1
|
Peng H, Zeng X, Li S, Wang X. A Novel Cortex Phellodendri Chinensis-Based Carbon Dots Platform for Remarkable Analgesia for Clinical Pain Management. Vet Med Sci 2024; 10:e70090. [PMID: 39494968 PMCID: PMC11533198 DOI: 10.1002/vms3.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/13/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, we explored the eco-friendly synthesis of photoluminescent CCDs employing a direct one-step pyrolysis process, utilizing natural Cortex Phellodendri Chinensis as the precursor material and studied their analgesic effect in mice. The synthesized carbon dots underwent comprehensive characterization through a range of spectroscopic and microscopic techniques. These included UV-Vis, FTIR, fluorescence spectroscopy and HR-TEM, DLS instruments. HR-TEM results exhibited the presence of homogenous spherical-shaped C-dots of about 3.3 nm without aggregates. Furthermore, the prepared CCDs were studied for their in vivo analgesic effect in mice by performing tail-immersion, hot plate and acetic acid writhing tests. Also, an MTT assay was performed to assess the in vitro cytotoxicity of CCDs against L929 cells. In vitro cytotoxicity studies revealed that L929 cells exhibited higher cell viability when treated with prepared CCDs. The cellular uptake studies revealed the phase contrast images of MG-63 cells at wavelength 488 nm clearly depicted the aggregation of green, fluorescent CCDs within the cells while leaving nuclei unobscured. In addition, to the best of our understanding, the results presented in this paper showed that CCDs exhibited an important analgesic effect and enhanced anti-nociceptive activity, which may be due to stimulation of the opioidergic system. Consequently, CCDs appear to be a viable analgesic alternative for traditional analgesic candidates in pain management.
Collapse
Affiliation(s)
- Huimin Peng
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Xingxing Zeng
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Songbai Li
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| | - Xin Wang
- Department of PainXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyanHubeiChina
| |
Collapse
|
2
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zhang M, Cheng J, Zhang Y, Kong H, Wang S, Luo J, Qu H, Zhao Y. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine (Lond) 2020; 15:851-869. [PMID: 32238028 DOI: 10.2217/nnm-2019-0369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To evaluate the analgesic activity of Zingiberis rhizoma-based carbon dots (ZR-CDs). Materials & methods: Novel ZR-CDs were prepared via a facile, green pyrolysis method. Microstructure, optical and functional group properties were characterized. Acetic acid writhing, hot-plate and tail-immersion tests were performed using mice to evaluate the analgesic activity of ZR-CDs, followed by a preliminary study on the analgesic mechanism. Results: ZR-CDs with a quantum yield of 5.2% had a diameter ranging from 2.23 to 3.77 nm. Remarkable analgesic effect of ZR-CDs was observed against both thermal and chemical stimulus tests, possibly mediated by an opioid-like mechanism and the regulation of 5-hydroxytryptamine levels. Conclusion: ZR-CDs have a promising potential for biomedical application in relieving pain-related diseases.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Suna Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
4
|
Campos ACP, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Monoaminergic regulation of nociceptive circuitry in a Parkinson's disease rat model. Exp Neurol 2019; 318:12-21. [DOI: 10.1016/j.expneurol.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
|
5
|
Lopes PSS, Campos ACP, Fonoff ET, Britto LRG, Pagano RL. Motor cortex and pain control: exploring the descending relay analgesic pathways and spinal nociceptive neurons in healthy conscious rats. Behav Brain Funct 2019; 15:5. [PMID: 30909927 PMCID: PMC6432755 DOI: 10.1186/s12993-019-0156-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.
Collapse
Affiliation(s)
- Patrícia Sanae Souza Lopes
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Erich Talamoni Fonoff
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.,Department of Neurology, School of Medicine, University of São Paulo, São Paulo, SP, 01060-970, Brazil
| | - Luiz Roberto Giorgetti Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio Libanês, São Paulo, SP, 01308-060, Brazil.
| |
Collapse
|
6
|
Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Parkinson's disease and pain: Modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol 2019; 315:72-81. [PMID: 30772369 DOI: 10.1016/j.expneurol.2019.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that causes progressive dysfunction of dopaminergic and non-dopaminergic neurons, generating motor and nonmotor signs and symptoms. Pain is reported as the most bothersome nonmotor symptom in PD; however, pain remains overlooked and poorly understood. In this study, we evaluated the nociceptive behavior and the descending analgesia circuitry in a rat model of PD. Three independent experiments were performed to investigate: i) thermal nociceptive behavior; ii) mechanical nociceptive behavior and dopaminergic repositioning; and iii) modulation of the pain control circuitry. The rat model of PD, induced by unilateral striatal 6-hydroxydopamine (6-OHDA), did not interfere with thermal nociceptive responses; however, the mechanical nociceptive threshold was decreased bilaterally compared to that of naive or striatal saline-injected rats. This response was reversed by apomorphine or levodopa treatment. Striatal 6-OHDA induced motor impairments and reduced dopaminergic neuron immunolabeling as well as the pattern of neuronal activation (c-Fos) in the substantia nigra ipsilateral (IPL) to the lesion. In the midbrain periaqueductal gray (PAG), 6-OHDA-induced lesion increased IPL and decreased contralateral PAG GABAergic labeling compared to control. In the dorsal horn of the spinal cord, lesioned rats showed bilateral inhibition of enkephalin and μ-opioid receptor labeling. Taken together, we demonstrated that the unilateral 6-OHDA-induced PD model induces bilateral mechanical hypernociception, which is reversed by dopamine restoration, changes in the PAG circuitry, and inhibition of spinal opioidergic regulation, probably due to impaired descending analgesic control. A better understanding of pain mechanisms in PD patients is critical for developing better therapeutic strategies to improve their quality of life.
Collapse
Affiliation(s)
- Roberta A Domenici
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Soraya T Maciel
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Miriã B Berzuino
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Marina S Hernandes
- Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Erich T Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil; Division of Functional Neurosurgery, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Abstract
The exteroceptive somatosensory system is important for reflexive and adaptive behaviors and for the dynamic control of movement in response to external stimuli. This review outlines recent efforts using genetic approaches in the mouse to map the spinal cord circuits that transmit and gate the cutaneous somatosensory modalities of touch, pain, and itch. Recent studies have revealed an underlying modular architecture in which nociceptive, pruritic, and innocuous stimuli are processed by distinct molecularly defined interneuron cell types. These include excitatory populations that transmit information about both innocuous and painful touch and inhibitory populations that serve as a gate to prevent innocuous stimuli from activating the nociceptive and pruritic transmission pathways. By dissecting the cellular composition of dorsal-horn networks, studies are beginning to elucidate the intricate computational logic of somatosensory transformation in health and disease.
Collapse
Affiliation(s)
- Stephanie C Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
8
|
Hsieh YL, Hong CZ, Liu SY, Chou LW, Yang CC. Acupuncture at Distant Myofascial Trigger Spots Enhances Endogenous Opioids in Rabbits: A Possible Mechanism for Managing Myofascial Pain. Acupunct Med 2016; 34:302-9. [PMID: 27143259 DOI: 10.1136/acupmed-2015-011026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/04/2022]
Abstract
Background and Aim Acupuncture applied at myofascial trigger points (MTrPs) of distant anatomical regions, to reduce pain in a patient's area of primary complaint, is one strategy that is available to manage myofascial pain. However, the endogenous opioid-mediated analgesic mechanism of distant acupuncture associated with pain control is still unclear. This aims of this study were to evaluate the changes in enkephalin and β-endorphin in serum, spinal cord, dorsal root ganglion (DRG) and muscle induced by acupuncture at distant myofascial trigger spots (MTrSs, similar to human MTrPs) in rabbits, to explore its underlying remote analgesic mechanism. Methods Acupuncture at MTrSs of a distant muscle (gastrocnemius) was performed either for one session or five daily sessions in rabbits. The levels of enkephalin and β-endorphin in proximal muscle (biceps femoris), serum, DRGs and spinal cords (L5-S2) were then determined by immunoassay immediately and 5 days after treatment. Results Immediately after treatment, acupuncture comprising both one dose and five doses significantly enhanced spinal enkephalin expression and serum β-endorphin levels (p<0.05). However, only five-dose acupuncture significantly enhanced the β-endorphin levels in the biceps femoris and DRGs (p<0.05), while 1-dose acupuncture did not (p>0.05). Furthermore, 5 days after treatment, significantly increased levels of spinal enkephalin and serum β-endorphin persisted in animals that received 5-dose acupuncture (p<0.05). Conclusions This study demonstrates that interactions within the endogenous opioid system may be involved in the remote effects of acupuncture treatment and could be a potential analgesic mechanism underlying MTrP pain management.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | | | - Szu-Yu Liu
- Department of Physical Medicine and Rehabilitation, Da-Chien Hospital, Miao-Li, Taiwan
| | - Li-Wei Chou
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Chia Yang
- Department of Physical Medicine and Rehabilitation, Cheng Ching General Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Dimov LF, Franciosi AC, Campos ACP, Brunoni AR, Pagano RL. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats. PLoS One 2016; 11:e0153506. [PMID: 27071073 PMCID: PMC4829148 DOI: 10.1371/journal.pone.0153506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.
Collapse
Affiliation(s)
- Luiz Fabio Dimov
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - Adriano Cardozo Franciosi
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - Ana Carolina Pinheiro Campos
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, Rua Doutor Ovidio Pires de Campos, 785, Sao Paulo, SP, 05403-000, Brazil.,Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Avenida Professor Lineu Prestes 2565, ext. 3, Sao Paulo, SP, 05508-000, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| |
Collapse
|
10
|
Spinal distribution of c-Fos activated neurons expressing enkephalin in acute and chronic pain models. Brain Res 2014; 1543:83-92. [DOI: 10.1016/j.brainres.2013.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023]
|
11
|
Caumo W, Ferreira MBC. Perioperative anxiety: psychobiology and effects in postoperative recovery. ACTA ACUST UNITED AC 2013. [DOI: 10.1163/156856903321579217] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms--implications of 5-HT₇ and other 5-HT receptor types. Eur J Pharmacol 2013; 716:8-16. [PMID: 23500207 DOI: 10.1016/j.ejphar.2013.01.074] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 01/29/2013] [Indexed: 11/25/2022]
Abstract
Among monoamine neurotransmitters, serotonin (5-HT) is known to play complex modulatory roles in pain signaling mechanisms since the first reports, about forty years ago, on its essentially pro-nociceptive effects at the periphery and anti-nociceptive effects when injected directly at the spinal cord level. The discovery of multiple 5-HT receptor subtypes allowed possible explanations to this dual action at the periphery versus the central nervous system (CNS) since both excitatory and inhibitory effects can be exerted through 5-HT activation of different 5-HT receptors. However, it also appeared that activation of the same receptor subtype at CNS level might induce variable effects depending on the physiological or pathophysiological status of the animal administered with agonists. In particular, the marked neuroplastic changes induced by nerve lesion, which account for sensitization of pain signaling mechanisms, can contribute to dramatic changes in the effects of a given 5-HT receptor agonist in neuropathic rats versus intact healthy rats. This has notably been observed with 5-HT₇ receptor agonists which exert a pronociceptive action in healthy rats but alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals. Analysis of cellular mechanisms underlying such dual 5-HT actions mediated by a single receptor subtype indicates that the neuronal phenotype which expresses this receptor also plays a key role in determining which modulatory action 5-HT would finally exert on pain signaling mechanisms.
Collapse
Affiliation(s)
- Florent Viguier
- INSERM U894, CPN, Neuropsychopharmacology, Faculty of Medicine Pierre & Marie Curie, UPMC, Site Pitié-Salpêtrière, 75013 Paris, France; University Pierre et Marie Curie (UPMC), Neuropsychopharmacology, Faculty of Medicine Pierre & Marie Curie, UPMC, Site Pitié-Salpêtrière, 75013 Paris, France.
| | | | | | | |
Collapse
|
13
|
Petkó M, Antal M. Propriospinal pathways in the dorsal horn (laminae I-IV) of the rat lumbar spinal cord. Brain Res Bull 2012; 89:41-9. [PMID: 22732529 DOI: 10.1016/j.brainresbull.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/24/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
The spinal dorsal horn is regarded as a unit that executes the function of sensory information processing without any significant communication with other regions of the spinal gray matter. Within the spinal dorsal horn, however, the different rostro-caudal and medio-lateral subdivisions intensively communicate with each other through propriospinal pathways. This review gives an overview about these propriospinal systems, and emphasizes that the medial and lateral parts of the spinal dorsal horn show the following distinct features in their propriospinal interconnectivities: (a) A 100-300μm long section of the medial aspects of laminae I-IV projects to and receives afferent fibers from a three segment long compartment of the spinal dorsal gray matter, whereas the same length of the lateral aspects of laminae I-IV projects to and receives afferent fibers from the entire rostro-caudal extent of the lumbar spinal cord. (b) The medial aspects of laminae I-IV project extensively to the lateral areas of the dorsal horn. In contrast to this, the lateral areas of laminae I-IV, with the exception of a few fibers at the segmental level, do not project back to the medial territories. (c) There is a substantial direct commissural connection between the lateral aspects of laminae I-IV on the two sides of the lumbar spinal cord. The medial part of laminae I-IV, however, establishes only a minor commissural propriospinal connection with the gray matter on the opposite side.
Collapse
Affiliation(s)
- Mihály Petkó
- Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
14
|
Aicher SA, Hermes SM, Whittier KL, Hegarty DM. Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. J Chem Neuroanat 2012; 43:103-11. [PMID: 22119519 PMCID: PMC3319838 DOI: 10.1016/j.jchemneu.2011.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/16/2023]
Abstract
Neurons in the rostral ventromedial medulla (RVM) are thought to modulate nociceptive transmission via projections to spinal and trigeminal dorsal horns. The cellular substrate for this descending modulation has been studied with regard to projections to spinal dorsal horn, but studies of the projections to trigeminal dorsal horn have been less complete. In this study, we combined anterograde tracing from RVM with immunocytochemical detection of the GABAergic synthetic enzyme, GAD67, to determine if the RVM sends inhibitory projections to trigeminal dorsal horn. We also examined the neuronal targets of this projection using immunocytochemical detection of NeuN. Finally, we used electron microscopy to verify cellular targets. We compared projections to both trigeminal and spinal dorsal horns. We found that RVM projections to both trigeminal and spinal dorsal horn were directed to postsynaptic profiles in the dorsal horn, including somata and dendrites, and not to primary afferent terminals. We found that RVM projections to spinal dorsal horn were more likely to contact neuronal somata and were more likely to contain GAD67 than projections from RVM to trigeminal dorsal horn. These findings suggest that RVM neurons send predominantly GABAergic projections to spinal dorsal horn and provide direct input to postsynaptic neurons such as interneurons or ascending projection neurons. The RVM projection to trigeminal dorsal horn is more heavily targeted to dendrites and is only modestly GABAergic in nature. These anatomical features may underlie differences between trigeminal and spinal dorsal horns with regard to the degree of inhibition or facilitation evoked by RVM stimulation.
Collapse
Affiliation(s)
- Sue A Aicher
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, United States.
| | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
AbstractThe peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the “autonomic nervous system” (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS. We survey recent information about the PNS and argue that many of the sensory neurons designated as “visceral” and “somatic” are in fact part of a histologically distinct group of afferents concerned primarily autonomic function. These afferents have traditionally been known as “small dark” neurons or B-neurons. In this target article we outline an association between autonomic and B-neurons based on ontogeny, cell phenotype, and functional relations, grouping them together as part of a common reflex system involved in homeostasis. This more parsimonious classification of the PNS, made possible by the identification of a group of afferents associated primarily with the ANS, avoids a number of confusions produced by the classical orientation. It may also have practical implications for an understanding of nociception, homeostatic reflexes, and the evolution of the nervous system.
Collapse
|
17
|
|
18
|
|
19
|
Capsaicin-sensitive chemoceptive B-afferents: A neural system with dual sensory-efferent function. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00078924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
|
21
|
|
22
|
|
23
|
Capsaicin-sensitivity and the sensory vagus: Do these exceptions prove or disprove the B-neuron rule for autonomic afferents? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00078912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Yeo EJ, Cho YS, Paik SK, Yoshida A, Park MJ, Ahn DK, Moon C, Kim YS, Bae YC. Ultrastructural analysis of the synaptic connectivity of TRPV1-expressing primary afferent terminals in the rat trigeminal caudal nucleus. J Comp Neurol 2011; 518:4134-46. [PMID: 20878780 DOI: 10.1002/cne.22369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Trigeminal primary afferents that express the transient receptor potential vanilloid 1 (TRPV1) are important for the transmission of orofacial nociception. However, little is known about how the TRPV1-mediated nociceptive information is processed at the first relay nucleus in the central nervous system (CNS). To address this issue, we studied the synaptic connectivity of TRPV1-positive (+) terminals in the rat trigeminal caudal nucleus (Vc) by using electron microscopic immunohistochemistry and analysis of serial thin sections. Whereas the large majority of TRPV1+ terminals made synaptic contacts of an asymmetric type with one or two postsynaptic dendrites, a considerable fraction also participated in complex glomerular synaptic arrangements. A few TRPV1+ terminals received axoaxonic contacts from synaptic endings that contained pleomorphic synaptic vesicles and were immunolabeled for glutamic acid decarboxylase, the synthesizing enzyme for the inhibitory neurotransmitter γ-aminobutyric acid (GABA). We classified the TRPV1+ terminals into an S-type, containing less than five dense-core vesicles (DCVs), and a DCV-type, containing five or more DCVs. The number of postsynaptic dendrites was similar between the two types of terminals; however, whereas axoaxonic contacts were frequent on the S-type, the DCV-type did not receive axoaxonic contacts. In the sensory root of the trigeminal ganglion, TRPV1+ axons were mostly unmyelinated, and a small fraction was small myelinated. These results suggest that the TRPV1-mediated nociceptive information from the orofacial region is processed in a specific manner by two distinct types of synaptic arrangements in the Vc, and that the central input of a few TRPV1+ afferents is presynaptically modulated via a GABA-mediated mechanism.
Collapse
Affiliation(s)
- Eun Jin Yeo
- Department of Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ultrastructural Basis for Craniofacial Sensory Processing in The Brainstem. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-385198-7.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
Bannister K, Bee LA, Dickenson AH. Preclinical and early clinical investigations related to monoaminergic pain modulation. Neurotherapeutics 2009; 6:703-12. [PMID: 19789074 PMCID: PMC5084291 DOI: 10.1016/j.nurt.2009.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022] Open
Abstract
The balance between descending controls, both excitatory and inhibitory, can be altered in various pain states. There is good evidence for a prominent alpha(2)-adrenoceptor-mediated inhibitory system and 5-HT(3) (and likely also 5-HT(2)) serotonin receptor-mediated excitatory controls originating from brainstem and midbrain areas. The ability of cortical controls to influence spinal function allows for top-down processing through these monoamines. The links between pain and the comorbidities of sleep problems, anxiety, and depression may be due to the dual roles of noradrenaline and of 5-HT in these functions and also in pain. These controls appear, in the cases of peripheral neuropathy, spinal injury, and cancer-induced bone pain to be driven by altered peripheral and spinal neuronal processes; in opioid-induced hyperalgesia, however, the same changes occur without any pathophysiological peripheral process. Thus, in generalized pain states in which fatigue, mood changes, and diffuse pain occur, such as fibromyalgia and irritable bowel syndrome, one could suggest an abnormal engagement of descending facilitations with or without reduced inhibitions but with central origins. This would be an endogenous central malfunction of top-down processing, with the altered monoamine systems underlying the observed symptoms. A number of analgesic drugs can either interact with or have their actions modulated by these descending systems, reinforcing their importance in the establishment of pain but also in its control.
Collapse
Affiliation(s)
- Kirsty Bannister
- Department of Neuroscience, Physiology and Pharmacology, Division of Bioscience, University College London, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
27
|
Holden JE, Pizzi JA. Lateral hypothalamic-induced antinociception may be mediated by a substance P connection with the rostral ventromedial medulla. Brain Res 2008; 1214:40-9. [PMID: 18457815 PMCID: PMC2483309 DOI: 10.1016/j.brainres.2008.03.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 11/17/2022]
Abstract
Stimulation of the lateral hypothalamus (LH) produces antinociception modified by intrathecal serotonergic receptor antagonists. Spinally-projecting serotonergic neurons in the LH have not been identified, suggesting that the LH innervates brainstem serotonergic neurons in the rostral ventromedial medulla (RVM), known to modify nociception in the spinal cord dorsal horn. To determine whether substance P (SP) plays a role in LH-induced antinociception mediated by the RVM, we conducted an anatomical experiment using retrograde tract tracing combined with double label immunocytochemistry and found that neuron profiles immunoreactive for SP in the LH project to the RVM. To further identify a functional connection between SP neurons in the LH and the RVM, the cholinergic agonist carbachol (125 nmol) was microinjected into the LH of female Sprague-Dawley rats (250-350 g) and antinociception was obtained on the tail flick or foot withdrawal tests. Cobalt chloride (100 nM) was then microinjected in the RVM to block synaptic activation of spinally-projecting RVM neurons. Within 5 min of the cobalt chloride injection, the antinociceptive effect of carbachol stimulation was blocked. In another set of experiments, the specific NK1 receptor antagonist L-703,606 (5 microg) was microinjected in the RVM following LH stimulation with carbachol and abolished LH-induced antinociception as well. Microinjection of cobalt chloride or L-703,606 in the absence of LH stimulation had no effect. These anatomical and behavioral experiments provide converging evidence to support the hypothesis that antinociception produced by activating neurons in the LH is mediated in part by the subsequent activation of spinally-projecting neurons in the RVM.
Collapse
Affiliation(s)
- Janean E Holden
- Department of Medical-Surgical Nursing, College of Nursing, University of Illinois at Chicago, 845 South Damen Avenue, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
28
|
Pertovaara A, Almeida A. Chapter 13 Descending inhibitory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:179-192. [PMID: 18808835 DOI: 10.1016/s0072-9752(06)80017-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
29
|
Holden JE, Farah EN, Jeong Y. Stimulation of the lateral hypothalamus produces antinociception mediated by 5-HT1A, 5-HT1B and 5-HT3 receptors in the rat spinal cord dorsal horn. Neuroscience 2005; 135:1255-68. [PMID: 16165284 DOI: 10.1016/j.neuroscience.2005.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 07/08/2005] [Accepted: 07/16/2005] [Indexed: 02/04/2023]
Abstract
The lateral hypothalamus is part of an efferent system that modifies pain at the spinal cord dorsal horn, but the mechanisms by which lateral hypothalamus-induced antinociception occur are not fully understood. Previous work has shown that antinociception produced from electrical stimulation of the lateral hypothalamus is mediated in part by spinally projecting 5-hydroxytryptamine (5-HT) neurons in the ventromedial medulla. To further examine the role of the lateral hypothalamus in antinociception, the cholinergic agonist carbamylcholine chloride (125 nmol) was microinjected into the lateral hypothalamus of female Sprague-Dawley rats and nociceptive responses measured on the tail-flick and foot-withdrawal tests. Intrathecal injections of the selective 5-HT1A, 5-HT1B, 5-HT3 receptor antagonists, WAY 100135, SB-224289, and tropisetron, respectively, and the non-specific antagonist methysergide, were given. Lateral hypothalamus stimulation with carbamylcholine chloride produced significant antinociception that was blocked by WAY 100135, tropisetron, and SB-224289 on both the tail-flick and foot-withdrawal tests. Methysergide was not different from controls on the tail flick test, but increased foot-withdrawal latencies compared with controls. These results suggest that the lateral hypothalamus modifies nociception in part by activating spinally projecting serotonin neurons that act at 5-HT1A, 5-HT1B, and 5-HT3 receptors in the dorsal horn.
Collapse
MESH Headings
- Animals
- Carbachol/administration & dosage
- Cholinergic Agonists/administration & dosage
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- Female
- Hypothalamus/drug effects
- Hypothalamus/physiology
- Injections, Intraventricular
- Injections, Spinal
- Microinjections
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/physiopathology
- Pain Measurement
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/drug effects
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptors, Serotonin, 5-HT3/drug effects
- Receptors, Serotonin, 5-HT3/metabolism
- Serotonin Antagonists/administration & dosage
Collapse
Affiliation(s)
- J E Holden
- The University of Illinois at Chicago, Department of Medical-Surgical Nursing, 718 College of Nursing (M/C 802), 845 South Damen Avenue, Chicago, IL 60612-7350, USA. jeholden.uin.edu
| | | | | |
Collapse
|
30
|
Brock JH, Elste A, Huntley GW. Distribution and injury-induced plasticity of cadherins in relationship to identified synaptic circuitry in adult rat spinal cord. J Neurosci 2004; 24:8806-17. [PMID: 15470146 PMCID: PMC6729957 DOI: 10.1523/jneurosci.2726-04.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/26/2004] [Accepted: 08/30/2004] [Indexed: 12/21/2022] Open
Abstract
Cadherins are synaptically enriched cell adhesion and signaling molecules. In brain, they function in axon targeting and synaptic plasticity. In adult spinal cord, their localization, synaptic affiliation, and role in injury-related plasticity are mostly unexplored. Here, we demonstrate in adult rat dorsal horn that E- and N-cadherin display unique patterns of localization to functionally distinct types of synapses of intrinsic and primary afferent origin. Within the nociceptive afferent pathway to lamina II, nonpeptidergic C-fiber synapses in the deeper half of lamina II (IIi) contain E-cadherin but mostly lack N-cadherin, whereas the majority of the peptidergic C-fiber synapses in the outer half of lamina II (IIo) contain N-cadherin but lack E-cadherin. Approximately one-half of the Abeta-fiber terminations in lamina III contain N-cadherin; none contain E-cadherin. Strikingly, the distribution and levels of these cadherins are differentially affected by sciatic nerve axotomy, a model of neuropathic pain in which degenerative and regenerative structural plasticity has been implicated. Within the first 7 d after axotomy, E-cadherin is rapidly and completely lost from the dorsal horn synapses with which it is affiliated, whereas N-cadherin localization and levels are unchanged; such patterns persist through 28 d postlesion. The loss of E-cadherin thus occurs before the onset of mechanical hyperalgesia (approximately 10-21 d postlesion), as reported previously. Together, the synaptic specificity displayed by these cadherins, coupled with their differential response to injury, suggests that they may proactively contribute to the maintenance of some, and incipient dismantling of other, synaptic circuits in response to nerve injury. Speculatively, such changes may ultimately contribute to subsequently emerging abnormalities in pain perception.
Collapse
Affiliation(s)
- John H Brock
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
31
|
Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. PROGRESS IN BRAIN RESEARCH 2004; 146:291-321. [PMID: 14699971 DOI: 10.1016/s0079-6123(03)46019-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophins are a well-known family of growth factors for the central and peripheral nervous systems. In the course of the last years, several lines of evidence converged to indicate that some members of the family, particularly NGF and BDNF, also participate in structural and functional plasticity of nociceptive pathways within the dorsal root ganglia and spinal cord. A subpopulation of small-sized dorsal root ganglion neurons is sensitive to NGF and responds to peripheral NGF stimulation with upregulation of BDNF synthesis and increased anterograde transport to the dorsal horn. In the latter, release of BDNF appears to modulate or even mediate nociceptive sensory inputs and pain hypersensitivity. We summarize here the status of the art on the role of neurotrophins in nociceptive pathways, with special emphasis on short-term synaptic and intracellular events that are mediated by this novel class of neuromessengers in the dorsal horn. Under this perspective we review the findings obtained through an array of techniques in naïve and transgenic animals that provide insight into the modulatory mechanisms of BDNF at central synapses. We also report on the results obtained after immunocytochemistry, in situ hybridization, and monitoring intracellular calcium levels by confocal microscopy, that led to hypothesize that also NGF might have a direct central effect in pain modulation. Although it is unclear whether or not NGF may be released at dorsal horn endings of certain nociceptors in vivo, we believe that these findings offer a clue for further studies aiming to elucidate the putative central effects of NGF and other neurotrophins in nociceptive pathways.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Chronic pain is a complex problem with staggering negative health and economic consequences. The complexity of chronic pain is presented within Cervero and Laird's model that describes three phases of pain, including pain without tissue damage, pain with tissue damage and inflammation, and neuropathic pain. The increased afferent input in phases 2 and 3 of chronic pain produces marked changes in primary afferents, dorsal root ganglia, and spinal cord dorsal horn. These changes promote the symptoms of chronic pain, including spontaneous pain, hyperalgesia, and allodynia. Increased afferent input also evokes supraspinal input to the dorsal horn, including biphasic innervation from the ventromedial medulla and A7 catecholamine cell group, that promotes hyperalgesia and allodynia. More rostral brain structures, such as the lateral hypothalamus, amygdala, and hippocampus, may also play a role in chronic pain. Although much has been discovered about the multiple pathological mechanisms involved in chronic pain, further research is needed to fully comprehend these mechanisms.
Collapse
Affiliation(s)
- Janean E Holden
- The University of Illinois at Chicago, 718 College of Nursing, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
33
|
Li JL, Fujiyama F, Kaneko T, Mizuno N. Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol 2003; 457:236-49. [PMID: 12541308 DOI: 10.1002/cne.10556] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined immunohistochemically whether the vesicular glutamate transporters (VGluTs), VGluT1 and VGluT2, might be expressed in synaptic terminals of nociceptive primary afferent fibers within laminae I and II of the medullary and spinal dorsal horns of the rat. VGluT1 immunoreactivity (IR) was intense in the inner part of lamina II but weak in lamina I and the outer part of lamina II. VGluT2-IR was most intense in lamina I and the outer part of lamina II. Expression of VGluTs in synaptic terminals was confirmed by dual immunofluorescence histochemistry for VGluTs and synaptophysin. Expression of VGluTs in axon terminals of primary afferent fibers terminating in laminae I and II was also confirmed immunohistochemically after unilateral dorsal rhizotomy. The dual immunofluorescence histochemistry indicated expression of VGluTs in substance P (SP)-containing axon terminals in lamina I and the outer part of lamina II. Electron microscopy confirmed the coexpression of VGluTs and SP in axon terminals within laminae I and II; VGluTs was associated with round synaptic vesicles at the asymmetric synapses. It was further observed that isolectin IB4, a marker for unmyelinated axons, often bound with VGluT2-immunopositive structures but rarely with VGluT1-immunopositive structures in lamina II. Thus, the results indicated in laminae I and II of the medullary and spinal dorsal horns that both VGluT1 and VGluT2 were expressed in axon terminals of primary afferent fibers, including SP-containing nociceptive fibers and that VGluT in unmyelinated primary afferent fibers terminating in lamina II was primarily VGluT2.
Collapse
Affiliation(s)
- Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Foster GA, Eiden LE, Brenneman DE. Enkephalin Expression in Spinal Cord Neurons is Modulated by Drugs Related to Classical and Peptidergic Transmitters. Eur J Neurosci 2002; 3:32-9. [PMID: 12106266 DOI: 10.1111/j.1460-9568.1991.tb00808.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of various neurotransmitter agonists and antagonists on the synthesis and release of methionine enkephalin (mENK) in neuronal cultures of mouse spinal cord and dorsal root ganglia have been measured. Blockade of electrical activity with tetrodotoxin between days 9 and 13 in culture caused a > 95% decrease in the number of mENK-immunoreactive neurons. This effect was also seen upon the blockade of glycine and beta-adrenergic receptors with strychnine and propranolol, respectively, and stimulation of GABA receptors with muscimol. Stimulation of beta-adrenergic receptors with isoproterenol, or blockade of glutamate and GABA receptors with 2-aminophosphonovalerate and strychnine, respectively, had a qualitatively opposite action on both the number of mENK-immunoreactive neurons and enkephalin peptide levels measured by radioimmunoassay. Application of substance P also enhanced the mENK cell number. These data suggest that, at least in the spinal cord, characteristics other than the average level of impulse activity in the afferent input may be critical to the regulation of expression of mENK.
Collapse
Affiliation(s)
- G A Foster
- Department of Physiology, University College, PO Box 902, Cardiff, UK
| | | | | |
Collapse
|
35
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
36
|
Abstract
The anatomical distribution of Substance P (SP) has been investigated since the development of antibodies against it in the 1970s. Although initial studies were performed with antibodies that also recognised the other endogenous neurokinins, most of the initial descriptions are surprisingly still valid today. In this review, we provide an integrated overview of the pathways containing SP in the central and peripheral nervous systems. The highest densities of SP immunoreactivity occur in the superficial dorsal horn of the spinal cord, in the substantia nigra and in the medial amygdaloid nucleus. In the peripheral nervous system, SP occurs in high concentrations in small diameter primary sensory fibres and in the enteric nervous system. SP is extensively co-localised with classical transmitters and other neuropeptides. In the spinal cord, SP immunoreactive axonal boutons are preferentially presynaptic to neurons expressing the SP receptor, suggesting that the neurokinin acts at a short distance from the release site. In contrast, in the periphery, the situation probably differs in the autonomic ganglia, where the targets are directly innervated by SP, and in other peripheral territories, where SP has to diffuse through the connective tissue to reach the structures expressing the receptor.
Collapse
Affiliation(s)
- A Ribeiro-da-Silva
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
37
|
Degtyarenko AM, Kaufman MP. Fictive locomotion and scratching inhibit dorsal horn neurons receiving thin fiber afferent input. Am J Physiol Regul Integr Comp Physiol 2000; 279:R394-403. [PMID: 10938225 DOI: 10.1152/ajpregu.2000.279.2.r394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 +/- 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 +/- 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 +/- 0.07 mm, a value that was significantly (P < 0.05) less than that for the neurons whose discharge was inhibited by either MLR stimulation or fictive scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery.
Collapse
Affiliation(s)
- A M Degtyarenko
- Division of Cardiovascular Medicine, Departments of Internal Medicine and Human Physiology, University of California, Davis 95616, USA
| | | |
Collapse
|
38
|
Petkó M, Antal M. Propriospinal afferent and efferent connections of the lateral and medial areas of the dorsal horn (laminae I-IV) in the rat lumbar spinal cord. J Comp Neurol 2000; 422:312-25. [PMID: 10842234 DOI: 10.1002/(sici)1096-9861(20000626)422:2<312::aid-cne11>3.0.co;2-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The different subdivisions along the mediolateral extent of the superficial dorsal horn of the spinal cord are generally regarded as identical structures that execute the function of sensory information processing without any significant communication with other regions of the spinal gray matter. In contrast to this standing, here we endeavor to show that neural assemblies along the mediolateral extent of laminae I-IV cannot be regarded as identical structures. After injecting Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine into various areas of the superficial dorsal horn (laminae I-IV) at the level of the lumbar spinal cord in rats, we have demonstrated that the medial and lateral areas of the superficial dorsal horn show the following distinct features in their propriospinal afferent and efferent connections: 1) A 300- to 400-microm-long section of the medial aspects of laminae I-IV projects to and receives afferent fibers from a three segment long compartment of the spinal dorsal gray matter, whereas the same length of the lateral aspects of laminae I-IV projects to and receives afferent fibers from the entire rostrocaudal extent of the lumbar spinal cord. 2) The medial aspects of laminae I-IV project extensively to the lateral areas of the superficial dorsal horn. In contrast to this, the lateral areas of laminae I-IV, with the exception of a few fibers at the segmental level, do not project back to the medial territories. 3) There is a substantial direct commissural connection between the lateral aspects of laminae I-IV on the two sides of the lumbar spinal cord. The medial part of laminae I-IV, however, does not establish any direct connection with the gray matter on the opposite side. 4) The lateral aspects of laminae I-IV appear to be the primary source of fibers projecting to the ipsi- and contralateral ventral horns and supraspinal brain centers. Projecting fibers arise from the medial subdivision of laminae I-IV in a substantially lower number. The findings indicate that the medial and lateral areas of the superficial spinal dorsal horn of rats may play different roles in sensory information processing.
Collapse
Affiliation(s)
- M Petkó
- Department of Anatomy, Histology and Embryology, University Medical School of Debrecen, Debrecen H-4012, Hungary
| | | |
Collapse
|
39
|
Abstract
Administration of NK1 antagonists in adult animals attenuates the nociceptive response in the formalin test, indicating that the neurokinins and the NK1 receptor play a role in mediating this pain response. The number and distribution of NK1 receptors change dramatically during development, and the age at which they become involved in pain processing is not known. We examined the role of NK1 receptors in the formalin model in rats ranging in age between 3- and 21-days old. An NK1 antagonist, CP99,994, and its less active enantiomer CP100,263 were administered to the spinal cord (intrathecal), systemically (subcutaneous), or locally (intraplantar). Intrathecal administration of CP99,994, but not CP100,263, attenuated pain behaviors in the second phase of the formalin response in 14-day and 21-day old rats, but did not alter the pain response in 3-day or 10-day old rats. CP99,994 also reduced the expression of the c-fos protein in the superficial dorsal horn of 21-day old rats. Systemic and intraplantar injection of either CP99,994 or CP100,263 reduced the pain response to formalin in 3-day and 21-day old rats, suggesting a non-NK1 mediated mechanism of action. These results indicate that, within the spinal cord, NK1 receptors start to play a role in the pain response to formalin between 10 and 21 days. Moreover, analgesia induced by systemic or local injection of NK1 antagonists involves mechanisms other than, or in addition to, the NK1 receptor.
Collapse
Affiliation(s)
- T E King
- Department of Psychology, Hunter College, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
40
|
Qin C, Chandler MJ, Miller KE, Foreman RD. Chemical activation of cervical cell bodies: effects on responses to colorectal distension in lumbosacral spinal cord of rats. J Neurophysiol 1999; 82:3423-33. [PMID: 10601473 DOI: 10.1152/jn.1999.82.6.3423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that stimulation of cardiopulmonary sympathetic afferent fibers activates relays in upper cervical segments to suppress activity of lumbosacral spinal cells. The purpose of this study was to determine if chemical excitation (glutamate) of upper cervical cell bodies changes the spontaneous activity and evoked responses of lumbosacral spinal cells to colorectal distension (CRD). Extracellular potentials were recorded in pentobarbital-anesthetized male rats. CRD (80 mmHg) was produced by inflating a balloon inserted in the descending colon and rectum. A total of 135 cells in the lumbosacral segments (L(6)-S(2)) were activated by CRD. Seventy-five percent (95/126) of tested cells received convergent somatic input from the scrotum, perianal region, hindlimb, and tail; 99/135 (73%) cells were excited or excited/inhibited by CRD; and 36 (27%) cells were inhibited or inhibited/excited by CRD. A glutamate (1 M) pledget placed on the surface of C(1)-C(2) segments decreased spontaneous activity and excitatory CRD responses of 33/56 cells and increased spontaneous activity of 13/19 cells inhibited by CRD. Glutamate applied to C(6)-C(7) segments decreased activity of 10/18 cells excited by CRD, and 9 of these also were inhibited by glutamate at C(1)-C(2) segments. Glutamate at C(6)-C(7) increased activity of 4/6 cells inhibited by CRD and excited by glutamate at C(1)-C(2) segments. After transection at rostral C(1) segment, glutamate at C(1)-C(2) still reduced excitatory responses of 7/10 cells. Further, inhibitory effects of C(6)-C(7) glutamate on excitatory responses to CRD still occurred after rostral C(1) transection but were abolished after a rostral C(6) transection in 4/4 cells. These data showed that C(1)-C(2) cells activated with glutamate primarily produced inhibition of evoked responses to visceral stimulation of lumbosacral spinal cells. Inhibition resulting from activation of cells in C(6)-C(7) segments required connections in the upper cervical segments. These results provide evidence that upper cervical cells integrate information that modulates activity of distant spinal neurons responding to visceral input.
Collapse
Affiliation(s)
- C Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting neurons were examined in the rabbit spinal cord by using horizontal, sagittal, and transverse sections. A large number of NADPHd-positive neurons in the spinal cord of rabbit appeared to fall into six categories (N1-N6), but others could not be classified. Major cell groups of NADPHd-exhibiting neurons were identified in the superficial dorsal horn and around the central canal at all spinal levels and in the intermediolateral cell column at thoracic and upper lumbar levels. NADPHd-exhibiting neurons of the pericentral region were divided into a thin subependymal cell column containing longitudinally arranged, small bipolar neurons with processes penetrating deeply into the intermediolateral cell column and/or running rostrocaudally in the subependymal layer. The second pericentral cell column located more laterally in lamina X contains large, intensely stained NADPHd-exhibiting neurons with long dendrites radiating in the transverse plane. In the pericentral region (lamina X), close association of NADPHd-exhibiting somata and fibers and mostly longitudinally oriented blood vessels were detected. Neurons of the sacral parasympathetic nucleus, seen in segments S1-S3, exhibited prominent NADPHd cellular staining accompanied by heavily stained fibers extending from Lissauer's tract through lamina I along the lateral edge of the dorsal horn to lamina V. A massive dorsal gray commissure, highly positive in NADPHd staining, was found in segments S1-S3. Scattered positive cells were also found in the deeper dorsal horn, ventral horn, and white matter. Fiberlike NADPHd staining was found in the superficial dorsal horn and pericentral region in all the segments studied. Dense, punctate, nonsomatic NADPHd staining was detected in the superficial dorsal horn, in the pericentral region all along the rostrocaudal axis, and in the nucleus phrenicus (segments C4-C5), nucleus dorsalis (segments Th2-L2), Onuf's nucleus (segments S1-S3), and the dorsal part of the dorsal gray commissure (S1-S3).
Collapse
Affiliation(s)
- J Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Slovak Republic.
| | | | | | | |
Collapse
|
42
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
43
|
Lopes P, Couture R. Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy. Neuroscience 1997; 78:481-97. [PMID: 9145804 DOI: 10.1016/s0306-4522(96)00554-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
44
|
Yajiri Y, Yoshimura M, Okamoto M, Takahashi H, Higashi H. A novel slow excitatory postsynaptic current in substantia gelatinosa neurons of the rat spinal cord in vitro. Neuroscience 1997; 76:673-88. [PMID: 9135042 DOI: 10.1016/s0306-4522(96)00291-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Whole-cell patch-clamp recordings were made from neurons in the substantia gelatinosa of adult rat spinal cord slices with attached dorsal root to study a slow synaptic current evoked by focal or dorsal root stimulation. Repetitive focal stimulation with a monopolar electrode positioned within substantia gelatinosa elicited a slow excitatory postsynaptic current preceded by a fast excitatory postsynaptic current in 73 of 83 neurons. A similar slow excitatory postsynaptic current was also elicited by stimulation of A delta afferent fibres. The amplitude of slow excitatory postsynaptic currents was unchanged when the recording electrode contained guanosine-5'-O-(2-thiodiphosphate). The slow excitatory postsynaptic current and current evoked by aspartate revealed similar reversal potentials and showed a marked outward rectification at holding potentials more negative than -30 mV, while the glutamate-induced current exhibited a relatively linear voltage relationship. In addition, the slow excitatory postsynaptic currents were reversibly occluded during the aspartate-induced current but were not occluded during the glutamate-induced current. The slow excitatory postsynaptic currents evoked by focal stimulation were depressed but not abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) or by 6-cyano-7-nitroquinoxaline-2,3-dione together with DL-2-amino-5-phosphonopentanoic acid (100 microM). Similarly, the aspartate- and glutamate-induced currents were also resistant to these antagonists. These observations suggest that a transmitter released from interneurons or descending fibres which are activated in part by A delta afferents, mediates a slow excitatory postsynaptic currents in substantia gelatinosa neurons and that an excitatory amino acid is implicated in the generation of the slow excitatory postsynaptic current, although the receptor appears to differ from the known ligand-gated channels. C afferents are unlikely to contribute to the slow excitatory postsynaptic current. This slow synaptic response may participate in the pain pathway and play an important role in the processing of nociceptive information in the spinal dorsal horn.
Collapse
Affiliation(s)
- Y Yajiri
- Department of Physiology, Kurume University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
45
|
Ma W, Ribeiro-Da-Silva A, De Koninck Y, Radhakrishnan V, Henry JL, Cuello AC. Quantitative analysis of substance P-immunoreactive boutons on physiologically characterized dorsal horn neurons in the cat lumbar spinal cord. J Comp Neurol 1996; 376:45-64. [PMID: 8946283 DOI: 10.1002/(sici)1096-9861(19961202)376:1<45::aid-cne3>3.0.co;2-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A quantitative analysis of substance P (SP)-immunoreactive (IR) terminals contacting physiologically characterized dorsal horn neurons was performed. Three types of neuron were studied: nociceptive specific (NS) from lamina I (n = 3), wide dynamic range (WDR) from laminae II-IV (n = 3), and nonnociceptive (NN) from lamina IV (n = 3). The nociceptive response of focus was a slow, prolonged depolarization to noxious stimuli, because this response was previously shown to be blocked by selective neurokinin-1 (NK-1) receptor antagonists. Ultrastructural immunocytochemistry was used to quantify the relative number of SP-IR boutons apposed to the intracellularly labeled cell per unit of length (density). Densities of the total population (SP immunoreactive+nonimmunoreactive) of apposed boutons were similar in all three regions (cell body, proximal and distal dendrites) for the three functional types of neuron. NS neurons received a significantly higher density of appositions from SP-IR boutons than NN cells in all three regions. However, compared to WDR cells, NS cells possessed a significantly higher density of appositions from SP-IR boutons only in the cell body and proximal dendrites. WDR cells had a higher density of appositions from SP-IR boutons than NN cells, but only in the proximal and distal dendrites. On average, 33.5% of the SP-IR boutons apposed to the cells displayed a synaptic contact. Finally, 30-45% of the SP-IR boutons apposed to the cells colocalized calcitonin gene-related protein (CGRP) immunoreactivity, indicating their primary sensory origin. The data indicate a direct correlation between the amount of SP-IR input and the nociceptive nature of the cells and suggest that SP acts on NK-1 receptors at a short distance from its release site.
Collapse
Affiliation(s)
- W Ma
- Department of Pharmacology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Dumoulin A, Alonso G, Privat A, Feldblum S. Biphasic response of spinal GABAergic neurons after a lumbar rhizotomy in the adult rat. Eur J Neurosci 1996; 8:2553-63. [PMID: 8996804 DOI: 10.1111/j.1460-9568.1996.tb01549.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of gamma-aminobutyric acid (GABA) and of the isoforms of the enzyme involved in its synthesis, glutamic acid decarboxylase (GAD), is modified in several rat brain structures in different injury models. The aim of the present work was to determine whether such plasticity of the GABAergic system also occurred in the deafferented adult rat spinal cord, a model where a major reorganization of neural circuits takes place. GABAergic expression following unilateral dorsal rhizotomy was studied by means of non-radioactive in situ hybridization to detect GAD67 mRNA and by immunohistochemistry to detect GAD67 protein and GABA. Three days following rhizotomy the number of GAD67 mRNA-expressing neurons was decreased in the superficial layers of the deafferented horn, while GABA immunostaining of axonal fibres located in this region was highly increased. Seven days after lesion, on the other hand, many GAD67 mRNA-expression neurons were bilaterally detected in deep dorsal and ventral layers, this expression being correlated with the increased detection of GAD67 immunostained somata and with the reduction of GABA immunostaining of axons. GABA immunostaining was frequently found to be associated with reactive astrocytes that exhibited intense immunostaining for glial fibrillary acidic protein (GFAP) but remained GAD67 negative. These results indicate that degeneration of afferent terminals induces a biphasic response of GABAergic spinal neurons located in the dorsal horn and show that many spinal neurons located in deeper regions re-express GAD67, suggesting a possible participation of the local GABAergic system in the reorganization of disturbed spinal networks.
Collapse
Affiliation(s)
- A Dumoulin
- Unité INSERM 336-ENSCM, Montpellier, France
| | | | | | | |
Collapse
|
47
|
Traub RJ. The spinal contribution of substance P to the generation and maintenance of inflammatory hyperalgesia in the rat. Pain 1996; 67:151-161. [PMID: 8895243 DOI: 10.1016/0304-3959(96)03076-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
That substance P (SP) contributes in some way to spinal nociceptive processing has been known for many years. However, the contribution of SP and NK-1 receptors to the generation and maintenance of inflammatory hyperalgesia or persistent chemical hyperalgesia is not clear. The purpose of this study was to test the hypothesis that SP contributes to the generation but not maintenance of hyperalgesia using two models of inflammatory pain: carrageenan, which allows for testing of acute noxious thermal and mechanical stimuli, and formalin, a model of spontaneous pain. Intrathecal pretreatment with the NK-1 receptor antagonist CP-96,345 (100, 50, 25 nmol) dose-dependently attenuated the thermal (46%, 27% and 16%, respectively) and mechanical (66%, 37% and 3%, respectively) hyperalgesia produced by 2 mg carrageenan, but not 6 mg carrageenan, 3 h after the induction of inflammation. The attenuation was still apparent at 5 h for the greatest dose, but at 7 h the magnitude of hyperalgesia was equal to rats pretreated with saline. Posttreatment with 100 nmol CP-96,345 following the establishment of hyperalgesia had no effect. Intrathecal pretreatment with 125 nmol CP-96,345 prior to formalin (1% or 5%) injection into the hindpaw produced an overall 29% or 23% attenuation, respectively, of the nociceptive behavior during the 1-h observation period. For both 1% and 5% formalin injections, the phase 2 response, but not the phase 1 response, was significantly lower than that from rats pretreated both saline. Pretreatment with 100 or 125 nmol of the inactive enantiomer, CP-96,344, was no different than pretreatment with saline. A dose of 250 nmol CP-96,345 produced voluntary paralysis yet the flexion reflex to noxious pinch remained. These results support the hypothesis that SP contributes to the generation of inflammatory hyperalgesia but once established, the contribution of SP to maintaining the state of hyperalgesia is reduced. The interaction of SP, NK-1 receptors and spinal NMDA receptors in relation to inflammatory pain is discussed.
Collapse
Affiliation(s)
- Richard J Traub
- Department of Pharmacology, The University of Iowa College of Medicine, Bowen Science Building, Iowa City, IA, USA
| |
Collapse
|
48
|
Shughrue PJ, Lane MV, Merchenthaler I. In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 1996; 372:395-414. [PMID: 8873868 DOI: 10.1002/(sici)1096-9861(19960826)372:3<395::aid-cne5>3.0.co;2-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tachykinin family of neuropeptides, which includes substance P, neurokinin A, and neurokinin B, have three distinct receptors: NK-1, NK-2, and NK-3. With the cloning of the rat NK-3 cDNA, it is now possible to evaluate the distribution of NK-3 mRNA in the rat brain. Female rat brains were sectioned and hybridized with a riboprobe complimentary to NK-3 mRNA. The results of these studies revealed an extensive distribution of NK-3 mRNA throughout the rostral-caudal extent of the brain, spinal cord, and retina. In agreement with previous binding studies, we observed NK-3 mRNA in the cortex, the amygdala, the hippocampus, the medial habenula, the zona incerta, the paraventricular and supraoptic nuclei of the hypothalamus, the substantia nigra, the ventral tegmental area, the interpeduncular nucleus, the raphe nuclei, the dorsal tegmental nucleus, and the nucleus of the solitary tract. In contrast with binding data, only a few NK-3 mRNA cells were detected in the striatum. In addition, the present study detected NK-3 mRNA in the olfactory bulb, the dentate gyrus and subiculum, the medial septum, the diagonal band of Broca, the ventral pallidum, the globus pallidus, the bed nucleus of the stria terminalis, the arcuate, the premammillary and mammillary nuclei, the dorsal and lateral regions of the posterior hypothalamus, the central gray, the cerebellum, the parabrachial nuclei, the nucleus of the spinal trigeminal tract, the dorsal horn of the spinal cord, and the retina. The results of these in situ hybridization histochemical studies have provided detailed and novel information about the distribution of NK-3 mRNA and have elucidated the putative sites of neurokinin B action in the rat central nervous system.
Collapse
Affiliation(s)
- P J Shughrue
- Women's Health Research Institute, Wyeth-Ayerst Research, Radnor, Pennsylvania 19087, USA.
| | | | | |
Collapse
|
49
|
Yoshimma M. Chapter 26. Slow synaptic transmission in the spinal dorsal horn. PROGRESS IN BRAIN RESEARCH 1996. [DOI: 10.1016/s0079-6123(08)61103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
50
|
Lekan HA, Carlton SM. Glutamatergic and GABAergic input to rat spinothalamic tract cells in the superficial dorsal horn. J Comp Neurol 1995; 361:417-28. [PMID: 8550889 DOI: 10.1002/cne.903610306] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution of synaptic terminals onto spinothalamic tract cells (types I and II) of the superficial dorsal horn was determined with special reference to the amino acid transmitters glutamate and gamma-aminobutyric acid. Fifteen spinothalamic cells retrogradely labeled from the thalamus with the neuroanatomical tracer wheatgerm agglutinin conjugated to horseradish peroxidase were sectioned for electron microscopy. Serial sections from several levels through each cell were immunostained for glutamate and gamma-aminobutyric acid using a postembedding immunogold technique. Perimeter measurements of spinothalamic cell somata and dendrites and the lengths of apposition for all terminal profiles in contact with the spinothalamic cells were obtained from electron micrographs using a digitizing tablet. These data were used to determine the density of terminals on the soma and dendrites. In addition, the terminal population on these cells was categorized by transmitter content (glutamate, gamma-aminobutyric acid, or unlabeled). The results demonstrate that terminal density increased on dendrites relative to their distance from the soma. Glutamatergic and GABAergic input composed 37% and 20% of the terminal population, respectively, and these percentages remained uniform for the soma and dendrites. There were no significant differences among the 15 cells analyzed for this study. The results, therefore, suggest that both type I and type II STT cells of the superficial DH have similar synaptic organizations.
Collapse
Affiliation(s)
- H A Lekan
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|