1
|
Agrawal A, Chou YL, Carey CE, Baranger DAA, Zhang B, Sherva R, Wetherill L, Kapoor M, Wang JC, Bertelsen S, Anokhin AP, Hesselbrock V, Kramer J, Lynskey MT, Meyers JL, Nurnberger JI, Rice JP, Tischfield J, Bierut LJ, Degenhardt L, Farrer LA, Gelernter J, Hariri AR, Heath AC, Kranzler HR, Madden PAF, Martin NG, Montgomery GW, Porjesz B, Wang T, Whitfield JB, Edenberg HJ, Foroud T, Goate AM, Bogdan R, Nelson EC. Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 2018; 23:1293-1302. [PMID: 29112194 PMCID: PMC5938138 DOI: 10.1038/mp.2017.200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023]
Abstract
Despite moderate heritability, only one study has identified genome-wide significant loci for cannabis-related phenotypes. We conducted meta-analyses of genome-wide association study data on 2080 cannabis-dependent cases and 6435 cannabis-exposed controls of European descent. A cluster of correlated single-nucleotide polymorphisms (SNPs) in a novel region on chromosome 10 was genome-wide significant (lowest P=1.3E-8). Among the SNPs, rs1409568 showed enrichment for H3K4me1 and H3K427ac marks, suggesting its role as an enhancer in addiction-relevant brain regions, such as the dorsolateral prefrontal cortex and the angular and cingulate gyri. This SNP is also predicted to modify binding scores for several transcription factors. We found modest evidence for replication for rs1409568 in an independent cohort of African American (896 cases and 1591 controls; P=0.03) but not European American (EA; 781 cases and 1905 controls) participants. The combined meta-analysis (3757 cases and 9931 controls) indicated trend-level significance for rs1409568 (P=2.85E-7). No genome-wide significant loci emerged for cannabis dependence criterion count (n=8050). There was also evidence that the minor allele of rs1409568 was associated with a 2.1% increase in right hippocampal volume in an independent sample of 430 EA college students (fwe-P=0.008). The identification and characterization of genome-wide significant loci for cannabis dependence is among the first steps toward understanding the biological contributions to the etiology of this psychiatric disorder, which appears to be rising in some developed nations.
Collapse
Affiliation(s)
- Arpana Agrawal
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Yi-Ling Chou
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Caitlin E. Carey
- Washington University in St. Louis, Dept. of Psychological and Brain Sciences, St. Louis, MO, USA
| | - David A. A. Baranger
- Washington University in St. Louis, Dept. of Psychological and Brain Sciences, St. Louis, MO, USA
| | - Bo Zhang
- Washington University School of Medicine, Dept. of Developmental Biology, St. Louis, MO, USA
| | - Richard Sherva
- Boston University School of Medicine, Dept. of Medicine (Biomedical Genetics), Boston, MA, USA
| | - Leah Wetherill
- Indiana University School of Medicine, Dept. of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Manav Kapoor
- Icahn School of Medicine at Mount Sinai, Dept. of Neuroscience, New York, NY USA
| | - Jen-Chyong Wang
- Icahn School of Medicine at Mount Sinai, Dept. of Neuroscience, New York, NY USA
| | - Sarah Bertelsen
- Icahn School of Medicine at Mount Sinai, Dept. of Neuroscience, New York, NY USA
| | - Andrey P Anokhin
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Victor Hesselbrock
- University of Connecticut Health, Dept. of Psychiatry, Farmington, CT, USA
| | - John Kramer
- University of Iowa Carver College of Medicine, Dept. of Psychiatry, Iowa City, IA USA
| | - Michael T. Lynskey
- King’s College, Institute of Psychiatry, Psychology and Neuroscience, Addictions Department, London, UK
| | - Jacquelyn L. Meyers
- State University of New York, Downstate Medical Center, Dept. of Psychiatry, Brooklyn, NY USA
| | - John I Nurnberger
- Indiana University School of Medicine, Depts. of Psychiatry and Medical and Molecular Genetics, and Stark Neuroscience Center, Indianapolis, IN, USA
| | - John P. Rice
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Jay Tischfield
- Rutgers, The State University of New Jersey: New Brunswick, NJ, United States
| | - Laura J. Bierut
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Lindsay A Farrer
- Boston University School of Medicine, Dept. of Medicine (Biomedical Genetics), Boston, MA, USA
| | - Joel Gelernter
- Yale University School of Medicine: New Haven, CT, USA
- US Department of Veterans Affairs: West Haven, CT, USA
| | - Ahmad R. Hariri
- Duke University, Department of Psychology and Neuroscience, Durham, NC, USA
| | - Andrew C. Heath
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Pamela A. F. Madden
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| | | | - Grant W Montgomery
- University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Bernice Porjesz
- State University of New York, Downstate Medical Center, Dept. of Psychiatry, Brooklyn, NY USA
| | - Ting Wang
- Washington University School of Medicine, Department of Genetics, St. Louis, MO, USA
| | | | - Howard J. Edenberg
- Indiana University School of Medicine, Dept. of Medical and Molecular Genetics, Indianapolis, IN, USA
- Indiana University, Dept. of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, Dept. of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alison M. Goate
- Icahn School of Medicine at Mount Sinai, Dept. of Neuroscience, New York, NY USA
| | - Ryan Bogdan
- Washington University in St. Louis, Dept. of Psychological and Brain Sciences, St. Louis, MO, USA
| | - Elliot C. Nelson
- Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110, USA
| |
Collapse
|
2
|
Lakhina V, Arey RN, Kaletsky R, Kauffman A, Stein G, Keyes W, Xu D, Murphy CT. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 2015; 85:330-45. [PMID: 25611510 DOI: 10.1016/j.neuron.2014.12.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Abstract
Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Kauffman
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Geneva Stein
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - William Keyes
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Xu
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Garcia-Reyero N, Escalon BL, Prats E, Stanley JK, Thienpont B, Melby NL, Barón E, Eljarrat E, Barceló D, Mestres J, Babin PJ, Perkins EJ, Raldúa D. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. ENVIRONMENT INTERNATIONAL 2014; 63:216-23. [PMID: 24317228 DOI: 10.1016/j.envint.2013.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers are compounds widely used as flame-retardants, which are of increasing environmental concern due to their persistence, and potential adverse effects. This study had two objectives. First, we assessed if BDE-209 in sediment was bioavailable and bioaccumulated into zebrafish embryos. Secondly, we assessed the potential impact on human and environmental health of bioavailable BDE-209 using human in vitro cell assays and zebrafish embryos. Zebrafish were exposed from 4h to 8days post-fertilization to sediments spiked with 12.5mg/kg of BDE-209. Zebrafish larvae accumulated ten fold more BDE-209 than controls in unspiked sediment after 8days. BDE-209 impacted expression of neurological pathways and altered behavior of larvae, although BDE-209 had no visible affect on thyroid function or motoneuron and neuromast development. Zebrafish data and in silico predictions suggested that BDE-209 would also interact with key human transcription factors and receptors. We therefore tested these predictions using mammalian in vitro assays. BDE-209 activated human aryl hydrocarbon receptor, peroxisome proliferator activating receptors, CF/b-cat, activator protein 1, Oct-MLP, and the estrogen receptor-related alpha (ERRα) receptor in cell-based assays. BDE-209 also inhibited human acetylcholinesterase activity. The observation that BDE-209 can be bioaccumulated from contaminated sediment highlights the need to consider this as a potential environmental exposure route. Once accumulated, our data also show that BDE-209 has the potential to cause impacts on both human and environmental health.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA.
| | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Eva Prats
- Centro de Investigación y Desarrollo, CID-CSIC, Barcelona, Catalonia, Spain
| | - Jacob K Stanley
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Benedicte Thienpont
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Nicolas L Melby
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Enrique Barón
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patrick J Babin
- Maladies Rares: Génétique et Métabolism, Université Bordeaux, Talence, France
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Demetrio Raldúa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Schulze-Späte U, Battaglino R, Fu J, Sharma A, Vokes M, Stashenko P. Brn3 transcription factors control terminal osteoclastogenesis. J Cell Biochem 2007; 102:1-12. [PMID: 17668438 DOI: 10.1002/jcb.21257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoclastic bone resorption is a central mechanism in skeletal development, remodeling and pathology. RANKL is a mandatory factor controlling osteoclastogenesis; however, the underlying signaling pathways are only partially characterized. Using a screening array for the investigation of differential transcription factor activation, we identified activation of the Brn3 transcription factor family as a downstream event of RANKL signaling during terminal osteoclastogenesis. RANKL stimulation induces expression of Brn3a and b and maximal transcriptional activity of Brn3 family members concurrent with osteoclastic giant cell formation. Immunohistochemical analysis revealed both nuclear and cytoplasmic localization of Brn3a and b in mature osteoclasts. Functional inhibition of Brn3 transcription factors resulted in inhibition of pre-osteoclast fusion and reduction in bone resorbing activity of mature osteoclasts. Furthermore, we identified synaptotagmin-1, a regulator of membrane and vesicular fusion, as downstream target of Brn3 with a role in osteoclast function. We conclude that Brn-3 represents a novel molecular differentiation factor that controls osteoclast maturation and function, suggesting an important role in bone metabolism.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
5
|
Cupit PM, Lennard ML, Hikima JI, Warr GW, Cunningham C. Characterization of two POU transcription factor family members from the urochordate Oikopleura dioica. Gene 2006; 383:1-11. [PMID: 16989962 DOI: 10.1016/j.gene.2006.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/05/2006] [Accepted: 05/13/2006] [Indexed: 11/21/2022]
Abstract
Three POU domain containing transcription factors have been cloned from the urochordate Oikopleura dioica. Phylogenetic analysis showed that two of these (OctA1 and OctA2) are closely related members of the class II POU domain family, and one (OctB) is a member of the class III POU domain family. All three transcription factors contained a highly conserved bipartite DNA-binding POU domain with POU specific and POU homeodomains, separated by a linker region. All three proteins were shown to bind specifically to the canonical octamer motif, ATGCAAAT. The ability of these factors to drive transcription from an octamer-containing reporter construct was assessed in vertebrate B lymphocyte cell lines. Both OctA1 and OctA2 drove transcription in murine and catfish B cell lines, however, OctB did not increase the level of transcription above background levels. It is concluded that Oct transcription factors capable of functioning in a similar fashion to vertebrate Oct1/2 were present at the phylogenetic level of the urochordates.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | | | | |
Collapse
|
6
|
Candiani S, Oliveri D, Parodi M, Bertini E, Pestarino M. Expression of AmphiPOU-IV in the developing neural tube and epidermal sensory neural precursors in amphioxus supports a conserved role of class IV POU genes in the sensory cells development. Dev Genes Evol 2006; 216:623-33. [PMID: 16773340 DOI: 10.1007/s00427-006-0083-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
POU genes play a prominent role in the nervous system differentiation of several organism models, and in particular, they are involved in the differentiation of sensory neurons in numerous invertebrate and vertebrate species. In the present report, cloning and expression profile of a class IV POU gene in amphioxus was assessed for understanding its role in the sensory systems development. A single class IV gene, AmphiPOU-IV was isolated from the amphioxus Branchiostoma floridae. From a phylogenetic point of view, AmphiPOU-IV appears to be strictly related to the vertebrate one, sharing a high homology ratio especially with all vertebrate POU-IV proteins Brn-3a, Brn-3b, and Brn-3c. AmphiPOU-IV was found in the most anterior neural plate and in scattered ectodermic cells on the flanks of neurula, such ectodermic cells resemble the characteristic morphology and position of AmphiCoe and AmphiTrk developing sensory cells. Later on, the expression was confined in some motoneurons at level of the PMC and in some segmental arranged motoneurons in the hindbrain. Such expression is also maintained in larvae, and a new site of AmphiPOU-IV expression was also found in rostrum and mouth edge epidermal sensory cells of the larva. In conclusion, our data suggest an evolutionary conserved role of POU-IV transcription factors in the specification and differentiation of the sensory system in both vertebrates and invertebrates and underline the importance of amphioxus as linking step between them.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, viale Benedetto XV, 5, Genoa, 16132, Italy
| | | | | | | | | |
Collapse
|
7
|
Diss JKJ, Faulkes DJ, Walker MM, Patel A, Foster CS, Budhram-Mahadeo V, Djamgoz MBA, Latchman DS. Brn-3a neuronal transcription factor functional expression in human prostate cancer. Prostate Cancer Prostatic Dis 2006; 9:83-91. [PMID: 16276351 DOI: 10.1038/sj.pcan.4500837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine differentiation has been associated with prostate cancer (CaP). Brn-3a (short isoform) and Brn-3c, transcriptional controllers of neuronal differentiation, were readily detectable in human CaP both in vitro and in vivo. Brn-3a expression, but not Brn-3c, was significantly upregulated in >50% of tumours. Furthermore, overexpression of this transcription factor in vitro (i) potentiated CaP cell growth and (ii) regulated the expression of a neuronal gene, the Nav1.7 sodium channel, concomitantly upregulated in human CaP, in an isoform-specific manner. It is concluded that targeting Brn-3a could be a useful strategy for controlling the expression of multiple genes that promote CaP.
Collapse
Affiliation(s)
- J K J Diss
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Axon pruning has recently been described in the simple nervous system of the nematode Caenorhabditis elegans. Generating excess processes and pruning may be a phylogenetically conserved feature reflecting a flexibility to modify neural circuits.
Collapse
Affiliation(s)
- William G Wadsworth
- UMDNJ-Robert Wood Johnson Medical School, Department of Pathology, Piscataway, NJ 08854-5635, USA.
| |
Collapse
|
9
|
Mukhopadhyay P, Greene RM, Zacharias W, Weinrich MC, Singh S, Young WW, Pisano MM. Developmental gene expression profiling of mammalian, fetal orofacial tissue. ACTA ACUST UNITED AC 2005; 70:912-26. [PMID: 15578713 DOI: 10.1002/bdra.20095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The embryonic orofacial region is an excellent developmental paradigm that has revealed the centrality of numerous genes encoding proteins with diverse and important biological functions in embryonic growth and morphogenesis. DNA microarray technology presents an efficient means of acquiring novel and valuable information regarding the expression, regulation, and function of a panoply of genes involved in mammalian orofacial development. METHODS To identify differentially expressed genes during mammalian orofacial ontogenesis, the transcript profiles of GD-12, GD-13, and GD-14 murine orofacial tissue were compared utilizing GeneChip arrays from Affymetrix. Changes in gene expression were verified by TaqMan quantitative real-time PCR. Cluster analysis of the microarray data was done with the GeneCluster 2.0 Data Mining Tool and the GeneSpring software. RESULTS Expression of >50% of the approximately 12,000 genes and expressed sequence tags examined in this study was detected in GD-12, GD-13, and GD-14 murine orofacial tissues and the expression of several hundred genes was up- and downregulated in the developing orofacial tissue from GD-12 to GD-13, as well as from GD-13 to GD-14. Such differential gene expression represents changes in the expression of genes encoding growth factors and signaling molecules; transcription factors; and proteins involved in epithelial-mesenchymal interactions, extracellular matrix synthesis, cell adhesion, proliferation, differentiation, and apoptosis. Following cluster analysis of the microarray data, eight distinct patterns of gene expression during murine orofacial ontogenesis were selected for graphic presentation of gene expression patterns. CONCLUSIONS This gene expression profiling study identifies a number of potentially unique developmental participants and serves as a valuable aid in deciphering the complex molecular mechanisms crucial for mammalian orofacial development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
DeCarvalho AC, Cappendijk SLT, Fadool JM. Developmental expression of the POU domain transcription factor Brn-3b (Pou4f2) in the lateral line and visual system of zebrafish. Dev Dyn 2004; 229:869-76. [PMID: 15042710 DOI: 10.1002/dvdy.10475] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the class IV POU domain transcription factors are important regulators of neural development. In mouse, Brn-3b (Pou4f2, Brn3.2) and Brn-3c (Pou4f3, Brn3.1) are essential for the normal differentiation and maturation of retinal ganglion cells (RGCs) and hair cells of the auditory system, respectively. In this report, the cloning and expression profile of brn-3b in the zebrafish (Danio rerio) were assessed as the first step for understanding its role in the development of sensory systems. Two brn-3b alternative transcripts exhibited different onset of expression during development but shared overlapping expression domains in the adult visual system. The brn-3b expression in the zebrafish retina was consistent with a conserved role in differentiation and maintenance of RGCs. Expression was also observed in the optic tectum. Unexpectedly, brn-3b was prominently expressed in the migrating posterior lateral line primordium and larval neuromasts. For comparison, brn-3c expression was limited to the otic vesicle and was not detected in the lateral line during embryonic development. The expression of brn-3b in the mechanosensory lateral line of fish suggests a conserved function of a class IV POU domain transcription factor in sensory system development.
Collapse
Affiliation(s)
- Ana C DeCarvalho
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA
| | | | | |
Collapse
|
11
|
Relaix F, Molinari S, Lemonnier M, Schäfer B, Buckingham M. The in vivo form of the murine class VI POU protein Emb is larger than that encoded by previously described transcripts. Gene 2004; 333:35-46. [PMID: 15177678 DOI: 10.1016/j.gene.2004.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 11/28/2003] [Accepted: 02/05/2004] [Indexed: 11/25/2022]
Abstract
The class VI POU domain family member known as Emb in the mouse (rat Brn5 or human mPOU/TCFbeta1) is present in vivo as a protein migrating at about 80 kDa on western blots, considerably larger than that predicted (about 42 kDa) from previously cloned coding sequences. By RT-PCR and 5' RACE strategies a full-length Emb sequence, Emb FL, is now identified. Shorter sequences encoding the -COOH terminal, and an -NH(2) terminal isoform, EmbN, were also isolated. Comparisons of Emb coding sequences between species, including the full-length zebra fish, POU(c), are presented, together with a compilation of the multiple transcripts produced by alternative splicing and the presence of different transcriptional start and stop sites, from the Emb gene.
Collapse
Affiliation(s)
- F Relaix
- C.N.R.S. URA 2578, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
12
|
Mu X, Beremand PD, Zhao S, Pershad R, Sun H, Scarpa A, Liang S, Thomas TL, Klein WH. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development 2004; 131:1197-210. [PMID: 14973295 DOI: 10.1242/dev.01010] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brn3b/Brn-3.2/POU4f2 is a POU domain transcription factor that is essential for retinal ganglion cell (RGC) differentiation, axonal outgrowth and survival. Our goal was to establish a link between Brn3b and the downstream events leading to RGC differentiation. We sought to determine both the number and types of genes that depend on Brn3b for their expression. RNA probes from wild-type and Brn3b(-/-) E14.5, E16.5 and E18.5 mouse retinas were hybridized to a microarray containing 18,816 retina-expressed cDNAs. At E14.5, we identified 87 genes whose expression was significantly altered in the absence of Brn3b and verified the results by real-time PCR and in situ hybridization. These genes fell into discrete sets that encoded transcription factors, proteins associated with neuron integrity and function, and secreted signaling molecules. We found that Brn3b influenced gene expression in non RGCs of the retina by controlling the expression of secreted signaling molecules such as sonic hedgehog and myostatin/Gdf8. At later developmental stages, additional alterations in gene expression were secondary consequences of aberrant RGC differentiation caused by the absence of Brn3b. Our results demonstrate that a small but crucial fraction of the RGC transcriptome is dependent on Brn3b. The Brn3b-dependent gene sets therefore provide a unique molecular signature for the developing retina.
Collapse
Affiliation(s)
- Xiuqian Mu
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mayer CM, Cai F, Cui H, Gillespie JMA, MacMillan M, Belsham DD. Analysis of a repressor region in the human neuropeptide Y gene that binds Oct-1 and Pbx-1 in GT1-7 neurons. Biochem Biophys Res Commun 2003; 307:847-54. [PMID: 12878188 DOI: 10.1016/s0006-291x(03)01289-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms dictating the developmental expression of individual neuropeptides within the hypothalamus have not yet been elucidated. In this paper we have studied the cis-acting elements involved in the repression of neuropeptide Y (NPY) gene expression in a gonadotropin-releasing hormone (GnRH) neuronal cell model, GT1-7 cells. Using transient transfection of the human NPY 5(') regulatory region into the GT1-7 neurons, we have found a repressor region located between -867 and -1078. DNase I footprint analysis of this region revealed three specific protein binding elements. Further analysis of the region between -942 and -922bp using electrophoretic mobility shift assays revealed that four different transcription factor-DNA complexes form with GT1-7 nuclear proteins, whereas only three complexes are detected using baby hamster kidney (BHK) cell nuclear extract. Mutation of the consensus binding sequence abolishes all complex formation on the -924/-922 oligonucleotide. Antibody supershift assays revealed that Oct-1 and Pbx-1 antibodies were able to eliminate the appearance of two specific complexes. Therefore we suggest that this region may be important for transcriptional repression of the NPY gene in a heterologous cell model, through complex, coordinate protein-protein interactions.
Collapse
Affiliation(s)
- Christopher M Mayer
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
14
|
Sze JY, Ruvkun G. Activity of the Caenorhabditis elegans UNC-86 POU transcription factor modulates olfactory sensitivity. Proc Natl Acad Sci U S A 2003; 100:9560-5. [PMID: 12883006 PMCID: PMC170957 DOI: 10.1073/pnas.1530752100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activity of transcription factors modulates several neural pathways that mediate complex behaviors. We describe here the role of the POU transcription factor UNC-86 in the olfactory behavior of Caenorhabditis elegans. unc-86-null mutants are defective in response to odor attractants but avoid odor repellents normally. Continuous UNC-86 activity is necessary for maintenance of odortaxis behavior; hyperactivation of UNC-86 by fusion to a VP16 activation domain dramatically enhances sensitivity to odor attractants and promotes odor-attractant adaptation. UNC-86 is not expressed in olfactory sensory neurons but is expressed throughout the life of the animal in the AIZ interneurons of the odorsensory pathway. We suggest that UNC-86 transcriptional activity regulates the expression of genes that mediate synaptic properties of AIZ and that hyperactive UNC-86::VP16 may enhance the expression of synaptic components to affect the capacity to analyze and process sensory information.
Collapse
Affiliation(s)
- Ji Ying Sze
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
15
|
Abstract
In order to fulfill their roles in neuroendocrine regulation, specific hypothalamic neurons are devoted to produce and deliver biologically active peptides to the pituitary gland. The biosynthesis and release of peptides are strictly controlled by afferents to these hypothalamic neurons. Cell-specific expression and biosynthetic regulation largely relies on transcription from the gene promoter for which the 5(')-flanking regions of the peptidergic genes contain essential elements. Cell-specific transcription factors employ these regulatory elements to exert their control over the expression of the peptidergic gene. This article explores the properties of regulatory elements of the major hypothalamic peptides, somatostatin, growth hormone-releasing hormone, gonadotropin-releasing hormone, thyrotropin-releasing hormone, corticotropin-releasing hormone, vasopressin and oxytocin, and the transcription factors acting on them. These transcription factors are often endpoints of signal transduction pathways that can be activated by neurotransmitters or steroid hormones. Others are essential to provide cell-specific expression of the peptidergic gene during development and mature regulation.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
16
|
Sze JY, Zhang S, Li J, Ruvkun G. The C. elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development 2002; 129:3901-11. [PMID: 12135927 DOI: 10.1242/dev.129.16.3901] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in developmental neurobiology is how a common neurotransmitter is specified in different neuronal types?. We describe cell-specific regulation of the serotonergic phenotype by the C. elegans POU-transcription factor UNC-86. We show that unc-86 regulates particular aspects of the terminal neuronal identity in four classes of serotonergic neurons, but that the development of the ADF serotonergic neurons is regulated by an UNC-86-independent program. In the NSM neurons, the role of unc-86 is confined in late differentiation; the neurons are generated but do not express genes necessary for serotonergic neurotransmission. unc-86-null mutations affect the expression in NSM of tph-1, which encodes the serotonin synthetic enzyme tryptophan hydroxylase, and cat-1, which encodes a vesicular transporter that loads serotonin into synaptic vesicles, suggesting that unc-86 coordinately regulates serotonin synthesis and packaging. However, unc-86-null mutations do not impair the ability of NSM to reuptake serotonin released from the ADF serotonergic chemosensory neurons and this serotonin reuptake is sensitive to the serotonin reuptake block drugs imipramine and fluoxetine, demonstrating that serotonin synthesis and reuptake is regulated by distinct factors. The NSM neurons in unc-86-null mutants also display abnormal neurite outgrowth, suggesting a role of unc-86 in regulating this process as well.
Collapse
Affiliation(s)
- Ji Ying Sze
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
17
|
Dennis JH, Budhram-Mahadeo V, Latchman DS. Functional interaction between Brn-3a and Src-1 co-activates Brn-3a-mediated transactivation. Biochem Biophys Res Commun 2002; 294:487-95. [PMID: 12051737 DOI: 10.1016/s0006-291x(02)00500-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Brn-3a POU domain transcription factor is able to regulate the transcription of promoters containing a Brn-3 response element via its POU domain. In addition, the POU domain of Brn-3a has been shown to functionally interact with the estrogen receptor and regulate transcription from estrogen responsive promoters. The steroid receptor coactivator, Src-1, enhances transcription with a variety of steroid receptors. Here we describe a functional interaction between Brn-3a and Src-1. In glutathione S-transferase pull-down assays Src-1 was shown to specifically interact with Brn-3 proteins. Moreover, Src-1 co-immunoprecipitated from intact cells with Brn-3a. The transactivation potential of the Brn-3a/Src-1 complex was tested on both the Brn-3 responsive SNAP-25 promoter and the estrogen responsive vitellogenin promoter, in each of two different cell lines, the neuronal ND7 cell line, and the kidney BHK21 cell line. Src-1 consistently and strongly potentiated the activation of Brn-3a on the SNAP promoter construct in both the ND7 and BHK21 cell lines. The vitellogenin promoter construct, however, was only weakly activated by the Brn-3/Src-1 complex in the ND7 cells and there was even less effect on this promoter in the BHK21 cells. These results suggest a functional role for Src-1 in enhancing Brn-3a mediated transactivation, seemingly independent of nuclear hormone receptors, thus broadening the transcriptional repertoire of both Brn-3a and Src-1.
Collapse
|
18
|
Abstract
Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways.
Collapse
Affiliation(s)
- Lukas Sommer
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hoenggerberg HPM E38, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
19
|
Erkman L, Yates PA, McLaughlin T, McEvilly RJ, Whisenhunt T, O'Connell SM, Krones AI, Kirby MA, Rapaport DH, Bermingham JR, O'Leary DD, Rosenfeld MG. A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 2000; 28:779-92. [PMID: 11163266 DOI: 10.1016/s0896-6273(00)00153-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axon pathfinding relies on the ability of the growth cone to detect and interpret guidance cues and to modulate cytoskeletal changes in response to these signals. We report that the murine POU domain transcription factor Brn-3.2 regulates pathfinding in retinal ganglion cell (RGC) axons at multiple points along their pathways and the establishment of topographic order in the superior colliculus. Using representational difference analysis, we identified Brn-3.2 gene targets likely to act on axon guidance at the levels of transcription, cell-cell interaction, and signal transduction, including the actin-binding LIM domain protein abLIM. We present evidence that abLIM plays a crucial role in RGC axon pathfinding, sharing functional similarity with its C. elegans homolog, UNC-115. Our findings provide insights into a Brn-3.2-directed hierarchical program linking signaling events to cytoskeletal changes required for axon pathfinding.
Collapse
Affiliation(s)
- L Erkman
- Howard Hughes Medical Institute and, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
During the evolution of eukaryotes, a new structural motif arose by the fusion of genes encoding two different types of DNA-binding domain. The family of transcription factors which contain this domain, the POU proteins, have come to play essential roles not only in the development of highly specialised tissues, such as complex neuronal systems, but also in more general cellular housekeeping. Members of the POU family recognise defined DNA sequences, and a well-studied subset have specificity for a motif known as the octamer element which is found in the promoter region of a variety of genes. The structurally bipartite POU domain has intrinsic conformational flexibility and this feature appears to confer functional diversity to this class of transcription factors. The POU domain for which we have the most structural data is from Oct-1, which binds an eight base-pair target and variants of this octamer site. The two-part DNA-binding domain partially encircles the DNA, with the sub-domains able to assume a variety of conformations, dependent on the DNA element. Crystallographic and biochemical studies have shown that the binary complex provides distinct platforms for the recruitment of specific regulators to control transcription. The conformability of the POU domain in moulding to DNA elements and co-regulators provides a mechanism for combinatorial assembly as well as allosteric molecular recognition. We review here the structure and function of the diverse POU proteins and discuss the role of the proteins' plasticity in recognition and transcriptional regulation.
Collapse
Affiliation(s)
- K Phillips
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
21
|
Burbach JP. Genetic pathways in the developmental specification of hypothalamic neuropeptide and midbrain catecholamine systems. Eur J Pharmacol 2000; 405:55-62. [PMID: 11033314 DOI: 10.1016/s0014-2999(00)00541-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neuropeptide concept concerns the diverse and broad physiological functions of neuropeptides in behavioral adaptation. Neuropeptides like vasopressin and corticotropin-releasing hormone can coordinate multiple brain functions due to the anatomical organization of the neurons producing them. The cell bodies are focally positioned in the hypothalamus and send long-reaching efferents to limbic and brainstem areas. Likewise, midbrain dopamine systems coordinate emotional behaviors and movement control by specific connectivity of neurons in the midbrain to limbic and striatal centers, respectively. The fundament of the functions of these signalling molecules is laid out during development when transmitter identity and connectivity are specified. This is a highly controlled process involving multiple transcription factors and growth factors acting together in genetic pathways. Here, the genetic pathways enrolling in developing vasopressin, corticotropin-releasing hormone, and midbrain dopamine neurons are discussed.
Collapse
Affiliation(s)
- J P Burbach
- Section of Molecular Neuroscience, Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University Medical Center, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Baumeister H, Meyerhof W. The POU domain transcription factor Tst-1 activates somatostatin receptor 1 gene expression in pancreatic beta -cells. J Biol Chem 2000; 275:28882-7. [PMID: 10866997 DOI: 10.1074/jbc.m002175200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide hormone somatostatin inhibits the release of insulin. The gene encoding somatostatin receptor 1 is expressed in pancreatic beta-cells and insulinoma RIN 1046-38 cells. In the present study the mechanisms underlying the regulation of the somatostatin receptor 1 gene in pancreatic beta-cells were investigated. Transient transfections of RIN 1046-38 cells with promoter/reporter gene constructs and footprint analysis revealed two regions, fp1 and fp2, that were necessary for the observed promoter activity. Mutagenesis of the fp2 region delineated the cis-acting element to the motif 5'-TTAATCATT-3'. The POU domain transcription factor Tst-1 was identified as trans-activator mediating the 5'-TTAATCATT-3' motif-dependent transcription in RIN 1046-38 cells and heterologous CV1 cells. Tst-1, known as a transcriptional regulator in keratinocytes, glial cells, and neurons, has been detected by immunohistochemistry in pancreatic islets. Altogether, we demonstrate Tst-1 as transcriptional regulator in pancreatic neuroendocrine cells.
Collapse
Affiliation(s)
- H Baumeister
- Abteilung Molekulare Genetik, Deutsches Institut für Ernährungsforschung und Universität Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Potsdam-Rehbrücke, Germany
| | | |
Collapse
|
23
|
Functional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene. J Neurosci 2000. [PMID: 10844029 DOI: 10.1523/jneurosci.20-12-04596.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During Drosophila embryogenesis the CNS midline cells have organizing activities that are required for proper elaboration of the axon scaffold and differentiation of neighboring neuroectodermal and mesodermal cells. CNS midline development is dependent on Single-minded (Sim), a basic-helix-loop-helix (bHLH)-PAS transcription factor. We show here that Fish-hook (Fish), a Sox HMG domain protein, and Drifter (Dfr), a POU domain protein, act in concert with Single-minded to control midline gene expression. single-minded, fish-hook, and drifter are all expressed in developing midline cells, and both loss- and gain-of-function assays revealed genetic interactions between these genes. The corresponding proteins bind to DNA sites present in a 1 kb midline enhancer from the slit gene and regulate the activity of this enhancer in cultured Drosophila Schneider line 2 cells. Fish-hook directly associates with the PAS domain of Single-minded and the POU domain of Drifter; the three proteins can together form a ternary complex in yeast. In addition, Fish can form homodimers and also associates with other bHLH-PAS and POU proteins. These results indicate that midline gene regulation involves the coordinate functions of three distinct types of transcription factors. Functional interactions between members of these protein families may be important for numerous developmental and physiological processes.
Collapse
|