1
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
2
|
Tian J, Xu Z, Moitra R, Palmer DJ, Ng P, Byrnes AP. Binding of adenovirus species C hexon to prothrombin and the influence of hexon on vector properties in vitro and in vivo. PLoS Pathog 2022; 18:e1010859. [PMID: 36156097 PMCID: PMC9536601 DOI: 10.1371/journal.ppat.1010859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The majority of adenovirus (Ad) vectors are based on human Ad type 5, which is a member of Ad species C. Species C also includes the closely-related types 1, 2, 6, 57 and 89. It is known that coagulation factors bind to Ad5 hexon and play a key role in the liver tropism of Ad5 vectors, but it is unclear how coagulation factors affect vectors derived from other species C Ads. We evaluated species C Ad vectors both in vitro and following intravenous injection in mice. To assess the impact of hexon differences, we constructed chimeric Ad5 vectors that contain the hexon hypervariable regions from other species C types, including vectors with hexon mutations that decreased coagulation factor binding. After intravenous injection into mice, vectors with Ad5 or Ad6 hexon had strong liver tropism, while vectors with chimeric hexon from other Ad types had weaker liver tropism due to inhibition by natural antibodies and complement. In addition, we discovered a novel ability of hexon to bind prothrombin, which is the most abundant coagulation factor in blood, and we found striking differences in the affinity of Ads for human, mouse and bovine coagulation factors. When compared to Ad5, vectors with non-Ad5 species C hexons had considerably higher affinity for both human and mouse prothrombin. Most of the vectors tested were strongly dependent on coagulation factors for liver transduction, but vectors with chimeric Ad6 hexon showed much less dependence on coagulation factors than other vectors. We found that in vitro neutralization experiments with mouse serum predicted in vivo behavior of Ad5 vectors, but in vitro experiments did not predict the in vivo behavior of vectors based on other Ad types. In sum, hexons from different human Ad species C viruses confer diverse properties on vectors, including differing abilities to target the liver.
Collapse
Affiliation(s)
- Jie Tian
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Zhili Xu
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Rituparna Moitra
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew P. Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Shestopal SA, Parunov LA, Olivares P, Chun H, Ovanesov MV, Pettersson JR, Sarafanov AG. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int J Mol Sci 2022; 23:ijms23158134. [PMID: 35897712 PMCID: PMC9330781 DOI: 10.3390/ijms23158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.
Collapse
|
4
|
Alves E Silva TL, Radtke A, Balaban A, Pascini TV, Pala ZR, Roth A, Alvarenga PH, Jeong YJ, Olivas J, Ghosh AK, Bui H, Pybus BS, Sinnis P, Jacobs-Lorena M, Vega-Rodríguez J. The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. SCIENCE ADVANCES 2021; 7:7/6/eabe3362. [PMID: 33547079 PMCID: PMC7864569 DOI: 10.1126/sciadv.abe3362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea Radtke
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amanda Balaban
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patricia H Alvarenga
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Anil K Ghosh
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hanhvy Bui
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon S Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Joel Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Factor XII/XIIa inhibitors: Their discovery, development, and potential indications. Eur J Med Chem 2020; 208:112753. [DOI: 10.1016/j.ejmech.2020.112753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
6
|
Pontarollo G, Acquasaliente L, Peterle D, Frasson R, Artusi I, De Filippis V. Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant-anticoagulant equilibrium toward thrombosis. J Biol Chem 2017; 292:15161-15179. [PMID: 28684417 DOI: 10.1074/jbc.m117.795245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
Blood coagulation is a finely regulated physiological process culminating with the factor Xa (FXa)-mediated conversion of the prothrombin (ProT) zymogen to active α-thrombin (αT). In the prothrombinase complex on the platelet surface, FXa cleaves ProT at Arg-271, generating the inactive precursor prethrombin-2 (Pre2), which is further attacked at Arg-320-Ile-321 to yield mature αT. Whereas the mechanism of physiological ProT activation has been elucidated in great detail, little is known about the role of bacterial proteases, possibly released in the bloodstream during infection, in inducing blood coagulation by direct proteolytic ProT activation. This knowledge gap is particularly concerning, as bacterial infections are frequently complicated by severe coagulopathies. Here, we show that addition of subtilisin (50 nm to 2 μm), a serine protease secreted by the non-pathogenic bacterium Bacillus subtilis, induces plasma clotting by proteolytically converting ProT into active σPre2, a nicked Pre2 derivative with a single cleaved Ala-470-Asn-471 bond. Notably, we found that this non-canonical cleavage at Ala-470-Asn-471 is instrumental for the onset of catalysis in σPre2, which was, however, reduced about 100-200-fold compared with αT. Of note, σPre2 could generate fibrin clots from fibrinogen, either in solution or in blood plasma, and could aggregate human platelets, either isolated or in whole blood. Our findings demonstrate that alternative cleavage of ProT by proteases, even by those secreted by non-virulent bacteria such as B. subtilis, can shift the delicate procoagulant-anticoagulant equilibrium toward thrombosis.
Collapse
Affiliation(s)
- Giulia Pontarollo
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Laura Acquasaliente
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Daniele Peterle
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Roberta Frasson
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Ilaria Artusi
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Vincenzo De Filippis
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| |
Collapse
|
7
|
Rajah T, Chow SC. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress. PLoS One 2015; 10:e0123711. [PMID: 25915766 PMCID: PMC4411069 DOI: 10.1371/journal.pone.0123711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
Collapse
Affiliation(s)
- Tanuja Rajah
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | - Sek Chuen Chow
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Tumor angiogenesis therapy using targeted delivery of Paclitaxel to the vasculature of breast cancer metastases. JOURNAL OF DRUG DELIVERY 2014; 2014:865732. [PMID: 25574399 PMCID: PMC4273585 DOI: 10.1155/2014/865732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 11/17/2022]
Abstract
Breast cancer aberrantly expresses tissue factor (TF) in cancer tissues and cancer vascular endothelial cells (VECs). TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa). We have coupled PTX (paclitaxel, also named Taxol) with a tripeptide, phenylalanine-phenylalanine-arginine chloromethyl ketone (FFRck) and conjugated it with fVIIa. The key aim of the work is to evaluate the antiangiogenic effects of PTX-FFRck-fVIIa against a PTX-resistant breast cancer cell line. Matrigel mixed with VEGF and MDA-231 was injected subcutaneously into the flank of athymic nude mice. Animals were treated by tail vein injection of the PTX-FFRck-fVIIa conjugate, unconjugated PTX, or PBS. The PTX-FFRck-fVIIa conjugate significantly reduces microvessel density in matrigel (p < 0.01–0.05) compared to PBS and unconjugated PTX. The breast cancer lung metastasis model in athymic nude mice was developed by intravenous injection of MDA-231 cells expressing luciferase. Animals were similarly treated intravenously with the PTX-FFRck-fVIIa conjugate or PBS. The conjugate significantly inhibits lung metastasis as compared to the control, highlighting its potential to antagonize angiogenesis in metastatic carcinoma. In conclusion, PTX conjugated to fVIIa is a promising therapeutic approach for improving selective drug delivery and inhibiting angiogenesis.
Collapse
|
9
|
Jakobsche CE, McEnaney PJ, Zhang AX, Spiegel DA. Reprogramming urokinase into an antibody-recruiting anticancer agent. ACS Chem Biol 2012; 7:316-21. [PMID: 22098560 DOI: 10.1021/cb200374e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic compounds for controlling or creating human immunity have the potential to revolutionize disease treatment. Motivated by challenges in this arena, we report herein a strategy to target metastatic cancer cells for immune-mediated destruction by targeting the urokinase-type plasminogen activator receptor (uPAR). Urokinase-type plasminogen activator (uPA) and uPAR are overexpressed on the surfaces of a wide range of invasive cancer cells and are believed to contribute substantially to the migratory propensities of these cells. The key component of our approach is an antibody-recruiting molecule that targets the urokinase receptor (ARM-U). This bifunctional construct is formed by selectively, covalently attaching an antibody-binding small molecule to the active site of the urokinase enzyme. We demonstrate that ARM-U is capable of directing antibodies to the surfaces of target cancer cells and mediating both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against multiple human cancer cell lines. We believe that the reported strategy has the potential to inform novel treatment options for a variety of deadly, invasive cancers.
Collapse
Affiliation(s)
- Charles E. Jakobsche
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Patrick J. McEnaney
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Andrew X. Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| |
Collapse
|
10
|
Maitz MF, Sperling C, Werner C. Immobilization of the irreversible thrombin inhibitor D-Phe-Pro-Arg-chloromethylketone: a concept for hemocompatible surfaces? J Biomed Mater Res A 2010; 94:905-12. [PMID: 20730927 DOI: 10.1002/jbm.a.32780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The irreversible thrombin inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was covalently immobilized to PEGylated polymer thin films at its primary alpha-amino group. Activity assays and capture of radioconjugated thrombin reveal that the PPACK-decorated surfaces could bind thrombin forming up to 30% of a monolayer density. Back-calculation of this high thrombin-inhibiting capacity indicated that the surface immobilization of the inhibitor was still associated with more than two orders of magnitude of loss of activity; increasing activity was observed at higher surface densities. PPACK-containing polymer films almost duplicated the plasma coagulation time when compared with the reference substrate without inhibitor. In whole blood, however, the anticoagulant properties were below those previously found for benzamidine-type reversible thrombin inhibitors; in addition, the surface exhibited inflammatory properties. It is concluded that immobilized reversible thrombin inhibitors are more effective by passivating higher amounts of thrombin in a cooperative action with antithrombin III.
Collapse
Affiliation(s)
- Manfred F Maitz
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | |
Collapse
|
11
|
Ndungu JM, Lu YJ, Zhu S, Yang C, Wang X, Chen G, Shin DM, Snyder JP, Shoji M, Sun A. Targeted delivery of paclitaxel to tumor cells: synthesis and in vitro evaluation. J Med Chem 2010; 53:3127-32. [PMID: 20302303 DOI: 10.1021/jm901763f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported a novel drug delivery system, drug-linker-Phe-Phe-Arg-methylketone (FFR-mk)-factor VIIa (fVIIa). The method utilizes tissue factor (TF), which is aberrantly and abundantly expressed on many cancer cells. The advantage of this delivery system is its ability to furnish a potent anticancer drug specifically to the tumor vasculature and cancer cells. In this paper, we describe the synthesis of paclitaxel (PTX)-Phe-Phe-Arg-chloromethyl ketone (FFR-ck), followed by coupling with fVIIa to form PTX-FFR-mk-fVIIa. FFRck was separately linked to the OH groups at the C2' or C7 positions of PTX (C2'- or C7-PTX-FFRck), the C2' analogue exhibiting better activity against human head and neck squamous KB 3-1 cells. The activity order against PTX-sensitive KB 3-1 cells is C2'-PTX-FFRmk-fVIIa > PTX > C2'-PTX-FFRck. The C2' complex shows an IC(50) of 12 nM against the PTX-sensitive cell line and 130 nM against PTX-resistant cells.
Collapse
Affiliation(s)
- John M Ndungu
- Department of Chemistry, 1515 Dickey Drive, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Enhanced fibrinolysis by proteolysed coagulation factor Xa. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:723-30. [PMID: 19931652 DOI: 10.1016/j.bbapap.2009.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/23/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
Abstract
We previously showed that coagulation factor Xa (FXa) enhances activation of the fibrinolysis zymogen plasminogen to plasmin by tissue plasminogen activator (tPA). Implying that proteolytic modulation occurs in situ, intact FXa (FXaalpha) must be sequentially cleaved by plasmin or autoproteolysis, producing FXabeta and Xa33/13, which acquire necessary plasminogen binding sites. The implicit function of Xa33/13 in plasmin generation has not been demonstrated, nor has FXaalpha/beta or Xa33/13 been studied in clot lysis experiments. We now report that purified Xa33/13 increases tPA-dependent plasmin generation by at least 10-fold. Western blots confirmed that in situ conversion of FXaalpha/beta to Xa33/13 correlated to enhanced plasmin generation. Chemical modification of the FXaalpha active site resulted in the proteolytic generation of a product distinct from Xa33/13 and inhibited the enhancement of plasminogen activation. Identical modification of Xa33/13 had no effect on tPA cofactor function. Due to its overwhelming concentration in the clot, fibrin is the accepted tPA cofactor. Nevertheless, at the functional level of tPA that circulates in plasma, FXaalpha/beta or Xa33/13 greatly reduced purified fibrin lysis times by as much as 7-fold. This effect was attenuated at high levels of tPA, suggesting a role when intrinsic plasmin generation is relatively low. FXaalpha/beta or Xa33/13 did not alter the apparent size of fibrin degradation products, but accelerated the initial cleavage of fibrin to fragment X, which is known to optimize the tPA cofactor activity of fibrin. Thus, coagulation FXaalpha undergoes proteolytic modulation to enhance fibrinolysis, possibly by priming the tPA cofactor function of fibrin.
Collapse
|
13
|
Kovach IM, Kelley P, Eddy C, Jordan F, Baykal A. Proton bridging in the interactions of thrombin with small inhibitors. Biochemistry 2009; 48:7296-304. [PMID: 19530705 PMCID: PMC2800789 DOI: 10.1021/bi900098s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin is the pivotal serine protease enzyme in the blood cascade system. Phe-Pro-Arg-chloromethylketone (PPACK), phosphate, and phosphonate ester inhibitors form a covalent bond with the active-site Ser of thrombin. PPACK, a mechanism-based inhibitor, and the phosphate/phosphonate esters form adducts that mimic intermediates formed in reactions catalyzed by thrombin. Therefore, the dependence of the inhibition of human alpha-thrombin on the concentration of these inhibitors, pH, and temperature was investigated. The second-order rate constant (ki/Ki) and the inhibition constant (Ki) for inhibition of human alpha-thrombin by PPACK are (1.1 +/- 0.2) x 10(7) M(-1) s(-1) and (2.4 +/- 1.3) x 10(-8) M, respectively, at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl at 25.0 +/- 0.1 degrees C, in good agreement with previous reports. The activation parameters at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl are as follows: DeltaH = 10.6 +/- 0.7 kcal/mol, and DeltaS = 9 +/- 2 cal mol(-1) degrees C(-1). The pH dependence of the second-order rate constants of inhibition is bell-shaped. Values of pKa1 and pKa2 are 7.3 +/- 0.2 and 8.8 +/- 0.3, respectively, at 25.0 +/- 0.1 degrees C. A phosphate and a phosphonate ester inhibitor gave higher values, 7.8 and 8.0 for pKa1 and 9.3 and 8.6 for pKa2, respectively. They inhibit thrombin more than 6 orders of magnitude less efficiently than PPACK does. The deuterium solvent isotope effect for the second-order rate constant at pH 7.0 and 8.3 at 25.0 +/- 0.1 degrees C is unity within experimental error in all three cases, indicating the absence of proton transfer in the rate-determining step for the association of thrombin with the inhibitors, but in a 600 MHz 1H NMR spectrum of the inhibition adduct at pH 6.7 and 30 degrees C, a peak at 18.10 ppm with respect to TSP appears with PPACK, which is absent in the 1H NMR spectrum of a solution of the enzyme between pH 5.3 and 8.5. The peak at low field is an indication of the presence of a short-strong hydrogen bond (SSHB) at the active site in the adduct. The deuterium isotope effect on this hydrogen bridge is 2.2 +/- 0.2 (phi = 0.45). The presence of an SSHB is also established with a signal at 17.34 ppm for a dealkylated phosphate adduct of thrombin.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, D.C. 20064, USA.
| | | | | | | | | |
Collapse
|
14
|
Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 2007; 110:4261-7. [PMID: 17878401 PMCID: PMC2234791 DOI: 10.1182/blood-2007-04-086611] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin when bound to dermatan sulfate or heparin. HCII-deficient mice are viable and fertile but rapidly develop thrombosis of the carotid artery after endothelial injury. We now report the effects of HCII deficiency on atherogenesis and neointima formation. HCII-null or wild-type mice, both on an apolipoprotein E-null background, were fed an atherogenic diet for 12 weeks. HCII-null mice developed plaque areas in the aortic arch approximately 64% larger than wild-type mice despite having similar plasma lipid and glucose levels. Neointima formation was induced by mechanical dilation of the common carotid artery. Thrombin activity, determined by hirudin binding or chromogenic substrate hydrolysis within 1 hour after injury, was higher in the arterial walls of HCII-null mice than in wild-type mice. After 3 weeks, the median neointimal area was 2- to 3-fold greater in HCII-null than in wild-type mice. Dermatan sulfate administered intravenously within 48 hours after injury inhibited neointima formation in wild-type mice but had no effect in HCII-null mice. Heparin did not inhibit neointima formation. We conclude that HCII deficiency promotes atherogenesis and neointima formation and that treatment with dermatan sulfate reduces neointima formation in an HCII-dependent manner.
Collapse
Affiliation(s)
- Cristina P Vicente
- Department of Cellular Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas-São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Turk BE, Cantley LC. Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes. Methods 2005; 32:398-405. [PMID: 15003602 DOI: 10.1016/j.ymeth.2003.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 10/26/2022] Open
Abstract
Proteases and peptidases are involved in a vast array of fundamental cellular processes, including cell growth, survival, motility, death, and differentiation, and can be important players in multicellular systems such as angiogenesis, inflammation, and immunity. Though long considered to be essentially digestive enzymes that mediate complete degradation of their substrates, many proteases are now known to be highly site specific. Knowledge of the cleavage site motif for a protease or peptidase can be useful in the design of substrates and inhibitors for the enzyme, and can also provide insight into its biological function through the identification and characterization of its protein substrates. Here, we describe in detail methodology that allows for the rapid and general determination of optimal recognition sequences for proteolytic enzymes.
Collapse
Affiliation(s)
- Benjamin E Turk
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Cell Biology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
16
|
Künzel S, Schweinitz A, Reissmann S, Stürzebecher J, Steinmetzer T. 4-amidinobenzylamine-based inhibitors of urokinase. Bioorg Med Chem Lett 2002; 12:645-8. [PMID: 11844691 DOI: 10.1016/s0960-894x(01)00815-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 4-amidinobenzylamine-based peptidomimetic inhibitors of urokinase was synthesized. The most potent one, benzylsulfonyl-D-Ser-Ala-4-amidinobenzylamide 16, inhibits uPA with a K(i) of 7.7 nM but is less selective than 10 with a Gly as P2 residue. Hydroxyamidine and carbonate prodrugs were prepared, which are rapidly converted into the active inhibitors in rats after subcutaneous application.
Collapse
Affiliation(s)
- Sebastian Künzel
- Institut fur Biochemie und Biophysik, Universitat Jena, Philosophenweg 12, D-07743, Jena, Germany
| | | | | | | | | |
Collapse
|
17
|
Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V. Activation of complement and contact system in Alzheimer's disease. Mech Ageing Dev 2001; 122:1971-83. [PMID: 11589915 DOI: 10.1016/s0047-6374(01)00311-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
beta-Amyloid protein (betaA) has been implicated in the pathogenesis of Alzheimer's disease (AD) because of its neurotoxicity and ability to trigger a local inflammatory response. Although assembly of betaA in particular aggregates seems to be crucial event in AD pathogenesis, soluble, non-fibrillar betaA may also be involved. Non-fibrillar betaA1-42, and truncated peptide 1-28, induced dose-dependent activation of C4 sparing C3. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar betaA can still activate C4 in plasma genetically deficient in C1q. A C1q independent mechanism of complement classical pathway activation could be via the activation of contact/kinin system. The possible involvement of contact system in AD is suggested by the finding that this system is massively activated in CSF of AD patients. The mechanism of activation of contact system could be the result of an anionic interaction of residues within the region 1-11 of betaA1-42 with factor XII, and of kallikrein generation. Concomitant incubation of a small cationic peptide (lysine4) with betaA abrogated its ability to trigger the cleavage of high molecular weight kininogen. In vivo, prevention of contact system activation beside the reduction of kallikrein generation, can also decrease the activation of complement system and the release of interleukin-6, both factors being considered to play an important role in the inflammatory reactions in AD brain.
Collapse
Affiliation(s)
- L Bergamaschini
- Department of Internal Medicine, Ospedale Maggiore IRCCS, University of Milan, Via Pace 15, 20122, Milan, Italy.
| | | | | | | | | |
Collapse
|
18
|
Anderson PJ, Bock PE. Biotin derivatives of D-Phe-Pro-Arg-CH2Cl for active-site-specific labeling of thrombin and other serine proteinases. Anal Biochem 2001; 296:254-61. [PMID: 11554721 DOI: 10.1006/abio.2001.5302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biotin derivatives of peptide chloromethyl ketones have ideal properties for specific labeling of the catalytic sites of serine proteinases but have not been widely used as probes because of the difficulty of synthesis and their instability. To make the reagents more accessible, a simple, economical method was developed for preparation of three biotin derivatives of the thrombin-specific inhibitor D-Phe-Pro-Arg-CH2Cl containing increasing lengths of the spacer connecting biotin. Reaction of the peptide with biotin-succinimidyl esters and purification by conventional chromatography yielded the compounds in 91-96% purity. The biotin-labeled inhibitors bound avidin with stoichiometries of 0.88-1.02 mol biotin compound/mol avidin subunits and irreversibly inactivated human thrombin with stoichiometries of 0.89-1.10 mol inhibitor/mol thrombin. Comparison of the three inhibitors by Western blotting indicated that a > or = 7- to 14-atom spacer was needed for sensitive (approximately 10 ng) detection of thrombin, with the derivative lacking a spacer only weakly detected because of its greatly reduced affinity for avidin. Application of the compounds to identify catalytically active products of factor Xa-catalyzed human prethrombin 1 activation in the absence of the protein cofactor, factor Va, allowed the direct observation of transient, low levels of the active intermediate, meizothrombin des-fragment 1, in addition to thrombin. Formation of this intermediate is concluded to reflect an intrinsic property of factor Xa activation of prethrombin 1 that is modulated by factor Va. The methods developed for preparation and characterization of the biotin-labeled inhibitors may be applicable to other tripeptide chloromethyl ketones, and the reagents can be employed for labeling of serine proteinases of diverse substrate specificity.
Collapse
Affiliation(s)
- P J Anderson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
19
|
Sriskandan S, Kemball-Cook G, Moyes D, Canvin J, Tuddenham E, Cohen J. Contact activation in shock caused by invasive group A Streptococcus pyogenes. Crit Care Med 2000; 28:3684-91. [PMID: 11098974 DOI: 10.1097/00003246-200011000-00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to characterize abnormalities of coagulation in mice with experimental, invasive group A, streptococcal shock, in an attempt to explain the prolongation of the activated partial thromboplastin time identified in patients with streptococcal toxic shock syndrome. DESIGN A longitudinal descriptive animal model study of coagulation times and single coagulation factors in mice infected with Streptococcus pyogenes. This was followed by an experimental study to determine whether streptococci or streptococcal products could activate the human contact system in vitro. SETTING University infectious diseases and hemostasis molecular biology laboratories. SUBJECTS CD1 outbred mice. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Coagulation times, single factor assays, and bradykinin assays were conducted on murine plasma at different times after streptococcal infection and compared with uninfected mice. In experiments in which streptococcal products were co-incubated with human plasma, we compared coagulation times, single factor assays, and activities against a range of chromogenic substrates with control plasma. In a murine model of streptococcal necrotizing fasciitis, the activated partial thromboplastin times were significantly prolonged in infected mice compared with controls, whereas prothrombin times were normal, suggesting an isolated abnormality of the intrinsic pathway. Bleeding was not seen. Prolongation of activated partial thromboplastin time was associated with reduced factor XII and prekallikrein, whereas levels of factors VIII, IX, XI, and high molecular weight kininogen were elevated. In vitro studies suggested that streptococcal supernatants can activate prekallikrein, in addition to causing plasminogen activation through the action of streptokinase. CONCLUSIONS Prolongation of activated partial thromboplastin time in streptococcal toxic shock syndrome is associated with activation of the contact system, possibly contributing to the profound shock associated with streptococcal toxic shock syndrome.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Sinha U, Ku P, Malinowski J, Zhu BY, Scarborough RM, Marlowe CK, Wong PW, Lin PH, Hollenbach SJ. Antithrombotic and hemostatic capacity of factor Xa versus thrombin inhibitors in models of venous and arteriovenous thrombosis. Eur J Pharmacol 2000; 395:51-9. [PMID: 10781674 DOI: 10.1016/s0014-2999(00)00219-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin plays a central role in venous and arterial thrombosis. We utilized two different rabbit models of in vivo thrombosis to investigate the effect of inhibitors of thrombin generation and thrombin activity. The agents tested were specific inhibitors of factor Xa (fXa) [N2-[(phenylmethyl)sulfonyl]-D-arginyl-N-[(1S)-4-[(aminoiminomethyl++ +)a mino]-1-(2-thiazolylcarbonyl)butyl]-glycinamide (C921-78)] and thrombin [D-phenylalanyl-N-[4-[(aminoiminomethyl)amino]-1-(chloroacetyl)but yl]-L-prolinamide (PPACK)], as well as drugs that affect both thrombin and fXa, unfractionated and low molecular weight (enoxaparin) heparin. The agents administered as constant intravenous infusion were evaluated for antithrombotic efficacy in anesthetized rabbits. All four agents were capable of dose dependent inhibition of thrombosis in venous and arteriovenous thrombosis models. However, due to the more aggressive nature of thrombotic stimulation in the arteriovenous shunt model, complete cessation of thrombus growth was not achieved for any of the agents at the doses tested. Comparison between the agents focused on the differences in extension of coagulation parameters (activated partial thromboplastin time, prothrombin time, thrombin clotting time), changes in hematological parameters, and extension of rabbit cuticle bleeding time at doses required to produce maximum inhibition in the thrombosis models. In the venous thrombosis model at the maximally effective dose, C921-78 had minimal extension of ex vivo clotting parameters, while enoxaparin and unfractionated heparin demonstrated a two to sevenfold increase in activated partial thromboplastin times, and PPACK had a threefold extension of thrombin clotting times. In addition, unlike the other three agents, which exhibited no significant changes in hematological parameters, PPACK demonstrated dose dependent thrombocytopenia. A standardized cuticle bleeding time was used as a measure of perturbation of hemostasis. The agents were evaluated for significant increases in bleeding time at doses up to eight times that needed to completely inhibit venous thrombus formation. Unfractionated heparin displayed a significant bleeding time effect at the dose required to inhibit venous thrombosis (100 u/kg+2 u/kg/min). Enoxaparin and PPACK caused significant bleeding time extensions at four times the fully efficacious venous dose (800 u/kg+8 u/kg/min and 30 microg/kg/min). By contrast, C921-78 did not significantly increase bleeding time even at eight times the maximally effective dose (240 microg/kg+7.2 microg/kg/min). Our results demonstrate that specific inhibition of fXa can be utilized to derive potent antithrombotic activity without disrupting extravascular hemostasis.
Collapse
Affiliation(s)
- U Sinha
- COR Therapeutics Inc., 256 East Grand Avenue, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rao LV, Ezban M. Active site-blocked activated factor VII as an effective antithrombotic agent: mechanism of action. Blood Coagul Fibrinolysis 2000; 11 Suppl 1:S135-43. [PMID: 10850580 DOI: 10.1097/00001721-200004001-00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tissue factor (TF) coagulation pathway is initiated when circulating factor (F)VII(a) encounters TF, a cell surface glycoprotein, as a result of vascular injury or pathological perturbation. TF-induced coagulation plays a primary role in hemostasis and also in the pathogenesis of various thrombotic disorders. Recent studies suggest that activation of the TF-pathway may also contribute to other pathophysiological processes by altering intracellular responses, either directly or via activated factor X (FXa) and thrombin generation. Therefore, suppression of the aberrant expression of TF/FVIIa on cell surfaces not only prevents thrombotic disorders but may also provide other protective effects. Recent ex-vivo and in-vivo experiments document the effectiveness of active site-blocked activated factor VII (FVIIai) in inhibiting TF-mediated injury. It is generally believed that FVIIai exerts its effects by limiting the formation of functional TF/FVIIa complexes by directly competing with plasma FVII(a) for limited available TF sites on cell surfaces. Although such competition can explain the effectiveness of FVIIai immediately after administration, it is not clear how it exerts its prolonged effects. In this manuscript, we summarize the use of FVIIai as an antithrombotic agent in various model systems and discuss potential mechanisms by which FVIIai may exert protective effects.
Collapse
Affiliation(s)
- L V Rao
- Department of Biochemistry, University of Texas Health Center, Tyler 75708, USA.
| | | |
Collapse
|
22
|
Stoop AA, Lupu F, Pannekoek H. Colocalization of thrombin, PAI-1, and vitronectin in the atherosclerotic vessel wall: A potential regulatory mechanism of thrombin activity by PAI-1/vitronectin complexes. Arterioscler Thromb Vasc Biol 2000; 20:1143-9. [PMID: 10764685 DOI: 10.1161/01.atv.20.4.1143] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serine protease thrombin is a mitogen for vascular smooth muscle cells. To that end, thrombin cleaves the surface-exposed, protease-activated receptor type 1 (PAR-1), resulting in signal transduction and ultimately, proliferation of these cells. Regulation of thrombin activity in the human atherosclerotic vessel wall has not been studied in great detail, conceivably because the traditional plasma thrombin inhibitor, anti-thrombin III, is not encountered at this location. By using immunofluorescence confocal microscopy, we demonstrate that the antigens of thrombin, plasminogen activator inhibitor 1 (PAI-1), and vitronectin (Vn) colocalize in human neointimal atherosclerotic arterial tissue. Furthermore, it is shown by in situ reverse zymography that these specimens harbor the active form of PAI-1, which is the only configuration of PAI-1 capable of complexing with Vn and inhibiting serine proteases, eg, thrombin. Two different criteria were used to establish that neointimal atherosclerotic material contains active alpha-thrombin, namely, its ability to bind to the thrombin inhibitor hirudin and to convert the thrombin-specific chromogenic substrate S2238. The latter activity could be fully prevented by preincubation with the thrombin-specific inhibitor, phenyl-prolyl-arginyl-chloromethyl ketone. The thrombin concentration measured by conversion of the chromogenic substrate was 7 to 12 nmol/L in the vascular specimens studied. This concentration range suffices to activate the PAR-1 receptor on vascular smooth muscle cells and to cause neointimal proliferation. It is concluded that the human atherosclerotic arterial vessel wall provides conditions that favor a regulatory mechanism of thrombin activity by PAI-1/Vn complexes.
Collapse
Affiliation(s)
- A A Stoop
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin Exp Immunol 1999; 115:526-33. [PMID: 10193429 PMCID: PMC1905247 DOI: 10.1046/j.1365-2249.1999.00835.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.
Collapse
Affiliation(s)
- L Bergamaschini
- Department of Internal Medicine, Maggiore Hospital, IRCCS, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Glas R, Bogyo M, McMaster JS, Gaczynska M, Ploegh HL. A proteolytic system that compensates for loss of proteasome function. Nature 1998; 392:618-22. [PMID: 9560160 DOI: 10.1038/33443] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteolysis is essential for the execution of many cellular functions. These include removal of incorrectly folded or damaged proteins, the activation of transcription factors, the ordered degradation of proteins involved in cell cycle control, and the generation of peptides destined for presentation by class I molecules of the major histocompatibility complex. A multisubunit protease complex, the proteasome, accomplishes these tasks. Here we show that in mammalian cells inactivation of the proteasome by covalent inhibitors allows the outgrowth of inhibitor-resistant cells. The growth of such adapted cells is apparently maintained by the induction of other proteolytic systems that compensate for the loss of proteasomal activity.
Collapse
Affiliation(s)
- R Glas
- Center for Cancer Research, Department for Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | | | | | |
Collapse
|
25
|
Fox MT, Harriott P, Walker B, Stone SR. Identification of potential activators of proteinase-activated receptor-2. FEBS Lett 1997; 417:267-9. [PMID: 9409730 DOI: 10.1016/s0014-5793(97)01298-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to identify physiological activators of proteinase-activated receptor-2 (PAR-2), a peptide chloromethane inhibitor (biotinyl-Ser-Lys-Gly-Arg-CH2Cl) based on the cleavage site for activation of PAR-2 was synthesised and tested with 12 trypsin-like serine proteinases. The second-order rate constant (ki/Ki) for the formation of the covalent proteinase-inhibitor complex varied by 2 x 10(5)-fold between the proteinases. Biotinyl-Ser-Lys-Gly-Arg-CH2Cl reacted very rapidly with trypsin, acrosin from sperm and tryptase from mast cells: the ki/Ki values with these proteinases were greater than 10(5) M(-1) x s(-1). Thus, the specificity of these proteinases matched the sequence of the activation site of PAR-2 and it can be concluded that these proteinases are potential physiological activators of PAR-2.
Collapse
Affiliation(s)
- M T Fox
- Department of Haematology, University of Cambridge, MRC Centre, UK.
| | | | | | | |
Collapse
|
26
|
Lynas J, Walker B. Peptidyl inverse esters of p-methoxybenzoic acid: a novel class of potent inactivator of the serine proteases. Biochem J 1997; 325 ( Pt 3):609-16. [PMID: 9271079 PMCID: PMC1218602 DOI: 10.1042/bj3250609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel synthetic peptides, containing a C-terminal beta-amino alcohol linked to p-methoxybenzoic acid via an ester linkage, have been prepared and tested as inhibitors against typical members of the serine protease family. For example, the sequences Ac-Val-Pro-NH-CH-(CH2-C6H5)-CH2O-CO-C6H4-OCH3 (I) and Ac-Val-Pro-NH-CH-[CH-(CH3)2]-CH2O-CO-C6H4-OCH3 (II), which fulfil the known primary and secondary specificity requirements of chymotrypsin and elastase respectively, have been found to behave as exceptionally potent irreversible inactivators of their respective target protease. Thus I was found to inactivate chymotrypsin with an overall second-order rate constant (k2/Ki) of approx. 6.6x10(6) M-1. s-1, whereas II is an even more potent inactivator of human neutrophil elastase, exhibiting a second-order rate constant of inactivation of approx. 1.3x10(7) M-1.s-1. These values represent the largest rate constants ever reported for the inactivation of these proteases with synthetic peptide-based inactivators. On prolonged incubation in substrate-containing buffers, samples of the inactivated proteases were found to regain activity slowly. The first-order rate constants for the regeneration of enzymic activity from chymotrypsin and human neutrophil elastase inactivated by I and II respectively were determined to be approx. 5.8x10(-5) s-1 and approx. 4.3x10(-4) s-1. We believe that the most likely mechanism for the inactivation and regeneration of enzymic activity involves the formation and subsequent slow hydrolysis of long-lived acyl enzyme intermediates.
Collapse
Affiliation(s)
- J Lynas
- Centre for Peptide and Protein Engineering, School of Biology and Biochemistry, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| | | |
Collapse
|
27
|
Lynas JF, Walker B. Peptide argininol “inverse substrates” of anisic acid: Novel inhibitors of the trypsin-like serine proteinases. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00174-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Portaro FC, Cezari MH, Juliano MA, Juliano L, Walmsley AR, Prado ES. Design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites. Biochem J 1997; 323 ( Pt 1):167-71. [PMID: 9173877 PMCID: PMC1218290 DOI: 10.1042/bj3230167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tissue kallikrein inhibitors reported in the present work were derived by selectively replacing residues in Nalpha-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was found to be an efficient inhibitor of human tissue kallikrein (Ki 0.4 microM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, while plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The Ki value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 microM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex.
Collapse
Affiliation(s)
- F C Portaro
- Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo 04044-020, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
De Petrocellis L, Melck D, Ueda N, Maurelli S, Kurahashi Y, Yamamoto S, Marino G, Di Marzo V. Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. Biochem Biophys Res Commun 1997; 231:82-8. [PMID: 9070224 DOI: 10.1006/bbrc.1997.6000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian brain as well as mouse neuroblastoma (N18TG2) and rat basophilic leukaemia (RBL) cells were previously shown to contain "anandamide amidohydrolase', a membrane-bound enzyme sensitive to serine and cysteine protease inhibitors and catalyzing the hydrolysis of the endogenous cannabimimetic metabolite, anandamide (arachidonoyl-ethanolamide). With the aim of developing novel inhibitors of this enzyme, we synthesized three arachidonic acid (AA) analogues, i.e. arachidonoyl-diazo-methyl-ketone (ADMK), ara-chidonoyl-chloro-methyl-ketone (ACMK) and O-acetyl-arachidonoyl-hydroxamate (AcAHA), by adding to the fatty acid moiety three functional groups previously used to synthesize irreversible inhibitors of serine and cysteine proteases. The three compounds were purified and characterized by proton nuclear magnetic resonance and electron impact mass spectrometry. Their effect was tested on anandamide amidohydrolase partially purified from N18TG2 and RBL-1 cells and porcine brain. Pre-treatment of the enzyme with each compound produced a significant inhibition, with ADMK being the most potent (IC50 = 3, 2 and 6 microM) and AcAHA the weakest (IC50 = 34, 15 and 25 microM) inhibitors. The inactivated enzyme regained its full activity when chromatographed by anion-exchange chromatography, suggesting that none of the compounds inhibited the amidohydrolase in a covalent manner. Accordingly, Lineweaver-Burk profiles showed competitive inhibition by each compound. Conversely, the irreversible inhibitor of cytosolic phospholipase As, methyl-arachidonoyl-fluoro-phosphonate (MAFP), covalently inhibited the amidohydrolase. MAFP was active at concentrations 10(3) times lower than those reported for phospholipase A2 inhibition, and is the most potent anandamide amidohydrolase inhibitor so far described (IC50 = 1-3 nM). MAFP, ADMK and ACMK, probably by inhibiting anandamide degradation, produced an apparent increase of the in vitro formation of anandamide from its biosynthetic precursor N-arachidonoyl-phosphatidyl-ethanolamine.
Collapse
|
30
|
Duffy EJ, Angliker H, Le Bonniec BF, Stone SR. Allosteric modulation of the activity of thrombin. Biochem J 1997; 321 ( Pt 2):361-5. [PMID: 9020867 PMCID: PMC1218077 DOI: 10.1042/bj3210361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Substrates containing a P3 aspartic residue are in general cleaved poorly by thrombin. This may be partly due to an unfavourable interaction between the P3 aspartate and Glu192 in the active site of thrombin. In Protein C activation and perhaps also thrombin receptor cleavage, binding of ligands at the anion-binding exosite of thrombin seems to improve the activity of thrombin with substrates containing a P3 aspartate. To investigate the importance of Glu192 and exosite-binding in modulating thrombin's interactions with a P3 aspartate, peptidyl chloromethanes based on the sequence of the thrombin receptor (containing a P3 aspartate) have been synthesized and the kinetics of their inactivation of alpha-thrombin and the mutant Glu192-->Gln determined. The values of the inactivation rate constant (ki) for the chloromethanes containing a P3 aspartate were about two-fold higher with the Glu192-->Gln mutant. A peptide based on the sequence of hirudin (rhir52 65), which binds to the anion-binding exosite of thrombin, was an allosteric modulator of the amidolytic activity of the Glu192-->Gln mutant; a 5-fold decrease in the K(m) value for the substrate D-Phe-pipecolyl-Arg-p-nitroanilide was observed in the presence of saturating concentrations of rhir52-65. This exosite-binding peptide also increased the ki values of chloromethanes containing a P3 aspartate with both alpha-thrombin and the Glu192-->Gln mutant. However, the increases in the ki values were greater with the Glu192-->Gln mutant (5-fold compared with 2-fold for alpha-thrombin). Thus exosite binding does not seem to mitigate putative unfavourable interactions between Glu192 and the P3 aspartate. Moreover, increases in the ki caused by exosite binding were not unique to chloromethanes containing a P3 aspartate; increases of the same magnitude were also observed when the P3 position was occupied by the favourable D-phenylalanine in place of the unfavourable aspartate. The results obtained were consistent with exosite binding's causing changes in the conformation of the S2 and/or S1 site of thrombin.
Collapse
Affiliation(s)
- E J Duffy
- Department of Haematology, University of Cambridge, UK
| | | | | | | |
Collapse
|
31
|
Parry MA, Myles T, Tschopp J, Stone SR. Cleavage of the thrombin receptor: identification of potential activators and inactivators. Biochem J 1996; 320 ( Pt 1):335-41. [PMID: 8947506 PMCID: PMC1217936 DOI: 10.1042/bj3200335] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The kinetic parameters were determined for the hydrolysis of a peptide based on the activation site of the thrombin receptor (residues 38-60) by thrombin and 12 other proteases. The kcat and Km values for the cleavage of this peptide (TR39-40) by thrombin were 107 s-1 and 1.3 microM; the kcat/Km of TR39-40 is among the highest observed for thrombin. A model is presented that reconciles the parameters for cleavage of the peptide with the concentration dependence of cellular responses to thrombin. Cleavage of TR39-40 was not specific for thrombin. The pancreatic proteases trypsin and chymotrypsin hydrolysed TR39-40 efficiently (kcat/Km > 10(6) M-1.s-1). Whereas trypsin cleaved TR39-40 at the thrombin activation site (Arg41-Ser42), chymotrypsin hydrolysed the peptide after Phe43. This chymotryptic cleavage would result in inactivation of the receptor. The efficient cleavage of TR39-40 by chymotrypsin (kcat/Km approximately 10(6) M-1.s-1) was predominantly due to a low Km value (2.8 microM). The proteases factor Xa, plasmin, plasma kallikrein, activated protein C and granzyme A also hydrolysed TR39-40 at the Arg41-Ser43 bond, but exhibited kcat/Km values that were at least 10(3)-fold lower than that observed with thrombin. Both tissue and urokinase plasminogen activators as well as granzyme B and neutrophil elastase were unable to cleave TR39-60 at appreciable rates. However, neutrophil cathepsin G hydrolysed the receptor peptide after Phe55. Like the chymotryptic cleavage, this cleavage would lead to inactivation of the receptor, but the cathepsin G reaction was markedly less efficient; the kcat/K(m) value was almost four orders of magnitude lower than that for thrombin. In addition to the above cleavage sites, a secondary site for thrombin and other arginine-specific proteases was identified at Arg46, but the cleavage at this site only occurred at very low rates and is unlikely to be significant in vivo.
Collapse
Affiliation(s)
- M A Parry
- Department of Haematology, University of Cambridge, U.K
| | | | | | | |
Collapse
|
32
|
Ganesh V, Lee AY, Clardy J, Tulinsky A. Comparison of the structures of the cyclotheonamide A complexes of human alpha-thrombin and bovine beta-trypsin. Protein Sci 1996; 5:825-35. [PMID: 8732754 PMCID: PMC2143408 DOI: 10.1002/pro.5560050504] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thrombin, a trypsin-like serine protease present in blood, plays a central role in the regulation of thrombosis and hemostasis. A cyclic pentapeptide, cyclotheonamide A (CtA), isolated from sponges of the genus Theonella, inhibits thrombin, trypsin, and certain other serine proteases. Enzyme inhibition data for CtA indicate that it is a moderate inhibitor of alpha-thrombin (K(i) = 1.0 nM), but substantially more potent toward trypsin (K(i) = 0.2 nM). The comparative study of the crystal structures of the CtA complexes of alpha-thrombin and beta-trypsin reported here focuses on structure-function relationships in general and the enhanced specificity of trypsin, in particular. The crystal structures of the CtA complexes of thrombin and trypsin were solved and refined at 1.7 and 2.0 A resolution, respectively. The structures show that CtA occupies the active site with the Pro-Arg motif positioned in the S2 and S1 binding sites. The alpha-keto group of CtA is involved in a tetrahedral intermediate hemiketal structure with Ser 195 OG of the catalytic triad and is positioned within bonding distance from, and orthogonal to, the re-face of the carbonyl of the arginine of CtA. As in other productive binding modes of serine proteases, the Ser 214-Gly 216 segment runs in a twisted antiparallel beta-strand manner with respect to the diaminopropionic acid (Dpr)-Arg segment of CtA. The Tyr 60A-Thr 60I insertion loop of thrombin makes a weak aromatic stacking interaction with the v-Tyr of CtA through Trp 60D. The Glu 39 Tyr and Leu 41 Phe substitutions in trypsin produce an enhanced aromatic interaction with D-Phe of CtA, which also leads to different orientations of the side chains of D-Phe and the v-Tyr. The comparison of the CtA complexes of thrombin and trypsin shows that the gross structural features of both in the active site region are the same, whereas the differences observed are mainly due to minor insertions and substitutions. In trypsin, the substitution of Ile 174-Arg 175 by Gly 174-Gln 175 makes the S3 aryl site more polar because the Arg 175 side chain is directed away from thrombin and into the solvent, whereas Gln 175 is not. Because the site is occupied by the Dpr group of CtA, the occupancy of the S3 site is better in trypsin than in thrombin. In trypsin, the D-Phe side chain of CtA fits between Tyr 39 and Phe 41 in a favorable manner, whereas in thrombin, these residues are Glu 39 and Leu 41. The higher degree of specificity for trypsin is most likely the result of these substitutions and the absence of the fairly rigid Tyr 60A-Thr 60I insertion loop of thrombin, which narrows access to the active site and forces less favorable orientations for the D-Phe and v-Tyr residues.
Collapse
Affiliation(s)
- V Ganesh
- Department of Chemistry, Michigan State University, East Lansing 48824-1322, USA
| | | | | | | |
Collapse
|
33
|
Benzakour O, Kanthou C, Lupu F, Dennehy U, Goodwin C, Scully MF, Kakkar VV, Cooper DN. Prothrombin cleavage by human vascular smooth muscle cells: a potential alternative pathway to the coagulation cascade. J Cell Biochem 1995; 59:514-28. [PMID: 8749720 DOI: 10.1002/jcb.240590411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thrombin is a potent mitogen for human vascular smooth muscle cells (HVSMC) and its enzymatic activity is required for this function. The present study demonstrates that prothrombin is also mitogenic for HVSMC due to the generation of enzymatically active thrombin which occurs upon incubation of prothrombin with the cells. Analysis by SDS-PAGE, immunoblotting, and amino acid sequencing revealed that prothrombin incubated with HVSMC undergoes limited proteolysis. Prethrombin 1 was formed through cleavage at R155-S156. Cleavage at R271-T272 generated fragment 1.2 and prethrombin 2 whilst cleavage at R284-T285 yielded truncated prothrombin 2 (prethrombin 2'). However, cleavage at R320-I321 which, during prothrombin activation produces two-chain alpha-thrombin, was not detectable. Studies on HVSMC-conditioned medium revealed that a similar pattern of prothrombin cleavage occurred by a cell-secreted factor(s). Amidolytic activity analysis indicated that 1-3% catalytically active thrombin-like activity was generated upon incubation of prothrombin with HVSMC-conditioned medium. By treating conditioned medium with various classes of proteinase inhibitors or hirudin, it was determined that prothrombin is cleaved by a cell-derived serine proteinase-like factor(s) at R271-S272 and by alpha-thrombin at R155-S156 and R284-T285. Antibodies neutralising the activity of either urokinase, tissue plasminogen activator, or factor Xa failed to alter the prothrombin cleaving activity of conditioned medium. This activity which may catalyse an alternative pathway for the generation of thrombin, was eluted from a gel filtration column as a single peak with apparent molecular mass of 30-40 kDa.
Collapse
Affiliation(s)
- O Benzakour
- Thrombosis Research Institute, Chelsea, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Melrose J, Ghosh P, Patel M. Biotinylated aprotinin: a versatile probe for the detection of serine proteinases on western blots. Int J Biochem Cell Biol 1995; 27:891-904. [PMID: 7584624 DOI: 10.1016/1357-2725(95)00068-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was undertaken to provide a highly sensitive detection system for the identification and characterisation of serine proteinases separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Biotinylated aprotinin of high specific activity (88-92% active) was prepared (i) by reaction of aprotinin directly with N-hydroxy sulfosuccinimidyl-6-(biotinamido) hexanoate, and (ii) by reaction of aprotinin-trypsin complex with N-hydroxy succinimidobiotin. Both biotinylated aprotinin samples were suitable as probes for the detection of the serine proteinases, neutrophil elastase and cathepsin G, pancreatic trypsin and chymotrypsin and plasmin on nitrocellulose blots. Specific irreversible chloromethyl ketone proteinase inhibitors used in combination with this detection system enabled respective proteinases to be selectively inactivated and thus positively identified. The biotinylated aprotinin detection system was highly sensitive and could detect as little as 0.2 ng (8.5 fmol) of active proteinase (trypsin). In summary, a method has been developed for the sensitive detection of serine proteinases separated by SDS-PAGE. The method is more sensitive and convenient to perform than conventional zymography and significantly, when used in conjunction with specific serine proteinase inhibitors or specific antibodies can yield appreciable information on the identity of the respective serine proteinases being examined. Furthermore the molecular mass of the serine proteinase may be reliably obtained by this method. This method should find application in identifying the role that serine proteinases play in the etiopathogenesis of connective tissue disorders.
Collapse
Affiliation(s)
- J Melrose
- Raymond Purves Bone and Joint Research Laboratories, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | |
Collapse
|
35
|
|
36
|
Chagas JR, Portaro FC, Hirata IY, Almeida PC, Juliano MA, Juliano L, Prado ES. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J 1995; 306 ( Pt 1):63-9. [PMID: 7864830 PMCID: PMC1136482 DOI: 10.1042/bj3060063] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Kinetic data for the hydrolysis by human tissue kallikrein of fluorogenic peptides with o-aminobenzoyl-Phe-Arg (Abz-FR) as the acyl group and different leaving groups demonstrate that interactions with the S'1, S'2 and S'3 subsites are important for cleavage efficiency. In addition, studies on the hydrolysis of fluorogenic peptides with the human kininogen sequence spanning the scissile Met-Lys bond [Abz-M-I-S-L-M-K-R-P-N-(2,4-dinitrophenyl)ethylenediamine] and analogues with different residues at positions P'1, P'2 and P'3 showed that (a) the presence of a proline residue at P'3 and the interactions with the tissue kallikrein-binding sites S2 to S'2 are determinants of Met-Lys bond cleavage and (b) residues P3, P4 and/or P5 arc important for cleavage efficiency. The substitution of phenylalanine for methionine or arginine in substrates with scissile Met-Lys or Arg-Xaa bonds demonstrated that lysyl-bradykinin-releasing tissue kallikreins also have a primary specificity for phenylalanine. The replacement of arginine by phenylalanine in (D)P-F-R-p-nitroanilide (pNA) produced an efficient and specific chromogenic substrate, (D)P-F-F-pNA, for the lysyl-bradykinin-releasing tissue kallikreins as it is resistant to plasma kallikrein and other arginine hydrolases.
Collapse
Affiliation(s)
- J R Chagas
- Department of Biophysics, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Odake S, Kam CM, Powers JC. Inhibition of thrombin by arginine-containing peptide chloromethyl ketones and bis chloromethyl ketone-albumin conjugates. JOURNAL OF ENZYME INHIBITION 1995; 9:17-27. [PMID: 8568563 DOI: 10.3109/14756369509040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arg-containing peptide chloromethyl ketones including D-Phe-Pro-Arg-CH2Cl derivatives have been synthesized and tested as inhibitors for thrombin and several blood coagulation enzymes. The parent compound, D-Phe-Pro-Arg-CH2Cl is still the best thrombin inhibitor in the series with kobs/[I] value of 10(7) M-1s-1. Extension by one amino acid (Phe or Gly), or a peptide moiety (ClCH2-Arg < -Pro < -D-Phe < -CO-CO-, ClCH2-Arg < -Pro < -D-Phe < -CO-(CH2)3-CO-, where < -indicates a reversed amino acid residue, -CO-CHR-NH-) on the N-terminus of D-Phe-Pro-Arg-CH2Cl reduces the inhibition constant by 1-2 orders of magnitude, which indicates the importance of a free amino group at the N-terminus. The tripeptide D-Phe-Pro-Arg-CH2Cl and related tetrapeptide inhibitors inhibit thrombin more potently than factor IXa and plasma kallikrein by 2-5 orders of magnitude. Z-Arg-CH2Cl and Phe-Phe-Arg-CH2Cl which contain a large hydrophobic group at the P2 site inhibit thrombin poorly. All the peptide chloromethyl ketones inhibit plasma kallikrein moderately with kobs/[I] values of 10(2)-10(3) M-1s-1 but inhibit factor IXa poorly (kobs/[I] < 20 M-1s-1). Conjugates of albumin with the bis chloromethyl ketones [(CO-D-Phe-Pro-Arg-CH2Cl)2, (CH2)3-(CO-D-Phe-Pro-Arg-CH2Cl)2] were prepared and are potent thrombin inhibitors. These conjugates are model compounds for developing specific thrombus-bound thrombin inhibitors which may have therapeutic application in the treatment of coagulation disorders.
Collapse
Affiliation(s)
- S Odake
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | |
Collapse
|
38
|
Stone SR, Tapparelli C. Thrombin inhibitors as antithrombotic agents: the importance of rapid inhibition. JOURNAL OF ENZYME INHIBITION 1995; 9:3-15. [PMID: 8568565 DOI: 10.3109/14756369509040677] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For use as an antithrombotic agent, a thrombin inhibitor must be potent and specific, i.e., it should not significantly inhibit the proteases of the anticoagulation (activated protein C) and fibrinolytic systems (plasminogen activator and plasmin). Previous evaluation of potency and specificity has been based on inhibition constants (Ki values). However, consideration of the kinetic parameters for natural plasma serine protease inhibitors indicates that a low Ki value with thrombin is not sufficient; the inhibited complex must also form rapidly. Moreover, potent inhibition of activated protein C and plasmin could be tolerated providing the inhibited complex only forms slowly. An ideal profile of kinetic parameters with thrombin, activated protein C and plasmin is formulated and discussed in relation to various classes of thrombin inhibitors. Examination of kinetic data for thrombin inhibitors currently in clinical trials (hirudin and hirulog) indicates that they possess this ideal profile of kinetic parameters.
Collapse
Affiliation(s)
- S R Stone
- Department of Haematology, University of Cambridge, UK
| | | |
Collapse
|
39
|
Sekiya F, Usui H, Inoue K, Fukudome K, Morita T. Activation of prothrombin by a novel membrane-associated protease. An alternative pathway for thrombin generation independent of the coagulation cascade. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31654-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Crystal structures of thrombin and thrombin complexes as a framework for antithrombotic drug design. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02171858] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Savory PJ, Djaballah H, Angliker H, Shaw E, Rivett AJ. Reaction of proteasomes with peptidylchloromethanes and peptidyldiazomethanes. Biochem J 1993; 296 ( Pt 3):601-5. [PMID: 8280057 PMCID: PMC1137740 DOI: 10.1042/bj2960601] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The multicatalytic endopeptidase complex (proteasome) has multiple distinct peptidase activities. These activities have often been referred to as 'chymotrypsin-like', 'trypsin-like' and 'peptidylglutamyl-peptide hydrolase' activities according to the type of residue in the P1 position, although it is now clear that mammalian proteasomes have at least five distinct catalytic sites. In the present study, potential affinity-labelling reagents (peptidylchloromethanes, peptidyldiazomethanes, a peptidylfluoromethane and peptidylsulphonium salts) containing hydrophobic, basic or acidic amino acid residues in the P1 position have been tested for inhibition of the different activities of the rat liver proteinase complex. The results show that individual peptidase activities of proteasomes can be inhibited by a variety of peptidylchloromethanes and peptidyldiazomethanes. Although the rate of inactivation of proteasomes by even the most effective peptidylchloromethanes and peptidyldiazomethanes are often quite slow (k(obs)/[I] in the range 0.1-10 M-1 x s-1) compared with the reaction of similar compounds with some other proteinases, the results provide useful information concerning the specificity of the distinct catalytic centres of proteasomes, and some selective affinity-labelling reagents have been identified. Tyr-Gly-Arg-chloromethane was found to be a useful inhibitor of trypsin-like activity. Inhibition of the other peptidase activities was often incomplete, even after repeated addition of inhibitor, and it proved to be difficult to predict the effect of different reagents. For example, Cbz-Tyr-Ala-Glu-chloromethane was found to inhibit 'chymotrypsin-like' activity (assayed with Ala-Ala-Phe-7-amino-4-methylcoumarin or succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin), while the best inhibitors of 'peptidylglutamyl-peptide hydrolase' activities (assayed with benzyloxycarbonyl-Leu-Leu-Glu beta-naphthylamide) were peptidyldiazomethanes containing hydrophobic amino acid residues. These results suggest that the original nomenclature of proteasome activities is misleading, because the residue in the P1 position is not the only determinant of specificity.
Collapse
Affiliation(s)
- P J Savory
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | | | |
Collapse
|
42
|
Maryanoff BE, Qiu X, Padmanabhan KP, Tulinsky A, Almond HR, Andrade-Gordon P, Greco MN, Kauffman JA, Nicolaou KC, Liu A. Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Proc Natl Acad Sci U S A 1993; 90:8048-52. [PMID: 8367461 PMCID: PMC47285 DOI: 10.1073/pnas.90.17.8048] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The macrocyclic peptide cyclotheonamide A (CtA), isolated from the marine sponge Theonella sp., represents an unusual class of serine protease inhibitor. A complex of this inhibitor with human alpha-thrombin, a protease central to the bioregulation of thrombosis and hemostasis, was studied by x-ray crystallography. This work (2.3-A resolution) confirms the structure of CtA and reveals intimate details about its molecular recognition within the enzyme active site. Interactions due to the "Pro-Arg motif" (Arg occupancy of the S1 specificity pocket; formation of a hydrogen-bonded two-strand antiparallel beta-sheet with Ser214-Gly216) and the alpha-keto amide group of CtA are primarily responsible for binding to thrombin, with the alpha-keto amide serving as a transition-state analogue. A special interaction with the "insertion loop" of thrombin (Tyr60A-Thr60I) is manifested through engagement of the hydroxyphenyl group of CtA with Trp60D as part of an "aromatic stacking chain." Biochemical inhibition data (Ki values at 37 degrees C) were obtained for CtA with thrombin and a diverse collection of serine proteases. Thus, CtA is just a moderate inhibitor of human alpha-thrombin (Ki = 0.18 microM) but a potent inhibitor of trypsin (Ki = 0.023 microM) and streptokinase (Ki = 0.035 microM). The relative lack of potency of CtA as a thrombin inhibitor is discussed with respect to certain structural features of the enzyme complex. We also report the total synthesis of CtA, by a convergent [2 + 3] fragment-condensation approach, to serve the preparation of cyclotheonamide analogues for structure-function studies.
Collapse
Affiliation(s)
- B E Maryanoff
- Drug Discovery Division, R. W. Johnson Pharmaceutical Research Institute, Spring House, PA 19477
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rabbani LE, Johnstone MT, Rudd MA, Devine P, George D, Loscalzo J. PPACK attenuates plasmin-induced changes in endothelial integrity. Thromb Res 1993; 70:425-36. [PMID: 8362368 DOI: 10.1016/0049-3848(93)90085-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to determine whether plasmin affects endothelial cell integrity directly, confluent bovine aortic endothelial cells were treated with plasminogen and a plasminogen activator. The permeability of the monolayer to [125I]-albumin was shown to be increased significantly (P < 0.01) with a concomitant decrease in viability. Plasmin activity correlated significantly with endothelial cell permeability (p < 0.004; r = 0.82). Coincubation with D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone, a tripeptide inhibitor of plasmin, reduced the increase in endothelial permeability induced by plasmin by 59% (p = 0.033). Monolayers studied in parallel were stained with rhodamine-phalloidin to visualize F-actin. There were significant morphologic changes in the endothelial monolayers exposed to plasmin compared to control monolayers, and these changes could be attenuated by coincubation with D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone. These studies show that: 1) plasmin induces significant increases in endothelial cell permeability with accompanying morphologic changes; and 2) these deleterious functional and morphologic effects can be attenuated by coincubation with the plasmin inhibitor, D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone.
Collapse
Affiliation(s)
- L E Rabbani
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | | | | | | | | | |
Collapse
|
44
|
Angliker H, Shaw E, Stone SR. Synthesis of oligopeptide chloromethanes to investigate extended binding regions of proteinases: application to the interaction of fibrinogen with thrombin. Biochem J 1993; 292 ( Pt 1):261-6. [PMID: 8503855 PMCID: PMC1134298 DOI: 10.1042/bj2920261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A method was established for the synthesis of oligopeptide chloromethanes which should be useful in the study of serine and cysteine proteinases with extended binding sites. The method involved condensation of an N-terminal peptide fragment obtained by solid-phase synthesis with a C-terminal peptide chloromethane synthesized by solution-phase chemistry. By using this procedure, oligopeptide chloromethanes of up to 16 residues were synthesized. These chloromethanes were based on the sequence of fibrinopeptide A. By using oligopeptide chloromethanes of different length, it was possible to show that the residues Asp7-Phe8-Leu9 play a crucial role in the recognition of fibrinopeptide A by thrombin. In contrast, the residues Ala1-Asp2-Ser3-Gly4-Glu5-Gly6 seem to play a minor role. Substitution of valine for Gly12, which occurs in a dysfibrinogenaemia, markedly decreased the rate of inactivation of thrombin by the oligopeptide chloromethane. The results are discussed in terms of the recently published structure of the complex between human thrombin and a chloromethane inhibitor based on fibrinopeptide A.
Collapse
Affiliation(s)
- H Angliker
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Bode W. X-ray crystal structures of thrombin in complex with D-Phe-Pro-Arg and with small benzamidine- and arginine-based "non-peptidic" inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 340:15-26. [PMID: 8154332 DOI: 10.1007/978-1-4899-2418-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W Bode
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| |
Collapse
|
46
|
Abstract
The wealth of structural information now available for thrombin, its precursors, its substrates, and its inhibitors allows a rationalization of its many roles. alpha-thrombin is a rather rigid molecule, binding to its target molecules with little conformational change. Comparison of alpha-thrombin with related trypsin-like serine proteinases reveals an unusually deep and narrow active site cleft, formed by loop insertions characteristic of thrombin. This canyon structure is one of the prime causes for the narrow specificity of thrombin. The observed modularity of thrombin allows a diversity in this specificity; its "mix-and-match" nature is exemplified by its interactions with macromolecules (Fig. 20). The apposition of the active site to a hydrophobic pocket (the apolar binding site) on one side and a basic patch (the fibrinogen recognition exosite) on the other allows for a fine tuning of enzymatic activity, as seen for fibrinogen. Thrombin receptor appears to use the same sites, but in a different way. Protein C seems only able to interact with thrombin if the recognition exosite is occupied by thrombomodulin. These two sites are also optimally used by hirudin, allowing the very tight binding observed; thrombin inhibition is effected by blocking access to the active site. On the other hand, antithrombin III makes little use of the recognition exosite; instead, its interactions are tightened with the help of heparin, which binds to a second basic site (the heparin binding site). Thrombin's modularity is a result of the conjunction of amino acid residues of like properties, such as charge or hydrophobicity. The charge distribution plays a role, not only in the binding of oppositely charged moieties of interacting molecules, but also in selection and preorientation of them. Nonproteolytic cellular properties are attributed to 1) the rigid insertion loop at Tyr60A, and 2) a partially inaccessible RGD sequence. The former can interact with cells in the native form; the latter would appear to be presented only in an (at least partially) unfolded state. The membrane binding properties of prothrombin can be understood from the ordered arrangement of calcium ions on binding to the Gla domain. Kringle F2 binds to thrombin at the heparin binding site through charge complementarity; a conformational change appears to occur on binding. The observed rigidity of the thrombin molecule in its complexes makes thrombin ideal for structure based drug design. Thrombin can be inhibited either at the active site or at the fibrinogen recognition exosite, or both.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M T Stubbs
- Centrum för Strukturbiokemi, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | | |
Collapse
|
47
|
Lipke DW, Olson KR. A specific inhibitor of mammalian kallikrein, Phe-Phe-Arg-chloromethyl ketone, inhibits the production of vasoactive substances from trout plasma by kallikrein and blocks endogenous kallikrein-like activity in trout gills. FISH PHYSIOLOGY AND BIOCHEMISTRY 1992; 10:339-346. [PMID: 24214331 DOI: 10.1007/bf00004483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/1992] [Indexed: 06/02/2023]
Abstract
The cardiovascular effects of the kallikrein-kinin system (KKS) have not been completely characterized in lower vertebrates. In the present study, a specific, irreversible kallikrein inhibitor, Phe-Phe-Arg-chloromethyl ketone (PPACMK) was used to examine: 1. the role of the KKS in blood pressure regulation in vivo; 2. the nature of the pressor substance formed by the action of kallikrein on trout plasma in vivo and in vitro; and 3. the presence of kallikrein in trout gills and kidney. Dorsal aortic cannulated rainbow trout were used for in vivo blood pressure assays and two colorimetric serine-protease assays were used to examine tissue kallikrein activity. PPACMK alone had no effect on blood pressure in vivo. Pretreatment of porcine kallikrein with PPACMK inhibited the enzyme's pressor effect in trout by 80% and significantly attenuated the synthesis of vasopressor substance(s) from heat-treated trout plasma in vitro. Approximately 30% of gill serine protease activity was inhibited by pretreatment with PPACMK; no PPACMK-sensitive kallikrein activity was observed in the kidney. Salt water adaptation did not affect kallikrein-specific activity in the gill. These results show that the salmonid KKS does not appear to be involved in the regulation of systemic blood pressure. Further, the formation of pressor substances from trout plasma in vivo and in vitro is due to kallikrein activity and the peptides generated are similar. A kallikrein, similar to the mammalian enzyme, is found in trout gills, suggesting that the salmonid KKS may be a local mediator of gill function.
Collapse
Affiliation(s)
- D W Lipke
- Division of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0082
| | | |
Collapse
|
48
|
Breton-Maintier C, Mayer R, Richard-Molard D. Labeled proteinase inhibitors: Versatile tools for the characterization of serine proteinases in solid-phase assays. Enzyme Microb Technol 1992; 14:819-24. [PMID: 1368969 DOI: 10.1016/0141-0229(92)90098-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidyl chloromethyl ketones were used for the specific labeling of proteinases by attaching a biotin group to the N-terminal end of the peptide. Such labeled peptide inhibitors allowed the detection and quantitation of proteolytic enzymes immobilized on the plastic surface of a microtiter plate, as well as on nitrocellulose. The validity of these solid-phase assays was demonstrated using subtilisin Carlsberg as a model enzyme and biotinyl-epsilon-aminocaproyl-L-alanyl-L-alanyl-L-propyl-L-phenylal++ + anyl- chloromethyl ketone as a specific reagent. In addition to being usable for the screening of a particular proteinase in a large number of samples, these assays can be adapted for the analysis of specific proteolytic enzyme present in complex mixtures.
Collapse
Affiliation(s)
- C Breton-Maintier
- Laboratoire de Microbiologie et Technologie Céréalières, INRA, Nantes, France
| | | | | |
Collapse
|
49
|
Keyt BA, Berleau LT, Nguyen HV, Bennett WF. Radioiodination of the active site of tissue plasminogen activator: a method for radiolabeling serine proteases with tyrosylprolylarginyl chloromethyl ketone. Anal Biochem 1992; 206:73-83. [PMID: 1456445 DOI: 10.1016/s0003-2697(05)80013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tyrosylprolylarginyl chloromethyl ketone (YPRck) is a radioiodinatable inhibitor that irreversibly binds the active site of tissue plasminogen activator (tPA). A two-step reaction is employed where (1) the YPRck reagent is iodinated and (2) the 125I-YPRck is reacted with the tPA sample; therefore the oxidative effects of conventional protein iodination are avoided. Using fibrin binding as a probe of native tPA binding function, YPRck labeling was shown to be superior to other types of surface iodination. 125I-YPRck was prepared at a high specific radioactivity; i.e., one 125I per 3.5 molecules of peptidyl chloromethyl ketone. Labeled YPRck formed a one to one covalent, sodium dodecyl sulfate stable, complex with tPA resulting in a preparation of 10 mCi per milligram protein, which corresponded to an incorporation ratio of 1:3.5 (125I-YPRck:tPA). Both one-chain and two-chain forms of tPA reacted with YPRck. Radiolabeling tPA with 125I-YPRck occurred in a time-dependent manner with half-maximal incorporation at approximately 30 min under the conditions employed in these studies. The pH optimum for the reaction of tPA with 125I-YPRck was 7.4. Solutions of tPA at less than 1 microgram/ml were efficiently labeled with 125I-YPRck, thus allowing the quantitation of functional protease by incorporation of radiolabel. Significantly, 125I-YPRck specifically labeled tPA in cell culture supernatants after transient transfection of cells with plasmid DNA containing the gene for tPA. Other serine proteases were tested for their relative reactivity with 125I-YPRck. Thrombin and Factor Xa incorporated 125I-YPRck to higher levels than two-chain tPA; whereas plasmin, urokinase, and other plasma proteases were not as efficiently radiolabeled. The use of 125I-YPRck allows rapid and specific radiolabeling of a large number of tPA samples in a nondenaturing environment with a known localization of the radiolabeling reagent.
Collapse
Affiliation(s)
- B A Keyt
- Department of Cardiovascular Research, Genentech, Inc., South San Francisco, California 94080
| | | | | | | |
Collapse
|
50
|
Brandstetter H, Turk D, Hoeffken HW, Grosse D, Stürzebecher J, Martin PD, Edwards BF, Bode W. Refined 2.3 A X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. J Mol Biol 1992; 226:1085-99. [PMID: 1518046 DOI: 10.1016/0022-2836(92)91054-s] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Well-diffracting crystals of bovine epsilon-thrombin in complex with several "non-peptidic" benzamidine and arginine-based thrombin inhibitors have been obtained by co-crystallization. The 2.3 A crystal structures of three complexes formed either with NAPAP, 4-TAPAP, or MQPA, were solved by Patterson search methods and refined to crystallographic R-values of 0.167 to 0.178. The active-site environment of thrombin is only slightly affected by binding of the different inhibitors; in particular, the exposed "60-insertion loop" essentially maintains its typical projecting structure. The D-stereoisomer of NAPAP and the L-stereoisomer of MQPA bind to thrombin with very similar conformations, as previously inferred from their binding to bovine trypsin; the arginine side-chain of the latter inserts into the specificity pocket in a "non-canonical" manner. The L-stereoisomer of 4-TAPAP, whose binding geometry towards trypsin was only poorly defined, is bound to the thrombin active-site in a compact conformation. In contrast to NAPAP, the distal p-amidino/guanidino groups of 4-TAPAP and MQPA do not interact with the carboxylate group of Asp189 in the thrombin specificity pocket in a "symmetrical" twin N-twin O manner, but through "lateral" single N-twin O contacts; in contrast to the p-amidino group of 4-TAPAP, however, the guanidyl group of MQPA packs favourably in the pocket due to an elaborate hydrogen bond network, which includes two entrapped water molecules. These thrombin structures confirm previous conclusions of the important role of the intermolecular hydrogen bonds formed with Gly216, and of the good sterical fit of the terminal bulky hydrophobic inhibitor groups with the hydrophobic aryl binding site and the S2-cavity, respectively, for tight thrombin active site binding of these non-peptidic inhibitors. These accurate crystal structures are presumed to be excellent starting points for the design and the elaboration of improved antithrombotics.
Collapse
|