1
|
Tappia PS, Shah AK, Dhalla NS. The Efficacy of Vitamins in the Prevention and Treatment of Cardiovascular Disease. Int J Mol Sci 2024; 25:9761. [PMID: 39337248 PMCID: PMC11432297 DOI: 10.3390/ijms25189761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Vitamins are known to affect the regulation of several biochemical and metabolic pathways that influence cellular function. Adequate amounts of both hydrophilic and lipophilic vitamins are required for maintaining normal cardiac and vascular function, but their deficiencies can contribute to cardiovascular abnormalities. In this regard, a deficiency in the lipophilic vitamins, such as vitamins A, D, and E, as well as in the hydrophilic vitamins, such as vitamin C and B, has been associated with suboptimal cardiovascular function, whereas additional intakes have been suggested to reduce the risk of atherosclerosis, hypertension, ischemic heart disease, arrhythmias, and heart failure. Here, we have attempted to describe the association between low vitamin status and cardiovascular disease, and to offer a discussion on the efficacy of vitamins. While there are inconsistencies in the impact of a deficiency in vitamins on the development of cardiovascular disease and the benefits associated with supplementation, this review proposes that specific vitamins may contribute to the prevention of cardiovascular disease in individuals at risk rather than serve as an adjunct therapy.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Anureet K Shah
- Department of Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2E 0J9, Canada
| |
Collapse
|
2
|
Pepe M, Napoli G, Carella MC, De Feo D, Tritto R, Guaricci AI, Forleo C, Ciccone MM. A Young Patient Presenting with Dilated Cardiomyopathy and Renal Infarction during Treatment with Isotretinoin: Mere Coincidence or Serious Side Effect of a Drug Commonly Used in Adolescence? Diagnostics (Basel) 2023; 13:diagnostics13091543. [PMID: 37174936 PMCID: PMC10177891 DOI: 10.3390/diagnostics13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Isotretinoin or 13-cis-retinoic acid (RA) is one of the most effective and widely used drugs for the treatment of severe acne vulgaris. Despite being deemed safe, no definite consensus has been reached on the cardiovascular risk of RA derivatives. We report a case of heart failure due to dilated cardiomyopathy (DCM) and concomitant renal infarction occurring after 5 months of isotretinoin use in a previously healthy 18-year-old male. The patient, with a history of acne vulgaris, presented to our emergency department with left iliac fossa pain and effort dyspnea. A trans-thoracic echocardiogram showed DCM and severely reduced left ventricle ejection fraction (LVEF: 29%). During hospitalization, a total body computed tomography (CT) showed an ischemic lesion in the left kidney. Ischemic, autoimmune, infective, and heritable causes of DCM were ruled out. Cardiac magnetic resonance (CMR) evidenced LV circumferential mid-wall late gadolinium enhancement. Heart failure therapy was promptly started and up-titrated, but only poor LVEF improvement was detected overtime. Our case aims to raise awareness on rare life-threatening cardiovascular events possibly associated with isotretinoin use. To the best of our knowledge, this is the first described case of renal thromboembolism and severe DCM leading to implantable cardioverter-defibrillator (ICD) implantation occurring during isotretinoin treatment.
Collapse
Affiliation(s)
- Martino Pepe
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Gianluigi Napoli
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maria Cristina Carella
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Daniele De Feo
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Rocco Tritto
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Andrea Igoren Guaricci
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Cinzia Forleo
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
3
|
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, Carleton BC, Ross CJD. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS One 2022; 17:e0276541. [PMID: 36331922 PMCID: PMC9635745 DOI: 10.1371/journal.pone.0276541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of anthracycline chemotherapeutics (e.g., doxorubicin) is limited by anthracycline-induced cardiotoxicity (ACT). A nonsynonymous variant (S427L) in the retinoic acid receptor-γ (RARG) gene has been associated with ACT. This variant causes reduced RARG activity, which is hypothesized to lead to increased susceptibility to ACT through reduced activation of the retinoic acid pathway. This study explored the effects of activating the retinoic acid pathway using a RAR-agonist, all-trans retinoic acid (ATRA), in human cardiomyocytes and mice treated with doxorubicin. In human cardiomyocytes, ATRA induced the gene expression of RARs (RARG, RARB) and repressed the expression of topoisomerase II enzyme genes (TOP2A, TOP2B), which encode for the molecular targets of anthracyclines and repressed downstream ACT response genes. Importantly, ATRA enhanced cell survival of human cardiomyocytes exposed to doxorubicin. The protective effect of ATRA was also observed in a mouse model (B6C3F1/J) of ACT, in which ATRA treatment improved heart function compared to doxorubicin-only treated mice. Histological analyses of the heart also indicated that ATRA treatment reduced the pathology associated with ACT. These findings provide additional evidence for the retinoic acid pathway's role in ACT and suggest that the RAR activator ATRA can modulate this pathway to reduce ACT.
Collapse
Affiliation(s)
- Jafar S. Hasbullah
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erandika P. Gunaretnam
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fudan Miao
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Ahuja N, Hiltabidle MS, Rajasekhar H, Voss S, Lu SZ, Barlow HR, Cowdin MA, Daniel E, Vaddaraju V, Anandakumar T, Black E, Cleaver O, Maynard C. Endothelial Cyp26b1 restrains murine heart valve growth during development. Dev Biol 2022; 486:81-95. [DOI: 10.1016/j.ydbio.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
|
6
|
Zhou Y, Liang ZS, Jin Y, Ding J, Huang T, Moore JH, Zheng ZJ, Huang J. Shared Genetic Architecture and Causal Relationship Between Asthma and Cardiovascular Diseases: A Large-Scale Cross-Trait Analysis. Front Genet 2022; 12:775591. [PMID: 35126453 PMCID: PMC8811262 DOI: 10.3389/fgene.2021.775591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence has suggested that there is a positive association between asthma and cardiovascular diseases (CVDs), implying a common architecture between them. However, the shared genetic architecture and causality of asthma and CVDs remain unclear. Methods: Based on the genome-wide association study (GWAS) summary statistics of recently published studies, our study examined the genetic correlation, shared genetic variants, and causal relationship between asthma (N = 127,669) and CVDs (N = 86,995–521,612). Statistical methods included high-definition likelihood (HDL), cross-trait meta-analyses of large-scale GWAS, transcriptome-wide association studies (TWAS), and Mendelian randomization (MR). Results: First, we observed a significant genetic correlation between asthma and heart failure (HF) (Rg = 0.278, P = 5 × 10−4). Through cross-trait analyses, we identified a total of 145 shared loci between asthma and HF. Fifteen novel loci were not previously reported for association with either asthma or HF. Second, we mapped these 145 loci to a total of 99 genes whose expressions are enriched in a broad spectrum of tissues, including the seminal vesicle, tonsil, appendix, spleen, skin, lymph nodes, breast, cervix and uterus, skeletal muscle, small intestine, lung, prostate, cardiac muscle, and liver. TWAS analysis identified five significant genes shared between asthma and HF in tissues from the hemic and immune system, digestive system, integumentary system, and nervous system. GSDMA, GSDMB, and ORMDL3 are statistically independent genetic effects from all shared TWAS genes between asthma and HF. Third, through MR analysis, genetic liability to asthma was significantly associated with heart failure at the Bonferroni-corrected significance level. The odds ratio (OR) is 1.07 [95% confidence interval (CI): 1.03–1.12; p = 1.31 × 10−3] per one-unit increase in loge odds of asthma. Conclusion: These findings provide strong evidence of genetic correlations and causal relationship between asthma and HF, suggesting a shared genetic architecture for these two diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Zhi-Sheng Liang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Yinzi Jin
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Jiayuan Ding
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Tao Huang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jason H. Moore
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jie Huang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
- *Correspondence: Jie Huang,
| |
Collapse
|
7
|
Drogalis-Kim D, Cheifetz I, Robbins N. Early nutritional influences of cardiovascular health. Expert Rev Cardiovasc Ther 2021; 19:1063-1073. [PMID: 34927523 DOI: 10.1080/14779072.2021.2021070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Increasing evidence shows that nutritional choices during children's formative years, including prenatally, impacts the development of adult onset cardiovascular diseases (CVDs), such as hypertension, myocardial infarction, or stroke. AREAS COVERED This literature review aims to synthesize the current body of evidence on nutritional factors, from conception through adolescence, which may influence a person's risk factors for future development of CVD. EXPERT OPINION Given the escalating healthcare costs associated with CVD, it is imperative that medical professionals and scientists remain steadfast in prioritizing and promoting early CVD prevention, even within the first few years of life. Though not the only contributing risk factor, diet is a modifiable risk factor and has been shown to have a profound impact on the reduction of cardiovascular morbidity and mortality in adult literature. Nutritional choices should be targeted on multiple levels: prenatally with the mother, individually with the patient, in conjunction with their family unit, and also within the broader community wherein they reside. Healthcare providers can play a key advocacy role for local and national food environment policy changes.
Collapse
Affiliation(s)
- Diana Drogalis-Kim
- Division of Pediatric Cardiology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Ira Cheifetz
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Divisions of Pediatric Cardiac Critical Care and Cardiology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Nathaniel Robbins
- Division of Pediatric Cardiology, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
8
|
Yang N, Parker LE, Yu J, Jones JW, Liu T, Papanicolaou KN, Talbot CC, Margulies KB, O’Rourke B, Kane MA, Foster DB. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021; 6:137593. [PMID: 33724958 PMCID: PMC8119182 DOI: 10.1172/jci.insight.137593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Collapse
Affiliation(s)
- Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren E. Parker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianshi Yu
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W. Jones
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
10
|
Draghici CC, Miulescu RG, Petca RC, Petca A, Dumitrașcu MC, Șandru F. Teratogenic effect of isotretinoin in both fertile females and males (Review). Exp Ther Med 2021; 21:534. [PMID: 33815607 DOI: 10.3892/etm.2021.9966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Isotretinoin is an oral derivate of vitamin A that has been used since 1982 for the treatment of multiple dermatologic conditions such as severe acne, rosacea, scarring alopecia, ichthyosis or non-melanoma skin cancer prophylaxis. The recommended dose is 0.5-1 mg/kg/day for a period of 4-6 months in sebaceous gland pathologies. There are many adverse effects caused by isotretinoin but by far the most important is the teratogenicity induced by this drug which is estimated to have a 20-35% risk to infants that are exposed to isotretinoin in utero and includes numerous congenital defects such as craniofacial defects, cardiovascular and neurological malformations or thymic disorders. Isotretinoin induces apoptosis and cell cycle arrest in human sebocytes, emphasizing these as processes associated with its teratogenic effect. The aim of this review is to analyze the latest literature data regarding the teratogenic effect of isotretinoin for both fertile females and males and its biological effects underlying the occurrence of congenital malformations under the influence of isotretinoin.
Collapse
Affiliation(s)
- Carmen-Cristina Draghici
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Physioplogy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Raluca-Gabriela Miulescu
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Farmacology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Răzvan-Cosmin Petca
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Urology, 'Prof. Dr. Theodor Burghele' Clinical Hospital, 061344 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Elias' Emergency Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florica Șandru
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Kyei Barffour I, Kyei Baah Kwarkoh R. GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome. Eur J Med Genet 2021; 64:104158. [PMID: 33548512 DOI: 10.1016/j.ejmg.2021.104158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 01/30/2021] [Indexed: 01/14/2023]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) Syndrome is a sex development disorder that affects 1 in every 4500 46, XX live births. At least a subset of MRKH syndrome is genetically related to which various candidate genes have been identified. The growth regulation by estrogen in breast cancer 1-like gene (GREB1L) is an androgen-regulated gene reported to be a co-activator of the retinoic acid receptor gene (RAR). Thus expression levels of GREB1L have implications on renal system cellular differentiation, morphogenesis, and homeostasis in vertebrates. Variants of GREB1L have been reported in familial and sporadic MRKH Syndrome and more importantly, in a three-generation family ofMRKH syndrome propositae. Much the same way, Mutants of GREB1L have also been identified in isolated bilateral renal agenesis and deafness both of which are extra-genital tract anomalies in MRKH type 2. Again, renal agenesis transgenic mice have been produced from an E13.5 CRISPR/cas9 GREB1L mutagenesis. Though no GREB1L mutation has been reported in cardiac malformation, there is evidence that GREB1L is involved in ventricular development. Here, we intorigate evidence that projects GREB1L as a candidate gene of Mayer-Rokitansky-Küster-Hauser Syndrome and propose that functional validation analysis to that effect is imparative.
Collapse
Affiliation(s)
- Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Roselind Kyei Baah Kwarkoh
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| |
Collapse
|
12
|
Yitsege G, Stokes BA, Sabatino JA, Sugrue KF, Banyai G, Paronett EM, Karpinski BA, Maynard TM, LaMantia A, Zohn IE. Variations in maternal vitamin A intake modifies phenotypes in a mouse model of 22q11.2 deletion syndrome. Birth Defects Res 2020; 112:1194-1208. [PMID: 32431076 PMCID: PMC7586978 DOI: 10.1002/bdr2.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin A regulates patterning of the pharyngeal arches, cranial nerves, and hindbrain that are essential for feeding and swallowing. In the LgDel mouse model of 22q11.2 deletion syndrome (22q11DS), morphogenesis of multiple structures involved in feeding and swallowing are dysmorphic. We asked whether changes in maternal dietary Vitamin A intake can modify cranial nerve, hindbrain and pharyngeal arch artery development in the embryo as well as lung pathology that can be a sign of aspiration dysphagia in LgDel pups. METHODS Three defined amounts of vitamin A (4, 10, and 16 IU/g) were provided in the maternal diet. Cranial nerve, hindbrain and pharyngeal arch artery development was evaluated in embryos and inflammation in the lungs of pups to determine the impact of altering maternal diet on these phenotypes. RESULTS Reduced maternal vitamin A intake improved whereas increased intake exacerbated lung inflammation in LgDel pups. These changes were accompanied by increased incidence and/or severity of pharyngeal arch artery and cranial nerve V (CN V) abnormalities in LgDel embryos as well as altered expression of Cyp26b1 in the hindbrain. CONCLUSIONS Our studies demonstrate that variations in maternal vitamin A intake can influence the incidence and severity of phenotypes in a mouse model 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Gelila Yitsege
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Bethany A. Stokes
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Julia A. Sabatino
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Kelsey F. Sugrue
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gabor Banyai
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Elizabeth M. Paronett
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Beverly A. Karpinski
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Thomas M. Maynard
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | - Anthony‐S. LaMantia
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Irene E. Zohn
- Institute for NeuroscienceThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- Center for Neuroscience ResearchChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Genetic MedicineChildren’s Research Institute, Children’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
13
|
Abstract
As the first organ to form and function in all vertebrates, the heart is crucial to development. Tightly-regulated levels of retinoic acid (RA) are critical for the establishment of the regulatory networks that drive normal cardiac development. Thus, the heart is an ideal organ to investigate RA signaling, with much work remaining to be done in this area. Herein, we highlight the role of RA signaling in vertebrate heart development and provide an overview of the field's inception, its current state, and in what directions it might progress so that it may yield fruitful insight for therapeutic applications within the domain of regenerative medicine.
Collapse
|
14
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
15
|
Ramírez-Cheyne J. Caracterización de la exposición prenatal de un grupo de niños de 0 a 5 años con cardiopatía congénita atendidos en Cali, Colombia. La importancia del ácido fólico. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n1.69885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Con una prevalencia estimada de 4 a 9 casos por cada 1 000 nacimientos, las cardiopatías congénitas (CC) tienen gran impacto en la morbimortalidad pediátrica. La variabilidad de prevalencia se ha atribuido a diferencias regionales en cuanto a factores genéticos, ambientales, entre otros.Objetivo. Obtener datos sobre variables de exposición prenatales de pacientes con CC atendidos en Cali, Colombia.Materiales y métodos. Se aplicó una encuesta a las madres de 30 pacientes de 0 a 5 años con CC atendidos en 2 clínicas de alta complejidad (tercer y cuarto nivel) de Cali. La encuesta estaba orientada a múltiples variables de exposición y la información recolectada fue digitalizada en una base de datos en el programa Microsoft Excel para hacer un análisis estadístico descriptivo.Resultados. Se evidenciaron varias exposiciones potencialmente asociadas a CC, tales como índice de masa corporal alterado, administración inadecuada de suplementos de ácido fólico y exposición a vitamina A, rayos X, alcohol y cigarrillo.Conclusión. El consumo insuficiente o inoportuno de ácido fólico podría facilitar la generación de efectos teratogénicos de sustancias oxidantes. Por lo tanto, se debe educar a las mujeres de Cali sobre la importancia de una ingesta adecuada de ácido fólico y sobre los riesgos de la exposición a agentes teratogénicos durante el embarazo para reducir las tasas de incidencia de CC en esta ciudad.
Collapse
|
16
|
Findley AS, Richards AL, Petrini C, Alazizi A, Doman E, Shanku AG, Davis GO, Hauff N, Sorokin Y, Wen X, Pique-Regi R, Luca F. Interpreting Coronary Artery Disease Risk Through Gene-Environment Interactions in Gene Regulation. Genetics 2019; 213:651-663. [PMID: 31492806 PMCID: PMC6781890 DOI: 10.1534/genetics.119.302419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
GWAS and eQTL studies identified thousands of genetic variants associated with complex traits and gene expression. Despite the important role of environmental exposures in complex traits, only a limited number of environmental factors were measured in these studies. Measuring molecular phenotypes in tightly controlled cellular environments provides a more tractable setting to study gene-environment interactions in the absence of other confounding variables. We performed RNA-seq and ATAC-seq in endothelial cells exposed to retinoic acid, dexamethasone, caffeine, and selenium to model genetic and environmental effects on gene regulation in the vascular endothelium-a common site of pathology in cardiovascular disease. We found that genes near regions of differentially accessible chromatin were more likely to be differentially expressed [OR = (3.41, 6.52), [Formula: see text]]. Furthermore, we confirmed that environment-specific changes in transcription factor binding are a key mechanism for cellular response to environmental stimuli. Single nucleotide polymorphisms (SNPs) in these transcription response factor footprints for dexamethasone, caffeine, and retinoic acid were enriched in GTEx eQTLs from artery tissues, indicating that these environmental conditions are latently present in GTEx samples. Additionally, SNPs in footprints for response factors in caffeine are enriched in colocalized eQTLs for coronary artery disease (CAD), suggesting a role for caffeine in CAD risk. By combining GWAS, eQTLs, and response genes, we annotated environmental components that can increase or decrease disease risk through changes in gene expression in 43 genes. Interestingly, each treatment may amplify or buffer genetic risk for CAD, depending on the particular SNP or gene considered.
Collapse
Affiliation(s)
- Anthony S Findley
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Cristiano Petrini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Elizabeth Doman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Alexander G Shanku
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Gordon O Davis
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Nancy Hauff
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201
| | - Yoram Sorokin
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
17
|
Kowalski TW, Dupont ÁDV, Rengel BD, Sgarioni E, Gomes JDA, Fraga LR, Schuler-Faccini L, Vianna FSL. Assembling systems biology, embryo development and teratogenesis: What do we know so far and where to go next? Reprod Toxicol 2019; 88:67-75. [PMID: 31362043 DOI: 10.1016/j.reprotox.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023]
Abstract
The recognition of molecular mechanisms of a teratogen can provide insights to understand its embryopathy, and later to plan strategies for the prevention of new exposures. In this context, experimental research is the most invested approach. Despite its relevance, these assays require financial and time investment. Hence, the evaluation of such mechanisms through systems biology rise as an alternative for this conventional methodology. Systems biology is an integrative field that connects experimental and computational analyses, assembling interaction networks between genes, proteins, and even teratogens. It is a valid strategy to generate new hypotheses, that can later be confirmed in experimental assays. Here, we present a literature review of the application of systems biology in embryo development and teratogenesis studies. We provide a glance at the data available in public databases, and evaluate common mechanisms between different teratogens. Finally, we discuss the advantages of using this strategy in future teratogenesis researches.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Ágata de Vargas Dupont
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Sgarioni
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Group of Post-Graduation Research, GPPG, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
18
|
Sugrue KF, Zohn IE. Reduced maternal vitamin A status increases the incidence of normal aortic arch variants. Genesis 2019; 57:e23326. [PMID: 31299141 DOI: 10.1002/dvg.23326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
While common in the general population, the developmental origins of "normal" anatomic variants of the aortic arch remain unknown. Aortic arch development begins with the establishment of the second heart field (SHF) that contributes to the pharyngeal arch arteries (PAAs). The PAAs remodel during subsequent development to form the mature aortic arch and arch vessels. Retinoic acid signaling involving the biologically active metabolite of vitamin A, plays a key role in multiple steps of this process. Recent work from our laboratory indicates that the E3 ubiquitin ligase Hectd1 is required for full activation of retinoic acid signaling during cardiac development. Furthermore, our study suggested that mild alterations in retinoic acid signaling combined with reduced gene dosage of Hectd1, results in a benign aortic arch variant where the transverse aortic arch is shortened between the brachiocephalic and left common carotid arteries. These abnormalities are preceded by hypoplasia of the fourth PAA. To further explore this interaction, we investigate whether reduced maternal dietary vitamin A intake can similarly influence aortic arch development. Our findings indicate that the incidence of hypoplastic fourth PAAs, as well as the incidence of shortened transverse arch are increased with reduced maternal vitamin A intake during pregnancy. These studies provide new insights as to the developmental origins of these benign aortic arch variants.
Collapse
Affiliation(s)
- Kelsey F Sugrue
- Institute for Biomedical Sciences, The George Washington University, Washington, District of Columbia.,Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia.,Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia.,Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
19
|
All-trans retinoic acid attenuates isoproterenol-induced cardiac dysfunction through Crabp1 to dampen CaMKII activation. Eur J Pharmacol 2019; 858:172485. [PMID: 31238067 DOI: 10.1016/j.ejphar.2019.172485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Inhibiting Ca2+/calmodulin-dependent protein kinase II (CaMKII) over activation can decrease detrimental cardiac remodeling that leads to dilated cardiomyopathy, cell death, and heart failure. We previously showed that cellular retinoic acid binding protein 1 (Crabp1) knockout mice (CKO) exhibited a more severe isoproterenol (ISO)-induced heart failure and cardiac remodeling phenotype with elevated CaMKII activity in the heart, suggesting a cardiac-protective function of Crabp1 through modulating CaMKII activity. Here we examine whether the highly selective, endogenous ligand of Crabp1, all-trans retinoic acid (RA), can attenuate ISO-induced cardiac dysfunction. We also examine if this attenuation involves Crabp1 and the inhibition of CaMKII. RA pre-treatment followed by ISO challenge effectively restores ejection fraction in wild type, but not in CKO mice. This is correlated with reduced CaMKII auto-phosphorylation at T287 and phospholamban phosphorylation at T17, a substrate of CaMKII. RA pretreatment also reduces ISO-induced apoptosis in WT heart. Cell culture experiments confirm that RA inhibits CaMKII phosphorylation, which requires Crabp1. Molecular data reveal interaction of Crabp1 with the kinase and regulatory domains of CaMKII, and that RA selectively enhances Crabp1 interaction with the regulatory domain, suggesting a potential regulatory role for holo-Crabp1 in CaMKII activation. Together, these data demonstrate that RA bound Crabp1 plays a protective role in β-adrenergic stimulated cardiac remodeling, which is partially attributed to its dampening CaMKII activation. Targeting Crabp1 provides a potentially new therapeutic strategy for managing heart diseases.
Collapse
|
20
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Qu X, Harmelink C, Baldwin HS. Tie2 regulates endocardial sprouting and myocardial trabeculation. JCI Insight 2019; 5:96002. [PMID: 31112136 DOI: 10.1172/jci.insight.96002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ang1-Tie2 pathway is required for normal vascular development, but its molecular effectors are not well-defined during cardiac ontogeny. Here we show that endocardial specific attenuation of Tie2 results in mid-gestation lethality due to heart defects associated with a hyperplastic but simplified trabecular meshwork (fewer but thicker trabeculae). Reduced proliferation and production of endocardial cells (ECs) following endocardial loss of Tie2 results in decreased endocardial sprouting required for trabecular assembly and extension. The hyperplastic trabeculae result from enhanced proliferation of trabecular cardiomyocyte (CMs), which is associated with upregulation of Bmp10, increased retinoic acid (RA) signaling, and Erk1/2 hyperphosphorylation in the myocardium. Intriguingly, myocardial phenotypes in Tie2-cko hearts could be partially rescued by inhibiting in utero RA signaling with pan-retinoic acid receptor antagonist BMS493. These findings reveal two complimentary functions of endocardial Tie2 during ventricular chamber formation: ensuring normal trabeculation by supporting EC proliferation and sprouting, and preventing hypertrabeculation via suppression of RA signaling in trabecular CMs.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology) and
| | | | - H Scott Baldwin
- Department of Pediatrics (Cardiology) and.,Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
23
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
24
|
Sugrue KF, Sarkar AA, Leatherbury L, Zohn IE. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch. Dis Model Mech 2019; 12:dmm.036491. [PMID: 30578278 PMCID: PMC6361158 DOI: 10.1242/dmm.036491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
The development of the aortic arch is a complex process that involves remodeling of the bilaterally symmetrical pharyngeal arch arteries (PAAs) into the mature asymmetric aortic arch. Retinoic acid signaling is a key regulator of this process by directing patterning of the second heart field (SHF), formation of the caudal PAAs and subsequent remodeling of the PAAs to form the aortic arch. Here, we identify the HECTD1 ubiquitin ligase as a novel modulator of retinoic acid signaling during this process. Hectd1opm/opm homozygous mutant embryos show a spectrum of aortic arch abnormalities that occur following loss of 4th PAAs and increased SHF marker expression. This sequence of defects is similar to phenotypes observed in mutant mouse models with reduced retinoic acid signaling. Importantly, HECTD1 binds to and influences ubiquitination of the retinoic acid receptor, alpha (RARA). Furthermore, reduced activation of a retinoic acid response element (RARE) reporter is detected in Hectd1 mutant cells and embryos. Interestingly, Hectd1opm/+ heterozygous embryos exhibit reduced retinoic acid signaling, along with intermediate increased expression of SHF markers; however, heterozygotes show normal development of the aortic arch. Decreasing retinoic acid synthesis by reducing Raldh2 (also known as Aldh1a2) gene dosage in Hectd1opm/+ heterozygous embryos reveals a genetic interaction. Double heterozygous embryos show hypoplasia of the 4th PAA and increased incidence of a benign aortic arch variant, in which the transverse arch between the brachiocephalic and left common carotid arteries is shortened. Together, our data establish that HECTD1 is a novel regulator of retinoic acid signaling required for proper aortic arch development. Editor's choice: The HECTD1 ubiquitin ligase is a novel modulator of retinoic acid signaling during aortic arch development and provides a model for complex interactions underlying variations in aortic arch development.
Collapse
Affiliation(s)
- Kelsey F Sugrue
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Anjali A Sarkar
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Linda Leatherbury
- Children's National Heart Institute, Children's National Health System, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| |
Collapse
|
25
|
Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab 2019; 126:23-29. [PMID: 30600150 DOI: 10.1016/j.ymgme.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
Cardiac malformations (CVMs) are a leading cause of infant morbidity and mortality. CVMs are particularly prevalent when the developing fetus is exposed to high levels of phenylalanine in-utero in mothers with Phenylketonuria. Yet, elucidating the underlying molecular mechanism leading to CVMs has proven difficult. In this study we used RNA-Seq to investigate an avian model of MPKU and establish differential gene expression (DEG) characteristics of the early developmental stages HH10, 12, and 14. In total, we identified 633 significantly differentially expressed genes across stages HH10, 12, and 14. As expected, functional annotation of significant DEGs identified associations seen in clinical phenotypes of MPKU including CVMs, congenital heart defects, craniofacial anomalies, central nervous system defects, and growth anomalies. Additionally, there was an overrepresentation of genes involved in cardiac muscle contraction, adrenergic signaling in cardiomyocytes, migration, proliferation, metabolism, and cell survival. Strikingly, we identified significant changes in expression with multiple genes involved in Retinoic Acid (RA) metabolism and downstream targets. Using qRTPCR, we validated these findings and identified a total of 42 genes within the RA pathway that are differentially expressed. Here, we report the first elucidation of the molecular mechanisms of cardiovascular malformations in MPKU conducted at early developmental timepoints. We provide evidence suggesting a link between PHE exposure and the alteration of RA pathway. These results are promising and offer novel findings associated with congenital heart defects in MPKU.
Collapse
Affiliation(s)
- Jamie N Watson
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| | - Nikki J Seagraves
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| |
Collapse
|
26
|
Liang X, Chen M, Qu P, Hao G, Huang Y, Chen J, Li T. The Association of Vitamin A and Vitamin D with Hypertension in Children: A Case-Control Study. Int J Hypertens 2018; 2018:9295147. [PMID: 30631592 PMCID: PMC6304547 DOI: 10.1155/2018/9295147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of hypertension in children increases rapidly. This paper is to investigate the association of vitamin A and serum 25(OH)D level with hypertension and to explore the risk factors of hypertension in children. METHODS 164 children (age: 6-12 years, females: 49.39%) were included in this case-control study. The serum vitamin A and serum 25(OH)D level, the transcription level of RARs and RXRs, 25(OH)D receptor, and the retinol acyltransferase (LRAT), an indicator of vitamin A storage function, were measured. RESULTS The serum vitamin A level in hypertensive subjects was not significantly different compared to control, but the serum 25(OH)D level was significantly lower in hypertensive subjects compared to control (38.22±12.00umol/L vs. 43.28±12.33 umol/L, P=0.02). The transcription levels of RARα, RARβ, and RARγ were not significantly different between the two groups; but the LRAT was lower in the hypertensive group than that in the control (P<0.001). Compared with control group, the level of 25(OH)D receptor was lower in hypertension children (P=0.003). Logistic regression model showed that LRAT, HDL, and breastfed duration were negatively associated with blood pressure, and waist circumference was positively associated with blood pressure. CONCLUSIONS The LRAT, serum 25(OH)D, and 25(OH)D receptor were significantly associated with blood pressure level, and both breastfed and HDL-C were independent protective factors of blood pressure level in children.
Collapse
Affiliation(s)
- Xiaohua Liang
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Min Chen
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ping Qu
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Guang Hao
- Augusta University, Georgia Prevention Institute, Medical College of Georgia, Augusta, GA, USA
| | - Yisong Huang
- Augusta University, Georgia Prevention Institute, Medical College of Georgia, Augusta, GA, USA
| | - Jie Chen
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
27
|
Accogli A, Traverso M, Madia F, Bellini T, Vari MS, Pinto F, Capra V. A novel Xp22.13 microdeletion in Nance-Horan syndrome. Birth Defects Res 2017; 109:866-868. [PMID: 28464487 DOI: 10.1002/bdr2.1032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder characterized by congenital cataract, dental anomalies and facial dysmorphisms. Notably, up to 30% of NHS patients have intellectual disability and a few patients have been reported to have congenital cardiac defects. Nance-Horan syndrome is caused by mutations in the NHS gene that is highly expressed in the midbrain, retina, lens, tooth, and is conserved across vertebrate species. Although most pathogenic mutations are nonsense mutations, a few genomic rearrangements involving NHS locus have been reported, suggesting a possible pathogenic role of the flanking genes. METHODS Here, we report a microdeletion of 170,6 Kb at Xp22.13 (17.733.948-17.904.576) (GRCh37/hg19), detected by array-based comparative genomic hybridization in an Italian boy with NHS syndrome. RESULTS The microdeletion harbors the NHS, SCLML1, and RAI2 genes and results in a phenotype consistent with NSH syndrome and developmental delay. CONCLUSION We compare our case with the previous Xp22.13 microdeletions and discuss the possible pathogenetic role of the flanking genes. Birth Defects Research 109:866-868, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Accogli
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | - Monica Traverso
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | | | - Tommaso Bellini
- Istituto G. Gaslini, Genova, Italy.,Università degli Studi di Genova, Italy
| | | | | | | |
Collapse
|
28
|
Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biol 2016; 14:e2000504. [PMID: 27893754 PMCID: PMC5125711 DOI: 10.1371/journal.pbio.2000504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity. Retinoic acid (RA) is the most active metabolic product of vitamin A. The embryonic heart is particularly sensitive to inappropriate RA levels, with cardiac outflow tract (OFT) defects among the most common RA-induced malformations. However, the mechanisms underlying these RA-induced defects are not understood. Cyp26 enzymes facilitate degradation of RA and thus are required to limit RA levels in early development. Here, we present evidence that loss of Cyp26 enzymes induces cardiac OFT defects through two mechanisms. First, we find that Cyp26-deficient zebrafish embryos fail to add later-differentiating ventricular cardiac progenitors to the OFT, with some of these progenitors instead contributing to the nearby arch arteries. Second, Cyp26-deficient embryos cannot maintain the integrity of the nascent heart tube, with ventricular cells within the heart tube losing their polarity and being extruded. Our data indicate that excess expression of matrix metalloproteinase 9, an enzyme that degrades the extracellular matrix, underlies both the cardiac progenitor addition and heart tube integrity defects seen in Cyp26-deficient embryos. Our findings highlight perturbation of the extracellular matrix as a major cause of RA-induced cardiac OFT defects that specifically disrupt ventricular development at later stages than previously appreciated.
Collapse
|
29
|
Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci U S A 2016; 113:12360-12367. [PMID: 27791185 DOI: 10.1073/pnas.1615540113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translational control of gene expression plays a key role during the early phases of embryonic development. Here we describe a transcriptional regulator of mouse embryonic stem cells (mESCs), Yin-yang 2 (YY2), that is controlled by the translation inhibitors, Eukaryotic initiation factor 4E-binding proteins (4E-BPs). YY2 plays a critical role in regulating mESC functions through control of key pluripotency factors, including Octamer-binding protein 4 (Oct4) and Estrogen-related receptor-β (Esrrb). Importantly, overexpression of YY2 directs the differentiation of mESCs into cardiovascular lineages. We show that the splicing regulator Polypyrimidine tract-binding protein 1 (PTBP1) promotes the retention of an intron in the 5'-UTR of Yy2 mRNA that confers sensitivity to 4E-BP-mediated translational suppression. Thus, we conclude that YY2 is a major regulator of mESC self-renewal and lineage commitment and document a multilayer regulatory mechanism that controls its expression.
Collapse
|
30
|
Asson-Batres MA, Ryzhov S, Tikhomirov O, Duarte CW, Congdon CB, Lessard CR, McFarland S, Rochette-Egly C, Tran TL, Galindo CL, Favreau-Lessard AJ, Sawyer DB. Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores. Am J Physiol Heart Circ Physiol 2016; 310:H1773-89. [PMID: 27084391 PMCID: PMC4935514 DOI: 10.1152/ajpheart.00887.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/02/2016] [Indexed: 01/03/2023]
Abstract
To determine whether hepatic depletion of vitamin A (VA) stores has an effect on the postnatal heart, studies were carried out with mice lacking liver retinyl ester stores fed either a VA-sufficient (LRVAS) or VA-deficient (LRVAD) diet (to deplete circulating retinol and extrahepatic stores of retinyl esters). There were no observable differences in the weights or gross morphology of hearts from LRVAS or LRVAD mice relative to sex-matched, age-matched, and genetically matched wild-type (WT) controls fed the VAS diet (WTVAS), but changes in the transcription of functionally relevant genes were consistent with a state of VAD in LRVAS and LRVAD ventricles. In silico analysis revealed that 58/67 differentially expressed transcripts identified in a microarray screen are products of genes that have DNA retinoic acid response elements. Flow cytometric analysis revealed a significant and cell-specific increase in the number of proliferating Sca-1 cardiac progenitor cells in LRVAS animals relative to WTVAS controls. Before myocardial infarction, LRVAS and WTVAS mice had similar cardiac systolic function and structure, as measured by echocardiography, but, unexpectedly, repeat echocardiography demonstrated that LRVAS mice had less adverse remodeling by 1 wk after myocardial infarction. Overall, the results demonstrate that the adult heart is responsive to retinoids, and, most notably, reducing hepatic VA stores (while maintaining circulating levels of VA) impacts ventricular gene expression profiles, progenitor cell numbers, and response to injury.
Collapse
Affiliation(s)
- Mary Ann Asson-Batres
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee; Maine Medical Center Research Institute, Scarborough, Maine;
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, Maine
| | | | | | - Clare Bates Congdon
- Maine Medical Center Research Institute, Scarborough, Maine; Bowdoin College, Brunswick, Maine
| | | | | | - Cecile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, CNRS, Université de Strasbourg, Illkirch Cedex, France; and
| | - Truc-Linh Tran
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | |
Collapse
|
31
|
El Robrini N, Etchevers HC, Ryckebüsch L, Faure E, Eudes N, Niederreither K, Zaffran S, Bertrand N. Cardiac outflow morphogenesis depends on effects of retinoic acid signaling on multiple cell lineages. Dev Dyn 2015; 245:388-401. [PMID: 26442704 DOI: 10.1002/dvdy.24357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/20/2015] [Accepted: 09/27/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Retinoic acid (RA), the bioactive derivative of vitamin A, is essential for vertebrate heart development. Both excess and reduced RA signaling lead to cardiovascular malformations affecting the outflow tract (OFT). To address the cellular mechanisms underlying the effects of RA signaling during OFT morphogenesis, we used transient maternal RA supplementation to rescue the early lethality resulting from inactivation of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene. RESULTS By embryonic day 13.5, all rescued Raldh2(-/-) hearts exhibit severe, reproducible OFT septation defects, although wild-type and Raldh2(+/-) littermates have normal hearts. Cardiac neural crest cells (cNCC) were present in OFT cushions of Raldh2(-/-) mutant embryos but ectopically located in the periphery of the endocardial cushions, rather than immediately underlying the endocardium. Excess mesenchyme was generated by Raldh2(-/-) mutant endocardium, which displaced cNCC derivatives from their subendocardial, medial position. CONCLUSIONS RA signaling affects not only cNCC numbers but also their position relative to endocardial mesenchyme during the septation process. Our study shows that inappropriate coordination between the different cell types of the OFT perturbs its morphogenesis and leads to a severe congenital heart defect, persistent truncus arteriosus.
Collapse
Affiliation(s)
- Nicolas El Robrini
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Heather C Etchevers
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Lucile Ryckebüsch
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Emilie Faure
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Nathalie Eudes
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Karen Niederreither
- CNRS UMR 7104, INSERM U964, IGBMC, University of Strasbourg, Illkirch, France
| | - Stéphane Zaffran
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Nicolas Bertrand
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| |
Collapse
|
32
|
D’Aniello E, Ravisankar P, Waxman JS. Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis. PLoS One 2015; 10:e0138588. [PMID: 26394147 PMCID: PMC4578954 DOI: 10.1371/journal.pone.0138588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/01/2015] [Indexed: 01/15/2023] Open
Abstract
The first step in the conversion of vitamin A into retinoic acid (RA) in embryos requires retinol dehydrogenases (RDHs). Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos.
Collapse
Affiliation(s)
- Enrico D’Aniello
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Padmapriyadarshini Ravisankar
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Joshua S. Waxman
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
33
|
D'Aniello E, Waxman JS. Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev Dyn 2015; 244:513-23. [PMID: 25418431 DOI: 10.1002/dvdy.24232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/07/2022] Open
Abstract
Appropriate levels of retinoic acid (RA) signaling are critical for normal heart development in vertebrates. A fascinating property of RA signaling is the thoroughness by which positive and negative feedback are employed to promote proper embryonic RA levels. In the present short review, we first cover the advancement of hypotheses regarding the impact of RA signaling on cardiac specification. We then discuss our current understanding of RA signaling feedback mechanisms and the implications of recent studies, which have indicated improperly maintained RA signaling feedback can be a contributing factor to developmental malformations.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | |
Collapse
|
34
|
Lee SA, Jiang H, Trent CM, Yuen JJ, Narayanasamy S, Curley RW, Harrison EH, Goldberg IJ, Maurer MS, Blaner WS. Cardiac dysfunction in β-carotene-15,15'-dioxygenase-deficient mice is associated with altered retinoid and lipid metabolism. Am J Physiol Heart Circ Physiol 2014; 307:H1675-84. [PMID: 25260612 DOI: 10.1152/ajpheart.00548.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary carotenoids like β-carotene are converted within the body either to retinoid, via β-carotene-15,15'-dioxygenase (BCO1), or to β-apo-carotenoids, via β-carotene-9',10'-oxygenase 2. Some β-apo-carotenoids are potent antagonists of retinoic acid receptor (RAR)-mediated transcriptional regulation, which is required to ensure normal heart development and functions. We established liquid chromatography tandem mass spectrometery methods for measuring concentrations of 10 β-apo-carotenoids in mouse plasma, liver, and heart and assessed how these are influenced by Bco1 deficiency and β-carotene intake. Surprisingly, Bco1(-/-) mice had an increase in heart levels of retinol, nonesterified fatty acids, and ceramides and a decrease in heart triglycerides. These lipid changes were accompanied by elevations in levels of genes important to retinoid metabolism, specifically retinol dehydrogenase 10 and retinol-binding protein 4, as well as genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-γ, lipoprotein lipase, Cd36, stearoyl-CoA desaturase 1, and fatty acid synthase. We also obtained evidence of compromised heart function, as assessed by two-dimensional echocardiography, in Bco1(-/-) mice. However, the total absence of Bco1 did not substantially affect β-apo-carotenoid concentrations in the heart. β-Carotene administration to matched Bco1(-/-) and wild-type mice elevated total β-apo-carotenal levels in the heart, liver, and plasma and total β-apo-carotenoic acid levels in the liver. Thus, BCO1 modulates heart metabolism and function, possibly by altering levels of cofactors required for the actions of nuclear hormone receptors.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Chad M Trent
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jason J Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sureshbabu Narayanasamy
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Robert W Curley
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and
| | - Earl H Harrison
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Ira J Goldberg
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mathew S Maurer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York;
| |
Collapse
|
35
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
36
|
Maternal supplementation with vitamin A or β-carotene and cardiovascular risk factors among pre-adolescent children in rural Nepal. J Dev Orig Health Dis 2014; 1:262-70. [PMID: 25141874 DOI: 10.1017/s2040174410000255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vitamin A plays an important role in fetal renal and cardiovascular development, yet there has been little research on its effects on cardiovascular risk factors later in childhood. To examine this question, we followed the children of women who had been participants in a cluster-randomized, double blind, placebo-controlled trial of weekly supplementation with 7000 μg retinol equivalents of preformed vitamin A or 42 mg of β-carotene from 1994 to 1997 in rural Nepal. Women received their assigned supplements before, during and after pregnancy. Over a study period of 3 years, 17,531 infants were born to women enrolled in the trial. In 2006-2008, we revisited and assessed 13,118 children aged 9-13 years to examine the impact of maternal supplementation on early biomarkers of chronic disease. Blood pressure was measured in the entire sample of children. In a subsample of 1390 children, venous blood was collected for plasma glucose, Hb1Ac and lipids and a morning urine specimen was collected to measure the ratio of microalbumin/creatinine. Detailed anthropometry was also conducted in the subsample. The mean ± s.d. systolic and diastolic blood pressure was 97.2 ± 8.2 and 64.6 ± 8.5 mm Hg, respectively, and about 5.0% had high-blood pressure (⩾120/80 mm Hg). The prevalence of microalbuminuria (⩾30 mg/g creatinine) was also low at 4.8%. There were no differences in blood pressure or the risk of microalbuminuria between supplement groups. There were also no group differences in fasting glucose, glycated hemoglobin, triglycerides or cholesterol. Maternal supplementation with vitamin A or β-carotene had no overall impact on cardiovascular risk factors in this population at pre-adolescent age in rural Nepal.
Collapse
|
37
|
Manolescu DC, Jankowski M, Danalache BA, Wang D, Broderick TL, Chiasson JL, Gutkowska J. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice. Appl Physiol Nutr Metab 2014; 39:1127-36. [PMID: 25017112 DOI: 10.1139/apnm-2014-0005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In hypertensive rodents, retinoic acid (RA) prevents adverse cardiac remodelling and improves myocardial infarction outcome, but its role in obesity-related changes of cardiac tissue are unclear. We hypothesized that all-trans RA (ATRA) treatment will improve the cardioprotective oxytocin-natriuretic peptides (OT-NP) system, preventing apoptosis and collagen accumulation in hearts of ob/ob mice, a mouse model of obesity and insulin resistance. Female 9-week-old B6.V-Lep/J ob/ob mice (n = 16) were divided into 2 groups: 1 group (n = 8) treated with 100 μg of ATRA dissolved in 100 μL of corn oil (vehicle) delivered daily (∼2 μg·g body weight(-1)·day(-1)) by stomach intubation for 16 days, and 1 group (n = 8) that received the vehicle alone. A group of nonobese littermate mice (n = 9) served as controls. Ob/ob mice exhibited obesity, hyperglycaemia, and downregulation of the cardiac OT-NP system, including the mRNA for the transcription factor GATA4, OT receptor and brain NP, and the protein expression for endothelial nitric oxide synthase. Hearts from ob/ob mice also demonstrated increased apoptosis and collagen accumulation. ATRA treatment induced weight loss and decreased adipocytes diameter in the visceral fat, thus reducing visceral obesity, which is associated with a high risk for cardiovascular disease. RA treatment was associated with a reduction in hyperglycemia and a normalization of the OT-NP system's expression in the hearts of ob/ob mice. Furthermore, ATRA treatment prevented apoptosis and collagen accumulation in hearts of ob/ob mice. The present study indicates that ATRA treatment was effective in restoring the cardioprotective OT-NP system and in preventing abnormal cardiac remodelling in the ob/ob mice.
Collapse
Affiliation(s)
- Daniel-Constantin Manolescu
- a Laboratory of Nutrition and Cancer, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Rydeen AB, Waxman JS. Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm. Development 2014; 141:1638-48. [PMID: 24667328 DOI: 10.1242/dev.105874] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal heart development requires appropriate levels of retinoic acid (RA) signaling. RA levels in embryos are dampened by Cyp26 enzymes, which metabolize RA into easily degraded derivatives. Loss of Cyp26 function in humans is associated with numerous developmental syndromes that include cardiovascular defects. Although previous studies have shown that Cyp26-deficient vertebrate models also have cardiovascular defects, the mechanisms underlying these defects are not understood. Here, we found that in zebrafish, two Cyp26 enzymes, Cyp26a1 and Cyp26c1, are expressed in the anterior lateral plate mesoderm (ALPM) and predominantly overlap with vascular progenitors (VPs). Although singular knockdown of Cyp26a1 or Cyp26c1 does not overtly affect cardiovascular development, double Cyp26a1 and Cyp26c1 (referred to here as Cyp26)-deficient embryos have increased atrial cells and reduced cranial vasculature cells. Examining the ALPM using lineage tracing indicated that in Cyp26-deficient embryos the myocardial progenitor field contains excess atrial progenitors and is shifted anteriorly into a region that normally solely gives rise to VPs. Although Cyp26 expression partially overlaps with VPs in the ALPM, we found that Cyp26 enzymes largely act cell non-autonomously to promote appropriate cardiovascular development. Our results suggest that localized expression of Cyp26 enzymes cell non-autonomously defines the boundaries between the cardiac and VP fields within the ALPM through regulating RA levels, which ensures a proper balance of myocardial and endothelial lineages. Our study provides novel insight into the earliest consequences of Cyp26 deficiency that underlie cardiovascular malformations in vertebrate embryos.
Collapse
Affiliation(s)
- Ariel B Rydeen
- The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
39
|
Kim BJ, Zaveri HP, Shchelochkov OA, Yu Z, Hernández-García A, Seymour ML, Oghalai JS, Pereira FA, Stockton DW, Justice MJ, Lee B, Scott DA. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions. PLoS One 2013; 8:e57460. [PMID: 23451234 PMCID: PMC3581587 DOI: 10.1371/journal.pone.0057460] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/24/2013] [Indexed: 01/28/2023] Open
Abstract
Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala), which we identified in an N-ethyl-N-nitrosourea (ENU)-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN)-positive hippocampal neurons, hearing loss, cardiovascular malformations–aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects–spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute–alone or in conjunction with other genetic, environmental, or stochastic factors–to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the proximal region of chromosome 1p36.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hitisha P. Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oleg A. Shchelochkov
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyin Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michelle L. Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford School of Medicine, Stanford, California, United State of America
| | - Fred A. Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Stockton
- Departments of Pediatrics and Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Soriano EA, Azevedo PS, Miot HA, Minicucci MF, Pansani MC, Matsubara LS, Okoshi K, Zornoff LAM, Matsubara BB, Paiva SAR. Cardiac remodeling induced by 13-cis retinoic acid treatment in acne patients. Int J Cardiol 2013; 163:68-71. [PMID: 21663986 DOI: 10.1016/j.ijcard.2011.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/22/2011] [Accepted: 05/13/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND Currently, 13-cis-retinoic acid (13-cis-RA) is the most effective therapy for acne. Isotretinoin, a first-generation synthetic 13-cis-RA compound, is associated with numerous adverse effects. To investigate the cardiac effects of 13-cis-RA, acne patients receiving 13-cis-RA were studied. METHODS Twenty male patients with acne were enrolled in the study. Patients were treated with a dose of 0.5 mg/kg/d of isotretinoin. All participants were assessed prior to treatment and after 10 weeks of therapy with Doppler-echocardiogram. RESULTS Patients showed reductions in right atrium vertical diameter, left atrium longitudinal diameter, left atrium volume and left ventricular diastolic diameter over the course of treatment. Significant increases in interventricular septum diastolic thickness, posterior wall diastolic thickness, relative wall relative thickness and left ventricle (LV) mass were observed. The LV mass index showed an increase in ventricular mass and a decrease in the cavity size. Examining LV systolic function, a decrease was observed for the cardiac index. CONCLUSION In this study, 10 weeks of 13-cis-RA therapy at a dose of 0.5 mg/kg/d was found to promote concentric-type heart remodeling due to the occurrence of two associated events: heart hypertrophy and hypovolemia.
Collapse
Affiliation(s)
- Eline A Soriano
- Department of Internal Medicine, Botucatu Medical School, UNESP, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lou S, Zhong L, Yang X, Xue T, Gai R, Zhu D, Zhao Y, Yang B, Ying M, He Q. Efficacy of all-trans retinoid acid in preventing nickel induced cardiotoxicity in myocardial cells of rats. Food Chem Toxicol 2013; 51:251-8. [DOI: 10.1016/j.fct.2012.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 12/11/2022]
|
42
|
In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PLoS One 2012; 7:e51694. [PMID: 23284745 PMCID: PMC3524246 DOI: 10.1371/journal.pone.0051694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.
Collapse
|
43
|
Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation 2012; 84:25-40. [PMID: 22595346 DOI: 10.1016/j.diff.2012.04.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions.
Collapse
Affiliation(s)
- Anna Keyte
- Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Box 103105, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
44
|
Arranz CT, Costa MÁ, Tomat AL. Orígenes fetales de las enfermedades cardiovasculares en la vida adulta por deficiencia de micronutrientes. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2012. [DOI: 10.1016/j.arteri.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Sakabe M, Kokubo H, Nakajima Y, Saga Y. Ectopic retinoic acid signaling affects outflow tract cushion development through suppression of the myocardial Tbx2-Tgfβ2 pathway. Development 2012; 139:385-95. [PMID: 22186728 DOI: 10.1242/dev.067058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The progress of molecular genetics has enabled us to identify the genes responsible for congenital heart malformations. However, recent studies suggest that congenital heart diseases are induced not only by mutations in certain genes, but also by abnormal maternal factors. A high concentration of maternal retinoic acid (RA), the active derivative of vitamin A, is well known as a teratogenic agent that can cause developmental defects. Our previous studies have shown that the maternal administration of RA to mice within a narrow developmental window induces outflow tract (OFT) septum defects, a condition that closely resembles human transposition of the great arteries (TGA), although the responsible factors and pathogenic mechanisms of the TGA induced by RA remain unknown. We herein demonstrate that the expression of Tbx2 in the OFT myocardium is responsive to RA, and its downregulation is associated with abnormal OFT development. We found that RA could directly downregulate the Tbx2 expression through a functional retinoic acid response element (RARE) in the Tbx2 promoter region, which is also required for the initiation of Tbx2 transcription during OFT development. Tgfb2 expression was also downregulated in the RA-treated OFT region and was upregulated by Tbx2 in a culture system. Moreover, defective epithelial-mesenchymal transition caused by the excess RA was rescued by the addition of Tgfβ2 in an organ culture system. These data suggest that RA signaling participates in the Tbx2 transcriptional mechanism during OFT development and that the Tbx2-Tgfβ2 cascade is one of the key pathways involved in inducing the TGA phenotype.
Collapse
Affiliation(s)
- Masahide Sakabe
- Division of Mammalian Development, National Institute of Genetics, 1111 Yata Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
The peroxisome proliferator-activated receptors (PPARs) and the retinoid X receptors (RXRs) are ligand-activated transcription factors that coordinately regulate gene expression. This PPAR-RXR transcriptional complex plays a critical role in energy balance, including triglyceride metabolism, fatty acid handling and storage, and glucose homeostasis: processes whose dysregulation characterize obesity, diabetes, and atherosclerosis. PPARs and RXRs are also involved directly in inflammatory and vascular responses in endothelial and vascular smooth muscle cells. New insights into fundamental aspects of PPAR and RXR biology, and their actions in the vasculature, continue to appear. Although RXRs are obligate heterodimeric partners for PPAR action, the part that RXRs, and their endogenous retinoid mediators, exert in the vessel wall is less well understood. Biological insights into PPAR-RXRs may help inform interpretation of clinical trials with synthetic PPAR agonists and prospects for future PPAR therapeutics. Importantly, the extensive data establishing a key role for PPARs and RXRs in energy balance, inflammation, and vascular biology stands separately from the clinical experience with any given synthetic PPAR agonist. Both the basic science data and the clinical experience with PPAR agonists identify the need to better understand these important transcriptional regulators.
Collapse
Affiliation(s)
- Jorge Plutzky
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
47
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
48
|
Freire CMM, Azevedo PS, Minicucci MF, Oliveira Júnior SA, Martinez PF, Novo R, Chiuso-Minicucci F, Matsubara BB, Matsubara LS, Okoshi K, Novelli EL, Zornoff LAM, Paiva SAR. Influence of different doses of retinoic acid on cardiac remodeling. Nutrition 2010; 27:824-8. [PMID: 21035307 DOI: 10.1016/j.nut.2010.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/23/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The role of retinoic acid in promoting postnatal heart alterations is still unclear. The aim of this study was to evaluate whether the cardiac alterations caused by all-trans- retinoic acid (ATRA) in normal adult rat hearts are physiologic or pathologic and if these alterations are dose-dependent. METHODS Rats were allocated into a control group that received a diet without ATRA (n=16), a group that received 0.3 mg of ATRA/kg of diet (n=17), a group that received a diet containing 10 mg of ATRA/kg (n=18), or a group that received 50 mg of ATRA/kg in the diet (n=18). After 4 wk, the animals were evaluated echocardiographically, morphologically, and biochemically. RESULTS The 50-mg ATRA group presented cardiac hypertrophy with maintenance of cardiac geometry and increased systolic function, whereas diastolic function was similar to that of the control group. In addition, progressive increases in the ATRA dose resulted in gradual augmentations of left atrial diameter, left ventricular diastolic and systolic diameters, left ventricular mass index, cardiac output, cardiac index, and aortic velocity. The ATRA did not produce alterations in interferon-γ and tumor necrosis factor-α cardiac levels, interstitial collagen volume fraction, or the intensity and localization of connexin-43. In addition, no alteration was observed in β-hydroxyacyl coenzyme A dehydrogenase, lactate dehydrogenase, or citrate synthase, suggesting that cardiac energetic metabolism was preserved with ATRA. CONCLUSION These results suggest that ATRA produced dose-dependent effects and cardiac remodeling that is more compatible with a physiologic response.
Collapse
Affiliation(s)
- Cristiana M M Freire
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kumar P, Garg R, Bolden G, Pandey KN. Interactive roles of Ets-1, Sp1, and acetylated histones in the retinoic acid-dependent activation of guanylyl cyclase/atrial natriuretic peptide receptor-A gene transcription. J Biol Chem 2010; 285:37521-30. [PMID: 20864529 DOI: 10.1074/jbc.m110.132795] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles of all-trans retinoic acid (ATRA), Ets-1, Sp1, and histone acetylation on the transcriptional regulation and function of the Npr1 gene. Deletion analysis of the Npr1 promoter and luciferase assays showed that ATRA enhanced a 16-fold Npr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein in both atrial natriuretic peptide (ANP)-dependent and -independent manner. As confirmed by gel shift and chromatin immunoprecipitation assays, ATRA enhanced the binding of both Ets-1 and Sp1 to the Npr1 promoter. The retinoic acid receptor α (RARα) was recruited by Ets-1 and Sp1 to form a transcriptional activator complex with their binding sites in the Npr1 promoter. Interestingly, ATRA also increased the acetylation of histones H3 and H4 and enhanced their recruitment to Ets-1 and Sp1 binding sites within the Npr1 promoter. Collectively, the present results demonstrate that ATRA regulates Npr1 gene transcription and GC activity of the receptor by involving the interactive actions of Ets-1, Sp1, and histone acetylation.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
50
|
Amati F, Diano L, Campagnolo L, Vecchione L, Cipollone D, Bueno S, Prosperini G, Desideri A, Siracusa G, Chillemi G, Marino B, Novelli G. Hif1α down-regulation is associated with transposition of great arteries in mice treated with a retinoic acid antagonist. BMC Genomics 2010; 11:497. [PMID: 20846364 PMCID: PMC2996993 DOI: 10.1186/1471-2164-11-497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/16/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Congenital heart defect (CHD) account for 25% of all human congenital abnormalities. However, very few CHD-causing genes have been identified so far. A promising approach for the identification of essential cardiac regulators whose mutations may be linked to human CHD, is the molecular and genetic analysis of heart development. With the use of a triple retinoic acid competitive antagonist (BMS189453) we previously developed a mouse model of congenital heart defects (81%), thymic abnormalities (98%) and neural tube defects (20%). D-TGA (D-transposition of great arteries) was the most prevalent cardiac defect observed (61%). Recently we were able to partially rescue this abnormal phenotype (CHD were reduced to 64.8%, p = 0.05), by oral administration of folic acid (FA). Now we have performed a microarray analysis in our mouse models to discover genes/transcripts potentially implicated in the pathogenesis of this CHD. RESULTS We analysed mouse embryos (8.5 dpc) treated with BMS189453 alone and with BMS189453 plus folic acid (FA) by microarray and qRT-PCR. By selecting a fold change (FC) ≥ ± 1.5, we detected 447 genes that were differentially expressed in BMS-treated embryos vs. untreated control embryos, while 239 genes were differentially expressed in BMS-treated embryos whose mothers had also received FA supplementation vs. BMS-treated embryos. On the basis of microarray and qRT-PCR results, we further analysed the Hif1α gene. In fact Hif1α is down-regulated in BMS-treated embryos vs. untreated controls (FCmicro = -1.79; FCqRT-PCR = -1.76; p = 0.005) and its expression level is increased in BMS+FA-treated embryos compared to BMS-treated embryos (FCmicro = +1.17; FCqRT-PCR = +1.28: p = 0.005). Immunofluorescence experiments confirmed the under-expression of Hif1α protein in BMS-treated embryos compared to untreated and BMS+FA-treated embryos and, moreover, we demonstrated that at 8.5 dpc, Hif1α is mainly expressed in the embryo heart region. CONCLUSIONS We propose that Hif1α down-regulation in response to blocking retinoic acid binding may contribute to the development of cardiac defects in mouse newborns. In line with our hypothesis, when Hif1α expression level is restored (by supplementation of folic acid), a decrement of CHD is found. To the best of our knowledge, this is the first report that links retinoic acid metabolism to Hif1α regulation and the development of D-TGA.
Collapse
Affiliation(s)
- Francesca Amati
- Department of Biopathology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
- Interdisciplinary Centre for Bioinformatics and Biostatistics, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Laura Diano
- Department of Biopathology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Luisa Campagnolo
- Department of Public Health and Cell Biology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Lucia Vecchione
- Department of Biopathology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Daria Cipollone
- Department of Pediatrics, La Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Susana Bueno
- CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6, 00185, Rome, Italy
| | - Gianluca Prosperini
- CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6, 00185, Rome, Italy
| | - Alessandro Desideri
- Interdisciplinary Centre for Bioinformatics and Biostatistics, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
- Deptartment of Biology, Tor Vergata University, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gregorio Siracusa
- Department of Public Health and Cell Biology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Giovanni Chillemi
- CASPUR, Consortium for Supercomputing Applications, Via dei Tizii 6, 00185, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, La Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giuseppe Novelli
- Department of Biopathology, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
- Interdisciplinary Centre for Bioinformatics and Biostatistics, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
- St. Peter Fatebenefratelli Hospital, Via Cassia 600, 00189, Rome, Italy
- Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas, Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|