasumi]) and low flux FX10 [Fresenius Medical Care] dialyzers were used. RESULTS 58 patients (59% male, median age 68 years, median time on haemodialysis 32 month) were included in the study. Before haemodialysis treatment, HMA (median 55.9%, IQR 50.1-61.2%) was substantially lower than in healthy individuals. Accordingly, oxidized albumin fractions were above the level of healthy individuals (median HNA-1 38.5%, IQR 33.3-43.2%; median HNA-2 5.8%, IQR 5.1-6.7%). Before haemodialysis treatment HMA was significantly higher in patients usually treated with high flux membranes (p < 0.01). After haemodialysis treatment there was a significant increase of HMA and a decrease of HNA-1 and HNA-2 (p < 0.01). These effects were more pronounced in patients treated with high flux dialyzers (p < 0.01). There were no differences of ARS alteration with regard to the dialyzer´s sterilization mode or the presence of diabetes. CONCLUSION The study confirms that the ARS is positively altered by haemodialysis and shows for the first time that this effect depends on dialyzer properties.
Collapse
Affiliation(s)
- Kristina Boss
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany.
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | | | | | - Philipp Ickerott
- Gemeinschaftspraxis für Nieren- und Hochdruckkrankheiten Essen-Steele, Essen, Germany
| | | | | | - Karl Oettl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| |
Collapse
|
8
|
Enslin LE, Purkait K, Pozza MD, Saubamea B, Mesdom P, Visser HG, Gasser G, Schutte-Smith M. Rhenium(I) Tricarbonyl Complexes of 1,10-Phenanthroline Derivatives with Unexpectedly High Cytotoxicity. Inorg Chem 2023; 62:12237-12251. [PMID: 37489813 PMCID: PMC10410611 DOI: 10.1021/acs.inorgchem.3c00730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 07/26/2023]
Abstract
Eight rhenium(I) tricarbonyl aqua complexes with the general formula fac-[Re(CO)3(N,N'-bid)(H2O)][NO3] (1-8), where N,N'-bid is (2,6-dimethoxypyridyl)imidazo[4,5-f]1,10-phenanthroline (L1), (indole)imidazo[4,5-f]1,10-phenanthroline (L2), (5-methoxyindole)-imidazo[4,5-f]1,10-phenanthroline (L3), (biphenyl)imidazo[4,5-f]1,10-phenanthroline (L4), (fluorene)imidazo[4,5-f]1,10-phenanthroline (L5), (benzo[b]thiophene)imidazo[4,5-f]1,10-phenanthroline (L6), (5-bromothiazole)imidazo[4,5-f]1,10-phenanthroline (L7), and (4,5-dimethylthiophene)imidazo[4,5-f]1,10-phenanthroline (L8), were synthesized and characterized using 1H and 13C{1H} NMR, FT-IR, UV/Vis absorption spectroscopy, and ESI-mass spectrometry, and their purity was confirmed by elemental analysis. The stability of the complexes in aqueous buffer solution (pH 7.4) was confirmed by UV/Vis spectroscopy. The cytotoxicity of the complexes (1-8) was then evaluated on prostate cancer cells (PC3), showing a low nanomolar to low micromolar in vitro cytotoxicity. Worthy of note, three of the Re(I) tricarbonyl complexes showed very low (IC50 = 30-50 nM) cytotoxic activity against PC3 cells and up to 26-fold selectivity over normal human retinal pigment epithelial-1 (RPE-1) cells. The cytotoxicity of both complexes 3 and 6 was lowered under hypoxic conditions in PC3 cells. However, the compounds were still 10 times more active than cisplatin in these conditions. Additional biological experiments were then performed on the most selective complexes (complexes 3 and 6). Cell fractioning experiments followed by ICP-MS studies revealed that 3 and 6 accumulate mostly in the mitochondria and nucleus, respectively. Despite the respective mitochondrial and nuclear localization of 3 and 6, 3 did not trigger the apoptosis pathways for cell killing, whereas 6 can trigger apoptosis but not as a major pathway. Complex 3 induced a paraptosis pathway for cell killing while 6 did not induce any of our other tested pathways, namely, necrosis, paraptosis, and autophagy. Both complexes 3 and 6 were found to be involved in mitochondrial dysfunction and downregulated the ATP production of PC3 cells. To the best of our knowledge, this report presents some of the most cytotoxic Re(I) carbonyl complexes with exceptionally low nanomolar cytotoxic activity toward prostate cancer cells, demonstrating further the future viability of utilizing rhenium in the fight against cancer.
Collapse
Affiliation(s)
- Lucy E. Enslin
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Kallol Purkait
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Maria Dalla Pozza
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Bruno Saubamea
- Plateforme
Imagerie Cellulaire et Moléculaire, Faculté de Pharmacie, Université Paris Cité, F-75270 Paris, France
| | - Pierre Mesdom
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | - Hendrik G. Visser
- Department
of Chemistry, University of the Free State, Bloemfontein 9301, South Africa
| | - Gilles Gasser
- Chimie
ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for
Inorganic Chemistry, F-75005 Paris, France
| | | |
Collapse
|
9
|
Paar M, Fengler VH, Reibnegger G, Schnurr K, Waterstradt K, Schwaminger SP, Stauber RE, Oettl K. Determination of binding characteristics as a measure for effective albumin using different methods. Biochim Biophys Acta Gen Subj 2023:130427. [PMID: 37454915 DOI: 10.1016/j.bbagen.2023.130427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND & AIMS Transport functions of albumin are of clinical and pharmacological interest and are determined by albumin's properties like posttranslational modifications or bound ligands. Both are affected in pathological conditions and in therapeutic grade albumin solutions. The term effective albumin concentration was introduced as a measure of functionally intact albumin. Our aim was to evaluate the impact of ligands and modifications with different approaches as a measure of effective albumin. APPROACH & RESULTS We used a spin labelled fatty acid and dansylsarcosine to characterize binding properties of albumin i) prepared from plasma of patients and healthy control donors, ii) measured directly out of plasma, iii) research grade albumin, iv) in vitro modified albumin, and v) therapeutic infusion solutions before and after removal of stabilizers. Bilirubin is the main determinant for binding function in patients' albumin. In in vitro prepared albumin bound fatty acids correlated with impaired binding. Human nonmercaptalbumin1, not human nonmercaptalbumin2, showed reduced binding properties. Binding and transport function of therapeutic albumin was severely impaired and restored by filtration. Glycation of research grade albumin had no effect on the binding of dansylsarcosine and only a minor effect on fatty acid binding. CONCLUSIONS Our results suggest that effective albumin -in terms of binding properties- is primarily determined by bound ligands and only to a minor extent by posttranslational modifications. Characterizing albumin directly from plasma better reflects the physiological situation whereas in the case of therapeutic grade albumin stabilizers should be removed to make its binding properties accessible.
Collapse
Affiliation(s)
- Margret Paar
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Vera H Fengler
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50, 8010, Graz, Austria
| | - Gilbert Reibnegger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Kerstin Schnurr
- MedInnovation GmbH, Wissenschaftsstandort Berlin-Adlershof (WISTA), Groß-Berliner Damm 151, 12487 Berlin, Germany
| | - Katja Waterstradt
- MedInnovation GmbH, Wissenschaftsstandort Berlin-Adlershof (WISTA), Groß-Berliner Damm 151, 12487 Berlin, Germany
| | - Sebastian P Schwaminger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, Neue Stiftingtalstrasse 6, 8010, Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Rudolf E Stauber
- Medical University of Graz, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Karl Oettl
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
| |
Collapse
|
10
|
Wada A, Nakamura M, Kobayashi K, Kuroda A, Harada D, Kido S, Kuwahata M. Effects of amino acids and albumin administration on albumin metabolism in surgically stressed rats: A basic nutritional study. JPEN J Parenter Enteral Nutr 2023; 47:399-407. [PMID: 36597725 DOI: 10.1002/jpen.2472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Nutrition therapy and administration of albumin preparations are common in postsurgical patients. However, the effects of these interventions on albumin metabolism are unclear. We elucidated the effect of postoperative albumin and/or parenteral nutrition administration on it. METHODS Sprague-Dawley rats underwent surgery involving intestinal rubbing followed by intestinal exposure. Subsequently, they were administered experimental solutions for 48 h, their blood samples were collected at 24 and 48 h, and livers were excised at 48 h. Based on experimental solutions, rats were divided into five groups: non-surgical (Non-surg); glucose and electrolyte solution (GE); amino acid, glucose, and electrolyte solution (AGE); GE + rat serum albumin (Alb) (GE + Alb); and AGE + Alb. Their plasma albumin concentrations; albumin fractional synthesis rate (ALB FSR); mercaptoalbumin/total albumin ratio (MA ratio); and messenger RNA (mRNA) expressions of albumin and hepatocyte nuclear factor-1 (HNF-1) in the liver were measured. RESULTS The GE and AGE groups showed significant decline in albumin concentrations. ALB FSR was significantly enhanced in the AGE group compared with the GE group. The mRNA expression of albumin was similar to ALB FSR in all groups and that of HNF-1 was significantly decreased in the GE + Alb and AGE + Alb groups compared with the Non-surg group. The MA ratio in the AGE group was similar to the Non-surg group. CONCLUSION The administration of amino acids comprising parenteral nutrition after surgery augmented ALB FSR and maintained the MA ratio only without simultaneous albumin administration.
Collapse
Affiliation(s)
- Akira Wada
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Naruto, Japan
| | - Mika Nakamura
- Medical Affairs Department, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Chiyoda, Japan
| | - Kiyoka Kobayashi
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Naruto, Japan
| | - Akiyoshi Kuroda
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Chiyoda, Japan
| | - Daisuke Harada
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Naruto, Japan
| | - Satoshi Kido
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Naruto, Japan
| | - Masashi Kuwahata
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
11
|
Schiano E, Cappello E, Cecere D, Pompeo F, Novellino E, Stornaiuolo M, Izzo M. Increased Levels of Circulating Iron-Albumin Complexes in Peripheral Arterial Disease Patients. Antioxidants (Basel) 2023; 12:antiox12020503. [PMID: 36830061 PMCID: PMC9952351 DOI: 10.3390/antiox12020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Under physiological conditions, extracellular iron circulates in the blood bound to transferrin. As a consequence of several pathologies, the circulating level of a Non-Transferrin Bound pool of Iron (NTBI) increases. The NTBI pool is biologically heterogeneous and represented by iron chelated either by small metabolites (citrate, amino acids, or cofactors) or by serum proteins. By promoting reactive oxygen species (ROS) and reactive nitrogen species (RNS) formation, NTBI causes oxidative stress and alteration of membrane lipids, seriously compromising the healthy state of organs and tissues. While NTBI involvement in several pathologies has been clarified, its contribution to vascular diseases remains to be investigated. Here we measure and analyze the pool of NTBI in the serum of a small group of peripheral arterial disease (PAD) patients. We show that: (i) the NTBI pool shifts from low molecular complexes to high-molecular ones in PAD patients compared to healthy controls; (ii) most of this NTBI is bound to the serum protein Albumin; (iii) this NTBI-Albumin complex can be isolated and quantitated following a simple immunoisolation procedure amenable to automation and suitable for clinical screening purposes.
Collapse
Affiliation(s)
- Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | - Ettore Novellino
- Department of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.S.); (M.I.)
| | - Marcello Izzo
- MathTechMed-Department of Mathematics for Technology, Medicine and Biosciences Research Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (M.S.); (M.I.)
| |
Collapse
|
12
|
Ishimaru Y, Adachi T, Ashikawa H, Hori M, Shimozato T, Ohtake H, Shimizu S, Ueyama J, Yamada S. Association Between the Redox State of Human Serum Albumin and Exercise Capacity in Patients With Cardiac Disease. Am J Cardiol 2023; 189:56-60. [PMID: 36508763 DOI: 10.1016/j.amjcard.2022.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
The redox state of human serum albumin (HSA) is reported to be an oxidative stress biomarker; however, its clinical use in cardiac disease has not yet been examined. This study aimed to investigate the relation between the redox state of HSA and exercise capacity, which is a robust prognostic factor, in patients with cardiovascular disease. This cross-sectional study included outpatients with cardiac disease. Exercise capacity was assessed by peak oxygen consumption (peakVO2) measured using symptom-limited cardiopulmonary exercise testing. The high-performance liquid chromatography postcolumn bromocresol green method was used to part HSA into human nonmercaptalbumin (oxidized form) and human mercaptalbumin (HMA, reduced form). The fraction of human mercaptalbumin found in HSA (f[HMA]) was calculated as an indicator of the redox state of HSA. The association between peakVO2 and f(HMA) was examined using the Spearman correlation coefficient and multivariate linear regression analysis. A total of 70 patients were included (median age 76 years; 44 men; median peakVO2 15.5 ml/kg/min). The f(HMA) was positively correlated with peakVO2 (r = 0.38, p <0.01). Even after controlling for potential confounders, this association remained in the multivariate linear regression analysis (standardized beta = 0.24, p <0.05). We found a positive association between f(HMA) and peakVO2, independent of potential confounders in patients with cardiac disease, suggesting that f(HMA) may be a novel biomarker related to exercise capacity in cardiac disease. Longitudinal studies are required to further examine the prognostic capability of f(HMA), the responsiveness to clinical intervention, and the association between f(HMA) and cardiac disease.
Collapse
Affiliation(s)
- Yo Ishimaru
- Department of Rehabilitation, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Takuji Adachi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hironobu Ashikawa
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Hori
- Department of Cardiac Rehabilitation, Gifu Heart Center, Gifu, Japan
| | | | - Hiroshi Ohtake
- Department of Rehabilitation, Nagoya Tokushukai General Hospital, Kasugai, Japan
| | - Shinya Shimizu
- Department of Cardiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumio Yamada
- Department of Cardiology, Aichi Medical University, Nagakute, Japan.
| |
Collapse
|
13
|
Paar M, Seifried K, Cvirn G, Buchmann A, Khalil M, Oettl K. Redox State of Human Serum Albumin in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2022; 23:ijms232415806. [PMID: 36555448 PMCID: PMC9779316 DOI: 10.3390/ijms232415806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Like in many other pathologies, oxidative stress is involved in the development of neurodegenerative disorders. Human serum albumin (HSA) is the main protein in different body fluids including cerebrospinal fluid (CSF). By its redox state in terms of cysteine-34, albumin serves as marker for oxidative burden. We aimed to evaluate the redox state of HSA in patients with multiple sclerosis in serum and CSF in comparison to controls to identify possible correlations with disease activity and severity. Samples were stored at -70 °C until analysis by HPLC for the determination of albumin redox state in terms of the fractions of human mercaptalbumin (HMA), human nonmercaptalbumin1 (HNA1), and human nonmercaptalbumin2 (HNA2). Albumin in CSF showed significantly higher fractions of the reduced form HMA and decreased HNA1 and HNA2. There was no difference between albumin redox states in serum of patients and controls. In CSF of patients HNA2 showed a trend to higher fractions compared to controls. Albumin redox state in serum was associated with physical disability in remission while albumin redox state in CSF was related to disease activity. Thus, albumin redox state in serum and CSF of patients in relation to disease condition merits further investigation.
Collapse
Affiliation(s)
- Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Katharina Seifried
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Arabella Buchmann
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Correspondence: (M.K.); (K.O.); Tel.: +43-(0)316-385-30313 (M.K.); +43-(0)316-385-72121 (K.O.)
| | - Karl Oettl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence: (M.K.); (K.O.); Tel.: +43-(0)316-385-30313 (M.K.); +43-(0)316-385-72121 (K.O.)
| |
Collapse
|
14
|
Watanabe H. Oxidized Albumin: Evaluation of Oxidative Stress as a Marker for the Progression of Kidney Disease. Biol Pharm Bull 2022; 45:1728-1732. [DOI: 10.1248/bpb.b22-00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
15
|
Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci 2022; 23:10557. [PMID: 36142472 PMCID: PMC9502107 DOI: 10.3390/ijms231810557] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.
Collapse
Affiliation(s)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Dénes Horváthy
- Department of Interventional Radiology, Semmelweis University, 1122 Budapest, Hungary
| | - Eszter Fodor
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
16
|
Boss K, Stettner M, Szepanowski F, Mausberg AK, Paar M, Pul R, Kleinschnitz C, Oettl K, Kribben A. Severe and long-lasting alteration of albumin redox state by plasmapheresis. Sci Rep 2022; 12:12165. [PMID: 35842435 PMCID: PMC9288533 DOI: 10.1038/s41598-022-16452-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Plasmapheresis (PE) is an established form of therapeutic apheresis (TA). Purpose of this longitudinal prospective single center study was to investigate the effect of PE on albumin redox state (ARS), as infusion of commercial albumin during PE may alter albumin oxidation which has an impact on its functional properties and oxidative stress level. 43 subjects with autoimmune-mediated neurological disorders were included. 20 subjects in the experimental group received five treatments of PE. 13 subjects received five treatments of immunoadsorption and 10 subjects received no TA as controls. ARS was determined before and after TA and 12 days after the last TA by fractionating it into human mercaptalbumin (HMA), human non-mercaptalbumin 1 (HNA-1), and human non-mercaptalbumin 2 (HNA-2) by high-performance liquid chromatography. Irreversibly oxidised HNA-2 increased over the course of five PE treatments from 2.8% (IQR 1.3–3.7%) to 13.6% (IQR 10.9–15.9) (P < 0.01) and remained elevated 12 days after the last PE procedure (7.7% IQR 7.1–10.5, P < 0.05). The study showed for the first time that PE exerts a severe and long-lasting alteration on ARS indicating a new adverse effect of PE, that may influence oxidative stress level.
Collapse
Affiliation(s)
- Kristina Boss
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany.
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Margret Paar
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl Oettl
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| |
Collapse
|
17
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
18
|
Yano Y, Maeda C, Kaneko I, Kobayashi Y, Aoi W, Kuwahata M. Cystine supplementation sustains plasma mercaptalbumin levels in rats fed low-protein diets more effectively than methionine. J Clin Biochem Nutr 2021; 69:122-130. [PMID: 34616103 PMCID: PMC8482384 DOI: 10.3164/jcbn.20-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/01/2020] [Indexed: 11/22/2022] Open
Abstract
We recently reported that dietary cystine maintained plasma mercaptalbumin levels in rats fed low-protein diets. The present study aimed to compare the influence of low-protein diets supplemented with cystine and methionine, which is another sulfur amino acid, on plasma mercaptalbumin levels in rats. Male Sprague-Dawley rats were fed a 20% soy protein isolate diet (control group), 5% soy protein isolate diet (low-protein group) or 5% soy protein isolate diet supplemented with either methionine (low-protein + Met group) or cystine (low-protein + Cyss group) for 1 week. The percentage of mercaptalbumin within total plasma albumin of the low-protein + Met group was significantly lower than that of the control and low-protein + Cyss groups. No significant differences in the mRNA levels of tumor necrosis factor-α, interleukin-6, interleukin-1β, and cyclooxygenase 2 in blood cells were observed between the low-protein + Met and low-protein + Cyss groups. Treatment with buthionine-(S,R)-sulfoximine, an inhibitor of glutathione synthesis, did not influence the percentage of mercaptalbumin within total plasma albumin in rats fed the low-protein diet supplemented with cystine. These results suggest that supplementation with cystine may be more effective than that with methionine to maintain plasma mercaptalbumin levels in rats with protein malnutrition. Cystine might regulate plasma mercaptalbumin levels via the glutathione-independent pathway.
Collapse
Affiliation(s)
- Yukimi Yano
- Department of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chihiro Maeda
- Department of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ichiro Kaneko
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Yukiko Kobayashi
- Department of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Wataru Aoi
- Department of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masashi Kuwahata
- Department of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
19
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
20
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
21
|
Bonifazi M, Meessen J, Pérez A, Vasques F, Busana M, Vassalli F, Novelli D, Bernasconi R, Signori C, Masson S, Romitti F, Giosa L, Macrì M, Pasticci I, Palumbo MM, Mota F, Costa M, Caironi P, Latini R, Quintel M, Gattinoni L. Albumin Oxidation Status in Sepsis Patients Treated With Albumin or Crystalloids. Front Physiol 2021; 12:682877. [PMID: 34447316 PMCID: PMC8383812 DOI: 10.3389/fphys.2021.682877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Inflammation and oxidative stress characterize sepsis and determine its severity. In this study, we investigated the relationship between albumin oxidation and sepsis severity in a selected cohort of patients from the Albumin Italian Outcome Study (ALBIOS). A retrospective analysis was conducted on the oxidation forms of human albumin [human mercapto-albumin (HMA), human non-mercapto-albumin form 1 (HNA1) and human non-mercapto-albumin form 2 (HNA2)] in 60 patients with severe sepsis or septic shock and 21 healthy controls. The sepsis patients were randomized (1:1) to treatment with 20% albumin and crystalloid solution or crystalloid solution alone. The albumin oxidation forms were measured at day 1 and day 7. To assess the albumin oxidation forms as a function of oxidative stress, the 60 sepsis patients, regardless of the treatment, were grouped based on baseline sequential organ failure assessment (SOFA) score as surrogate marker of oxidative stress. At day 1, septic patients had significantly lower levels of HMA and higher levels of HNA1 and HNA2 than healthy controls. HMA and HNA1 concentrations were similar in patients treated with albumin or crystalloids at day 1, while HNA2 concentration was significantly greater in albumin-treated patients (p < 0.001). On day 7, HMA was significantly higher in albumin-treated patients, while HNA2 significantly increased only in the crystalloids-treated group, reaching values comparable with the albumin group. When pooling the septic patients regardless of treatment, albumin oxidation was similar across all SOFA groups at day 1, but at day 7 HMA was lower at higher SOFA scores. Mortality rate was independently associated with albumin oxidation levels measured at day 7 (HMA log-rank = 0.027 and HNA2 log-rank = 0.002), irrespective of treatment group. In adjusted regression analyses for 90-day mortality, this effect remained significant for HMA and HNA2. Our data suggest that the oxidation status of albumin is modified according to the time of exposure to oxidative stress (differences between day 1 and day 7). After 7 days of treatment, lower SOFA scores correlate with higher albumin antioxidant capacity. The trend toward a positive effect of albumin treatment, while not statistically significant, warrants further investigation.
Collapse
Affiliation(s)
- Matteo Bonifazi
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Jennifer Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alba Pérez
- Bioscience Research Group, Grifols, Barcelona, Spain
| | - Francesco Vasques
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Mattia Busana
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Francesco Vassalli
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Deborah Novelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Bernasconi
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Signori
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Serge Masson
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federica Romitti
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Lorenzo Giosa
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Matteo Macrì
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Iacopo Pasticci
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Maria Michela Palumbo
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | | | | | - Pietro Caironi
- Department of Anaesthesia and Critical Care, AOU "S. Luigi Gonzaga, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michael Quintel
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Goettingen, Göttingen, Germany
| |
Collapse
|
22
|
A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants (Basel) 2021; 10:antiox10081241. [PMID: 34439489 PMCID: PMC8389308 DOI: 10.3390/antiox10081241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked muscle wasting disease with no cure. While the precise mechanisms of progressive dystropathology remain unclear, oxidative stress caused by excessive generation of oxidants is strongly implicated. Blood biomarkers that could track oxidant levels in tissues would be valuable to measure the effectiveness of clinical treatments for DMD; our research has focused on developing such biomarkers. One target of oxidants that has the potential to be harnessed as a clinical biomarker is the thiol side chain of cysteine 34 (Cys34) of the blood protein albumin. This study using the mdx mouse model of DMD shows that in plasma, albumin Cys34 undergoes thiol oxidation and these changes correlate with levels of protein thiol oxidation and damage of the dystrophic muscles. A comparison with the commonly used biomarker protein carbonylation, confirmed that albumin thiol oxidation is the more sensitive plasma biomarker of oxidative stress occurring in muscle tissue. We show that plasma albumin oxidation reflects muscle dystropathology, as increased after exercise and decreased after taurine treatment of mdx mice. These data support the use of albumin thiol oxidation as a blood biomarker of dystropathology to assist with advancing clinical development of therapies for DMD.
Collapse
|
23
|
Paar M, Fengler VH, Rosenberg DJ, Krebs A, Stauber RE, Oettl K, Hammel M. Albumin in patients with liver disease shows an altered conformation. Commun Biol 2021; 4:731. [PMID: 34127764 PMCID: PMC8203801 DOI: 10.1038/s42003-021-02269-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Human serum albumin (HSA) constitutes the primary transporter of fatty acids, bilirubin, and other plasma compounds. The binding, transport, and release of its cargos strongly depend on albumin conformation, which is affected by bound ligands induced by physiological and pathological conditions. HSA is both highly oxidized and heavily loaded with fatty acids and bilirubin in chronic liver disease. By employing small-angle X-ray scattering we show that HSA from the plasma of chronic liver disease patients undergoes a distinct opening compared to healthy donors. The extent of HSA opening correlates with clinically relevant variables, such as the model of end-stage liver disease score, bilirubin, and fatty acid levels. Although the mild oxidation of HSA in vitro does not alter overall structure, the alteration of patients’ HSA correlates with its redox state. This study connects clinical data with structural visualization of albumin dynamicity in solution and underlines the functional importance of albumin’s inherent flexibility. Paar et al. propose a SAXS-based approach to study conformations of human serum albumin (HSA) from patients with liver disease and a structural understanding of HSA dynamicity and its correlation with clinical variables are provided. Using it on real clinical samples, this study has concrete practical implications too.
Collapse
Affiliation(s)
- Margret Paar
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Vera H Fengler
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Angelika Krebs
- Science Technology Interface-Structural Biology, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Rudolf E Stauber
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karl Oettl
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria.
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
24
|
Human Nonmercaptalbumin Is a New Biomarker of Motor Function. J Clin Med 2021; 10:jcm10112464. [PMID: 34199414 PMCID: PMC8199584 DOI: 10.3390/jcm10112464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
The ratio of human nonmercaptalbumin (HNA) and reduced albumin (HMA) may be a new marker for oxidative stress. Locomotive syndrome (LS) is reduced mobility due to impairment of locomotive organs. We investigated whether the HNA/HMA ratio could be a new biomarker of LS. This study included 306 subjects (mean age 64.24 ± 10.4 years) who underwent LS tests, grip strength, walking speed, and tests for HNA and HMA. Oxidative stress was measured by the ratio of HMA (f(HMA) = (HMA/(HMA + HNA) × 100)), and the subjects were divided into normal (N group; f[HMA] ≥ 70%) and low (L group; f[HMA] < 70%) groups. There were 124 non-elderly (<65 years) and 182 elderly subjects (≥65 years). There were no significant differences in LS, grip strength, and walking speed between the L and N groups in the non-elderly subjects. However, significant differences were found in the elderly subjects. In logistic regression analysis, there was an association between f(HMA) and the LS severity at older ages. LS in the elderly is associated with a decline in HMA and, thus, an increase in oxidative stress. Thus, f(HMA) is a new biomarker of LS.
Collapse
|
25
|
Mori F, Natali L, Danesi R, Nannizzi S, Farina C. Post-translational modifications and antioxidant properties of different therapeutic human serum albumins. Int J Biol Macromol 2021; 183:927-935. [PMID: 33971232 DOI: 10.1016/j.ijbiomac.2021.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is widely used for the treatment of diverse clinical conditions to restore plasma volume, manage burns and treat hypoproteinemia.Although the HSA preparations should ideally preserve its functionality, the structural integrity and antioxidant properties of HSA may be compromised as a result of the manufacturing process. The present study examined seven commercially available HSA preparations for clinical use to investigate their post-translational modifications (PTMs) and antioxidant activity, including DPPH radical-scavenging, peroxyl radical antioxidant and metal binding activities, by means of mass spectrometry and Ellman's assay. The results confirmed that most of the PTMs of HSA and especially the oxidation of the free thiol residue varied between the different commercial albumins and the percentage of these PTMs were higher than those of physiological HSA. Moreover, HSA-DA isoform was increased at the end of the stability time and new oxidative modifications occurred in these samples. In conclusion, the bioprocesses for production of commercial albumins are responsible of their wide heterogeneity, being the ethanol fractionation and their storage conditions the more critical phases. Nonetheless, the Kedrion albumin shows a high content of free thiol and a lower concentration of PTMs than other commercial albumins.
Collapse
Affiliation(s)
- Filippo Mori
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy.
| | - Letizia Natali
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| | - Romano Danesi
- University of Pisa, Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, Via Roma 55, Pisa, Italy
| | - Silvia Nannizzi
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| | - Claudio Farina
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| |
Collapse
|
26
|
Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021; 26:2679. [PMID: 34063643 PMCID: PMC8124464 DOI: 10.3390/molecules26092679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Anastasia E. Nikotina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| |
Collapse
|
27
|
Serum Albumin Redox States: More Than Oxidative Stress Biomarker. Antioxidants (Basel) 2021; 10:antiox10040503. [PMID: 33804859 PMCID: PMC8063786 DOI: 10.3390/antiox10040503] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022] Open
Abstract
Serum albumin is the most abundant circulating protein in mammals including humans. It has three isoforms according to the redox state of the free cysteine residue at position 34, named as mercaptalbumin (reduced albumin), non-mercaptalbumin-1 and -2 (oxidized albumin), respectively. The serum albumin redox state has long been viewed as a biomarker of systemic oxidative stress, as the redox state shifts to a more oxidized state in response to the severity of the pathological condition in various diseases such as liver diseases and renal failures. However, recent ex vivo studies revealed oxidized albumin per se could aggravate the pathological conditions. Furthermore, the possibility of the serum albumin redox state as a sensitive protein nutrition biomarker has also been demonstrated in a series of animal studies. A paradigm shift is thus ongoing in the research field of the serum albumin. This article provides an updated overview of analytical techniques for serum albumin redox state and its association with human health, focusing on recent findings.
Collapse
|
28
|
Figueroa SM, Araos P, Reyes J, Gravez B, Barrera-Chimal J, Amador CA. Oxidized Albumin as a Mediator of Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10030404. [PMID: 33800425 PMCID: PMC8000637 DOI: 10.3390/antiox10030404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Renal diseases are a global health concern, and nearly 24% of kidney disease patients are overweight or obese. Particularly, increased body mass index has been correlated with oxidative stress and urinary albumin excretion in kidney disease patients, also contributing to increased cardiovascular risk. Albumin is the main plasma protein and is able to partially cross the glomerular filtration barrier, being reabsorbed mainly by the proximal tubule through different mechanisms. However, it has been demonstrated that albumin suffers different posttranslational modifications, including oxidation, which appears to be tightly linked to kidney damage progression and is increased in obese patients. Plasma-oxidized albumin levels correlate with a decrease in estimated glomerular filtration rate and an increase in blood urea nitrogen in patients with chronic kidney disease. Moreover, oxidized albumin in kidney disease patients is independently correlated with higher plasma levels of transforming growth factor beta (TGF-β1), tumor necrosis factor (TNF-α), and interleukin (IL)-1β and IL-6. In addition, oxidized albumin exerts a direct effect on neutrophils by augmenting the levels of neutrophil gelatinase-associated lipocalin, a well-accepted biomarker for renal damage in patients and in different experimental settings. Moreover, it has been suggested that albumin oxidation occurs at early stages of chronic kidney disease, accelerating the patient requirements for dialytic treatment during disease progression. In this review, we summarize the evidence supporting the role of overweight- and obesity-induced oxidative stress as a critical factor for the progression of renal disease and cardiovascular morbimortality through albumin oxidation.
Collapse
Affiliation(s)
- Stefanny M. Figueroa
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Patricio Araos
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Javier Reyes
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Basile Gravez
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Cristián A. Amador
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
- Correspondence: ; Tel.: +56-22-303-6662
| |
Collapse
|
29
|
Turell L, Steglich M, Torres MJ, Deambrosi M, Antmann L, Furdui CM, Schopfer FJ, Alvarez B. Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Free Radic Biol Med 2021; 165:254-264. [PMID: 33515755 DOI: 10.1016/j.freeradbiomed.2021.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Human serum albumin (HSA) contains 17 disulfides and only one reduced cysteine, Cys34, which can be oxidized to a relatively stable sulfenic acid (HSA-SOH). This derivative has been previously detected and quantified. However, its properties are poorly understood. Herein, HSA-SOH formation from the exposure of HSA to hydrogen peroxide was confirmed using the sulfenic acid probe bicyclo [6.1.0]nonyne-biotin (BCN-Bio1), and by direct detection by whole protein mass spectrometry. The decay pathways of HSA-SOH were studied. HSA-SOH reacted with a thiol leading to the formation of a mixed disulfide. The reaction occurred through a concerted or direct displacement mechanism (SN2) with the thiolate (RS-) as nucleophile towards HSA-SOH. The net charge of the thiolate affected the value of the rate constant. In the presence of hydrogen peroxide, HSA-SOH was further oxidized to sulfinic acid (HSA-SO2H) and sulfonic acid (HSA-SO3H). The rate constants of these reactions were estimated. Lastly, HSA-SOH spontaneously decayed in solution. Mass spectrometry experiments suggested that the decay product is a sulfenylamide (HSA-SN(R')R″). Chromatofocusing analysis showed that the overoxidation with hydrogen peroxide predominates at alkaline pH whereas the spontaneous decay predominates at acidic pH. The present findings provide insights into the reactivity and fate of the sulfenic acid in albumin, which are also of relevance to numerous sulfenic acid-mediated processes in redox biology and catalysis.
Collapse
Affiliation(s)
- Lucía Turell
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay.
| | - Martina Steglich
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Maria J Torres
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Matías Deambrosi
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Antmann
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine and Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
30
|
Reversible Dimerization of Human Serum Albumin. Molecules 2020; 26:molecules26010108. [PMID: 33383640 PMCID: PMC7795135 DOI: 10.3390/molecules26010108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Pulsed Dipolar Spectroscopy (PDS) methods of Electron Paramagnetic Resonance (EPR) were used to detect and characterize reversible non-covalent dimers of Human Serum Albumin (HSA), the most abundant protein in human plasma. The spin labels, MTSL and OX063, were attached to Cys-34 and these chemical modifications of Cys-34 did affect the dimerization of HSA, indicating that other post-translational modifications can modulate dimer formation. At physiologically relevant concentrations, HSA does form weak, non-covalent dimers with a well-defined structure. Dimer formation is readily reversible into monomers. Dimerization is very relevant to the role of HSA in the transport, binding, and other physiological processes.
Collapse
|
31
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
32
|
Hu Y, Mulot C, Bourreau C, Martin D, Laurent-Puig P, Radoï L, Guénel P, Borges CR. Biochemically Tracked Variability of Blood Plasma Thawed-State Exposure Times in a Multisite Collection Study. Biopreserv Biobank 2020; 18:376-388. [PMID: 32608993 PMCID: PMC9836705 DOI: 10.1089/bio.2019.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The integrity of blood plasma/serum (P/S) specimens can be impacted by preanalytical handling and storage conditions that result in thawed-state exposures (> -30°C). We recently reported a simple dilute-and-shoot, intact-protein liquid chromatography/mass spectrometry (LC/MS) assay called ΔS-Cys-Albumin that quantifies cumulative exposure of P/S to thawed conditions based on the change in relative abundance of the oxidized (S-cysteinylated) proteoform of albumin (S-Cys-Albumin) in the native sample to that of an aliquot of the sample intentionally driven to its maximum oxidation state. Herein, we evaluated the effect of prestorage delay and initial storage temperature on sample integrity by applying the ΔS-Cys-Albumin assay to a set of plasma samples (n = 413) collected under a single clinical study but from 12 different collection sites. Major differences (p < 0.0001) were observed between different groups of samples with modestly inconsistent initial handling conditions (i.e., initial processing of whole blood to plasma and placement at -80°C completed in under 3 hours, 3-13 hours, and over 17 hours). ΔS-Cys-Albumin was significantly inversely correlated with delay time at 4°C before centrifugation and total delay before final storage at -80°C (p < 0.0001). Samples from two collection sites had much lower ΔS-Cys-Albumin values relative to samples from other sites, in accordance with the fact that they were stored at -20°C for an average of 7.6 months before shipment to the central repository for final storage at -80°C. Based on the rate law for S-Cys-Albumin formation in plasma ex vivo, the average time that each plasma specimen had been exposed to the equivalent of room temperature (23°C) was back calculated from the measured ΔS-Cys-Albumin values. A survey of clinical analytes in P/S whose measured concentrations are sensitive to the initial handling/storage conditions documented in this study is provided and the ramifications of the plasma integrity findings from this multisite clinical study are discussed.
Collapse
Affiliation(s)
- Yueming Hu
- School of Molecular Sciences and The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | - Claire Mulot
- INSERM, UMR-S 1147, CRB EPIGENETEC, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Camille Bourreau
- INSERM, UMR-S 1147, CRB EPIGENETEC, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Diane Martin
- INSERM, Center for Research in Epidemiology and Population Health (CESP), Cancer and Environment Team, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Pierre Laurent-Puig
- INSERM, UMR-S 1147, CRB EPIGENETEC, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Loredana Radoï
- INSERM, Center for Research in Epidemiology and Population Health (CESP), Cancer and Environment Team, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Faculty of Dental Surgery, University Paris Descartes, Paris, France
| | - Pascal Guénel
- INSERM, Center for Research in Epidemiology and Population Health (CESP), Cancer and Environment Team, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Chad R. Borges
- School of Molecular Sciences and The Biodesign Institute at Arizona State University, Tempe, Arizona, USA.,Address correspondence to: Chad R. Borges, PhD, School of Molecular Sciences, The Biodesign Institute at Arizona State University, P.O. Box 876401, Tempe, AZ 85287, USA
| |
Collapse
|
33
|
Krzystek-Korpacka M, Kempiński R, Bromke MA, Neubauer K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics (Basel) 2020; 10:E601. [PMID: 32824619 PMCID: PMC7459713 DOI: 10.3390/diagnostics10080601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Precise diagnostic biomarker in inflammatory bowel diseases (IBD) is still missing. We conducted a comprehensive overview of oxidative stress markers (OSMs) as potential diagnostic, differential, progression, and prognostic markers in IBD. A Pubmed, Web of Knowledge, and Scopus search of original articles on OSMs in IBD, published between January 2000 and April 2020, was conducted. Out of 874 articles, 79 eligible studies were identified and used to prepare the interpretative synthesis. Antioxidants followed by lipid peroxidation markers were the most popular and markers of oxidative DNA damage the least popular. There was a disparity in the number of retrieved papers evaluating biomarkers in the adult and pediatric population (n = 6). Of the reviewed OSMs, a promising performance has been reported for serum total antioxidant status as a mucosal healing marker, mucosal 8-OHdG as a progression marker, and for multi-analyte panels of lipid peroxidation products assessed non-invasively in breath as diagnostic and differential markers in the pediatric population. Bilirubin, in turn, was the only validated marker. There is a desperate need for non-invasive biomarkers in IBD which, however, will not be met in the near future by oxidative stress markers as they are promising but mostly at the early research phase of discovery.
Collapse
Affiliation(s)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Mariusz A. Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland;
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
34
|
Tufoni M, Baldassarre M, Zaccherini G, Antognoli A, Caraceni P. Hemodynamic and Systemic Effects of Albumin in Patients with Advanced Liver Disease. CURRENT HEPATOLOGY REPORTS 2020; 19:147-158. [PMID: 32837825 PMCID: PMC7326530 DOI: 10.1007/s11901-020-00521-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose of Review Albumin administration is recommended to prevent or treat specific complications of decompensated cirrhosis based on its capacity to expand plasma volume. However, the molecule also has many other biological properties that are unrelated to the oncotic activity. The purpose of this review is to examine the hemodynamic and systemic effects of albumin administration in patients with decompensated cirrhosis. Recent Findings Besides plasma expansion, albumin appears to act against inflammation, facilitate immunocompetence, and improve cardiac and endothelial function, thus antagonizing critical steps in the pathophysiological cascade underlying decompensated cirrhosis. Summary Increasing knowledge of the pathophysiological mechanisms of the disease, as well the pleiotropic properties of the molecule, provides the rationale for considering albumin as a multi-target disease-modifying agent in decompensated cirrhosis. Both oncotic and non-oncotic properties likely concur with the clinical benefits of long-term albumin administration recently demonstrated in these patients.
Collapse
Affiliation(s)
- Manuel Tufoni
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Center for Applied Medical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Agnese Antognoli
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Center for Applied Medical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy
- Center for Applied Medical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Bernardi M, Angeli P, Claria J, Moreau R, Gines P, Jalan R, Caraceni P, Fernandez J, Gerbes AL, O'Brien AJ, Trebicka J, Thevenot T, Arroyo V. Albumin in decompensated cirrhosis: new concepts and perspectives. Gut 2020; 69:1127-1138. [PMID: 32102926 PMCID: PMC7282556 DOI: 10.1136/gutjnl-2019-318843] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
The pathophysiological background of decompensated cirrhosis is characterised by a systemic proinflammatory and pro-oxidant milieu that plays a major role in the development of multiorgan dysfunction. Such abnormality is mainly due to the systemic spread of bacteria and/or bacterial products from the gut and danger-associated molecular patterns from the diseased liver triggering the release of proinflammatory mediators by activating immune cells. The exacerbation of these processes underlies the development of acute-on-chronic liver failure. A further mechanism promoting multiorgan dysfunction and failure likely consists with a mitochondrial oxidative phosphorylation dysfunction responsible for systemic cellular energy crisis. The systemic proinflammatory and pro-oxidant state of patients with decompensated cirrhosis is also responsible for structural and functional changes in the albumin molecule, which spoil its pleiotropic non-oncotic properties such as antioxidant, scavenging, immune-modulating and endothelium protective functions. The knowledge of these abnormalities provides novel targets for mechanistic treatments. In this respect, the oncotic and non-oncotic properties of albumin make it a potential multitarget agent. This would expand the well-established indications to the use of albumin in decompensated cirrhosis, which mainly aim at improving effective volaemia or preventing its deterioration. Evidence has been recently provided that long-term albumin administration to patients with cirrhosis and ascites improves survival, prevents complications, eases the management of ascites and reduces hospitalisations. However, variant results indicate that further investigations are needed, aiming at confirming the beneficial effects of albumin, clarifying its optimal dosage and administration schedule and identify patients who would benefit most from long-term albumin administration.
Collapse
Affiliation(s)
- Mauro Bernardi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Angeli
- Unit of Internal Medicine and Hepatology, Department of Medicine, University of Padova, Padova, Italy,EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Joan Claria
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain,Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red (CIBERehd) and Universitat de Barcelona, Barcelona, Spain
| | - Richard Moreau
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain,Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Inserm, Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Paris, France
| | - Pere Gines
- Liver Unit, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS) and Centro de Investigación Biomèdica en Red (CIBEREHD), Barcelona, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver Disease Health, University College London, Royal Free Hospital, London, UK
| | - Paolo Caraceni
- Unit of Semeiotica Medica, Policlinico S Orsola, Bologna; Department of Medical and Surgical Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Javier Fernandez
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain,Liver Unit, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi-Sunyer (IDIBAPS) and Centro de Investigación Biomèdica en Red (CIBEREHD), Barcelona, Spain
| | - Alexander L Gerbes
- Department of Medicine II, Liver Centre Munich, University Hospital, LMU Munich, Munich, Germany
| | - Alastair J O'Brien
- Institute for Liver Disease Health, University College London, Royal Free Hospital, London, UK
| | - Jonel Trebicka
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain,Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Thierry Thevenot
- Centre Hospitalier Universitaire de Besançon, Hôpital Jean Minjoz, Service d'Hépatologie et de Soins Intensifs Digestifs, Besançon, France
| | - Vicente Arroyo
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| |
Collapse
|
36
|
Popova TV, Krumkacheva OA, Burmakova AS, Spitsyna AS, Zakharova OD, Lisitskiy VA, Kirilyuk IA, Silnikov VN, Bowman MK, Bagryanskaya EG, Godovikova TS. Protein modification by thiolactone homocysteine chemistry: a multifunctionalized human serum albumin theranostic. RSC Med Chem 2020; 11:1314-1325. [PMID: 34085043 PMCID: PMC8126878 DOI: 10.1039/c9md00516a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
As the most abundant protein with a variety of physiological functions, albumin has been used extensively for the delivery of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare spin-labeled albumin-based multimodal imaging probes and therapeutic agents. We report the synthesis of a tamoxifen homocysteine thiolactone derivative and its use in thiol-'click' chemistry to prepare multi-functionalized serum albumin. The released sulfhydryl group of the homocysteine functional handle was labeled with a nitroxide reagent to prepare a spin-labeled albumin-tamoxifen conjugate confirmed by MALDI-TOF-MS, EPR spectroscopy, UV-vis and fluorescent emission spectra. This is the basis for a novel multimodal tamoxifen-albumin theranostic with a significant (dose-dependent) inhibitory effect on the proliferation of malignant cells. The response of human glioblastoma multiforme T98G cells and breast cancer MCF-7 cells to tamoxifen and its albumin conjugates was different in tumor cells with different expression level of ERα in our experiments. These results provide further impetus to develop a serum protein for delivery of tamoxifen to cancer cells.
Collapse
Affiliation(s)
- Tatyana V Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University 630090 Novosibirsk Russia
- International Tomography Center SB RAS 630090 Novosibirsk Russia
| | - Anna S Burmakova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Anna S Spitsyna
- Novosibirsk State University 630090 Novosibirsk Russia
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Vladimir A Lisitskiy
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Igor A Kirilyuk
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Michael K Bowman
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
- University of Alabama Tuscaloosa Alabama 35487-0336 USA
| | - Elena G Bagryanskaya
- Novosibirsk State University 630090 Novosibirsk Russia
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| |
Collapse
|
37
|
Nakashima F, Shibata T, Uchida K. A unique mechanism for thiolation of serum albumins by disulphide molecules. J Biochem 2020; 167:165-171. [PMID: 31598674 DOI: 10.1093/jb/mvz084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Protein S-thiolation is a reversible oxidative modification that serves as an oxidative regulatory mechanism for certain enzymes and binding proteins with reactive cysteine residues. It is generally believed that the thiolation occurs at free sulphydryl group of cysteine residues. Meanwhile, despite the fact that disulphide linkages, serving structural and energetic roles in proteins, are stable and inert to oxidative modification, a recent study shows that the thiolation could also occur at protein disulphide linkages when human serum albumin (HSA) was treated with disulphide molecules, such as cystine and homocystine. A chain reaction mechanism has been proposed for the thiolation at disulphide linkages, in which free cysteine (Cys34) is involved in the reaction with disulphide molecules to form free thiols (cysteine or homocysteine) that further react with protein disulphide linkages to form the thiolated cysteine residues in the protein. This review focuses on the recent finding of this unique chain reaction mechanism of protein thiolation.
Collapse
Affiliation(s)
- Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Mao Z, Yang X, Mizutani S, Huang Y, Zhang Z, Shinmori H, Gao K, Yao J. Hydrogen Sulfide Mediates Tumor Cell Resistance to Thioredoxin Inhibitor. Front Oncol 2020; 10:252. [PMID: 32219063 PMCID: PMC7078679 DOI: 10.3389/fonc.2020.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Thioredoxin (Trx) is a pro-oncogenic molecule that underlies tumor initiation, progression and chemo-resistance. PX-12, a Trx inhibitor, has been used to treat certain tumors. Currently, factors predicting tumor sensitivity to PX-12 are unclear. Given that hydrogen sulfide (H2S), a gaseous bio-mediator, promotes Trx activity, we speculated that it might affect tumor response to PX-12. Here, we tested this possibility. Exposure of several different types of tumor cells to PX-12 caused cell death, which was reversely correlated with the levels of H2S-synthesizing enzyme CSE and endogenous H2S. Inhibition of CSE sensitized tumor cells to PX-12, whereas addition of exogenous H2S elevated PX-12 resistance. Further experiments showed that H2S abolished PX-12-mediated inhibition on Trx. Mechanistic analyses revealed that H2S stimulated Trx activity. It promoted Trx from the oxidized to the reduced state. In addition, H2S directly cleaved the disulfide bond in PX-12, causing PX-12 deactivation. Additional studies found that, besides Trx, PX-12 also interacted with the thiol residues of other proteins. Intriguingly, H2S-mediated cell resistance to PX-12 could also be achieved through promotion of the thiol activity of these proteins. Addition of H2S-modified protein into culture significantly enhanced cell resistance to PX-12, whereas blockade of extracellular sulfhydryl residues sensitized cells to PX-12. Collectively, our study revealed that H2S mediated tumor cell resistance to PX-12 through multiple mechanisms involving induction of thiol activity in multiple proteins and direct inactivation of PX-12. H2S could be used to predict tumor response to PX-12 and could be targeted to enhance the therapeutic efficacy of PX-12.
Collapse
Affiliation(s)
- Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan.,Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Sayumi Mizutani
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| | - Hideyuki Shinmori
- Department of Biotechnology, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Japan
| |
Collapse
|
39
|
Schwab C, Paar M, Fengler VH, Lindner E, Haas A, Ivastinovic D, Seidel G, Weger M, Wedrich A, Oettl K. Vitreous albumin redox state in open-angle glaucoma patients and controls: a pilot study. Int Ophthalmol 2020; 40:999-1006. [PMID: 31925660 DOI: 10.1007/s10792-019-01268-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Numerous studies suggest that reactive oxygen species play a crucial role in the development of glaucoma. Since glaucoma patients exhibit posterior vitreous detachment earlier than controls, it has been suggested that reactive oxygen species-increased in glaucoma-also affect the vitreous. In the present study we evaluated the influence of open-angle glaucoma oxidative stress on the redox state of vitreous albumin. METHODS Albumin redox states of the vitreous and plasma were evaluated in 22 subjects-11 open-angle glaucoma patients and 11 controls-matched for age, gender, and vitreous state. According to the redox state of cysteine-34, albumin can be separated into: human mercaptalbumin (the thiol form), human nonmercaptalbumin1 (a reversible modification due to mild oxidation), and human nonmercaptalbumin2 (an irreversible modification due to severe oxidation). RESULTS Albumin of both, the open-angle glaucoma group and the control group, was more oxidized in the vitreous compared to plasma. Furthermore, significantly higher human nonmercaptalbumin1 fractions were found in the vitreous of open-angle glaucoma patients compared to controls. No significant differences were found in the plasma albumin fractions between the groups. CONCLUSION Our results support the hypothesis that oxidative stress plays a crucial role in open-angle glaucoma and that reactive oxygen species in glaucomatous eyes may also affect the vitreous.
Collapse
Affiliation(s)
- Christoph Schwab
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Margret Paar
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| | - Vera Heike Fengler
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Anton Haas
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Domagoj Ivastinovic
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Gerald Seidel
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Martin Weger
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Karl Oettl
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| |
Collapse
|
40
|
Schwab C, Paar M, Fengler VH, Ivastinovic D, Haas A, Seidel G, Glatz W, Malle EM, Weger M, Velikay-Parel M, Faustmann G, Wedrich A, Reibnegger G, Winklhofer-Roob B, Oettl K. Gender differences in albumin and ascorbic acid in the vitreous antioxidant system. Free Radic Biol Med 2020; 146:257-263. [PMID: 31705958 DOI: 10.1016/j.freeradbiomed.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
Abstract
Ascorbic acid is present at high concentrations in the vitreous and plays a central role in vitreous redox chemistry. Albumin is the main protein in the vitreous with antioxidant properties and occurs in different oxidation states, which can be used as redox indicators, but have not been studied in the vitreous. This study, therefore, addressed the vitreous redox state of cysteine-34 of albumin in relation to the ascorbic acid content, which has been suggested to exert a main function in detoxifying reactive oxygen in the vitreous. A total of 58 vitreous samples obtained from patients undergoing vitrectomy were analyzed for (i) human mercaptalbumin (HMA), the reduced thiol form; (ii) human non-mercaptalbumin1 (HNA1), a reversible oxidative modification with a disulfide at cysteine-34; and (iii) human non-mercaptalbumin2 (HNA2), a non-reversibly (highly) oxidized form of albumin; as well as (iv) ascorbic acid concentrations, to study possible relations. In addition, blood samples were taken to compare albumin redox state between plasma and the vitreous. Vitreous albumin showed greater variability in the redox state of cysteine-34 and a shift to the oxidized fractions compared to plasma albumin (P < 0.001). A strong positive relation was observed between the vitreous ascorbic acid concentrations and the reversibly oxidized form, HNA1 (P < 0.001), and a negative relation with the reduced form, HMA. Positive relations between ascorbic acid and HNA1 in the vitreous were stronger in men than in women. In contrast to HMA and HNA1, there was a distinct gender difference noted for the irreversibly oxidized form, HNA2. While males showed a positive relation between the vitreous ascorbic acid concentrations and HNA2, there was no correlation found with HNA2 in females. Our results support the view that ascorbic acid, by decreasing either directly or indirectly the concentrations of molecular oxygen, generates hydrogen peroxide, and that thiols, including HMA, are acting as antioxidants. This study for the first time provides evidence that vitreous albumin can be used as a marker molecule for the appearance of reactive oxygen species in the vitreous of patients undergoing vitrectomy. Moreover, it can be shown that there are gender differences in vitreous ascorbic acid and albumin concentrations as well as in oxidation state of vitreous albumin.
Collapse
Affiliation(s)
- Christoph Schwab
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Margret Paar
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Vera Heike Fengler
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Domagoj Ivastinovic
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Anton Haas
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Gerald Seidel
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Wilfried Glatz
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Eva-Maria Malle
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Martin Weger
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Michaela Velikay-Parel
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Gilbert Reibnegger
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Brigitte Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Karl Oettl
- Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| |
Collapse
|
41
|
Abstract
Albumin is widely conserved from vertebrates to invertebrates, and nature of mammalian albumins permit them to bind various endogenous ligands and drugs in the blood. It is known that at least two major ligand binding sites are present on the albumin molecule, which are referred to as Site I and Site II. These binding sites are thought to be almost completely conserved among mammals, even though the degree of binding to these sites are different depending on the physical and chemical properties of drugs and differences in the microenvironment in the binding pockets. In addition, the binding sites for medium and long-chain fatty acids are also well conserved among mammals, and it is considered that there are at least seven binding sites, including Site I and Site II. These bindings properties of albumin in the blood are also widely known to be important for transporting drugs and fatty acids to various tissues. It can therefore be concluded that albumin is one of the most important serum proteins for various ligands, and information on human albumin can be very useful in predicting the ligand binding properties of the albumin of other vertebrates.
Collapse
Affiliation(s)
- Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
- DDS Research Institute, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan.
- DDS Research Institute, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
42
|
Noce A, Rovella V, Marrone G, Cattani G, Zingaretti V, Limongi D, D'Agostini C, Sorge R, Casasco M, Di Daniele N, Ricci G, Bocedi A. Hemodialysis biomarkers: total advanced glycation end products (AGEs) against oxidized human serum albumin (HSAox). Acta Diabetol 2019; 56:1323-1331. [PMID: 31494747 DOI: 10.1007/s00592-019-01413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
AIMS Nephropathic patients show higher levels of advanced glycation end products (AGEs) and oxidized human serum albumin (HSAox) compared to healthy subjects. These two classes of compounds are formed as the result of oxidative insults; for this reason, they can be useful oxidative stress biomarkers. The present study examines the variation of AGEs and HSAox in hemodialysis (HD) patients before and after dialysis session, evaluating the impact of different dialytic techniques and filters on their removal. METHODS A total of 50 healthy subjects (control group) and 130 HD patients were enrolled in the study. Hemodialysis patients were subdivided based on dialytic techniques: 109 in diffusive technique and 22 in convective technique. We monitored HSAox, AGEs and other laboratory parameters at early morning in healthy subjects and in HD patients before and after the dialysis procedures. RESULTS The level of HSAox decreases after a single dialytic session (from 58.5 ± 8.8% to 41.5 ± 11.1%), but the concentration of total AGEs increases regardless of adopted dialytic techniques (from 6.8 ± 5.2 µg/ml to 9.2 ± 4.4 µg/ml). In our study, levels of HSAox and total AGEs are similar in diabetic and non-diabetic HD patients. The increase in total AGEs after dialysis was only observed using polysulfone filters but was absent with polymethacrylate filters. CONCLUSIONS HSAox is a simple and immediate method to verify the beneficial effect of a single dialysis session on the redox imbalance, always present in HD patients. Total AGEs assayed by ELISA procedure seem to be a less reliable biomarker in this population.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Valentina Rovella
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Viviana Zingaretti
- Department of Clinical Medicine-Nephrology Unit, University of Rome Sapienza, 00185, Rome, Italy
| | - Dolores Limongi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, Open University San Raffaele Roma, 00163, Rome, Italy
| | - Cartesio D'Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- Laboratory of Clinical Microbiology, Policlinico Tor Vergata, 00133, Rome, Italy
| | - Roberto Sorge
- Laboratory of Biometry, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maurizio Casasco
- Federazione Medico Sportiva Italiana, Palazzo delle Federazioni Sportive Nazionali, 00196, Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
43
|
Reichenwallner J, Hauenschild T, Schmelzer CEH, Hülsmann M, Godt A, Hinderberger D. Fatty Acid Triangulation in Albumins Using a Landmark Spin Label. Isr J Chem 2019. [DOI: 10.1002/ijch.201900073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jörg Reichenwallner
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| | - Till Hauenschild
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| | - Christian E. H. Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter-Hülse-Straße 1 D-06120 Halle (Saale) Germany
- Institute of PharmacyMartin Luther University Halle-Wittenberg Wolfgang-Langenbeck-Straße 4 D-06120 Halle (Saale) Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2)Bielefeld University Universitätsstraße 25 D-33615 Bielefeld Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)Bielefeld University Universitätsstraße 25 D-33615 Bielefeld Germany
| | - Dariush Hinderberger
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| |
Collapse
|
44
|
Costa M, Horrillo R, Ortiz AM, Pérez A, Mestre A, Ruiz A, Boada M, Grancha S. Increased Albumin Oxidation in Cerebrospinal Fluid and Plasma from Alzheimer's Disease Patients. J Alzheimers Dis 2019; 63:1395-1404. [PMID: 29782326 PMCID: PMC6004933 DOI: 10.3233/jad-180243] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Oxidative stress in the brain and peripheral systems is considered a major player in Alzheimer’s disease (AD). Albumin is the main transporter and the main extracellular antioxidant in the human body. Objective: Here we explore for the first time the oxidation status of cerebrospinal fluid (CSF) and plasma albumin in AD in comparison to healthy subjects. Methods: Plasma and CSF samples were obtained from mild-moderate AD patients and control healthy age-matched donors. Albumin redox state forms (reduced: HMA; reversibly oxidized: HNA1; irreversibly oxidized: HNA2) were determined by HPLC. Albumin post-translational modifications (PTM) analysis was performed by mass spectrometry. Results: HPLC showed less HMA in AD plasma than in controls (54.1% versus 65.2% ; p < 0.0001), mainly at expense of HNA1 (42.8% versus 32.5% ; p < 0.0001). In AD CSF, HMA was drastically decreased compared to controls (9.6% versus 77.4% ; p < 0.0001), while HNA2 was increased (52.8% versus 7.4% ; p < 0.0001). In AD patients but not in healthy controls, CSF albumin was much more irreversibly oxidized than in plasma (close to 20-fold increase in HNA2). PTM analysis showed that AD CSF albumin samples behave as a differentiated cluster, thus confirming the albumin oxidative pattern observed by HPLC. Conclusion: CSF albumin oxidation in AD patients was dramatically increased comparing to healthy controls, while in plasma this increase was smaller. CSF albumin in AD patients was much more oxidized than in plasma, but this effect was not observed in healthy controls. These results suggest that albumin oxidation, especially in CSF, and its role in AD deserves further investigation.
Collapse
Affiliation(s)
| | - Raquel Horrillo
- Grifols Bioscience Research Group, Grifols, Barcelona, Spain
| | - Ana María Ortiz
- Grifols Bioscience Research Group, Grifols, Barcelona, Spain
| | - Alba Pérez
- Grifols Bioscience Research Group, Grifols, Barcelona, Spain
| | - Anna Mestre
- Grifols Bioscience Research Group, Grifols, Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociènces Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociènces Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain.,Department of Neurology, Hospital General Universitari Vall d'Hebrón, Barcelona, Spain
| | | |
Collapse
|
45
|
Shu N, Lorentzen LG, Davies MJ. Reaction of quinones with proteins: Kinetics of adduct formation, effects on enzymatic activity and protein structure, and potential reversibility of modifications. Free Radic Biol Med 2019; 137:169-180. [PMID: 31026584 DOI: 10.1016/j.freeradbiomed.2019.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Quinones are a common motif in many biological compounds, and have been linked to tissue damage as they can undergo redox cycling to generate radicals, and/or act as Michael acceptors with nucleophiles, such as protein Cys residues, with consequent adduct formation. The kinetics and consequences of these Michael reactions are poorly characterized. In this study we hypothesized that adduction of protein Cys residues with quinones would be rapid, structure-dependent, quantitatively-significant, and result in altered protein structure and function. Multiple quinones were incubated with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), creatine kinase (CK), papain, bovine (BSA) and human (HSA) serum albumins, with the kinetics of adduction and effects on protein structure and activity determined. Adduction rate constants at Cys residues, which were dependent on the quinone and protein structure, and thiol pKa, are in the range 102-105 M-1 s-1. p-Benzoquinone (BQ) induced dimerization of GAPDH and CK (but not BSA, HSA, or papain) in a dose- and time-dependent manner. Incubation of purified proteins, or cell lysates, with quinones resulted in a rapid loss of GAPDH and CK activity; this loss correlated well with the rate constant for Cys adduction. Glutathione (GSH) reacts competitively with quinones, and could reverse the loss of activity and dimerization of GAPDH and CK. Mass spectrometry peptide mass mapping provided evidence for BQ adduction to GAPDH to specific Cys residues (Cys149, Cys244), whereas all Cys residues in CK were modified. These data suggested that quinones can induce biological effects by rapid and selective formation of adducts with Cys residues in proteins.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
46
|
Modified lipoproteins in periodontitis: a link to cardiovascular disease? Biosci Rep 2019; 39:BSR20181665. [PMID: 30842338 PMCID: PMC6434390 DOI: 10.1042/bsr20181665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
There is a strong association between periodontal disease and atherosclerotic cardiovascular disorders. A key event in the development of atherosclerosis is accumulation of modified lipoproteins within the arterial wall. We hypothesise that patients with periodontitis have an altered lipoprotein profile towards an atherogenic form. Therefore, the present study aims at identifying modifications of plasma lipoproteins in periodontitis. Lipoproteins from ten female patients with periodontitis and gender- and age-matched healthy controls were isolated by density-gradient ultracentrifugation. Proteins were separated by 2D gel-electrophoresis and identified by map-matching or by nano-LC followed by MS. Apolipoprotein (Apo) A-I (ApoA-I) methionine oxidation, Oxyblot, total antioxidant capacity and a multiplex of 71 inflammation-related plasma proteins were assessed. Reduced levels of apoJ, phospholipid transfer protein, apoF, complement C3, paraoxonase 3 and increased levels of α-1-antichymotrypsin, apoA-II, apoC-III were found in high-density lipoprotein (HDL) from the patients. In low-density lipoprotein (LDL)/very LDL (VLDL), the levels of apoL-1 and platelet-activating factor acetylhydrolase (PAF-AH) as well as apo-B fragments were increased. Methionine oxidation of apoA-I was increased in HDL and showed a relationship with periodontal parameters. α-1 antitrypsin and α-2-HS glycoprotein were oxidised in LDL/VLDL and antioxidant capacity was increased in the patient group. A total of 17 inflammation-related proteins were important for group separation with the highest discriminating proteins identified as IL-21, Fractalkine, IL-17F, IL-7, IL-1RA and IL-2. Patients with periodontitis have an altered plasma lipoprotein profile, defined by altered protein levels as well as post-translational and other structural modifications towards an atherogenic form, which supports a role of modified plasma lipoproteins as central in the link between periodontal and cardiovascular disease (CVD).
Collapse
|
47
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
48
|
Reichenwallner J, Thomas A, Steinbach T, Eisermann J, Schmelzer CEH, Wurm F, Hinderberger D. Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation. Biomacromolecules 2019; 20:1118-1131. [DOI: 10.1021/acs.biomac.9b00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jörg Reichenwallner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Anja Thomas
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Steinbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jana Eisermann
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Christian E. H. Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Frederik Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
49
|
Fujii R, Ueyama J, Kanno T, Suzuki K, Hamajima N, Wakai K, Hasegawa Y, Kondo T. Human serum albumin redox state is associated with decreased renal function in a community-dwelling population. Am J Physiol Renal Physiol 2018; 316:F214-F218. [PMID: 30427221 DOI: 10.1152/ajprenal.00138.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The redox state of human serum albumin (HSA) has attracted interest as a possible biomarker for oxidative stress (OS) in humans. Although previous studies on this topic have taken only clinical settings into consideration, evidence of its efficacy in nonclinical settings remains to be established. The present study aimed to examine and validate the relationship between HSA redox state and renal function in a rural Japanese population. We analyzed two independent data sets from health checkup programs conducted in 2013 and 2016: one for discovery ( n = 267) and the other for replication ( n = 367). The fraction of human mercaptalbumin (HMA) to total HSA [f(HMA)] was determined using our revised method of high-performance liquid chromatography with post-column bromocresol green. The estimated glomerular filtration rate (eGFR) was calculated based on each individual's serum creatinine value, sex, and age. Adjustment for potential confounders revealed positive associations of fraction of human mercaptalbumin [f(HMA)] with eGFR in the discovery and replication analyses ( P < 0.001 and P = 0.03, respectively). Multivariate logistic regression analyses demonstrated significant inverse associations between renal dysfunction (defined as eGFR < 60 ml·min-1·1.73 m-2) and f(HMA) by a factor of 0.50 and 0.65 (confidence intervals of 0.26-0.91 and 0.37-1.00), respectively, with a unit of 10% f(HMA). Our results indicate that HSA redox state is consistently associated with renal dysfunction in both clinical and nonclinical settings.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Takuya Kanno
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Koji Suzuki
- Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yukiharu Hasegawa
- Department of Rehabilitation, Kansai University of Welfare Sciences, Kashiwara, Japan
| | - Takaaki Kondo
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
50
|
Non-mercaptalbumin, Oxidized Form of Serum Albumin, Significantly Associated with Renal Function and Anemia in Chronic Kidney Disease Patients. Sci Rep 2018; 8:16796. [PMID: 30429539 PMCID: PMC6235854 DOI: 10.1038/s41598-018-35177-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress plays a major role in development of cardiovascular disease in patients with chronic kidney disease (CKD). Human mercaptalbumin (HMA), a reduced form of serum albumin, and non-mercaptalbumin (HNA), an oxidized form of serum albumin, are known as indicators for evaluating oxidative stress in systemic circulation, including end-stage renal disease cases. We investigated factors associated with fraction of HNA [f(HNA)] in 112 pre-dialysis CKD patients (63.6 ± 14.0 years old; 59 males, 53 females) using a newly established anion-exchange column packed with hydrophilic polyvinyl alcohol gel as well as high performance liquid chromatography. Mean f(HNA) in our CKD patients was 30.0 ± 6.1%, higher than that previously reported for healthy subjects. In multiple regression analysis, age (β = 0.200, p = 0.014), eGFR (β = −0.238, p = 0.009), hemoglobin (β = −0.346, p < 0.001), and ferritin (β = 0.200, p = 0.019) were significantly and independently associated with f(HNA) (R2 = 0.356, p < 0.001). In addition, factors related to CKD-mineral and bone disorder (CKD-MBD), including intact-PTH (β = 0.218, p = 0.049) and 1,25-dihydroxyvitamin D (1,25(OH)2D) (β = −0.178, p = 0.040), were significantly and independently associated with serum f(HNA) (R2 = 0.339, p < 0.001), whereas fibroblast growth factor-23 was not. These findings indicate the importance of management of hemoglobin and ferritin levels, as well as appropriate control of CKD-MBD factors for a better redox state of serum albumin in CKD patients.
Collapse
|