1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Belozor OS, Vasilev A, Mileiko AG, Mosina LD, Mikhailov IG, Ox DA, Boitsova EB, Shuvaev AN, Teschemacher AG, Kasparov S, Shuvaev AN. Memantine suppresses the excitotoxicity but fails to rescue the ataxic phenotype in SCA1 model mice. Biomed Pharmacother 2024; 174:116526. [PMID: 38574621 DOI: 10.1016/j.biopha.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Olga S Belozor
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia
| | - Alex Vasilev
- JSC «BIOCAD», Svyazi str. 34-A, Strelna, Saint-Petersburg 198515, Russia
| | | | - Lyudmila D Mosina
- Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Ilya G Mikhailov
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Darius A Ox
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Elizaveta B Boitsova
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia
| | - Andrey N Shuvaev
- Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Anja G Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sergey Kasparov
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anton N Shuvaev
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia.
| |
Collapse
|
4
|
Ruff DS, Balbo I, Lai R, Dieng D, Hennessey C, Vennam K, Dwork AJ, McCreary M, Louis ED, Faust PL, Kuo S. Reduced Bergmann glial process terminations and lateral appendages in essential tremor. Ann Clin Transl Neurol 2024; 11:377-388. [PMID: 38098226 PMCID: PMC10863904 DOI: 10.1002/acn3.51958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Postmortem examination of the essential tremor cerebellum has revealed a variety of pathological changes centered in and around Purkinje cells. Studies have predominantly focused on cerebellar neuronal connections. Bergmann glial morphology has not yet been studied in essential tremor. Among their many roles, Bergmann glia in the cerebellar cortex ensheath Purkinje cell synapses and provide neuroprotection. Specifically, the complex radial processes and lateral appendages of Bergmann glia are structural domains that modulate Purkinje cell synaptic transmission. In this study, we investigate whether Bergmann glia morphology is altered in the essential tremor cerebellum. METHODS We applied the Golgi-Kopsch method and used computerized three-dimensional cell reconstruction to visualize Bergmann glia in the postmortem cerebellum of 34 cases and 17 controls. We quantified morphology of terminal structures (number of terminations and lateral appendage density) and morphology of radial processes (total process length, branch length, branch order, and branch volume) in each glial cell. We quantified number of branches and volume as well. RESULTS Essential tremor cases had a 31.9% decrease in process terminations and a 35.7% decrease in lateral appendage density in Bergmann glia. Total process length and branch length did not differ between essential tremor cases and controls. We found also a reduction in number of secondary and tertiary branches and tertiary branches volume. INTERPRETATION These findings suggest that Bergmann glia in essential tremor cases have more alterations in their terminal structures, with a relative preservation of radial processes, and highlight a potential role for these astrocytes in the disease pathophysiology.
Collapse
Affiliation(s)
- David S. Ruff
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Ilaria Balbo
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Ruo‐Yah Lai
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Diarra Dieng
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Charlotte Hennessey
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Krish Vennam
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Andrew J. Dwork
- Department of Pathology and Cell BiologyColumbia University Medical Center, The New York Presbyterian HospitalNew YorkNew York10032USA
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
| | - Morgan McCreary
- Department of NeurologyUniversity of Texas SouthwesternDallasTexas75390USA
| | - Elan D. Louis
- Department of NeurologyUniversity of Texas SouthwesternDallasTexas75390USA
| | - Phyllis L. Faust
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
- Department of Pathology and Cell BiologyColumbia University Medical Center, The New York Presbyterian HospitalNew YorkNew York10032USA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| |
Collapse
|
5
|
Bellows S, Jimenez-Shahed J. Is essential tremor a disorder of GABA dysfunction? No. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:285-310. [PMID: 35750366 DOI: 10.1016/bs.irn.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although essential tremor is common, its underlying pathophysiology remains uncertain, and several hypotheses seek to explain the tremor mechanism. The GABA hypothesis states that disinhibition of deep cerebellar neurons due to reduced GABAergic input from Purkinje cells results in increased pacemaker activity, leading to rhythmic output to the thalamo-cortical circuit and resulting in tremor. However, some neuroimaging, spectroscopy, and pathology studies have not shown a clear or consistent GABA deficiency in essential tremor, and animal models have indicated that large reductions of Purkinje cell inhibition may improve tremor. Instead, tremor is increasingly attributable to dysfunction in oscillating networks, where altered (but not necessarily reduced) inhibitory signaling can result in tremor. Hypersynchrony of Purkinje cell activity may account for excessive oscillatory cerebellar output, with potential contributions along multiple sites of the olivocerebellar loop. Although older animal tremor models, such as harmaline tremor, have explored contributions from the inferior olivary body, increasing evidence has pointed to the role of aberrant climbing fiber synaptic organization in oscillatory cerebellar activity and tremor generation. New animal models such as hotfoot17j mice, which exhibit abnormal climbing fiber organization due to mutations in Grid2, have recapitulated many features of ET. Similar abnormal climbing fiber architecture and excessive cerebellar oscillations as measured by EEG have been found in humans with essential tremor. Further understanding of hypersynchrony and excessive oscillatory activity in ET phenotypes may lead to more targeted and effective treatment options.
Collapse
|
6
|
Cougnoux A, Yerger JC, Fellmeth M, Serra-Vinardell J, Navid F, Wassif CA, Cawley NX, Porter FD. Reduction of glutamate neurotoxicity: A novel therapeutic approach for Niemann-Pick disease, type C1. Mol Genet Metab 2021; 134:330-336. [PMID: 34802899 PMCID: PMC8767495 DOI: 10.1016/j.ymgme.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a β-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Julia C Yerger
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mason Fellmeth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ 2021; 28:2651-2672. [PMID: 33795848 PMCID: PMC8408152 DOI: 10.1038/s41418-021-00776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Despite the great advances in autophagy research in the last years, the specific functions of the four mammalian Atg4 proteases (ATG4A-D) remain unclear. In yeast, Atg4 mediates both Atg8 proteolytic activation, and its delipidation. However, it is not clear how these two roles are distributed along the members of the ATG4 family of proteases. We show that these two functions are preferentially carried out by distinct ATG4 proteases, being ATG4D the main delipidating enzyme. In mammalian cells, ATG4D loss results in accumulation of membrane-bound forms of mATG8s, increased cellular autophagosome number and reduced autophagosome average size. In mice, ATG4D loss leads to cerebellar neurodegeneration and impaired motor coordination caused by alterations in trafficking/clustering of GABAA receptors. We also show that human gene variants of ATG4D associated with neurodegeneration are not able to fully restore ATG4D deficiency, highlighting the neuroprotective role of ATG4D in mammals.
Collapse
|
8
|
Protective Effect of Memantine on Bergmann Glia and Purkinje Cells Morphology in Optogenetic Model of Neurodegeneration in Mice. Int J Mol Sci 2021; 22:ijms22157822. [PMID: 34360588 PMCID: PMC8346112 DOI: 10.3390/ijms22157822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxias are a family of fatal inherited diseases affecting the brain. Although specific mutated proteins are different, they may have a common pathogenetic mechanism, such as insufficient glutamate clearance. This function fails in reactive glia, leading to excitotoxicity and overactivation of NMDA receptors. Therefore, NMDA receptor blockers could be considered for the management of excitotoxicity. One such drug, memantine, currently used for the treatment of Alzheimer's disease, could potentially be used for the treatment of other forms of neurodegeneration, for example, spinocerebellar ataxias (SCA). We previously demonstrated close parallels between optogenetically induced cerebellar degeneration and SCA1. Here we induced reactive transformation of cerebellar Bergmann glia (BG) using this novel optogenetic approach and tested whether memantine could counteract changes in BG and Purkinje cell (PC) morphology and expression of the main glial glutamate transporter-excitatory amino acid transporter 1 (EAAT1). Reactive BG induced by chronic optogenetic stimulation presented increased GFAP immunoreactivity, increased thickness and decreased length of its processes. Oral memantine (~90 mg/kg/day for 4 days) prevented thickening of the processes (1.57 to 1.81 vs. 1.62 μm) and strongly antagonized light-induced reduction in their average length (186.0 to 150.8 vs. 171.9 μm). Memantine also prevented the loss of the key glial glutamate transporter EAAT1 on BG. Finally, memantine reduced the loss of PC (4.2 ± 0.2 to 3.2 ± 0.2 vs. 4.1 ± 0.3 cells per 100 μm of the PC layer). These results identify memantine as potential neuroprotective therapeutics for cerebellar ataxias.
Collapse
|
9
|
Tellios V, Maksoud MJE, Xiang YY, Lu WY. Nitric Oxide Critically Regulates Purkinje Neuron Dendritic Development Through a Metabotropic Glutamate Receptor Type 1-Mediated Mechanism. THE CEREBELLUM 2021; 19:510-526. [PMID: 32270464 DOI: 10.1007/s12311-020-01125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO), specifically derived from neuronal nitric oxide synthase (nNOS), is a well-established regulator of synaptic transmission in Purkinje neurons (PNs), governing fundamental processes such as motor learning and coordination. Previous phenotypic analyses showed similar cerebellar structures between neuronal nitric oxide null (nNOS-/-) and wild-type (WT) adult male mice, despite prominent ataxic behavior within nNOS-/- mice. However, a study has yet to characterize PN molecular structure and their excitatory inputs during development in nNOS-/- mice. This study is the first to explore morphological abnormalities within the cerebellum of nNOS-/- mice, using immunohistochemistry and immunoblotting. This study sought to examine PN dendritic morphology and the expression of metabotropic glutamate receptor type 1 (mGluR1), vesicular glutamate transporter type 1 and 2 (vGluT1 and vGluT2), stromal interaction molecule 1 (STIM1), and calpain-1 within PNs of WT and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2W), and 7 weeks (7W) of age. Results showed a decrease in PN dendritic branching at PD7 in nNOS-/- cerebella, while aberrant dendritic spine formation was noted in adult ages. Total protein expression of mGluR1 was decreased in nNOS-/- cerebella across development, while vGluT2, STIM1, and calpain-1 were significantly increased. Ex vivo treatment of WT slices with NOS inhibitor L-NAME increased calpain-1 expression, whereas treating nNOS-/- cerebellar slices with NO donor NOC-18 decreased calpain-1. Moreover, mGluR1 agonist DHPG increased calpain-1 in WT, but not in nNOS-/- slices. Together, these results indicate a novel role for nNOS/NO signaling in PN development, particularly by regulating an mGluR1-initiated calcium signaling mechanism.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | | | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada. .,Robarts Research Institute, London, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, The University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
10
|
Dolenec P, Pilipović K, Janković T, Župan G. Pattern of Neuronal and Axonal Damage, Glial Response, and Synaptic Changes in Rat Cerebellum within the First Week following Traumatic Brain Injury. J Neuropathol Exp Neurol 2021; 79:1163-1182. [PMID: 33057716 DOI: 10.1093/jnen/nlaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We examined damage and repair processes in the rat cerebellum within the first week following moderate traumatic brain injury (TBI) induced by lateral fluid percussion injury (LFPI) over the left parietal cortex. Rats were killed 1, 3, or 7 days after the injury or sham procedure. Fluoro-Jade B staining revealed 2 phases of neurodegenerative changes in the cell bodies and fibers: first, more focal, 1 day after the LFPI, and second, widespread, starting on post-injury day 3. Purkinje cell loss was detected in posterior lobule IX 1 day following LFPI. Apoptosis was observed in the cerebellar cortex, on days 1 and 7 following LFPI, and was not caspase- or apoptosis-inducing factor (AIF)-mediated. AIF immunostaining indicated axonal damage in the cerebellar white matter tracts 3- and 7-days post-injury. Significant astrocytosis and microgliosis were noticed on day 7 following LFPI at the sites of neuronal damage and loss. Immunohistochemical labeling with the presynaptic markers synaptophysin and growth-associated protein-43 revealed synaptic perturbations already on day 1 that were more pronounced at later time points following LFPI. These results provide new insights into pathophysiological alterations in the cerebellum and their mechanisms following cerebral TBI.
Collapse
Affiliation(s)
- Petra Dolenec
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Pilipović
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tamara Janković
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Župan
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
11
|
De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2020; 22:92-110. [PMID: 33203932 DOI: 10.1038/s41583-020-00392-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different 'microzones' during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands. .,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
12
|
Shadmehr R. Population coding in the cerebellum: a machine learning perspective. J Neurophysiol 2020; 124:2022-2051. [PMID: 33112717 DOI: 10.1152/jn.00449.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cere resembles a feedforward, three-layer network of neurons in which the "hidden layer" consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Allen LA, Harper RM, Vos SB, Scott CA, Lacuey N, Vilella L, Winston JS, Whatley BP, Kumar R, Ogren J, Hampson JS, Rani S, Winston GP, Lemieux L, Lhatoo SD, Diehl B. Peri-ictal hypoxia is related to extent of regional brain volume loss accompanying generalized tonic-clonic seizures. Epilepsia 2020; 61:1570-1580. [PMID: 32683693 PMCID: PMC7496610 DOI: 10.1111/epi.16615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored. METHODS We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43). Subjects were sub-divided into those with mild/moderate (GTCS-hypox-mild/moderate, n = 12) and severe (GTCS-hypox-severe, n = 10) hypoxia, measured by peripheral oxygen saturation (SpO2 ) during VEEG. Whole-brain voxel-based morphometry (VBM) and regional volumetry were used to assess group comparisons and correlations between brain structural measurements as well as the duration and extent of hypoxia during GTCS. RESULTS Morphometric and volumetric alterations appeared in association with peri-GTCS hypoxia, including volume loss in the periaqueductal gray (PAG), thalamus, hypothalamus, vermis, cerebellum, parabrachial pons, and medulla. Thalamic and PAG volume was significantly reduced in GTCS patients with severe hypoxia compared with GTCS patients with mild/moderate hypoxia. Brainstem volume loss appeared in both hypoxia groups, although it was more extensive in those with severe hypoxia. Significant negative partial correlations emerged between thalamic and hippocampal volume and extent of hypoxia, whereas vermis and accumbens volumes declined with increasing hypoxia duration. SIGNIFICANCE Brain structural alterations in patients with GTCS are related to the extent of hypoxia in brain sites that serve vital functions. Although the changes are associative only, they provide evidence of injury to regulatory brain sites related to respiratory manifestations of seizures.
Collapse
Affiliation(s)
- Luke A. Allen
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
| | - Ronald M. Harper
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- UCLA Brain Research InstituteLos AngelesCAUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Sjoerd B. Vos
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Institute of NeurologyUniversity College LondonLondonUK
| | - Catherine A. Scott
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of Clinical NeurophysiologyNational Hospital for Neurology and NeurosurgeryUCLHLondonUK
| | - Nuria Lacuey
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Laura Vilella
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Joel S. Winston
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
| | - Benjamin P. Whatley
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
| | - Rajesh Kumar
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of AnaesthesiologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Jennifer Ogren
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- UCLA Brain Research InstituteLos AngelesCAUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Jaison S. Hampson
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Sandhya Rani
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- Division of NeurologyDepartment of MedicineQueen's UniversityKingstonOntarioCanada
| | - Louis Lemieux
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
| | - Samden D. Lhatoo
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Beate Diehl
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyUniversity College LondonLondonUK
- The Center for SUDEP ResearchNational Institute of Neurological Disorders and StrokeBethesdaMDUSA
- Department of Clinical NeurophysiologyNational Hospital for Neurology and NeurosurgeryUCLHLondonUK
| |
Collapse
|
14
|
Secretagogin Immunoreactivity Reveals Lugaro Cells in the Pigeon Cerebellum. THE CEREBELLUM 2019; 18:544-555. [PMID: 30904983 DOI: 10.1007/s12311-019-01023-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lugaro cells are inhibitory interneurons found in the upper granular layer of the cerebellar cortex, just below or within the Purkinje cell layer. They are characterized by (1) a fusiform soma oriented in the parasagittal plane, (2) two pairs of dendrites emanating from opposite ends of the soma, (3) innervation from Purkinje cell collaterals, and (4) an axon that projects into the molecular layer akin to granular cell parallel fibers. Lugaro cells have been described in mammals, but not in other vertebrate classes, save one report in teleost fish. Here, we propose the existence of Lugaro cells in the avian cerebellum based on the morphological characteristics and connectivity described above. Immunohistochemical staining against the calcium binding protein secretagogin (SCGN) revealed Lugaro-like cells in the pigeon cerebellum. Some SCGN-labeled cells exhibit fusiform somata and dendrites parallel to the Purkinje cell layer in the parasagittal plane, as well as long axons that project into the molecular layer and travel alongside parallel fibers in the coronal plane. While mammalian Lugaro cells are known to express calretinin, the SCGN-labeled cells in the pigeon do not. SCGN-labeled cells also express glutamic acid decarboxylase, confirming their inhibitory function. Calbindin labeling revealed Purkinje cell terminals surrounding the SCGN-expressing cells. Our results suggest that Lugaro cells are more widespread among vertebrates than previously thought and may be a characteristic of the cerebellum of all vertebrates.
Collapse
|
15
|
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan IL, Flanigan ME, Rose SA, Chang C, Leader A, Le Bourhis H, Sweet ES, Tung N, Wroblewska A, Lavin Y, See P, Baccarini A, Ginhoux F, Chitu V, Stanley ER, Russo SJ, Yue Z, Brown BD, Joyner AL, De Witte LD, Morishita H, Schaefer A, Merad M. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med 2019; 216:2265-2281. [PMID: 31350310 PMCID: PMC6781012 DOI: 10.1084/jem.20182037] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.
Collapse
Affiliation(s)
- Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fiona A Desland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pinar Ayata
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Badimon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elisa Nabel
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kazuhiko Yamamuro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marjolein Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - I-Li Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hortense Le Bourhis
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric S Sweet
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksandra Wroblewska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Alessia Baccarini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zhenyu Yue
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra L Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hirofumi Morishita
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY .,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, Stay TL, Zuo Z, White JJ, Sillitoe RV. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep 2019; 9:1742. [PMID: 30742002 PMCID: PMC6370775 DOI: 10.1038/s41598-018-38264-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Daniel R Catt
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Zhongyuan Zuo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA.
| |
Collapse
|
17
|
Canet-Pons J, Schubert R, Duecker RP, Schrewe R, Wölke S, Kieslich M, Schnölzer M, Chiocchetti A, Auburger G, Zielen S, Warnken U. Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics 2018; 19:237-255. [DOI: 10.1007/s10048-018-0557-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
18
|
Tualang Honey Reduced Neuroinflammation and Caspase-3 Activity in Rat Brain after Kainic Acid-Induced Status Epilepticus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7287820. [PMID: 30108663 PMCID: PMC6077521 DOI: 10.1155/2018/7287820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/26/2018] [Indexed: 01/25/2023]
Abstract
The protective effect of tualang honey (TH) on neuroinflammation and caspase-3 activity in rat cerebral cortex, cerebellum, and brainstem after kainic acid- (KA-) induced status epilepticus was investigated. Male Sprague-Dawley rats were pretreated orally with TH (1.0 g/kg body weight) five times at 12 h intervals. KA (15 mg/kg body weight) was injected subcutaneously 30 min after last oral treatment. Rats were sacrificed at 2 h, 24 h, and 48 h after KA administration. Neuroinflammation markers and caspase-3 activity were analyzed in different brain regions 2 h, 24 h, and 48 h after KA administration. Administration of KA induced epileptic seizures. KA caused significant (p < 0.05) increase in the level of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), glial fibrillary acidic protein (GFAP), allograft inflammatory factor 1 (AIF-1), and cyclooxygenase-2 (COX-2) and increase in the caspase-3 activity in the rat cerebral cortex, cerebellum, and brainstem at multiple time points. Pretreatment with TH significantly (p < 0.05) reduced the elevation of TNF-α, IL-1β, GFAP, AIF-1, and COX-2 level in those brain regions at multiple time points and attenuated the increased caspase-3 activity in the cerebral cortex. In conclusion, TH reduced neuroinflammation and caspase-3 activity after kainic acid- (KA-) induced status epilepticus.
Collapse
|
19
|
Dhar P, Kaushal P, Kumar P. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite. Brain Res 2018; 1690:23-30. [PMID: 29630858 DOI: 10.1016/j.brainres.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022]
Abstract
Optimal cytoplasmic calcium (Ca2+) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca2+ levels following impaired Ca2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO2) exposure (postnatal) of rat pups. NaAsO2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO2.
Collapse
Affiliation(s)
- Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Parul Kaushal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
20
|
Focal Ischaemic Infarcts Expand Faster in Cerebellar Cortex than Cerebral Cortex in a Mouse Photothrombotic Stroke Model. Transl Stroke Res 2018; 9:643-653. [PMID: 29455391 DOI: 10.1007/s12975-018-0615-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/31/2022]
Abstract
It is generally accepted that the cerebellum is particularly vulnerable to ischaemic injury, and this may contribute to the high mortality arising from posterior circulation strokes. However, this has not been systematically examined in an animal model. This study compared the development and resolution of matched photothrombotic microvascular infarcts in the cerebellar and cerebral cortices in adult 129/SvEv mice of both sexes. The photothrombotic lesions were made using tail vein injection of Rose Bengal with a 532 nm laser projected onto a 2 mm diameter aperture over the target region of the brain (with skull thinning). Infarct size was then imaged histologically following 2 h to 30-day survival using serial reconstruction of haematoxylin and eosin stained cryosections. This was complemented with immunohistochemistry for neuron and glial markers. At 2 h post-injury, the cerebellar infarct volume averaged ~ 2.7 times that of the cerebral cortex infarcts. Infarct volume reached maximum in the cerebellum in a quarter of the time (24 h) taken in the cerebral cortex (4 days). Remodelling resolved the infarcts within a month, leaving significantly larger residual injury volume in the cerebellum. The death of neurons in the core lesion at 2 h was confirmed by NeuN and Calbindin immunofluorescence, alongside activation of astrocytes and microglia. The latter persisted in the region within and surrounding the residual infarct at 30 days. This comparison of acute focal ischaemic injuries in cerebellar and cerebral cortices provides direct confirmation of exacerbation of neuropathology and faster kinetics in the cerebellum.
Collapse
|
21
|
Galliano E, Schonewille M, Peter S, Rutteman M, Houtman S, Jaarsma D, Hoebeek FE, De Zeeuw CI. Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning. eNeuro 2018; 5:ENEURO.0270-17.2018. [PMID: 29464191 PMCID: PMC5815660 DOI: 10.1523/eneuro.0270-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/24/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and testing independent transgenic lines that overexpress NMDAR containing the type 2B subunit (NR2B) specifically in PCs. PCs of the mice that show larger NMDA-mediated currents than controls at their PF input suffer from a blockage of long-term potentiation (LTP) at their PF-PC synapses, while long-term depression (LTD) and baseline transmission are unaffected. Moreover, introducing NMDA-mediated currents affects cerebellar learning in that phase-reversal of the vestibulo-ocular reflex (VOR) is impaired. Our results suggest that under physiological circumstances PC spines lack NMDARs postsynaptically at their PF input so as to allow LTP to contribute to motor learning.
Collapse
Affiliation(s)
- Elisa Galliano
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mandy Rutteman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Simone Houtman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Orihara K, Odemuyiwa SO, Stefura WP, Ilarraza R, HayGlass KT, Moqbel R. Neurotransmitter signalling via NMDA receptors leads to decreased T helper type 1-like and enhanced T helper type 2-like immune balance in humans. Immunology 2017; 153:368-379. [PMID: 28940416 DOI: 10.1111/imm.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
Given the pivotal roles that CD4+ T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T-cell subset dominance in vivo. Here, using primary CD4+ T cells and short-term T helper type 1 (Th1) and Th2-like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human type 1 versus type 2 immunity. We hypothesized that N-methyl-d-aspartate receptors (NMDA-R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA-R that are strongly up-regulated upon T cell receptor (TCR) mediated activation. Synthetic and physiological NMDA-R agonists elicited Ca2+ flux and led to marked inhibition of type 1 but not type 2 or interleukin-10 cytokine responses. Among CD4+ lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca2+ flux, proliferation and survival of Th1-like cells through increased induction of cell death whereas Th2-like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA-R is rapidly up-regulated upon CD4+ T cell activation in humans and (ii) Th1 versus Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA-R agonists. Differential cytokine production and proliferative capacity of Th1 versus Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 versus Th2 cells, leading to increased Th2-like dominance. Hence, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Solomon O Odemuyiwa
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William P Stefura
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ramses Ilarraza
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kent T HayGlass
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Hovland DN, Boyd RB, Butt MT, Engelhardt JA, Moxness MS, Ma MH, Emery MG, Ernst NB, Reed RP, Zeller JR, Gash DM, Masterman DM, Potter BM, Cosenza ME, Lightfoot RM. Six-Month Continuous Intraputamenal Infusion Toxicity Study of Recombinant Methionyl Human Glial Cell Line-Derived Neurotrophic Factor (r-metHuGDNF) in Rhesus Monkeys. Toxicol Pathol 2017. [DOI: 10.1177/01926230701481899a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recombinant human glial cell line-derived neurotrophic factor (r-metHuGDNF) is a potent neuronal growth and survival factor that has been considered for clinical use in the treatment of Parkinson’s disease (PD). Here we present results of a 6-month toxicology study in rhesus monkeys conducted to support clinical evaluation of chronic intraputamenal infusion of r-metHuGDNF for PD. Monkeys (6–9/sex/group) were treated with 0 (vehicle), 15, 30, or 100 μg/day r-metHuGDNF by continuous unilateral intraputamenal infusion (150 μl/day flow rate) for 6 months; a subset of animals (2–3/sex/group) underwent a subsequent 3-month treatment-free recovery period. Notable observations included reduced food consumption and body weight at 100 μg/day and meningeal thickening underlying the medulla oblongata and/or overlying various spinal cord segments at 30 and 100 μg/day. In addition, multifocal cerebellar Purkinje cell loss (with associated atrophy of the molecular layer and, in some cases, granule cell loss) was observed in 4 monkeys in the 100-μg/day group. This cerebellar finding has not been observed in previous nonclinical studies evaluating r-metHuGDNF. The small number of affected animals precludes definitive conclusions regarding the pathogenesis of the cerebellar lesion, but the data support an association with r-metHuGDNF treatment.
Collapse
Affiliation(s)
| | - Robert B. Boyd
- Northern Biomedical Research, Inc., Muskegon, Michigan 49441
| | - Mark T. Butt
- Pathology Associates, Charles River Laboratories, Frederick, Maryland 21701
| | | | | | - Mark H. Ma
- Amgen Inc., Thousand Oaks, California 91320
| | | | | | - Randall P. Reed
- Northern Biomedical Research, Inc., Muskegon, Michigan 49441
| | | | - Don M. Gash
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | |
Collapse
|
24
|
1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology 2016; 110:211-222. [DOI: 10.1016/j.neuropharm.2016.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
|
25
|
Kuo SH, Lin CY, Wang J, Liou JY, Pan MK, Louis RJ, Wu WP, Gutierrez J, Louis ED, Faust PL. Deep brain stimulation and climbing fiber synaptic pathology in essential tremor. Ann Neurol 2016; 80:461-5. [PMID: 27422481 DOI: 10.1002/ana.24728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/18/2016] [Accepted: 07/10/2016] [Indexed: 01/22/2023]
Abstract
Essential tremor (ET) patients have abnormal climbing fiber (CF) synapses in the parallel fiber territory in the cerebellum, and these abnormal CF synapses are inversely correlated with tremor severity. We therefore examined CF synaptic pathology in ET cases with and without thalamic deep brain stimulation (DBS) and assessed the association with tremor severity. We found that CF synaptic pathology was inversely correlated with tremor severity in ET cases without DBS, and this correlation disappeared in ET cases with DBS. Our data suggest that DBS might have effects in modulating excitatory synapses in ET cerebellum, in addition to its symptomatic effects on tremor. Ann Neurol 2016;80:461-465.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.
| | - Chi-Ying Lin
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Basic and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jyun-You Liou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ming-Kai Pan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Medical Research, National Taiwan University, Taipei, Taiwan
| | - Ravi J Louis
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wei-Pu Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jesus Gutierrez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY
| |
Collapse
|
26
|
Hovland DN, Boyd RB, Butt MT, Engelhardt JA, Moxness MS, Ma MH, Emery MG, Ernst NB, Reed RP, Zeller JR, Gash DM, Masterman DM, Potter BM, Cosenza ME, Lightfoot RM. Reprint: Six-Month Continuous Intraputamenal Infusion Toxicity Study of Recombinant Methionyl Human Glial Cell Line-Derived Neurotrophic Factor (r-metHuGDNF) in Rhesus Monkeys. Toxicol Pathol 2016; 35:1013-29. [PMID: 18098052 DOI: 10.1177/01926230701481899] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recombinant human glial cell line-derived neurotrophic factor (r-metHuGDNF) is a potent neuronal growth and survival factor that has been considered for clinical use in the treatment of Parkinson’s disease (PD). Here we present results of a 6-month toxicology study in rhesus monkeys conducted to support clinical evaluation of chronic intraputamenal infusion of r-metHuGDNF for PD. Monkeys (6–9/sex/group) were treated with 0 (vehicle), 15, 30, or 100 μg/day r-metHuGDNF by continuous unilateral intraputamenal infusion (150 μl/day flow rate) for 6 months; a subset of animals (2–3/sex/group) underwent a subsequent 3-month treatment-free recovery period. Notable observations included reduced food consumption and body weight at 100 μg/day and meningeal thickening underlying the medulla oblongata and/or overlying various spinal cord segments at 30 and 100 μg/day. In addition, multifocal cerebellar Purkinje cell loss (with associated atrophy of the molecular layer and, in some cases, granule cell loss) was observed in 4 monkeys in the 100-μg/day group. This cerebellar finding has not been observed in previous nonclinical studies evaluating r-metHuGDNF. The small number of affected animals precludes definitive conclusions regarding the pathogenesis of the cerebellar lesion, but the data support an association with r-metHuGDNF treatment.
Collapse
Affiliation(s)
| | - Robert B. Boyd
- Northern Biomedical Research, Inc., Muskegon, Michigan 49441
| | - Mark T. Butt
- Pathology Associates, Charles River Laboratories, Frederick, Maryland 21701
| | | | | | - Mark H. Ma
- Amgen Inc., Thousand Oaks, California 91320
| | | | | | - Randall P. Reed
- Northern Biomedical Research, Inc., Muskegon, Michigan 49441
| | | | - Don M. Gash
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | |
Collapse
|
27
|
Abstract
Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, Magee-Womens Hospital, Children's Hospital of Pittsburgh, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
28
|
Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. VITAMINS AND HORMONES 2016; 101:215-38. [PMID: 27125744 DOI: 10.1016/bs.vh.2016.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe what has been learned about Klotho and its potential functions in the brain. Klotho is localized in the choroid plexus and, to a lesser extent, in hippocampal neurons. Cognitive decline is a common issue in human aging affecting over 50% of the population. This cognitive decline can also be seen in animal models such as the Rhesus monkey. A long-term study undertaken by our lab demonstrated that normal brain aging in rhesus monkeys and other animal models is associated with a significant downregulation of Klotho expression. This observation substantiates data from other laboratories that have reported that loss of Klotho accelerates the development of aging-like phenotypes, including cognitive deficits, whereas Klotho overexpression extends life span and enhances cognition in mice and humans. Klotho is a type 1 transmembrane pleiotropic protein predominantly expressed in kidney and brain and shed by ADAM 10 and 17 into the blood and cerebral spinal fluid, respectively. While the renal functions of Klotho are well known, its roles in the brain remain to be fully elucidated. We recently demonstrated that Klotho protects hippocampal neurons from amyloid and glutamate toxicity via the activation of an antioxidant enzymatic system suggesting Klotho is a neuroprotective protein. Furthermore, Klotho is necessary for oligodendrocyte maturation and myelin integrity. Through its diverse roles in the brain, Klotho has become a new therapeutic target for neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases like multiple sclerosis. Discovery of small molecule Klotho enhancers may lead to novel treatments for these incurable disorders.
Collapse
Affiliation(s)
- C R Abraham
- Boston University School of Medicine, Boston, MA, United States.
| | - P C Mullen
- Boston University School of Medicine, Boston, MA, United States
| | - T Tucker-Zhou
- Boston University School of Medicine, Boston, MA, United States
| | - C D Chen
- Boston University School of Medicine, Boston, MA, United States
| | - E Zeldich
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
29
|
Vong KI, Leung CKY, Behringer RR, Kwan KM. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain 2015; 8:25. [PMID: 25888505 PMCID: PMC4406026 DOI: 10.1186/s13041-015-0115-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/27/2015] [Indexed: 01/20/2023] Open
Abstract
Background The high mobility group (HMG) family transcription factor Sox9 is critical for induction and maintenance of neural stem cell pool in the central nervous system (CNS). In the spinal cord and retina, Sox9 is also the master regulator that defines glial fate choice by mediating the neurogenic-to-gliogenic fate switch. On the other hand, the genetic repertoire governing the maintenance and fate decision of neural progenitor pool in the cerebellum has remained elusive. Results By employing the Cre/loxP strategy, we specifically inactivated Sox9 in the mouse cerebellum. Unexpectedly, the self-renewal capacity and multipotency of neural progenitors at the cerebellar ventricular zone (VZ) were not perturbed upon Sox9 ablation. Instead, the mutants exhibited an increased number of VZ-derived neurons including Purkinje cells and GABAergic interneurons. Simultaneously, we observed continuous neurogenesis from Sox9-null VZ at late gestation, when normally neurogenesis ceases to occur and gives way for gliogenesis. Surprisingly, glial cell specification was not affected upon Sox9 ablation. Conclusion Our findings suggest Sox9 may mediate the neurogenic-to-gliogenic fate switch in mouse cerebellum by modulating the termination of neurogenesis, and therefore indicate a functional discrepancy of Sox9 between the development of cerebellum and other major neural tissues.
Collapse
Affiliation(s)
- Keng Ioi Vong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.
| | | | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China. .,RGC-AoE Centre for Organelle Biogenesis and Function, The Chinese University of Hong Kong, Hong Kong, P.R. China. .,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong, P.R. China.
| |
Collapse
|
30
|
Prastiwi D, Djunaidi A, Partadiredja G. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Hum Exp Toxicol 2015; 34:1171-9. [DOI: 10.1177/0960327115572706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.
Collapse
Affiliation(s)
- D Prastiwi
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Nursing Program, Faculty of Health Sciences, Pekalongan University, Central Java, Indonesia
| | - A Djunaidi
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - G Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
31
|
Filézac de L'Etang A, Maharjan N, Cordeiro Braña M, Ruegsegger C, Rehmann R, Goswami A, Roos A, Troost D, Schneider BL, Weis J, Saxena S. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 2015; 18:227-38. [PMID: 25559081 DOI: 10.1038/nn.3903] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures. We identify cochaperone SIL1, mutated in Marinesco-Sjögren syndrome (MSS), as being robustly expressed in disease-resistant slow motor neurons but not in ER stress-prone fast-fatigable motor neurons. In a mouse model of MSS, we demonstrate impaired ER homeostasis in motor neurons in response to loss of SIL1 function. Loss of a single functional Sil1 allele in an ALS mouse model (SOD1-G93A) enhanced ER stress and exacerbated ALS pathology. In SOD1-G93A mice, SIL1 levels were progressively and selectively reduced in vulnerable fast-fatigable motor neurons. Mechanistically, reduction in SIL1 levels was associated with lowered excitability of fast-fatigable motor neurons, further influencing expression of specific ER chaperones. Adeno-associated virus-mediated delivery of SIL1 to familial ALS motor neurons restored ER homeostasis, delayed muscle denervation and prolonged survival.
Collapse
Affiliation(s)
- Audrey Filézac de L'Etang
- 1] Institute of Cell Biology, University of Bern, Bern, Switzerland. [2] Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Niran Maharjan
- 1] Institute of Cell Biology, University of Bern, Bern, Switzerland. [2] Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Céline Ruegsegger
- 1] Institute of Cell Biology, University of Bern, Bern, Switzerland. [2] Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anand Goswami
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | - Dirk Troost
- Division of Neuropathology, Department of Pathology, Academic Medical Centre, Amsterdam, the Netherlands
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Lin CY, Louis ED, Faust PL, Koeppen AH, Vonsattel JPG, Kuo SH. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. ACTA ACUST UNITED AC 2014; 137:3149-59. [PMID: 25273997 DOI: 10.1093/brain/awu281] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Structural changes in Purkinje cells have been identified in the essential tremor cerebellum, although the mechanisms that underlie these changes remain poorly understood. Climbing fibres provide one of the major excitatory inputs to Purkinje cells, and climbing fibre-Purkinje cell connections are essential for normal cerebellar-mediated motor control. The distribution of climbing fibre-Purkinje cell synapses on Purkinje cell dendrites is dynamically regulated and may be altered in disease states. The aim of the present study was to examine the density and distribution of climbing fibre-Purkinje cell synapses using post-mortem cerebellar tissue of essential tremor cases and controls. Using vesicular glutamate transporter type 2 immunohistochemistry, we labelled climbing fibre-Purkinje cell synapses of 12 essential tremor cases and 13 age-matched controls from the New York Brain Bank. Normally, climbing fibres form synapses mainly on the thick, proximal Purkinje cell dendrites in the inner portion of the molecular layer, whereas parallel fibres form synapses on the thin, distal Purkinje cell spiny branchlets. We observed that, compared with controls, essential tremor cases had decreased climbing fibre-Purkinje cell synaptic density, more climbing fibres extending to the outer portion of the molecular layer, and more climbing fibre-Purkinje cell synapses on the thin Purkinje cell spiny branchlets. Interestingly, in essential tremor, the increased distribution of climbing fibre-Purkinje cell synapses on the thin Purkinje cell branchlets was inversely associated with clinical tremor severity, indicating a close relationship between the altered distribution of climbing fibre-Purkinje cell connections and tremor. These findings suggest that abnormal climbing fibre-Purkinje cell connections could be of importance in the pathogenesis of essential tremor.
Collapse
Affiliation(s)
- Chi-Ying Lin
- 1 Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Elan D Louis
- 1 Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA 2 GH Sergievsky Centre, Columbia University, New York, NY, USA 3 Taub Institute for Research of Alzheimer's disease and the Aging Brain, Columbia University, New York, NY, USA 4 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- 5 Department of Pathology and Cell Biology, Columbia University Medical Centre and the New York Presbyterian Hospital, New York, NY, USA
| | - Arnulf H Koeppen
- 6 Neurology and Research Services, Veterans Affairs Medical Centre, Albany, NY, USA 7 Departments of Neurology and Pathology, Albany Medical College, Albany, NY, USA
| | - Jean-Paul G Vonsattel
- 3 Taub Institute for Research of Alzheimer's disease and the Aging Brain, Columbia University, New York, NY, USA 5 Department of Pathology and Cell Biology, Columbia University Medical Centre and the New York Presbyterian Hospital, New York, NY, USA
| | - Sheng-Han Kuo
- 1 Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Pritt ML, Hall DG, Jordan WH, Ballard DW, Wang KKW, Müller UR, Watson DE. Initial biological qualification of SBDP-145 as a biomarker of compound-induced neurodegeneration in the rat. Toxicol Sci 2014; 141:398-408. [PMID: 25015659 DOI: 10.1093/toxsci/kfu136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Detection of compound-related neurodegeneration is currently limited to brain histopathology in veterinary species and functional measurements such as electroencephalography and observation of clinical signs in patients. The objective of these studies was to investigate whether concentrations of spectrin breakdown product 145 (SBDP-145) in cerebrospinal fluid (CSF) correlate with the severity of neurodegeneration in rats administered neurotoxic agents, as part of a longer term objective of developing in vivo biomarkers of neurotoxicity for use in non-clinical and clinical safety studies. Non-erythroid alpha-II spectrin is a cytoskeletal protein cleaved by the protease calpain when this enzyme is activated by dysregulation of calcium in injured cells. Calcium dysregulation is also associated with some toxicological responses in animals, and may be sufficient to activate neuronal calpain and produce SBDPs that can be released into CSF. Neurotoxicants (kainic acid, 2-chloropropionic acid, bromethalin, and pentylenetetrazole) known to affect different portions of the brain were administered to rats in dose-response and time-course studies in which neurodegeneration was measured by histopathology and SBDP-145 concentrations in CSF were measured by ELISA. We consistently observed >3-fold increases in SBDP-145 concentration in rats with minimal to slight neurodegenerative lesions, and 20 to 150-fold increases in animals with more severe lesions. In contrast, compounds that caused non-degenerative changes in central nervous system (CNS) did not increase SBDP-145 in CSF. These data support expanded use of SBDP-145 as a biomarker for monitoring compound-induced neurodegeneration in pre-clinical studies, and support the investigation of clinical applications of this biomarker to promote safe dosing of patients with compounds that have potential to cause neurodegeneration.
Collapse
Affiliation(s)
- Michael L Pritt
- Toxicology and Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - D Greg Hall
- Toxicology and Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | | | - Darryl W Ballard
- Toxicology and Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Kevin K W Wang
- Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, University of Florida, Gainesville, Florida 32611
| | | | - David E Watson
- Toxicology and Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana 46285
| |
Collapse
|
34
|
The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate. Anat Sci Int 2014; 90:75-81. [DOI: 10.1007/s12565-014-0233-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
|
35
|
Assessment of the Effects of Protein Malnutrition on Cerebellar Purkinje Cells in Adult Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.5812/thrita.7272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Wioland L, Dupont JL, Bossu JL, Popoff MR, Poulain B. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells. Toxicon 2013; 75:122-35. [PMID: 23632158 DOI: 10.1016/j.toxicon.2013.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/29/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022]
Abstract
Epsilon toxin (ET), produced by Clostridium perfringens types B and D, ranks among the four most potent poisonous substances known so far. ET-intoxication is responsible for enterotoxaemia in animals, mainly sheep and goats. This disease comprises several manifestations indicating the attack of the nervous system. This review aims to summarize the effects of ET on central nervous system. ET binds to endothelial cells of brain capillary vessels before passing through the blood-brain barrier. Therefore, it induces perivascular oedema and accumulates into brain. ET binding to different brain structures and to different component in the brain indicates regional susceptibility to the toxin. Histological examination has revealed nerve tissue and cellular lesions, which may be directly or indirectly caused by ET. The naturally occurring disease caused by ET-intoxication can be reproduced experimentally in rodents. In mice and rats, ET recognizes receptor at the surface of different neural cell types, including certain neurons (e.g. the granule cells in cerebellum) as well as oligodendrocytes, which are the glial cells responsible for the axons myelination. Moreover, ET induces release of glutamate and other transmitters, leading to firing of neural network. The precise mode of action of ET on neural cells remains to be determined.
Collapse
Affiliation(s)
- Laetitia Wioland
- Centre National de la Recherche Scientifique (CNRS) and Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR 3212, Strasbourg, France
| | | | | | | | | |
Collapse
|
37
|
Effects of intermittent binge alcohol exposure on long-term motor function in young rats. Alcohol 2013; 47:95-102. [PMID: 23419393 DOI: 10.1016/j.alcohol.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/04/2023]
Abstract
Ethanol has well described acute effects on motor function, and chronic alcoholism can damage the cerebellum, which is associated with motor coordination, as well as motor learning. Binge drinking is common among preadolescents and adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we analyzed the effects of periadolsecent/adolescent ethanol exposure on motor function in both male and female Sprague-Dawley rats. To simulate binge drinking, animals received an intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) on postnatal days (PND) 25, 26, 29, 30, 33, 34, 37 and 38. On PND 42 and PND 61 animals were tested on their ability to traverse both square and round beams. There were no significant differences in the time to traverse the beams, or the amount of foot slips, between treated and untreated animals. On PND 48 and PND 62, animals were tested using a horizontal ladder walking apparatus. On PND 48 there were no differences in the ability of treated and untreated animals to traverse the ladder. On PND 62, there were no differences in the time to traverse the ladder, but ethanol treated animals had more foot slips than controls. On PND 43, we conducted footprint analysis of control and treated animals, which included measurements of stride length, paw overlap, and angle of foot placement. There was a significant difference in the angle of foot placement between treated and control animals, and this finding was significant for both male and female animals. There was also a significant overall difference in paw overlap between treatment groups. Although this effect was manifested in male animals there was no significant difference in females. These findings suggest that adolescent ethanol exposure can produce long-lasting effects on motor coordination, and that overall, effects are similar in males and females. In a second set of experiments, male rats received i.p. ethanol (3 g/kg) for 7 days (P31-37) or 4 days (P31,33,35,37). No significant differences were detected by footprint analysis when compared to control animals. However, ethanol treated animals had significantly less cerebellar Purkinje cells at 3 weeks after the last ethanol exposure. Altered motor function suggests a possible neurodegenerative effect in the cerebellum initiated by adolescent ethanol exposure, and may depend on the extent of exposure during the preadolescent and/or adolescent brain periods.
Collapse
|
38
|
Xu F, Farkas S, Kortbeek S, Zhang FX, Chen L, Zamponi GW, Syed NI. Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors. Mol Brain 2012; 5:30. [PMID: 22980357 PMCID: PMC3462706 DOI: 10.1186/1756-6606-5-30] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mercury is a well-known neurotoxin implicated in a wide range of neurological or psychiatric disorders including autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, depression, mood disorders and tremor. Mercury-induced neuronal degeneration is thought to invoke glutamate-mediated excitotoxicity, however, the underlying mechanisms remain poorly understood. Here, we examine the effects of various mercury concentrations (including pathological levels present in human plasma or cerebrospinal fluid) on cultured, rat cortical neurons. RESULTS We found that inorganic mercuric chloride (HgCl₂--at 0.025 to 25 μM) not only caused neuronal degeneration but also perturbed neuronal excitability. Whole-cell patch-clamp recordings of pyramidal neurons revealed that HgCl₂ not only enhanced the amplitude and frequency of synaptic, inward currents, but also increased spontaneous synaptic potentials followed by sustained membrane depolarization. HgCl₂ also triggered sustained, 2-5 fold rises in intracellular calcium concentration ([Ca²⁺]i). The observed increases in neuronal activity and [Ca²⁺]i were substantially reduced by the application of MK 801, a non-competitive antagonist of N-Methyl-D-Aspartate (NMDA) receptors. Importantly, our study further shows that a pre incubation or co-application of MK 801 prevents HgCl₂-induced reduction of cell viability and a disruption of β-tubulin. CONCLUSIONS Collectively, our data show that HgCl₂-induced toxic effects on central neurons are triggered by an over-activation of NMDA receptors, leading to cytoskeleton instability.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Cell Biology & Anatomy, University of Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yuan HH, Chen RJ, Zhu YH, Peng CL, Zhu XR. The neuroprotective effect of overexpression of calbindin-D(28k) in an animal model of Parkinson's disease. Mol Neurobiol 2012; 47:117-22. [PMID: 22923348 DOI: 10.1007/s12035-012-8332-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/29/2012] [Indexed: 11/25/2022]
Abstract
Overexpression of calbindin-D(28k) (CaBP-28 k) induces neurite outgrowth in dopaminergic neuronal cells and could provide some protection to dopaminergic neurons against the pathological process in Parkinson's disease. Transgenic mice CaBP-28 k overexpression and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse models were generated, and the effect of midbrain dopamine neurons in ethology was also assessed. Tyrosine hydroxylase (TH)-immunoreactive neurons were counted, and the concentration of total protein and dopamine (DA) of striatum corpora was measured in four animal models. Results showed that the positive TH cells, content of DA, and ability of ethology in MPTP-induced transgenic mice were significantly higher than that in MPTP-induced wild-type mice. The findings demonstrate that overexpression of CaBP-28 k could provide protection for DA neurons from neurodegeneration. It would provide a potential strategy in the treatment of Parkinson's diseases.
Collapse
Affiliation(s)
- Hong-Hua Yuan
- Department of Neurobiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | |
Collapse
|
40
|
Comparative analyses of Purkinje cell gene expression profiles reveal shared molecular abnormalities in models of different polyglutamine diseases. Brain Res 2012; 1481:37-48. [PMID: 22917585 DOI: 10.1016/j.brainres.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/24/2023]
Abstract
Polyglutamine (PolyQ) diseases have common features that include progressive selective neurodegeneration and the formation of protein aggregates. There is growing evidence to suggest that critical nuclear events lead to transcriptional alterations in PolyQ diseases such as spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD), conditions which share a cerebellar degenerative phenotype. Taking advantage of laser capture microdissection technique, we compared the Purkinje cell (PC) gene expression profiles of two transgenic polyQ mouse models (HD: R6/2; SCA7: P7E) by microarray analysis that was validated by real time quantitative PCR. A large number of transcriptional alterations were detected in the R6/2 transgenic model of HD. Similar decreases in the same mRNAs, such as phospholipase C, β 3, purkinje cell protein 2 (Pcp2) and aldolase C, were found in both models. A decrease in aldolase C and phospholipase C, β 3, may lead to an increase in the vulnerability of PCs to excitotoxic events. Furthermore, downregulation of mRNAs mediated by the Pcp2-promoter is common in both models. Thus, our data reveal shared molecular abnormalities in different polyQ disorders.
Collapse
|
41
|
Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M. Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci 2012; 36:2867-76. [PMID: 22775058 DOI: 10.1111/j.1460-9568.2012.08203.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebellar Purkinje cells, which convey the only output from the cerebellar cortex, play an essential role in cerebellar functions, such as motor coordination and motor learning. To understand how Purkinje cells develop and function in the mature cerebellum, an efficient method for molecularly perturbing them is needed. Here we demonstrate that Purkinje cell progenitors at embryonic day (E)11.5 could be efficiently and preferentially transfected by spatially directed in utero electroporation (IUE) with an optimized arrangement of electrodes. Electrophysiological analyses indicated that the electroporated Purkinje cells maintained normal membrane properties, synaptic responses and synaptic plasticity at postnatal days 25-28. By combining the L7 promoter and inducible Cre/loxP system with IUE, transgenes were expressed even more specifically in Purkinje cells and in a temporally controlled manner. We also show that three different fluorescent proteins could be simultaneously expressed, and that Bassoon, a large synaptic protein, could be expressed in the electroporated Purkinje cells. Moreover, phenotypes of staggerer mutant mice, which have a deletion in the gene encoding retinoid-related orphan receptor α (RORα1), were recapitulated by electroporating a dominant-negative form of RORα1 into Purkinje cells at E11.5. Together, these results indicate that this new IUE protocol, which allows the selective, effective and temporally regulated expression of multiple foreign genes transfected into Purkinje cell progenitors in vivo, without changing the cells' physiological characteristics, is a powerful tool for elucidating the molecular mechanisms underlying early Purkinje cell developmental events, such as dendritogenesis and migration, and synaptic plasticity in mature Purkinje cells.
Collapse
Affiliation(s)
- Jun Nishiyama
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ben-Ari S, Ofek K, Barbash S, Meiri H, Kovalev E, Greenberg DS, Soreq H, Shoham S. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance. J Cell Mol Med 2012; 16:555-68. [PMID: 21507200 PMCID: PMC3822931 DOI: 10.1111/j.1582-4934.2011.01331.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito-toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.
Collapse
Affiliation(s)
- Shani Ben-Ari
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci 2012; 32:4724-42. [PMID: 22492029 DOI: 10.1523/jneurosci.5602-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basket axon collaterals synapse onto the Purkinje soma/axon initial segment (AIS) area to form specialized structures, the pinceau, which are critical for normal cerebellar function. Mechanistic details of how the pinceau become organized during cerebellar development are poorly understood. Loss of cytoskeletal adaptor protein Ankyrin G (AnkG) results in mislocalization of the cell adhesion molecule Neurofascin (Nfasc) at the Purkinje AIS and abnormal organization of the pinceau. Loss of Nfasc in adult Purkinje neurons leads to slow disorganization of the Purkinje AIS and pinceau morphology. Here, we used mouse conditional knock-out techniques to show that selective loss of Nfasc, specifically in Purkinje neurons during early development, prevented maturation of the AIS and resulted in loss of Purkinje neuron spontaneous activity and pinceau disorganization. Loss of Nfasc in both Purkinje and basket neurons caused abnormal basket axon collateral branching and targeting to Purkinje soma/AIS, leading to extensive pinceau disorganization, Purkinje neuron degeneration, and severe ataxia. Our studies reveal that the Purkinje Nfasc is required for AIS maturation and for maintaining stable contacts between basket axon terminals and the Purkinje AIS during pinceau organization, while the basket neuron Nfasc in combination with Purkinje Nfasc is required for proper basket axon collateral outgrowth and targeting to Purkinje soma/AIS. Thus, cerebellar pinceau organization requires coordinated mechanisms involving specific Nfasc functions in both Purkinje and basket neurons.
Collapse
|
44
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
45
|
Lamont MG, Weber JT. The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex. Neurosci Biobehav Rev 2012; 36:1153-62. [DOI: 10.1016/j.neubiorev.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 01/16/2023]
|
46
|
Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci 2010; 30:15330-5. [PMID: 21068337 DOI: 10.1523/jneurosci.4344-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). A blockade of LTD, but not LTP, was also observed when the noncompetitive NMDA channel blocker MK-801 was added to the patch-pipette saline, suggesting that postsynaptically expressed NMDA receptors are required for LTD induction. Using confocal calcium imaging, we show that CF-evoked calcium transients in dendritic spines are reduced in the presence of D-APV. This observation confirms that NMDA receptor signaling occurs at CF synapses and suggests that NMDA receptor-mediated calcium transients at the CF input site might contribute to LTD induction. Finally, we performed dendritic patch-clamp recordings from rat Purkinje cells. Dendritically recorded CF responses were reduced when D-APV was bath applied. Together, these data suggest that the late developmental expression of postsynaptic NMDA receptors at CF synapses onto Purkinje cells is associated with a switch toward an NMDA receptor-dependent LTD induction mechanism.
Collapse
|
47
|
Paizs M, Engelhardt JI, Katarova Z, Siklós L. Hypoglossal motor neurons display a reduced calcium increase after axotomy in mice with upregulated parvalbumin. J Comp Neurol 2010; 518:1946-61. [PMID: 20394052 DOI: 10.1002/cne.22312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motor neurons that exhibit differences in vulnerability to degeneration have been identified in motor neuron disease and in its animal models. The oculomotor and hypoglossal neurons are regarded as the prototypes of the resistant and susceptible cell types, respectively. Because an increase in the level of intracellular calcium has been proposed as a feature amplifying degenerative processes, we earlier studied the calcium increase in these motor neurons after axotomy in Balb/c mice and demonstrated a correlation between the susceptibility to degeneration and the intracellular calcium increase, with an inverse relation with the calcium buffering capacity, characterized by the parvalbumin or calbindin-D(28k) content. Because the differential susceptibility of the cells might also be attributed to their different cellular environments, in the present experiments, with the aim of verifying directly that a higher calcium buffering capacity is indeed responsible for the enhanced resistance, motor neurons were studied in their original milieu in mice with a genetically increased parvalbumin level. The changes in intracellular calcium level of the hypoglossal and oculomotor neurons after axotomy were studied electron microscopically at a 21-day interval after axotomy, during which time no significant calcium increase was detected in the hypoglossal motor neurons, the response being similar to that of the oculomotor neurons. The hypoglossal motor neurons of the parental mice, used as positive controls, exhibited a transient, significant elevation of calcium. These data provide more direct evidence of the protective role of parvalbumin against the degeneration mediated by a calcium increase in the acute injury of motor neurons.
Collapse
Affiliation(s)
- Melinda Paizs
- Institute of Biophysics, Biological Research Center, Szeged, H-6701, Hungary
| | | | | | | |
Collapse
|
48
|
Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genomics 2010; 11:360. [PMID: 20529287 PMCID: PMC2896956 DOI: 10.1186/1471-2164-11-360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022] Open
Abstract
Background Increases during aging in extracellular levels of glutamate (Glu), the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg) mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1) mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites) and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated) form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.
Collapse
|
49
|
Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 2010; 9:613-22. [PMID: 20451458 DOI: 10.1016/s1474-4422(10)70090-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Essential tremor (ET) is one of the most common neurological disorders. In recent years, as a result of systematic post-mortem examinations, our knowledge of the pathophysiology of this disease has grown substantially. Clearly identifiable structural changes (ie, Purkinje cell loss, Lewy bodies) have been observed in the brains of individuals with ET. These changes are not uniform and seem to follow several patterns, localising to the cerebellum itself or to a collection of brainstem neurons that synapse directly with Purkinje cells. Furthermore, these changes are similar to those seen in degenerative diseases. A wealth of clinical, epidemiological, and now post-mortem data indicate that this disease, or perhaps this family of diseases, is likely to be neurodegenerative. The molecular mechanisms that underlie these structural changes in ET are unknown. However, with more controlled, tissue-based studies being done, it is hoped that these mechanisms will be elucidated, thereby laying the foundation for the development of more targeted, effective pharmacotherapeutic interventions.
Collapse
|
50
|
"Hairy baskets" associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol 2010; 69:262-71. [PMID: 20142764 DOI: 10.1097/nen.0b013e3181d1ad04] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurologic diseases. Increased numbers of torpedoes and Purkinje cell (PC) loss have been documented in the brains of patients with ET. We recently observed a dense and tangled appearance ("hairiness") of the basket cell axonal plexuses that surround PC soma in Bielschowsky preparations of cerebellar cortex in ET brains. Here, we assessed basket cell "hairiness" in 37 ET (32 cerebellar ET; 5 Lewy body variant ET), 21 nondisease control, and 48 disease control brains using a semiquantitative scale. In 8 cerebellar ET cases (25%), there were high basket scores (rating = 3), whereas no Lewy body variant ET, 1 nondisease control (4.8%), and 2 diseased controls (4.2%) had high basket scores (p = 0.001). The hairy basket scores correlated with numbers of torpedoes (p < 0.001) and inversely with numbers of PCs (p = 0.06). Axonal plexus density obtained by image analysis of basket cell processes traced from digitized images was higher in ET than in nondiseased control cases (p = 0.016). Closely spaced sites of synaptic contact between basket cell processes and PCs were identified by electron microscopy in ET cases. These data indicate that structural changes are not restricted to PCs in ET, and that other neurons within their functional network may be involved in its pathogenesis.
Collapse
|