1
|
Li DL, Lanca C, Zhang XJ, Grzybowski A, He XG, Pan CW. Spatial frequency of environments and myopia: A systematic review on associated evidence and underlying mechanisms. Acta Ophthalmol 2025. [PMID: 39754355 DOI: 10.1111/aos.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE Previous animal studies have found a relationship between spatial frequency and myopia. New research in humans suggest that reduced high spatial content of the visual environment may be a contributing factor for myopia development. This study aims to review the literature and elucidate the potential biological mechanisms linking spatial frequency and myopia. METHODS A systematic search was conducted across PubMed and Web of Science databases. The studies published from their inception to August 2024 that have explored the connection between spatial frequency and myopia. Only full-text articles in English were included. PRISMA was used for data validity. RESULTS A total of 13 articles were included in this review, comprising seven animal model studies, four population-based studies, one pictorial analysis and one study on research design. Epidemiological evidence is comparatively limited and has only begun to emerge in recent years. Mid- to high spatial frequencies were found to play an important role in the emmetropization process of the eye. Low spatial frequencies can increase the risk of myopia incidence. Furthermore, the potential mechanisms of how spatial frequency affects myopia are summarized as visual information processing characteristics, eye accommodation function and eye movements, contrast sensitivity and relevant molecules involved in the pathway. CONCLUSION The evidence suggests that indoor spatial frequency may be related to the development of myopia. Further studies are warranted to understand if the incorporation of changes in indoor environments is helpful in the prevention and control of myopia.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Carla Lanca
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Xiu-Juan Zhang
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Xian-Gui He
- Shanghai eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
3
|
Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis 2020; 9:610-637. [PMID: 35782976 PMCID: PMC9243399 DOI: 10.1016/j.gendis.2020.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ocular cells like, retinal pigment epithelium (RPE) is a highly specialized pigmented monolayer of post-mitotic cells, which is located in the posterior segment of the eye between neuro sensory retina and vascular choroid. It functions as a selective barrier and nourishes retinal visual cells. As a result of high-level oxygen consumption of retinal cells, RPE cells are vulnerable to chronic oxidative stress and an increased level of reactive oxygen species (ROS) generated from mitochondria. These oxidative stress and ROS generation in retinal cells lead to RPE degeneration. Various sources including mtDNA damage could be an important factor of oxidative stress in RPE. Gene therapy and mitochondrial transfer studies are emerging fields in ocular disease research. For retinal degenerative diseases stem cell-based transplantation methods are developed from basic research to preclinical and clinical trials. Translational research contributions of gene and cell therapy would be a new strategy to prevent, treat and cure various ocular diseases. This review focuses on the effect of oxidative stress in ocular cell degeneration and recent translational researches on retinal degenerative diseases to cure blindness.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Corresponding author.
| | - Mahalaxmi Iyer
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Aswathy P. Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sinnakaruppan Mathavan
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600006, Tamil Nadu, India
| | - Nimmisha Eruppakotte
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Soumya Kizhakkillach
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manoj kumar Chandran
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Punjab 144411, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 600127, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Corresponding author. Human Molecular Cytogenetics and Stem Cell, Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.Fax: +91 422 2422387.
| |
Collapse
|
4
|
Farhoodi R, Lansdell BJ, Kording KP. Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Front Neuroinform 2019; 13:36. [PMID: 31191283 PMCID: PMC6541099 DOI: 10.3389/fninf.2019.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The process through which neurons are labeled is a key methodological choice in measuring neuron morphology. However, little is known about how this choice may bias measurements. To quantify this bias we compare the extracted morphology of neurons collected from the same rodent species, experimental condition, gender distribution, age distribution, brain region and putative cell type, but obtained with 19 distinct staining methods. We found strong biases on measured features of morphology. These were largest in features related to the coverage of the dendritic tree (e.g., the total dendritic tree length). Understanding measurement biases is crucial for interpreting morphological data.
Collapse
Affiliation(s)
- Roozbeh Farhoodi
- Department of Mathematics, Sharif University of Technology, Tehran, Iran
| | | | - Konrad Paul Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Marc RE, Sigulinsky CL, Pfeiffer RL, Emrich D, Anderson JR, Jones BW. Heterocellular Coupling Between Amacrine Cells and Ganglion Cells. Front Neural Circuits 2018; 12:90. [PMID: 30487737 PMCID: PMC6247779 DOI: 10.3389/fncir.2018.00090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
All superclasses of retinal neurons, including bipolar cells (BCs), amacrine cells (ACs) and ganglion cells (GCs), display gap junctional coupling. However, coupling varies extensively by class. Heterocellular AC coupling is common in many mammalian GC classes. Yet, the topology and functions of coupling networks remains largely undefined. GCs are the least frequent superclass in the inner plexiform layer and the gap junctions mediating GC-to-AC coupling (GC::AC) are sparsely arrayed amidst large cohorts of homocellular AC::AC, BC::BC, GC::GC and heterocellular AC::BC gap junctions. Here, we report quantitative coupling for identified GCs in retinal connectome 1 (RC1), a high resolution (2 nm) transmission electron microscopy-based volume of rabbit retina. These reveal that most GC gap junctions in RC1 are suboptical. GC classes lack direct cross-class homocellular coupling with other GCs, despite opportunities via direct membrane contact, while OFF alpha GCs and transient ON directionally selective (DS) GCs are strongly coupled to distinct AC cohorts. Integrated small molecule immunocytochemistry identifies these as GABAergic ACs (γ+ ACs). Multi-hop synaptic queries of RC1 connectome further profile these coupled γ+ ACs. Notably, OFF alpha GCs couple to OFF γ+ ACs and transient ON DS GCs couple to ON γ+ ACs, including a large interstitial amacrine cell, revealing matched ON/OFF photic drive polarities within coupled networks. Furthermore, BC input to these γ+ ACs is tightly matched to the GCs with which they couple. Evaluation of the coupled versus inhibitory targets of the γ+ ACs reveals that in both ON and OFF coupled GC networks these ACs are presynaptic to GC classes that are different than the classes with which they couple. These heterocellular coupling patterns provide a potential mechanism for an excited GC to indirectly inhibit nearby GCs of different classes. Similarly, coupled γ+ ACs engaged in feedback networks can leverage the additional gain of BC synapses in shaping the signaling of downstream targets based on their own selective coupling with GCs. A consequence of coupling is intercellular fluxes of small molecules. GC::AC coupling involves primarily γ+ cells, likely resulting in GABA diffusion into GCs. Surveying GABA signatures in the GC layer across diverse species suggests the majority of vertebrate retinas engage in GC::γ+ AC coupling.
Collapse
Affiliation(s)
| | | | | | | | | | - Bryan William Jones
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Connors BW. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev Neurobiol 2017; 77:610-624. [PMID: 28245529 DOI: 10.1002/dneu.22493] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022]
Abstract
Electrical synapses are neuronal gap junctions that are ubiquitous across brain regions and species. The biophysical properties of most electrical synapses are relatively simple-transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these connections can play remarkably diverse roles in different neural circuit contexts. Recent findings illustrate how electrical synapses may excite or inhibit, synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, enhance signals relative to noise, adapt, and interact with nonlinear membrane and transmitter-release mechanisms. Most of these functions are likely to be widespread in central nervous systems. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 610-624, 2017.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
7
|
Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem 2013; 288:18429-38. [PMID: 23649630 DOI: 10.1074/jbc.m113.478503] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SOX family proteins belong to the high-mobility-group (HMG) domain-containing transcription factors, and function as key players to regulate embryonic development and cell fate determination. The highly related group C Sox genes Sox4 and Sox11 are widely expressed in the development of mouse retina and share a similar expression pattern with each other in this process. Here, to investigate the roles of Sox4 and Sox11 in the retinal development, Sox4, Sox11, and Sox4/Sox11 conditional knock-out (CKO) mice with deletion of Sox4, Sox11, and Sox4/Sox11 in retinas were generated. Our studies demonstrated that targeted disruption of Sox4 or Sox11 in retinas caused a moderate reduction of generation of RGCs. However, a complete loss of RGCs was observed in Sox4/Sox11-null retinas, suggesting the two genes play similar roles in the development of RGCs. Our further analysis confirms that Sox4 and Sox11 function redundantly to regulate the generation of RGCs at early embryonic stages as well as the survival of RGCs at late embryonic stages. In addition, we demonstrated that loss of Math5 impairs the expression of Sox4 and Sox11 in the ganglion cell layer while deletion of Brn3b has no effect on the expression of Sox4 and Sox11. Taken together, these findings elucidate SoxC genes as essential contributors to maintain the survival of RGCs, and imply their intermediate position between Math5 and Brn3b in the genetic hierarchy of RGC development.
Collapse
Affiliation(s)
- Ying Jiang
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
8
|
Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci 2012; 70:2519-32. [PMID: 23064704 DOI: 10.1007/s00018-012-1183-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/18/2023]
Abstract
The generation of appropriate and diverse neuronal and glial types and subtypes during development constitutes the critical first step toward assembling functional neural circuits. During mammalian retinogenesis, all seven neuronal and glial cell types present in the adult retina are specified from multipotent progenitors by the combined action of various intrinsic and extrinsic factors. Tremendous progress has been made over the past two decades in uncovering the complex molecular mechanisms that control retinal cell diversification. Molecular genetic studies coupled with bioinformatic approaches have identified numerous transcription factors and cofactors as major intrinsic regulators leading to the establishment of progenitor multipotency and eventual differentiation of various retinal cell types and subtypes. More recently, non-coding RNAs have emerged as another class of intrinsic factors involved in generating retinal cell diversity. These intrinsic regulatory factors are found to act in different developmental processes to establish progenitor multipotency, define progenitor competence, determine cell fates, and/or specify cell types and subtypes.
Collapse
Affiliation(s)
- Mengqing Xiang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MVL, Berman JW. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012; 7:499-518. [PMID: 22438035 PMCID: PMC3638201 DOI: 10.1007/s11481-012-9352-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP(3), and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Curti S, Hoge G, Nagy JI, Pereda AE. Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 2012; 32:4341-59. [PMID: 22457486 PMCID: PMC3339267 DOI: 10.1523/jneurosci.6216-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.
Collapse
Affiliation(s)
- Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
11
|
Wittig D, Wang X, Walter C, Gerdes HH, Funk RHW, Roehlecke C. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS One 2012; 7:e33195. [PMID: 22457742 PMCID: PMC3310865 DOI: 10.1371/journal.pone.0033195] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/06/2012] [Indexed: 01/03/2023] Open
Abstract
Background Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic.
Collapse
Affiliation(s)
- Dierk Wittig
- Institute of Anatomy, TU Dresden, Dresden, Germany
| | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Cindy Walter
- Institute of Anatomy, TU Dresden, Dresden, Germany
| | | | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden – Cluster of Excellence, Biotechnology Center, Dresden, Germany
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
12
|
Abstract
AbstractTheir unique patterns of size, numbers, and stratification indicate that amacrine cells have diverse functions. These are mostly unknown, as studies using imaging and electrophysiological methods have only recently begun. However, some of the events that occur within the amacrine cell population—and some important unresolved puzzles—can be stated purely from structural reasoning.
Collapse
|
13
|
Bramley JR, Wiles EM, Sollars PJ, Pickard GE. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors. PLoS One 2011; 6:e22721. [PMID: 21829491 PMCID: PMC3146487 DOI: 10.1371/journal.pone.0022721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 07/05/2011] [Indexed: 12/03/2022] Open
Abstract
Background Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca2+ signals in ipRGCs independent of gap junction blockade. Methodology/Principal Findings To test the possibility that carbenoxolone directly inhibits light-evoked Ca2+ responses in ipRGCs, the light-evoked rise in intracellular Ca2+ ([Ca2+]i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca2+]i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable. Conclusions/Significance We demonstrate that the light-evoked rise in [Ca2+]i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca2+]i in isolated ipRGCs is almost entirely due to Ca2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca2+]i in ipRGCs by blocking L-type voltage-gated Ca2+ channels. The ability of carbenoxolone to block evoked Ca2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca2+]i is the output being measured.
Collapse
Affiliation(s)
- Jayne R. Bramley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Erin M. Wiles
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KSM, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LRG. Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 2009; 28:39-52. [PMID: 19800961 DOI: 10.1016/j.ijdevneu.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 12/29/2022] Open
Abstract
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxolone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated communication is essential in retinal histogenesis, particularly in the control of cell proliferation.
Collapse
Affiliation(s)
- Alexandre H Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kihara AH, Paschon V, Cardoso CM, Higa GSV, Castro LM, Hamassaki DE, Britto LRG. Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol 2009; 512:651-63. [PMID: 19051319 DOI: 10.1002/cne.21920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrical coupling provided by connexins (Cx) in gap junctions (GJ) plays important roles in both the developing and the mature retina. In mammalian nocturnal species, Cx36 is an essential component in the rod pathway, the retinal circuit specialized for night, scotopic vision. Here, we report the expression of Cx36 in a species (Gallus gallus) that phylogenetic development endows with an essentially rodless retina. Cx36 gene is very highly expressed in comparison with other Cxs previously described in the adult retina, such as Cx43, Cx45, and Cx50. Moreover, real-time PCR, Western blot, and immunofluorescence all revealed that Cx36 expression massively increased over time during development. We thoroughly examined Cx36 in the inner and outer plexiform layers, where this protein was particularly abundant. Cx36 was observed mainly in the off sublamina of the inner plexiform layer rather than in the on sublamina previously described in the mammalian retina. In addition, Cx36 colocalized with specific cell markers, revealing the expression of this protein in distinct amacrine cells. To investigate further the involvement of Cx36 in visual processing, we examined its functional regulation in retinas from dark-adapted animals. Light deprivation markedly up-regulates Cx36 gene expression in the retina, resulting in an increased accumulation of the protein within and between cone synaptic terminals. In summary, the developmental regulation of Cx36 expression results in particular circuitry-related roles in the chick retina. Moreover, this study demonstrated that Cx36 onto- and phylogenesis in the vertebrate retina simultaneously exhibit similarities and particularities.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KGV, Yasumura T, Shigemoto R, Rash JE, Nagy JI. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci 2008; 28:9769-89. [PMID: 18815262 PMCID: PMC2638127 DOI: 10.1523/jneurosci.2137-08.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022] Open
Abstract
Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 coexpressed in HeLa cells were colocalized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45-immunofluorescent puncta were colocalized with Cx36, supporting either widespread heterotypic coupling or bihomotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin coexpression and cotargeting in virtually all IPL neurons that express Cx45. Moreover, double replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With previous evidence that Cx36 interacts with PDZ1 domain of zonula occludens-1 (ZO-1), we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45, and ZO-1 coimmunoprecipitate, suggesting that ZO-1 provides for coscaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming "bihomotypic" gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Naomi Kamasawa
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
- Department of Biomedical Sciences and
| | - Cristina Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Carl O. Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Shijun Lu
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
| | - John E. Rash
- Department of Biomedical Sciences and
- Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado 80523
| | - James I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
17
|
Bumsted-O'Brien KM, Hendrickson A, Haverkamp S, Ashery-Padan R, Schulte D. Expression of the homeodomain transcription factor Meis2 in the embryonic and postnatal retina. J Comp Neurol 2008; 505:58-72. [PMID: 17729288 DOI: 10.1002/cne.21458] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Members of the Meis subfamily of homeodomain-containing transcription factors play important roles during development and disease. Here we report that the Meis family protein Meis2 is expressed by a subpopulation of gamma-aminobutyric acid (GABA)ergic amacrine (AM) cells in the adult and embryonic retina of different vertebrate species. In mice, Meis2-expressing (Meis2+) AM cells are not cholinergic or dopaminergic, but some are immunoreactive for neuronal nitric oxide synthase (bNOS). About 50% of the mouse Meis2+ AM cell population expresses the calcium-binding protein calretinin, and some Meis2+ AM cells show characteristics of Type II CD-15+ cells. AM cell expression of Meis2 is lost in a conditional knockout mouse model for Pax6, indicating a dependency upon Pax6. Bromodeoxyuridine pulse labeling experiments and immunohistochemical staining for the neuronal marker NeuN in embryonic mouse retinae indicate that Meis2 is an early marker for newly postmitotic AM cells. In addition, taking advantage of the protracted retinal development in humans, we show that newly generated AM cells express Meis2 before adopting the GABAergic or glycinergic neurotransmitter phenotype. As development proceeds, some AM cells lose Meis2 expression concomitantly with the appearance of glycine, while other AM cells retain Meis2 expression after they express GABA. These data identify Meis2 as a suitable marker for the study of AM cell diversity and development in addition to providing evidence for the stepwise specification of the glycinergic and GABAergic neurotransmitter phenotypes during AM cell differentiation.
Collapse
Affiliation(s)
- Keely M Bumsted-O'Brien
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Deutschordenst. 46, 60218 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
18
|
Kihara AH, Santos TO, Paschon V, Matos RJB, Britto LRG. Lack of photoreceptor signaling alters the expression of specific synaptic proteins in the retina. Neuroscience 2007; 151:995-1005. [PMID: 18248909 DOI: 10.1016/j.neuroscience.2007.09.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/28/2007] [Accepted: 12/18/2007] [Indexed: 11/17/2022]
Abstract
Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6brd1). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin I, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Pinilla I, Cuenca N, Sauvé Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 2007; 85:381-92. [PMID: 17662715 PMCID: PMC2711686 DOI: 10.1016/j.exer.2007.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 05/03/2007] [Accepted: 06/05/2007] [Indexed: 11/23/2022]
Abstract
We have examined how transplantation of an RPE cell line to the subretinal space of RCS rats affects the distribution of synaptic connectivity markers in the outer plexiform layer of the retina. Using markers of pre- and post-synaptic profiles (bassoon and synaptophysin as presynaptic markers and mGluR6 for postsynaptic profiles) we found that the normal orderly patterns seen between photoreceptors and rod and ON-cone bipolar cells were severely disrupted in dystrophic rats. In areas in which injected cells preserved photoreceptors, more normally appearing pairing of pre- and post-synaptic markers was seen for both rods and cones. The degree of normality correlated with the amount of photoreceptor rescue. The secondary changes that are normally seen in bipolar and horizontal cells were prevented by the photoreceptor preservation. ERG recordings in the animals subsequently studied morphologically showed that both a- and b-waves could be rescued by grafting, albeit with lower amplitudes than normal. Together these anatomical and physiological studies indicate that besides the integrity of outer nuclear layer cells and phototransduction processes, relay circuitry through the outer retina was rescued by cell grafts.
Collapse
Affiliation(s)
- Isabel Pinilla
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
20
|
Kihara AH, Mantovani de Castro L, Belmonte MA, Yan CYI, Moriscot AS, Hamassaki DE. Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. JOURNAL OF NEUROBIOLOGY 2006; 66:1397-410. [PMID: 17029293 DOI: 10.1002/neu.20299] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gap junction channels formed by connexins (Cx) may play essential roles in some processes that occur during retinal development, such as apoptosis and calcium wave spread. The present study was undertaken to determine the distribution pattern of Cx36, Cx43, and Cx45 by immunofluorescence, as well as their gene expression levels by quantitative PCR during postnatal development of the mouse retina. Our results showed an increased expression of neuronal Cx36 from P1 until P10, when this Cx reached adult levels, and it was mainly distributed in the outer and inner plexiform layers. In turn, Cx43 was almost absent in retinal progenitor cells at P1, it became more prominent in glial cell processes about P10, and did not change until adulthood. Double-labeling studies in situ and in vitro with antivimentin, a Müller cell marker, confirmed that Cx43 was expressed by these cells. In addition, quantitative PCR showed that Cx43 and vimentin shared very similar temporal expression patterns. Finally, in contrast to Cx36 and Cx43, Cx45 mRNA was strongly down-regulated during development. In early postnatal days, Cx45 was seen ubiquitously distributed throughout the retina in cells undergoing proliferation and differentiation, as well in differentiated neurons. In adult retina, this protein had a more restricted distribution both in neurons and glial cells, as confirmed in situ and in vitro. In conclusion, we observed a distinct temporal expression pattern for Cx36, Cx43, and Cx45, which is probably related to particular roles in retinal function and maintenance of homeostasis during development of the mouse retina.
Collapse
|
21
|
KAMASAWA N, FURMAN CS, DAVIDSON KGV, SAMPSON JA, MAGNIE AR, GEBHARDT BR, KAMASAWA M, YASUMURA T, ZUMBRUNNEN JR, PICKARD GE, NAGY JI, RASH JE. Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience 2006; 142:1093-117. [PMID: 17010526 PMCID: PMC1847771 DOI: 10.1016/j.neuroscience.2006.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
Neuronal gap junctions are abundant in both outer and inner plexiform layers of the mammalian retina. In the inner plexiform layer (IPL), ultrastructurally-identified gap junctions were reported primarily in the functionally-defined and anatomically-distinct ON sublamina, with few reported in the OFF sublamina. We used freeze-fracture replica immunogold labeling and confocal microscopy to quantitatively analyze the morphologies and distributions of neuronal gap junctions in the IPL of adult rat and mouse retina. Under "baseline" conditions (photopic illumination/general anesthesia), 649 neuronal gap junctions immunogold-labeled for connexin36 were identified in rat IPL, of which 375 were photomapped to OFF vs. ON sublaminae. In contrast to previous reports, the volume-density of gap junctions was equally abundant in both sublaminae. Five distinctive morphologies of gap junctions were identified: conventional crystalline and non-crystalline "plaques" (71% and 3%), plus unusual "string" (14%), "ribbon" (7%) and "reticular" (2%) forms. Plaque and reticular gap junctions were distributed throughout the IPL. However, string and ribbon gap junctions were restricted to the OFF sublamina, where they represented 48% of gap junctions in that layer. In string and ribbon junctions, curvilinear strands of connexons were dispersed over 5 to 20 times the area of conventional plaques having equal numbers of connexons. To define morphologies of gap junctions under different light-adaptation conditions, we examined an additional 1150 gap junctions from rats and mice prepared after 30 min of photopic, mesopic and scotopic illumination, with and without general anesthesia. Under these conditions, string and ribbon gap junctions remained abundant in the OFF sublamina and absent in the ON sublamina. Abundant gap junctions in the OFF sublamina of these two rodents with rod-dominant retinas revealed previously-undescribed but extensive pathways for inter-neuronal communication; and the wide dispersion of connexons in string and ribbon gap junctions suggests unique structural features of gap junctional coupling in the OFF vs. ON sublamina.
Collapse
Affiliation(s)
- N. KAMASAWA
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - C. S. FURMAN
- Department of Physiology, Southern Illinois University School of Medicine, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA
| | - K. G. V. DAVIDSON
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - J. A. SAMPSON
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - A. R. MAGNIE
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - B. R. GEBHARDT
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - M. KAMASAWA
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - T. YASUMURA
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
| | - J. R. ZUMBRUNNEN
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - G. E. PICKARD
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
- Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. I. NAGY
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - J. E. RASH
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA
- Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA
- *Correspondence to: J. E. Rash, Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA. Tel: +1-970-491-5606; fax: +1-970-491-7907. E-mail address: (J. E. Rash)
| |
Collapse
|
22
|
Uchiyama H, Stell WK. Association amacrine cells of Ramón y Cajal: Rediscovery and
reinterpretation. Vis Neurosci 2006; 22:881-91. [PMID: 16469195 DOI: 10.1017/s0952523805226160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
In 1895, by means of the Golgi method, Santiago Ramón y Cajal
discovered a cell having a unique morphology in the avian retina. This
cell had its cell body in the amacrine cell level of the inner nuclear
layer, only a few rudimentary dendrites at the outermost level of the
inner plexiform layer (IPL), and a long axon coursing horizontally and
terminating in the IPL. Despite having defined amacrine cells as cells
without axons, Cajal named this cell type “association amacrine
cell” (AAC). This discovery was not confirmed by other investigators
for nearly a century. Very recently, however, isthmo-optic target cells
(IOTCs), which receive the terminals of centrifugal fibers emanating from
the isthmo-optic nucleus, have been identified as one type of AAC. As
summarized and discussed in this review, the morphology of the AACs as
described by Cajal has been completely confirmed. However, since these
cells appear to be classical polarized, monoaxonal neurons and lack the
dendritic interactions that are typical of amacrine cells, they should be
regarded as a distinct type of retinal interneuron and not as amacrine
cells.
Collapse
Affiliation(s)
- H Uchiyama
- Department of Information and Computer Science, Faculty of Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan.
| | | |
Collapse
|
23
|
Wu SM, Gao F, Pang JJ. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina. Vision Res 2005; 44:3277-88. [PMID: 15535995 DOI: 10.1016/j.visres.2004.07.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 07/27/2004] [Indexed: 11/23/2022]
Abstract
Light-evoked excitatory cation current (DeltaIC) and inhibitory chloride current (DeltaICl) of rod and cone bipolar cells and AII amacrine cells (AIIACs) were recorded from slices of dark-adapted mouse retinas, and alpha ganglion cells were recorded from flatmounts of dark-adapted mouse retinas. The cell morphology was revealed by Lucifer yellow fluorescence with a confocal microscope. DeltaIC of all rod depolarizing bipolar cells (DBCRs) exhibited similar high sensitivity to 500 nm light, but two patterns of DeltaICl were observed with slightly different axon morphologies. At least two types of cone depolarizing bipolar cells (DBCCs) were identified: one with axon terminals ramified in 70-85% of IPL depth and DBCR-like DeltaIC sensitivity, and the other with axon terminals ramified in 55-75% of IPL depth and much lower DeltaIC sensitivity. The relative rod/cone inputs to DBCs and AIIACs were analyzed by comparing the DeltaIC and DeltaICl thresholds and dynamic ranges with the corresponding values of rods and cones. On average, the sensitivity of a DBCR to the 500 nm light is about 20 times higher than that of a rod. The sensitivity of an AIIAC is more than 1000 times higher than that of a rod, suggesting that AIIAC responses are pooled through a coupled network of about 40 AIIACs. Interactions of rod and cone signals in dark-adapted mouse retinas appear asymmetrical: rod signals spread into the cone system more efficiently than cone signals into the rod system. The mouse synaptic circuitry allows small rod signals to be highly amplified and effectively transmitted to the cone system via rod/cone and AIIAC/DBCC coupling. Three types of alpha ganglion cells (alphaGCs) were identified. (1) ONGCs exhibits no spike activity in darkness, increased spikes in light, sustained inward DeltaIC, sustained outward DeltaICl of varying amplitude, and large soma (20-25 microm in diameter) with an alpha-cell-like dendritic field about 180-350 microm stratifying near 70% of the IPL depth. (2) Transient OFFalphaGCs (tOFFalphaGCs) exhibit no spike activity in darkness, transient increased spikes at light offset, small sustained outward DeltaIC in light, a large transient inward DeltaIC at light offset, a sustained outward DeltaICl, and a morphology similar to the ONalphaGCs except for that their dendrites stratified near 30% of the IPL depth. (3) Sustained OFFalpha GCs (sOFFalphaGCs) exhibit maintained spike activity of 5-10 Hz in darkness, sustained decrease of spikes in light, sustained outward DeltaIC, sustained outward DeltaICl, and a morphology similar to the tOFFalphaGCs. By comparing the response thresholds and dynamic ranges of alphaGCs with those of the pre-ganglion cells, our data suggest that the light responses of each type of alphaGCs are mediated by different sets of bipolar cells and amacrine cells.
Collapse
Affiliation(s)
- Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA.
| | | | | |
Collapse
|
24
|
Cruikshank SJ, Landisman CE, Mancilla JG, Connors BW. Connexon connexions in the thalamocortical system. PROGRESS IN BRAIN RESEARCH 2005; 149:41-57. [PMID: 16226575 DOI: 10.1016/s0079-6123(05)49004-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electrical synapses are composed of gap junction channels that interconnect neurons. They occur throughout the mammalian brain, although this has been appreciated only recently. Gap junction channels, which are made of proteins called connexins, allow ionic current and small organic molecules to pass directly between cells, usually with symmetrical ease. Here we review evidence that electrical synapses are a major feature of the inhibitory circuitry in the thalamocortical system. In the neocortex, pairs of neighboring inhibitory interneurons are often electrically coupled, and these electrical connections are remarkably specific. To date, there is evidence that five distinct subtypes of inhibitory interneurons in the cortex make electrical interconnections selectively with interneurons of the same subtype. Excitatory neurons (i.e., pyramidal and spiny stellate cells) of the mature cortex do not appear to make electrical synapses. Within the thalamus, electrical coupling is observed in the reticular nucleus, which is composed entirely of GABAergic neurons. Some pairs of inhibitory neurons in the cortex and reticular thalamus have mixed synaptic connections: chemical (GABAergic) inhibitory synapses operating in parallel with electrical synapses. Inhibitory neurons of the thalamus and cortex express the gap junction protein connexin 36 (C x 36), and knocking out its gene abolishes nearly all of their electrical synapses. The electrical synapses of the thalamocortical system are strong enough to mediate robust interactions between inhibitory neurons. When pairs or groups of electrically coupled cells are excited by synaptic input, receptor agonists, or injected current, they typically display strong synchrony of both subthreshold voltage fluctuations and spikes. For example, activating metabotropic glutamate receptors on coupled pairs of cortical interneurons or on thalamic reticular neurons can induce rhythmic action potentials that are synchronized with millisecond precision. Electrical synapses offer a uniquely fast, bidirectional mechanism for coordinating local neural activity. Their widespread distribution in the thalamocortical system suggests that they serve myriad functions. We are far from a complete understanding of those functions, but recent experiments suggest that electrical synapses help to coordinate the temporal and spatial features of various forms of neural activity.
Collapse
Affiliation(s)
- Scott J Cruikshank
- Department of Neuroscience, Division of Biology & Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
25
|
Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 2004; 19:2633-40. [PMID: 15147297 DOI: 10.1111/j.0953-816x.2004.03360.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horizontal cells are interneurons of the vertebrate retina that exhibit strong electrical and tracer coupling but the identity of the channel-forming connexins has remained elusive. Here we show that horizontal cells of the mouse retina express connexin57 (Cx57). We have generated Cx57-deficient mice by replacing the Cx57 coding region with a lacZ reporter gene, expressed under control of the endogenous Cx57 promoter. These mice were fertile and showed no obvious anatomical or behavioural abnormalities. Cx57 mRNA was expressed in the retina of wild-type littermates but was absent from the retina of Cx57-deficient mice. Previously reported results that the Cx57 gene was very weakly expressed in several other mouse tissues turned out to be unspecific. Cx57 mRNA is abundantly expressed in the retina and weakly in the thymus of adult mice but absent in all other adult tissues tested, including brain. Furthermore, Cx57 is expressed in embryonic kidney at E16.5 to E18.5 days post-conception, as indicated by the pattern of lacZ expression. Within the retina, lacZ signals were assigned exclusively to horizontal cells based on co-localization with cell-type-specific marker proteins. Microinjection of Neurobiotin into horizontal cells of isolated retinae revealed less than 1% of tracer coupling in Cx57-deficient retinae compared with wild-type controls. Cx57 is the first connexin identified in mammalian horizontal cells and the first connexin whose expression is apparently restricted to only one type of neuron.
Collapse
Affiliation(s)
- Sonja Hombach
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pang JJ, Gao F, Wu SM. Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. J Physiol 2004; 558:897-912. [PMID: 15181169 PMCID: PMC1665016 DOI: 10.1113/jphysiol.2003.059543] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Light-evoked excitatory cation current (DeltaI(C)) and inhibitory chloride current (DeltaI(Cl)) of rod and cone depolarizing bipolar cells (DBC(R)s and DBC(C)s) and AII amacrine cells (AIIACs) in dark-adapted mouse retinal slices were studied by whole-cell voltage-clamp recording techniques, and the cell morphology was revealed by Lucifer yellow fluorescence with a confocal microscope. DeltaI(C) of all DBC(R)s exhibited similar high sensitivity to 500 nm light, but two patterns of DeltaI(Cl) were observed in DBC(R)s with slightly different axon morphology. At least two types of DBC(C)s were identified: one with axon terminals ramified in 70-85% of the depth of the inner plexiform layer (IPL) and DBC(R)-like DeltaI(C) sensitivity, whereas the other with axon terminals ramified in 55-75% of IPL depth and much lower DeltaI(C) sensitivity. The relative rod/cone inputs to DBCs and AIIACs were analysed by comparing the DeltaI(C) and DeltaI(Cl) thresholds and dynamic ranges with the corresponding values of rods and cones. On average, the sensitivity of a DBC(R) to the 500 nm light is about 20 times higher than that of a rod. The sensitivity of an AIIAC is more than 1000 times higher than that of a rod, suggesting that AIIAC responses are pooled through a coupled network of about 40 AIIACs. Interactions of rod and cone signals in dark-adapted mouse retina appear asymmetrical: rod signals spread into the cone system more efficiently than cone signals into the rod system. The mouse synaptic circuitry allows small rod signals to be highly amplified, and effectively transmitted to the cone system via rod-cone and AIIAC-DBC(C) coupling.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Mo Z, Li S, Yang X, Xiang M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 2004; 131:1607-18. [PMID: 14998930 DOI: 10.1242/dev.01071] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian retina contains numerous morphological and physiological subtypes of amacrine cells necessary for integrating and modulating visual signals presented to the output neurons. Among subtypes of amacrine cells grouped by neurotransmitter phenotypes, the glycinergic and gamma-aminobutyric acid (GABA)ergic amacrine cells constitute two major subpopulations. To date, the molecular mechanisms governing the specification of subtype identity of amacrine cells remain elusive. We report here that during mouse development, the Barhl2 homeobox gene displays an expression pattern in the nervous system that is distinct from that of its homologue Barhl1. In the developing retina, Barhl2 expression is found in postmitotic amacrine, horizontal and ganglion cells, while Barhl1 expression is absent. Forced expression of Barhl2 in retinal progenitors promotes the differentiation of glycinergic amacrine cells, whereas a dominant-negative form of Barhl2 has the opposite effect. By contrast, they exert no effect on the formation of GABAergic neurons. Moreover, misexpressed Barhl2 inhibits the formation of bipolar and Müller glial cells, indicating that Barhl2 is able to function both as a positive and negative regulator, depending on different types of cells. Taken together, our data suggest that Barhl2 may function to specify the identity of glycinergic amacrine cells from competent progenitors during retinogenesis.
Collapse
Affiliation(s)
- Zeqian Mo
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
28
|
Vaney DI. Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells. J Comp Neurol 2004; 474:149-71. [PMID: 15156584 DOI: 10.1002/cne.20110] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
NADPH diaphorase (NADPHd) histochemistry labels two types of nitrergic amacrine cells in the rabbit retina. Both the large ND1 cells and the small ND2 cells stratify in the middle of the inner plexiform layer, and their overlapping processes produce a dense plexus, which makes it difficult to trace the morphology of single cells. The complete morphology of the ND1 amacrine cells has been revealed by injecting Neurobiotin into large round somata in the inner nuclear layer, which resulted in the labelling of amacrine cells whose proximal morphology and stratification matched those of the ND1 cells stained by NADPHd histochemistry. The Neurobiotin-injected ND1 cells showed strong homologous tracer coupling to surrounding ND1 cells, and double-labelling experiments confirmed that these coupled cells showed NADPHd reactivity. The ND1 amacrine cells branch in stratum 3 of the inner plexiform layer, where they produce a sparsely branched dendritic tree of 400-600 microm diameter in ventral peripheral retina. In addition, each cell gives rise to several fine beaded processes, which arise either from a side branch of the dendritic tree or from the tapering of a distal dendrite. These axon-like processes branch successively within the vicinity of the dendritic field before extending, with little or no further branching, for 3-5 mm from the soma in ventral peripheral retina. Consequently, these cells may span one-third of the visual field of each eye, and their spatial extent appears to be greater than that of most other types of axon-bearing amacrine cells injected with Neurobiotin in this study. The morphology and tracer-coupling pattern of the ND1 cells are compared with those of confirmed type 1 catecholaminergic cells, a presumptive type 2 catecholaminergic cell, the type 1 polyaxonal cells, the long-range amacrine cells, a novel type of axon-bearing cell that also branches in stratum 3, and a type of displaced amacrine cell that may correspond to the type 2 polyaxonal cell.
Collapse
Affiliation(s)
- David I Vaney
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia.
| |
Collapse
|
29
|
Abstract
Many neurons in the mammalian central nervous system communicate through electrical synapses, defined here as gap junction-mediated connections. Electrical synapses are reciprocal pathways for ionic current and small organic molecules. They are often strong enough to mediate close synchronization of subthreshold and spiking activity among clusters of neurons. The most thoroughly studied electrical synapses occur between excitatory projection neurons of the inferior olivary nucleus and between inhibitory interneurons of the neocortex, hippocampus, and thalamus. All these synapses require the gap junction protein connexin36 (Cx36) for robust electrical coupling. Cx36 appears to interconnect neurons exclusively, and it is expressed widely along the mammalian neuraxis, implying that there are undiscovered electrical synapses throughout the central nervous system. Some central neurons may be electrically coupled by other connexin types or by pannexins, a newly described family of gap junction proteins. Electrical synapses are a ubiquitous yet underappreciated feature of neural circuits in the mammalian brain.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
30
|
Abstract
Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in phase 1 or 2 in some animal models, but depletion of all neuronal classes is evident in phase 3. As remodeling progresses over months and years, more neurons are lost and patches of the ganglion cell layer can become depleted. Some survivor neurons of all classes elaborate new neurites, many of which form fascicles that travel hundreds of microns through the retina, often beneath the distal glial seal. These and other processes form new synaptic microneuromas in the remnant inner nuclear layer as well as cryptic connections throughout the retina. Remodeling activity peaks at mid-phase 3, where neuronal somas actively migrate on glial surfaces. Some amacrine and bipolar cells move into the former ganglion cell layer while other amacrine cells are everted through the inner nuclear layer to the glial seal. Remodeled retinas engage in anomalous self-signaling via rewired circuits that might not support vision even if they could be driven anew by cellular or bionic agents. We propose that survivor neurons actively seek excitation as sources of homeostatic Ca(2+) fluxes. In late phase 3, neuron loss continues and the retina becomes increasingly glial in composition. Retinal remodeling is not plasticity, but represents the invocation of mechanisms resembling developmental and CNS plasticities. Together, neuronal remodeling and the formation of the glial seal may abrogate many cellular and bionic rescue strategies. However, survivor neurons appear to be stable, healthy, active cells and given the evidence of their reactivity to deafferentation, it may be possible to influence their emergent rewiring and migration habits.
Collapse
Affiliation(s)
- Robert E Marc
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah School of Medicine, 50 N Medical Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|