1
|
Çevik ÖS, Yıldırım DD, Uzun C, Horata E. Contribution of distinctive outcome measures to the assessment of anxiety in the open field: A meta-analysis of factors mediating open-field test variability in rodent models of anxiety. Behav Brain Res 2025; 490:115612. [PMID: 40311939 DOI: 10.1016/j.bbr.2025.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks. The most common behavioral test to assess a rodent's level of anxiety is a non-invasive open-field test (OFT). To synthesize the many indications of anxiolysis and provide a thorough understanding and more trustworthy conclusions regarding the effects of interventions, a meta-analysis is essential. METHODS Search terms were developed and refined our strategy using MeSH and non-MeSH terms. Here, studies were systematically reviewed on PubMed, Science Direct, Web of Science, Scopus, CINAHL (Ebsco) from July 2023 to September 2024. According to that, 3860 studies were retrieved and after initial and full-text screening 56 studies were included (has stress hormone data) to support finding suitable animal models for future experimental studies on stress-related anxiety. RESULTS Analyses of the content of reviewed studies supported that stressed female animals present an overall higher time in the center, compared with male animals. The observed difference in time spent in the center between stressed female and male animals can be attributed to various underlying physiological and behavioral mechanisms. On the other hand, the overall effect of stress was not significant on locomotor activity (LA). Stratified subgroup analysis did not find significant effects of species, and meta-regression results showed no significant moderating effects for age and housing conditions. However, a general trend suggested higher LA in control than stressed animals. CONCLUSION Anxiety involves multiple interacting psychological drives, meaning no single test can capture all its facets. The OFT's specificity (e.g., showing effects only in stressed females or under certain conditions) should be considered while study is planning. Given the nuanced relationship between locomotion and anxiety, it is imperative to consider additional factors and methodologies when interpreting OFT results.
Collapse
Affiliation(s)
- Özge Selin Çevik
- Mersin University, Faculty of Medicine, Physiology Department, Mersin, Turkey.
| | - Didem Derici Yıldırım
- Mersin University, Faculty of Medicine, Biostatistics and Medical Informatics Department, Mersin, Turkey
| | - Coşar Uzun
- University of Georgia, Center for Neurological Disease Research, Department of Physiology and Pharmacology, GA, USA
| | - Erdal Horata
- Afyonkarahisar Health Sciences University, Atatürk Health Services Vocational School, Department of Orthopedic Prosthesis-Orthosis, Afyonkarahisar, TR, Turkey
| |
Collapse
|
2
|
Hilz EN, Gillette R, Thompson LM, Ton L, Pham T, Kunkel MN, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127005. [PMID: 39739409 DOI: 10.1289/ehp15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations. OBJECTIVES We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the "two hits, three generations apart" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism. METHODS Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed. RESULTS Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls. DISCUSSION Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lexi Ton
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Timothy Pham
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - M Nicole Kunkel
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Hilz EN, Gillette R, Thompson LM, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Male Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127006. [PMID: 39739410 DOI: 10.1289/ehp15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles. Even when legacy EDCs are phased out, they may remain relevant due to persistence in the environment together with intergenerational inheritance of their adverse biological effects. Thus, we all possess a body burden of legacy contaminants, and we are also increasingly exposed to new generations of EDCs. OBJECTIVES We assessed the effects of direct and ancestral exposures to EDCs across six generations on anxiety-like behaviors in male rats using our "two hits, three generations apart" multigenerational EDC exposure experimental model. We investigated two classes of EDCs with distinct hormonal actions and historical use-the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221 (A1221) and the anti-androgenic fungicide vinclozolin (VIN)-in both the maternal and paternal line. We also determined if a hormonal mechanism drives these effects across generations. METHODS Rats were gestationally exposed to A1221, VIN, or vehicle [dimethyl sulfoxide (DMSO)] in the F1 generation. Three generations later, the F4 generation was given the same or a different exposure. Anxiety-like behavior was measured in the open field test, light:dark box, and elevated plus maze across generations. Serum was collected at the end of the experiment, and concentrations of estradiol and corticosterone were analyzed. RESULTS Although direct exposure did not affect behavior in F1 males, ancestral exposure to VIN decreased anxiety-like behavior in the F3 paternal line compared to vehicle. In the F4 paternal line, ancestral A1221 followed by direct exposure to VIN increased anxiety-like behavior compared to controls. In the F6 maternal line, relative to vehicle, the double ancestral hits of A1221/VIN decreased anxiety-like behavior. Serum hormones weakly predicted behavioral changes in the F4 paternal line and were modestly affected in the F4 and F6 maternal lines. DISCUSSION Our data suggest that anxiety-like behavioral phenotypes emerge transgenerationally in male rats in response to EDC exposure and that multiple hits of either the same or a different EDC can increase the impact in a lineage-specific manner. https://doi.org/10.1289/EHP15684.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Arboit F, Pereira GC, Fialho MFP, Becker G, Brum EDS, Pillat MM, Bochi GV, Portela LOC, Zanchet EM. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines 2024; 12:2116. [PMID: 39335629 PMCID: PMC11430548 DOI: 10.3390/biomedicines12092116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Mental disorders pose a significant public health challenge, affecting millions worldwide. Given the limitations of current therapies, many patients experience inadequate responses and adverse effects. Intermittent hypoxia (IH) has demonstrated anxiolytic, antidepressant, and neuroprotective properties in various protocols. This study investigated the effects of acute IH (13% O2, 1 h), fluoxetine (FLX) and their combination on depression-like behavior, serum corticosterone, and inflammatory cytokine levels induced by acute restraint stress in C57BL/6 female mice. Methods: Behavioral assessments included the tail suspension test, forced swim test, and open field test. Results: The combined IH + FLX treatment exhibited a synergistic effect, reducing immobility time and increasing latency time, respectively, in the tail suspension test (46%, p = 0.0014; 73%, p = 0.0033) and forced swim test (56%, p = 0.0082; 48%, p = 0.0322) compared to the ARS group. Biochemical analysis revealed that individual and combined treatments significantly reduced most inflammatory interleukins by up to 96%. Corticosterone levels were reduced by 30% only in the IH group. Conclusions: These findings highlight the potential of a one-hour IH session, particularly when combined with fluoxetine, to alleviate depressive-like behaviors and exert anti-inflammatory effects, suggesting a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Francini Arboit
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Gabriele Cheiran Pereira
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Maria Fernanda Pessano Fialho
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Gabriela Becker
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Evelyne da Silva Brum
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Micheli Mainardi Pillat
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Osório Cruz Portela
- Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Eliane Maria Zanchet
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
5
|
Casarrubea M, Aiello S, Crescimanno G, Cassar D, Busuttil Z, Faulisi F, Iacono A, Di Giovanni G. Sex-dependent behavioral effects of chronic nicotine during adolescence evaluated in young adult rats tested in Hole-Board. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111034. [PMID: 38795824 DOI: 10.1016/j.pnpbp.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
As one of the leading causes of death and serious illnesses, tobacco smoking remains a significant issue in modern societies. Many individuals smoke during adolescence, a trend that has been exacerbated by the prevalence of vaping among young people. In this context, studying the behavioral effects induced by nicotine administration in male and female rats, during the adolescent period, assumes great importance because it can help to better understand the dynamics underlying tobacco use in the two sexes. For this purpose, we employed 4 groups of rats, 2 male and 2 female groups, chronically treated with saline or nicotine 3 mg/kg i.p. for 30 days, spanning from postnatal day 30 to postnatal day 60. Utilizing quantitative analyses and T-pattern detection and analysis, our findings revealed a complex and multifaceted behavioral reorganization in adolescent rats subjected to chronic nicotine administration. Specifically, we observed an increase of anxiety in males and a reduction in females. The distinctive structural changes, induced by chronic nicotine in both sexes, have significant implications, from a translational perspective, for studies on nicotine dependence disorders.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Stefania Aiello
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Daniel Cassar
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Zachary Busuttil
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Fabiana Faulisi
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Antonio Iacono
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; School of Biosciences, Neuroscience Division, Cardiff University, Cardiff, UK; Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
6
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Byun Y, Noh J. Social play exclusion model in adolescent rats: Monitoring locomotor and emotional behavior associated with social play and examining c-Fos expression in the brain. Physiol Behav 2024; 273:114379. [PMID: 37858915 DOI: 10.1016/j.physbeh.2023.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The exclusion of social play within an adolescent group interferes with learning and the acquisition of essential social behavior during development and can cause modulations in the social brain areas. However, despite the importance of social play in adolescence, an in-depth explanation of its physiological mechanisms is limited because of the lack of experimental animal models that embody social play exclusion in human society. To determine the mechanism of social play in adolescence, we identified differences in emotional behavior and brain activity in animal models of social play exclusion that mimicked human society. Emotional changes in the social play exclusion and non-exclusion groups were examined by tracking social play-related social interaction behavior, social play-related space preference, social play-related locomotor behavior, and anxiety-like behavior using a behavioral data analysis program. Differences in brain activity among groups were identified using immunohistochemical staining. During the social play exclusion model, the rats preferred the partition zone to the other areas in the test chamber. The exclusion group preferred the partition and the center zone over the non-exclusion group. When comparing before and after the social play exclusion, the exclusion group showed a decrease in mobility and an increase in anxiety-like behavior compared to the non-exclusion group. We found that c-Fos expression in the dentate gyrus (DG) of the exclusion group was lower than that in the non-exclusion group, whereas c-Fos expression in the lateral habenula (LHb) of the exclusion group was higher than that in the non-exclusion group. Taken together, in adolescence, exclusion from social play with peers can increase anxiety-like behavior in the exclusion group and change the neuronal activity of the DG and LHb, suggesting that exclusion from social play is linked to modifications in the DG and LHb, which are regions associated with mood regulation.
Collapse
Affiliation(s)
- Younsoo Byun
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea.
| |
Collapse
|
8
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
9
|
Ortelli OA, Pitcairn SR, Dyson CH, Weiner JL. Sexually dimorphic effects of a modified adolescent social isolation paradigm on behavioral risk factors of alcohol use disorder in Long Evans Rats. ADDICTION NEUROSCIENCE 2023; 9:100134. [PMID: 38188062 PMCID: PMC10768969 DOI: 10.1016/j.addicn.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Early life stress (ELS) is a major risk factor for alcohol use disorder (AUD) and comorbid neuropsychiatric conditions. We previously demonstrated that an adolescent social isolation (aSI) model of ELS significantly increased behavioral risk factors for these disorders (e.g. anxiety-like behaviors, alcohol drinking) in male, but not female rats. Since many neurodevelopmental milestones are accelerated in females, we investigated whether an earlier/shorter isolation window (PND 21-38) would yield comparable phenotypes in both sexes. In two experiments, Long Evans rats were socially isolated (SI) or group-housed (GH) on postnatal day (PND) 21 and locomotion was assessed in the open field test (OFT; PND 30). Experiment 1 also assessed behavior on the elevated plus-maze (EPM) (PND 32). In Experiment 2, all rats were single housed on PND 38 to assess home cage alcohol drinking. Experiment 1 revealed that SI females had increased locomotor activity in the OFT but did not differ from GH subjects on the EPM. The OFT results were replicated in both sexes in Experiment 2 and both male and female SI rats had significantly greater ethanol consumption during an eight day continuous access paradigm. In contrast, during subsequent intermittent two-bottle choice drinking, only SI females displayed greater ethanol intake and preference and increased consumption of a quinine-adulterated alcohol solution. These findings demonstrate that early life social isolation can promote AUD vulnerability-related phenotypes in female rats but that there are profound sex differences in the vulnerability window to this early life stressor. Uncovering the neural mechanisms responsible for these sexually dimorphic differences in sensitivity to ELS may shed light on the biological substrates associated with vulnerability to AUD and comorbid disorders of negative emotion in men and women.
Collapse
Affiliation(s)
- Olivia A. Ortelli
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Stacy R. Pitcairn
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina H. Dyson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey L. Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Marinello WP, Gillera SEA, Huang L, Rollman J, Reif DM, Patisaul HB. Uncovering the common factors of chemical exposure and behavior: Evaluating behavioral effects across a testing battery using factor analysis. Neurotoxicology 2023; 99:264-273. [PMID: 37914043 PMCID: PMC11154886 DOI: 10.1016/j.neuro.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Although specific environmental chemical exposures, including flame retardants, are known risk factors for neurodevelopmental disorders (NDDs), direct experimental evidence linking specific chemicals to NDDs is limited. Studies focusing on the mechanisms by which the social processing systems are vulnerable to chemical exposure are underrepresented in the literature, even though social impairments are defining characteristics of many NDDs. We have repeatedly demonstrated that exposure to Firemaster 550 (FM 550), a prevalent flame retardant mixture used in foam-based furniture and infant products, can adversely impact a variety of behavioral endpoints. Our recent work in prairie voles (Microtus ochrogaster), a prosocial animal model, demonstrated that perinatal exposure to FM 550 sex specifically impacts socioemotional behavior. Here, we utilized a factor analysis approach on a battery of behavioral data from our prior study to extract underlying factors that potentially explain patterns within the FM 550 behavior data. This approach identified which aspects of the behavioral battery are most robust and informative, an outcome critical for future study designs. Pearson's correlation identified behavioral endpoints associated with distance and stranger interactions that were highly correlated across 5 behavioral tests. Using these behavioral endpoints, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) extracted 2 factors that could explain the data: Activity (distance traveled endpoints) and Sociability (time spent with a novel conspecific). Exposure to FM 550 significantly decreased Activity and decreased Sociability. This factor analysis approach to behavioral data offers the advantages of modeling numerous measured variables and simplifying the data set by presenting the data in terms of common, overarching factors in terms of behavioral function.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; ICF International Inc, Durham, NC 27713, USA
| | - Lynn Huang
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - John Rollman
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
11
|
Pestana JE, Graham BM. Reproductive experience alters the effects of diazepam and fluoxetine on anxiety-like behaviour, fear extinction, and corticosterone levels in female rats. Psychopharmacology (Berl) 2023; 240:2515-2528. [PMID: 37581635 PMCID: PMC10640474 DOI: 10.1007/s00213-023-06446-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
OVERVIEW Reproductive experience (pregnancy and motherhood) leads to long-term changes in the neurobiological and hormonal features of anxiety in rats and humans. The aim of this study was to examine whether reproductive experience alters the effects of two pharmacological treatments for anxiety, a benzodiazepine (diazepam) and a selective serotonin reuptake inhibitor (fluoxetine), on animal models of anxiety. METHODS In Experiment 1, virgin (n = 47) and age-matched mother (n = 50) rats at 1-month post-weaning were injected with diazepam (1.3 mg/kg or 1.7 mg/kg, i.p.) or vehicle, in the proestrus (high estradiol/progesterone/allopregnanolone) or metestrus (low estradiol/progesterone/allopregnanolone) phase of the estrous cycle 30 min prior to the elevated plus maze (EPM). In Experiment 2, virgin (n = 25) and mother rats (n = 20) were administered fluoxetine (10 mg/kg) or vehicle for 2 weeks prior to being tested on a Pavlovian fear conditioning and extinction protocol, and the EPM. RESULTS Replicating past research, in virgin rats, the low dose of diazepam produced anxiolytic-like effects in proestrus, but only the high dose was anxiolytic-like in metestrus. In contrast, in mother rats, both doses of diazepam were anxiolytic-like irrespective of estrous phase. Fluoxetine produced anxiogenic-like effects in virgin rats during fear extinction and the EPM, but had no behavioural effects in mothers. In contrast, fluoxetine increased plasma corticosterone levels measured 30-min post-EPM in mothers, but not virgin rats. CONCLUSIONS Reproductive experience alters the dose responsivity and efficacy of common anti-anxiety medications in female rats. These findings highlight the importance of considering reproductive status in studies on anxiety and its treatment.
Collapse
Affiliation(s)
- Jodie E Pestana
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Bronwyn M Graham
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Carratalá-Ros C, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Effects of the dopamine depleting agent tetrabenazine in tests evaluating different components of depressive-like behavior in mice: sex-dependent response to antidepressant drugs with SERT and DAT blocker profiles. Psychopharmacology (Berl) 2023; 240:1615-1628. [PMID: 37407727 PMCID: PMC10349713 DOI: 10.1007/s00213-023-06412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Depression is a disorder twice as common in women than in men. There are sex differences in the symptomatology and treatment response to this disorder. Impairments in behavioral activation (i.e. anergia, fatigue) are often seen in people with depression and are highly resistant to treatment. The role of mesolimbic dopamine (DA) in regulating behavioral activation has been extensively studied in male rodents, but little is known in female rodents. OBJECTIVE The present studies assessed potential sex differences in rodent paradigms used to study different components of depressive-like behavior, and in the treatment response to antidepressants with different mechanisms of action. METHODS Male and female CD1 mice received Tetrabenazine (TBZ), a VMAT-2 blocker that depletes DA and induces depressive symptoms in humans. Mice were tested on the Forced Swim Test, (FST), the Dark-Light box (DL), the elevated plus maze (EPM), Social Interaction (SI) test, and sucrose preference and consumption using the two bottles test. In addition, bupropion (a DA reuptake inhibitor) or fluoxetine (a serotonin reuptake inhibitor) were used to reverse TBZ-induced anergia. RESULTS In the FST, bupropion reversed TBZ effects in both sexes but fluoxetine was only effective in female mice. DA depletion did not affect other aspects of depression such as anxiety, sociability or sucrose consumption, and there was no interaction with bupropion on these parameters. In TBZ treated-females SERT-blockers may be effective at reversing anergia in aversive contexts (FST), and potentiating avoidance of anxiogenic stimuli. CONCLUSIONS Pro-dopaminergic antidepressants seem more efficacious at improving anergia in both sexes than SERT-blockers.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain
| | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Div, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
- Behavioral Neuroscience Div, University of Connecticut, Storrs, CT, 06269-1020, USA.
| |
Collapse
|
13
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Effects of NADPH Oxidase Isoform-2 (NOX2) Inhibition on Behavioral Responses and Neuroinflammation in a Mouse Model of Neuropathic Pain. Biomedicines 2023; 11:biomedicines11020416. [PMID: 36830952 PMCID: PMC9953009 DOI: 10.3390/biomedicines11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) has been implicated in the pathophysiology of neuropathic pain (NP), mostly through the modulation of neuroinflammation. Since it is also accepted that some neuroimmune mechanisms underlying NP are sex-dependent, we aimed to evaluate the effects of early systemic treatment with the NOX2-selective inhibitor (NOX2i) GSK2795039 on behavioral responses and spinal neuroinflammation in spared nerve injury (SNI)-induced NP in male and female mice. Mechanical sensitivity was evaluated with the von Frey test, while general well-being and anxiety-like behavior were assessed with burrowing and light/dark box tests. Spinal microglial activation and cytokines IL-1β, IL-6, and IL-10, as well as macrophage colony-stimulating factor (M-CSF) were evaluated by immunofluorescence and multiplex immunoassay, respectively. NOX2i treatment reduced SNI-induced mechanical hypersensitivity and early SNI-induced microglial activation in both sexes. SNI-females, but not males, showed a transient reduction in burrowing activity. NOX2i treatment did not improve their burrowing activity, but tendentially reduced their anxiety-like behavior. NOX2i marginally decreased IL-6 in females, and increased M-CSF in males. Our findings suggest that NOX2-selective inhibition may be a potential therapeutic strategy for NP in both male and female individuals, with particular interest in females due to its apparent favorable impact in anxiety-like behavior.
Collapse
|
15
|
Shirenova SD, Khlebnikova NN, Narkevich VB, Kudrin VS, Krupina NA. Nine-month-long Social Isolation Changes the Levels of Monoamines in the Brain Structures of Rats: A Comparative Study of Neurochemistry and Behavior. Neurochem Res 2023; 48:1755-1774. [PMID: 36680692 DOI: 10.1007/s11064-023-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Social isolation (SI) is chronic psycho-emotional stress for humans and other socially living species. There are few comparative studies that have measured monoamine levels in brain structures in male and female rats subjected to SI. Existing data is highly controversial. In our recent study, we investigated behavioral effects of SI prolonged up to 9 months on a rather large sample of 69 male and female Wistar rats. In the present study, we measured the levels of monoamines-norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and DA and 5-HT metabolites-in the brain structures of 40 rats from the same sample. The single-housed rats of both sexes showed hyperactivity and reduced reactivity to novelty in the Open Field test, and impaired passive avoidance learning. Regardless of their sex, by the time of sacrifice, the single-housed rats weighed less and had lower pain sensitivity and decreased anxiety compared with group-housed animals. SI decreased NE levels in the hippocampus and increased them in the striatum. SI induced functional activation of the DA-ergic system in the frontal cortex and hypothalamus, with increased DA and 3-methoxytyramine levels. SI-related changes were found in the 5-HT-ergic system: 5-HT levels increased in the frontal cortex and striatum, while 5-hydroxyindoleacetic acid only increased in the frontal cortex. We believe that SI prolonged for multiple months could be a valuable model for comparative analysis of the behavioral alterations and the underlying molecular processes in dynamics of adaptation to chronic psychosocial stress in male and female rats in relation to age-dependent changes.
Collapse
Affiliation(s)
- Sophie D Shirenova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nadezhda N Khlebnikova
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Viktor B Narkevich
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Vladimir S Kudrin
- Laboratory of Neurochemical Pharmacology, V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation
| | - Nataliya A Krupina
- Laboratory of General Pathology of the Nervous System, Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St, 125315, Moscow, Russian Federation.
| |
Collapse
|
16
|
Blanchard DC. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci Biobehav Rev 2023; 144:104947. [PMID: 36343691 DOI: 10.1016/j.neubiorev.2022.104947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Anxiety and depression are highly prevalent behavior disorders, particularly in women. Recent preclinical work using animal models has been suboptimal in predicting the efficacy of drugs targeted at these conditions, suggesting a potential discrepancy between such models and the human disorders. Notably female animals tend to be equal to, or less responsive than, males in these tasks. A number of analyses suggest that mammalian defense patterns are complex: In addition to relatively discrete and immediate fight, flight, and freezing responses, a risk assessment pattern may occur in response to threat stimuli or situations with ambiguous elements. This pattern combines defensiveness with a number of cognition-linked behaviors such as sensory attention and orientation, approach, contact, and investigation of the potential threat. Studies measuring elements of this pattern suggest that female rats, and perhaps female mice, show higher levels than equivalent males. Higher female involvement may also occur in tasks involving learning/generalization/extinction of defensiveness to conditioned stimuli. Such findings are consonant with recent analyses of "female survival strategies" based on differential adaptiveness of cognitive components of defensiveness in females, due to the necessity of female care of offspring until they are independent. These data suggest the value of additional behavioral and functional analyses of cognitive aspects of defensive behavior; contributing to both an understanding of their underlying mechanisms, and providing more sensitive measures of drug responsivity for use with animal models.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Sex differences in addiction-relevant behavioral outcomes in rodents following early life stress. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37101684 PMCID: PMC10124992 DOI: 10.1016/j.addicn.2023.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, exposure to early life stress (ELS) is an established risk factor for the development of substance use disorders (SUDs) during later life. Similarly, rodents exposed to ELS involving disrupted mother-infant interactions, such as maternal separation (MS) or adverse caregiving due to scarcity-adversity induced by limited bedding and nesting (LBN) conditions, also exhibit long-term alterations in alcohol and drug consumption. In both humans and rodents, there is a range of addiction-related behaviors that are associated with drug use and even predictive of subsequent SUDs. In rodents, these include increased anxiety-like behavior, impulsivity, and novelty-seeking, altered alcohol and drug intake patterns, as well as disrupted reward-related processes involving consummatory and social behaviors. Importantly, the expression of these behaviors often varies throughout the lifespan. Moreover, preclinical studies suggest that sex differences play a role in how exposure to ELS impacts reward and addiction-related phenotypes as well as underlying brain reward circuitry. Here, addiction-relevant behavioral outcomes and mesolimbic dopamine (DA) dysfunction resulting from ELS in the form of MS and LBN are discussed with a focus on age- and sex-dependent effects. Overall, these findings suggest that ELS may increase susceptibility for later life drug use and SUDs by interfering with the normal maturation of reward-related brain and behavioral function.
Collapse
|
18
|
Linhares SSG, Meurer YDSR, de Aquino ACQ, Câmara DDA, Brandão LEM, Fiuza FP, Lima RH, Engelberth RCJG, Cavalcante JS. Prenatal exposure to fluoxetine modulates emotionality and aversive memory in male and female rat offspring. Behav Pharmacol 2022; 33:575-588. [PMID: 36256730 DOI: 10.1097/fbp.0000000000000705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During pregnancy, women are prone to depression, for which selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are usually the first-line treatment. However, fluoxetine can cross the placental barrier and affect fetuses, causing changes in serotonin levels early in life. Long-term effects in the brain circuits that control cognitive and emotional behavior are related to early fluoxetine exposure during development. In this study, we aimed to investigate whether fluoxetine exposure (10 mg/kg/day) from the 13th gestational day (GD13) to GD21 may lead to behavioral emotional-cognitive changes in male and female rat offspring approximately 90 days postnatally (~PN90). We have analyzed the performance of individuals in the open field and in the plus-maze discriminative avoidance task, which assesses anxiety and learning/memory processing behaviors. We have found that prenatal (GD13-GD21) exposure to fluoxetine strengthened aversive memory and induced higher anxiety levels in males, and quick extinction of aversive memory in females. Taken together, these results suggest that early exposure to fluoxetine impairs the basal state of anxiety and the cognitive functions of rats during adulthood, which may be in a sex-specific manner because males appear more susceptible than females.
Collapse
Affiliation(s)
- Sarah Sophia G Linhares
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva R Meurer
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antônio Carlos Queiroz de Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego de Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Felipe Porto Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Ramón Hypolito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Rovena Clara J G Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
19
|
Pestana JE, Islam N, Van der Eyk NL, Graham BM. What Pre-clinical Rat Models Can Tell Us About Anxiety Across the Menstrual Cycle in Healthy and Clinically Anxious Humans. Curr Psychiatry Rep 2022; 24:697-707. [PMID: 36255558 PMCID: PMC9633475 DOI: 10.1007/s11920-022-01376-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Anxiety symptoms increase during the peri-menstrual phase of the menstrual cycle in people with anxiety disorders. Whether this reflects a heightened variant of normal menstrual-related changes in psychological states experienced by healthy (i.e. non-anxious) people is unknown. Moreover, menstrual-related change in anxiety symptoms is a poorly understood phenomenon, highlighting a need for pre-clinical models to aid mechanistic discovery. Here, we review recent evidence for menstrual effects on anxiety-like features in healthy humans as a counterpart to recent reviews that have focused on clinically anxious populations. We appraise the utility of rodent models to identify mechanisms of menstrual effects on anxiety and offer suggestions to harmonise methodological practices across species to advance knowledge in this field. RECENT FINDINGS Consistent with reports in clinical populations, some evidence indicates anxiety symptoms increase during the peri-menstrual period in healthy people, although null results have been reported, and these effects are heterogeneous across studies and individuals. Studies in rats show robust increases in anxiety during analogous phases of the oestrous cycle. Studies in female rats are useful to identify the evolutionarily conserved biological mechanisms of menstrual-related changes in anxiety. Future experimental approaches in rats should model the heterogeneity observed in human studies to increase alignment across species and advance understanding of the individual factors that increase the propensity to experience menstrual-related changes in anxiety.
Collapse
Affiliation(s)
- Jodie E Pestana
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Nusaibah Islam
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Natasha L Van der Eyk
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Baugher BJ, Sachs BD. Early life maternal separation induces sex-specific antidepressant-like responses but has minimal effects on adult stress susceptibility in mice. Front Behav Neurosci 2022; 16:941884. [PMID: 36172469 PMCID: PMC9510594 DOI: 10.3389/fnbeh.2022.941884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Early life stress is known to increase the risk of depression and anxiety disorders, which are highly prevalent conditions that disproportionately affect women. However, the results of preclinical studies have been mixed, with some work suggesting that early life stress promotes anxiety-like behavior and/or increases susceptibility to subsequent stressors, and other research suggesting that early life stress reduces anxiety-like behavior and/or confers resilience to subsequent stress exposure. It is likely that factors such as sex and the timing and severity of early life and adult stress exposure dictate whether a particular early life experience promotes adaptive vs. maladaptive behavior later in life. Most work in this area has focused exclusively on males, but several sex differences in the effects of early life stress on subsequent stress susceptibility have been reported. The current study examined the impact of early life maternal separation on susceptibility to behavioral alterations induced by 3 days of variable stress in adulthood in male and female c57BL6 mice. Our results indicate that 3 days of adult stress is sufficient to increase anxiety-like behavior in several paradigms and to increase immobility in the forced swim test. In contrast, a history of maternal separation reduces anxiety-like behavior in several tests, particularly in males. These findings could contribute to our understanding of sex differences in mental illness by demonstrating that males are more likely than females to display adaptive responses to mild early life stressors.
Collapse
|
21
|
Börchers S, Krieger JP, Asker M, Maric I, Skibicka KP. Commonly-used rodent tests of anxiety-like behavior lack predictive validity for human sex differences. Psychoneuroendocrinology 2022; 141:105733. [PMID: 35367714 DOI: 10.1016/j.psyneuen.2022.105733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Women are more likely to develop an anxiety disorder than men. Yet, preclinical models of anxiety were largely developed in male rodents, with poorly understood predictive validity for sex differences. Here, we investigate whether commonly-used anxiety-like behavior tests, elevated plus maze (EPM) and open field (OF), represent the human sex difference in adult Sprague-Dawley rats. When interpreted by EPM or OF, female rats displayed less anxiety-like behavior compared to males, as they spent twice as much time in the open arms of the EPM or the center of the OF compared to males. However, they also displayed vastly different levels of locomotor activity, possibly confounding interpretation of these locomotion-dependent tests. To exclude locomotion from the assessment, the acoustic startle response (ASR) test was used. When interpreted by the ASR test, females displayed more anxiety-like behavior compared to males, as indicated by a nearly two-fold higher startle amplitude. The observed sex differences were not driven by gonadal steroids. Overall, all but one of the tests fail to mirror the sex difference in anxiety reported in humans. Our findings suggest that the ASR might be a better fit in modelling female anxiety-like behavior.
Collapse
Affiliation(s)
- Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
22
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
23
|
Neely C, Barkey R, Hernandez C, Flinn J. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res 2022; 430:113918. [DOI: 10.1016/j.bbr.2022.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
24
|
Bloch S, Holleran KM, Kash TL, Vazey EM, Rinker JA, Lebonville CL, O'Hara K, Lopez MF, Jones SR, Grant KA, Becker HC, Mulholland PJ. Assessing negative affect in mice during abstinence from alcohol drinking: Limitations and future challenges. Alcohol 2022; 100:41-56. [PMID: 35181404 PMCID: PMC8983487 DOI: 10.1016/j.alcohol.2022.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.
Collapse
Affiliation(s)
- Solal Bloch
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Christina L Lebonville
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Krysten O'Hara
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Marcelo F Lopez
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Howard C Becker
- Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
25
|
Zoladz PR, Del Valle CR, Goodman CS, Dodson JL, Smith IF, Elmouhawesse KM, Sparkman HR, Naylor MM, Hopson EP. Ketamine sex- and dose-dependently mitigates behavioral sequelae induced by a predator-based psychosocial stress model of post-traumatic stress disorder. Behav Brain Res 2022; 428:113895. [DOI: 10.1016/j.bbr.2022.113895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022]
|
26
|
Francois M, Canal Delgado I, Shargorodsky N, Leu CS, Zeltser L. Assessing the effects of stress on feeding behaviors in laboratory mice. eLife 2022; 11:e70271. [PMID: 35167441 PMCID: PMC8846584 DOI: 10.7554/elife.70271] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Stress often affects eating behaviors, increasing caloric intake in some individuals and decreasing it in others. The determinants of feeding responses to stress are unknown, in part because this issue is rarely studied in rodents. We focused our efforts on the novelty-suppressed feeding (NSF) assay, which uses latency to eat as readout of anxiety-like behavior, but rarely assesses feeding per se. We explored how key variables in experimental paradigms - estrous and diurnal cyclicity, age and duration of social isolation, prandial state, diet palatability, and elevated body weight - influence stress-induced anxiety-like behavior and food intake in male and female C57BL/6J mice. Latency to eat in the novel environment is increased in both sexes across most of the conditions tested, while effects on caloric intake are variable. In the common NSF assay (i.e., lean mice in the light cycle), sex-specific effects of the length of social isolation, and not estrous cyclicity, are the main source of variability. Under conditions that are more physiologically relevant for humans (i.e., overweight mice in the active phase), the novel stress now elicits robust hyperphagia in both sexes . This novel model of stress eating can be used to identify underlying neuroendocrine and neuronal substrates. Moreover, these studies can serve as a framework to integrate cross-disciplinary studies of anxiety and feeding related behaviors in rodents.
Collapse
Affiliation(s)
- Marie Francois
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Isabella Canal Delgado
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Nikolay Shargorodsky
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Cheng-Shiun Leu
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Biostatistics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lori Zeltser
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
27
|
Chandler LJ, Vaughan DT, Gass JT. Adolescent Alcohol Exposure Results in Sex-specific Alterations in Conditioned Fear Learning and Memory in Adulthood. Front Pharmacol 2022; 13:837657. [PMID: 35211024 PMCID: PMC8861326 DOI: 10.3389/fphar.2022.837657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.
Collapse
Affiliation(s)
- L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Justin T. Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
28
|
Price ME, McCool BA. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol 2022; 98:25-41. [PMID: 34371120 DOI: 10.1016/j.alcohol.2021.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The basolateral amygdala (BLA) is intimately involved in the development of neuropsychiatric disorders such as anxiety and alcohol use disorder (AUD). These disorders have clear sex biases, with women more likely to develop an anxiety disorder and men more likely to develop AUD. Preclinical models have largely confirmed these sex-specific vulnerabilities and emphasize the effects of sex hormones on behaviors influenced by the BLA. This review will discuss sex differences in BLA-related behaviors and highlight potential mechanisms mediated by altered BLA structure and function, including the composition of GABAergic interneuron subpopulations, glutamatergic pyramidal neuron morphology, glutamate/GABA neurotransmission, and neuromodulators. Further, sex hormones differentially organize dimorphic circuits during sensitive developmental periods (organizational effects) and initiate more transient effects throughout adulthood (activational effects). Current literature indicates that estradiol and allopregnanolone, a neuroactive progestogen, generally reduce BLA-related behaviors through a variety of mechanisms, including activation of estrogen receptors or facilitation of GABAA-mediated inhibition, respectively. This enhanced GABAergic inhibition may protect BLA pyramidal neurons from the excitability associated with anxiety and alcohol withdrawal. Understanding sex differences and the effects of sex hormones on BLA structure and function may help explain sex-specific vulnerabilities in BLA-related behaviors and ultimately improve treatments for anxiety and AUD.
Collapse
|
29
|
Royal W, Bryant J, Davis H, Guo M. Cigarette smoke and nicotine effects on behavior in HIV transgenic rats. Behav Brain Res 2022; 417:113591. [PMID: 34551347 PMCID: PMC9107950 DOI: 10.1016/j.bbr.2021.113591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/26/2023]
Abstract
HIV-related neurocognitive impairment can be worsened by cigarette smoking and be more severe in women. Therefore, we analyzed the effects of sex on behavioral function in HIV transgenic (Tg) rats that were exposed to either nicotine alone, to smoke from either nicotine-containing or nicotine-free cigarettes, or non-exposed. The animals were then assessed on the open field test for the total distance traveled and for the fraction of the total distance traveled and the total time spent in the center of the field, and the results then compared to WT rats subjected to the same exposures and testing. Higher total distances indicate greater locomotor activity and a higher center field measures imply a lower anxiety state. Total distances were overall higher for female and for Tg rats exposed to nicotine-free CS. Also, the total distance and both center field measures were overall higher for female rats in the control and nicotine-free CS-exposed groups. This was observed specifically for WT females as compared to WT males and, for the center field measures, for WT females as compared to Tg males. No genotype or sex-related differences were found for rats in the nicotine-free cigarette smoke (CS) and nicotine-containing CS exposed groups. Therefore, nicotine exposure did not impact genotype- and sex-related differences in motor responses and anxiety levels that were found in the control state. However, exposure to the non-nicotine components of CS resulted in locomotor activation in the presence of the HIV genes and was anxiogenic in WT and Tg male animals.
Collapse
Affiliation(s)
- Walter Royal
- Morehouse School of Medicine Department of Neurobiology and Neuroscience Institute, Georgia; Atlanta VA Medical Center, USA; University of Maryland School of Medicine, USA.
| | - Joseph Bryant
- University of Maryland School Institute of Human Virology, USA; University of Maryland School of Medicine, USA
| | - Harry Davis
- University of Maryland School Institute of Human Virology, USA; University of Maryland School of Medicine, USA
| | - Ming Guo
- University of Maryland School of Medicine, USA
| |
Collapse
|
30
|
Pestana JE, McCutcheon TB, Harmon-Jones SK, Richardson R, Graham BM. Maternal Experience Does Not Predict Fear Extinction and Anxiety-Like Behaviour in Primiparous Rats Post-weaning. Front Glob Womens Health 2022; 2:742337. [PMID: 34977862 PMCID: PMC8718406 DOI: 10.3389/fgwh.2021.742337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Reproductive experience leads to long-lasting changes in anxiety-like behaviour and fear extinction, the laboratory model of exposure therapy for anxiety disorders. For example, fear extinction is influenced by estrous cycle in nulliparous (no reproductive experience) female rats, but this effect is abolished in primiparous (one reproductive experience) females. It is unclear whether such changes are driven by pregnancy, maternal experience of caring for offspring during the postpartum period, or a combination of both experiences. The present study sought to determine the influence of maternal experience (i.e., exposure to pups and mother-pup interactions) on fear extinction in primiparous rats. In Experiment 1, we tested whether pup exposure is necessary to mitigate estrous effects on fear extinction in primiparous rats. Age-matched nulliparous rats, primiparous rats, and primiparous rats who experienced pregnancy but not pup exposure, underwent fear conditioning on day 1 (2 months post-parturition), extinction training during proestrus (high sex hormones) or metestrus (low sex hormones) on day 2, and extinction recall on day 3. Replicating past research, nulliparous rats showed impaired extinction recall when they were extinguished during metestrus compared to proestrus. In contrast, primiparous rats with and without pup exposure showed comparable extinction recall irrespective of estrous phase. In Experiment 2, we assessed whether naturally-occurring variation in mother-pup interactions predict future fear extinction performance and anxiety-like behaviour. During the first week of lactation, primiparous rats were measured for maternal behaviours toward pups. Primiparous rats were then tested on the light-dark box and elevated plus maze to measure anxiety-like behaviour and underwent a fear extinction protocol 1 month post-weaning. We found no significant correlations between maternal behaviour and fear extinction outcomes or anxiety-like behaviour. Our findings suggest that pregnancy, not maternal experience, mitigates the impact of estrous cycle on fear extinction. In addition, natural variation in maternal experience does not appear to contribute to variability in future fear extinction outcomes or anxiety-like behaviour in primiparous rats.
Collapse
Affiliation(s)
- Jodie E Pestana
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tayla B McCutcheon
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Sylvia K Harmon-Jones
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Bronwyn M Graham
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Denny RR, Connelly KL, Ghilotti MG, Meissler JJ, Yu D, Eisenstein TK, Unterwald EM. Artificial Intelligence Identified Resilient and Vulnerable Female Rats After Traumatic Stress and Ethanol Exposure: Investigation of Neuropeptide Y Pathway Regulation. Front Neurosci 2021; 15:772946. [PMID: 34975380 PMCID: PMC8716605 DOI: 10.3389/fnins.2021.772946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is initiated by traumatic-stress exposure and manifests into a collection of symptoms including increased anxiety, sleep disturbances, enhanced response to triggers, and increased sympathetic nervous system arousal. PTSD is highly co-occurring with alcohol use disorder. Only some individuals experiencing traumatic stress develop PTSD and a subset of individuals with PTSD develop co-occurring alcohol use disorder. To investigate the basis of these individual responses to traumatic stress, single prolonged stress (SPS) a rodent model of traumatic stress was applied to young adult female rats. Individual responses to SPS were characterized by measuring anxiety-like behaviors with open field and elevated plus maze tests. Rats were then allowed to drink ethanol under an intermittent two bottle choice procedure for 8 weeks, and ethanol consumption was measured. An artificial intelligence algorithm was built to predict resilient and vulnerable individuals based on data from anxiety testing and ethanol consumption. This model was implemented in a second cohort of rats that underwent SPS without ethanol drinking to identify resilient and vulnerable individuals for further study. Analysis of neuropeptide Y (NPY) levels and expression of its receptors Y1R and Y2R mRNA in the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and bed nucleus stria terminalis (BNST) were performed. Results demonstrate that resilient rats had higher expression of Y2R mRNA in the CeA compared with vulnerable and control rats and had higher levels of NPY protein in the BNST compared to controls. The results of the study show that an artificial intelligence algorithm can identify individual differences in response to traumatic stress which can be used to predict subsequent ethanol drinking, and the NPY pathway is differentially altered following traumatic stress exposure in resilient and vulnerable populations. Understanding neurochemical alterations following traumatic-stress exposure is critical in developing prevention strategies for the vulnerable phenotype and will help further development of novel therapeutic approaches for individuals suffering from PTSD and at risk for alcohol use disorder.
Collapse
Affiliation(s)
- Ray R. Denny
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Krista L. Connelly
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marco G. Ghilotti
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ellen M. Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,*Correspondence: Ellen M. Unterwald,
| |
Collapse
|
32
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
33
|
De Oliveira Sergio T, Wetherill L, Kwok C, Khoyloo F, Hopf FW. Sex differences in specific aspects of two animal tests of anxiety-like behavior. Psychopharmacology (Berl) 2021; 238:2775-2787. [PMID: 34120205 PMCID: PMC11071636 DOI: 10.1007/s00213-021-05893-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Anxiety, a negative state of high arousal and vigilance, is especially prevalent in women, making identification of underlying mechanisms critical for developing effective therapies. With the challenge of disentangling biological and social factors in humans, animal tests can provide valuable insights, although such tests, developed in males, have unclear validity for females. OBJECTIVE To better understand patterns of sex differences across multiple measures within two classical rodent anxiety tests. METHODS We examined female and male adult Wistar rats (n = 15-18/group) that were single-housed in the novelty suppression of feeding test (NSFT) that involves food under a bright light in food-restricted animals, and light-dark test (LDT), which reflects innate aversion to bright light. To further validate these tests in females, we also examined the impact of 1 mg/kg diazepam. RESULTS NSFT measures of the most direct interaction with food, latency to grab food and food consumed, indicated increased anxiety-like behavior in females versus males, with diazepam altering these behaviors in females but not males. Most other measures showed more similar effects of diazepam across the sexes, with some evidence of reduced anxiety-like behavior in LDT for females. Principal component analyses indicated limited relationships across behavioral factors, underscoring previous suggestions of the importance of assessing multiple measures to maximize information and ethological relevance. CONCLUSIONS Combining our findings and previous studies, we speculate that increased anxiety-like behavior in females manifests especially when there is a specific, life-relevant condition (e.g., food in the NSFT). Our findings also validate NSFT and LDT use in females.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, NB 300E, Indianapolis, IN, 46202, USA
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Leah Wetherill
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claudina Kwok
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Farrah Khoyloo
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, NB 300E, Indianapolis, IN, 46202, USA.
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Furman O, Tsoory M, Chen A. Differential chronic social stress models in male and female mice. Eur J Neurosci 2021; 55:2777-2793. [PMID: 34587653 DOI: 10.1111/ejn.15481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Chronic stress creates an allostatic overload that may lead to mood disorders such as anxiety and depression. Modern causes of chronic stress in humans are mostly social in nature, relating to work and relationship stress. Research into neural and molecular mechanisms of vulnerability and resilience following chronic social stress (CSS) is ongoing and uses animal models to discover efficient prevention strategies and treatments. To date, most CSS studies have neglected the female sex and used male-focused aggression-based animal models such as chronic social defeat stress (CSDS). Accumulating evidence on sex differences suggests differences in the stress response, the prevalence of stress-related illness and in response to treatment, indicating that researchers should expand CSS investigation to include female-focused protocols alongside the popular CSDS protocols. Here, we describe a novel female mouse model of CSS and a parallel modified male mouse model of CSDS in C57BL/6 mice. These new models enable the investigation of vulnerability, coping and downstream effectors mediating short-term and long-term consequences of CSS in both sexes. Our data demonstrate differential effects on male and female mice during, soon after, and many weeks after CSS. Female mice are more prone to body weight loss during CSS and hyperactive anxious behaviour following CSS. Both sexes show reduced social interaction, but only stressed male mice show long-term changes in emotional memory and neuroendocrine function. We further discuss future avenues of research using these models to investigate mechanisms pertaining to sensitivity to CSS and treatment response profiles, in a sex-appropriate manner.
Collapse
Affiliation(s)
- Orit Furman
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
35
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
36
|
Huq SN, Warner AK, Buckhaults K, Sachs BD. The Effects of Brain Serotonin Deficiency on Responses to High Fat Diet in Female Mice. Front Neurosci 2021; 15:683103. [PMID: 34276291 PMCID: PMC8282998 DOI: 10.3389/fnins.2021.683103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have reported an increased risk of depression and anxiety disorders among individuals who are obese, and women are more likely than men to suffer from depression, anxiety, and obesity. However, the effects of obesity-promoting diets on depression- and anxiety-like behavior remain controversial. A recent study from our group used the tryptophan hydroxylase 2 (R439H) knock-in mouse line to evaluate the impact of genetic brain serotonin (5-HT) deficiency on behavioral responses to high fat diet (HFD) in male mice. That study indicated that chronic exposure to HFD induced pro-anxiety-like effects in the open field test and antidepressant-like effects in the forced swim test in wild-type males. Interestingly, the antidepressant-like effect of HFD, but not the anxiogenic effect, was blocked by brain 5-HT deficiency in males. The current work sought to repeat these studies in females. Our new data suggest that females are less susceptible than males to HFD-induced weight gain and HFD-induced alterations in behavior. In addition, the effects of chronic HFD on the expression of inflammation-related genes in the hippocampus were markedly different in females than we had previously reported in males, and HFD was shown to impact the expression of several inflammation-related genes in a genotype-dependent manner. Together, our findings highlight the importance of brain 5-HT and sex in regulating behavioral and molecular responses to HFD. Our results may have important implications for our understanding of the clinically observed sex differences in the consequences of obesity.
Collapse
Affiliation(s)
- Shama N Huq
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Allison K Warner
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Kerry Buckhaults
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States.,Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, United States
| |
Collapse
|
37
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Glenn MJ, Batallán Burrowes AA, Yu W, Blackmer‐Raynolds L, Norchi A, Doak AL. Progression of behavioral deficits during periadolescent development differs in female and male DISC1 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12741. [PMID: 33960643 PMCID: PMC9744521 DOI: 10.1111/gbb.12741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Mutations in the disrupted in schizophrenia-1 (DISC1) gene are associated with an increased risk of developing psychological disorders including schizophrenia, bipolar disorder, and depression. Assessing the impact of knocking out genes, like DISC1, in animal models provides valuable insights into the relationship between the gene and behavioral outcomes. Previous research has relied on mouse models to assess these impacts, however these may not yield as reliable or rich a behavioral analysis as can be obtained using rats. Thus, the goal of the present study was to characterize the behavioral effects of a biallelic functional deletion of the DISC1 gene in the Sprague Dawley rat. Female and male wild type and DISC1 knockout rats were assessed beginning just prior to weaning and during the post-weaning periadolescent period. The primary outcomes evaluated were activity, anxiety, responses to novel objects and conspecifics, and prepulse inhibition. These behaviors were selected as analogous indices of psychological dysfunction in humans. The DISC1 knockout had significant effects on behavior, although the kind and magnitude of deficits was different for females and males: in females, effects included hyperactivity, aversion to novelty, and a modest prepulse inhibition deficit; in males, effects in anxiety and neophobia were mild but their prepulse inhibition deficit was large. These data confirm that the DISC1 knockout rat model is an excellent way to reproduce and study symptoms of psychological disorders and provides compelling evidence for differential consequences of its dysfunction for females and males in the progression and emergence of specific behavioral deficits.
Collapse
Affiliation(s)
| | - Ariel A. Batallán Burrowes
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontréalQuébecCanada
| | - Waylin Yu
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lisa Blackmer‐Raynolds
- Department of PsychologyColby CollegeWatervilleMaineUSA,Present address:
Department of PhysiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Amanda Norchi
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | | |
Collapse
|
39
|
Zoladz PR, Del Valle CR, Smith IF, Goodman CS, Dodson JL, Elmouhawesse KM, Kasler CD, Rorabaugh BR. Glucocorticoid Abnormalities in Female Rats Exposed to a Predator-Based Psychosocial Stress Model of PTSD. Front Behav Neurosci 2021; 15:675206. [PMID: 34220463 PMCID: PMC8249699 DOI: 10.3389/fnbeh.2021.675206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
People with post-traumatic stress disorder (PTSD) exhibit heightened anxiety and enhanced negative feedback of the hypothalamus-pituitary-adrenal (HPA) axis. We previously reported that male rats exposed to a predator-based psychosocial stress model of PTSD exhibited comparable changes in anxiety-like behavior and HPA axis activity, including lower baseline levels of corticosterone and a greater suppression of corticosterone after dexamethasone administration. Here, we assessed whether we would observe similar effects in female rats exposed to this model. Adult female Sprague-Dawley rats were exposed to a cat on two occasions (separated by 10 days), in combination with chronic social instability. Three weeks after the second cat exposure, we assessed anxiety-like behavior on an elevated plus maze (EPM) and collected blood samples from rats in the absence or presence of dexamethasone to quantify serum corticosterone levels. Although stressed females did not display heightened anxiety on the EPM, they exhibited significantly lower overall corticosterone levels and a greater suppression of corticosterone after dexamethasone administration. The observation of significantly lower overall corticosterone levels in stressed females was replicated in a separate, independent experiment. These findings suggest that the predator-based psychosocial stress model of PTSD may be useful for studying mechanisms that underlie changes in HPA axis function in females exposed to trauma.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Colin R Del Valle
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Ian F Smith
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Cassandra S Goodman
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Jordan L Dodson
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Kara M Elmouhawesse
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Charis D Kasler
- Psychology Program, The School of Health and Behavioral Sciences, Ohio Northern University, Ada, Ohio, OH, United States
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| |
Collapse
|
40
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
41
|
Marchisella F, Creutzberg KC, Begni V, Sanson A, Wearick-Silva LE, Tractenberg SG, Orso R, Kestering-Ferreira É, Grassi-Oliveira R, Riva MA. Exposure to Prenatal Stress Is Associated With an Excitatory/Inhibitory Imbalance in Rat Prefrontal Cortex and Amygdala and an Increased Risk for Emotional Dysregulation. Front Cell Dev Biol 2021; 9:653384. [PMID: 34141707 PMCID: PMC8204112 DOI: 10.3389/fcell.2021.653384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies have shown that environmental insults and maternal stress during pregnancy increase the risk of several psychiatric disorders in the offspring. Converging lines of evidence from humans, as well as from rodent models, suggest that prenatal stress (PNS) interferes with fetal development, ultimately determining changes in brain maturation and function that may lead to the onset of neuropsychiatric disorders. From a molecular standpoint, transcriptional alterations are thought to play a major role in this context and may contribute to the behavioral phenotype by shifting the expression of genes related to excitatory and inhibitory (E/I) transmission balance. Nevertheless, the exact neurophysiological mechanisms underlying the enhanced vulnerability to psychopathology following PNS exposure are not well understood. In the present study, we used a model of maternal stress in rats to investigate the distal effects of PNS on the expression of genes related to glutamatergic and GABAergic neurotransmissions. We inspected two critical brain regions involved in emotion regulation, namely, the prefrontal cortex (PFC) and the amygdala (AMY), which we show to relate with the mild behavioral effects detected in adult rat offspring. We observed that PNS exposure promotes E/I imbalance in the PFC of adult males only, by dysregulating the expression of glutamatergic-related genes. Moreover, such an effect is accompanied by increased expression of the activity-dependent synaptic modulator gene Npas4 specifically in the PFC parvalbumin (PV)-positive interneurons, suggesting an altered regulation of synapse formation promoting higher PV-dependent inhibitory transmission and increased overall circuit inhibition in the PFC of males. In the AMY, PNS more evidently affects the transcription of GABAergic-related genes, shifting the balance toward inhibition. Collectively, our findings suggest that the E/I dysregulation of the PFC-to-AMY transmission may be a long-term signature of PNS and may contribute to increase the risk for mood disorder upon further stress.
Collapse
Affiliation(s)
- Francesca Marchisella
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kerstin Camile Creutzberg
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Veronica Begni
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alice Sanson
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Érika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Andrea Riva
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Brescia, Italy
| |
Collapse
|
42
|
Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Transl Psychiatry 2021; 11:318. [PMID: 34039953 PMCID: PMC8155035 DOI: 10.1038/s41398-021-01458-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Anxiety-like behavior of rodents is frequently accompanied by reduced exploration. Here, we identify dissociable components of anxiety, fear, and exploratory drive of sated and foraging mice. With the help of behavioral assays, including the open field task, elevated plus maze, dark-light transition task, and beetle mania task, we demonstrate a general increase in exploration by food restriction. Food-restricted mice bred for high anxiety behavior (HAB) showed ameliorated anxiety- but not fear-related behavior. By means of principal component analysis, we identified three independent components, which resemble the behavioral dimensions proposed by Gray's Reinforcement Sensitivity Theory (approach behavior, avoidance behavior, and decision making). Taken together, we demonstrate anxiolytic consequences of food restriction in a mouse model of anxiety disorders that can be dissociated from a general increase in foraging behavior.
Collapse
|
43
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
44
|
Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia. Behav Brain Res 2021; 405:113166. [PMID: 33588020 DOI: 10.1016/j.bbr.2021.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Handling of laboratory mice affects animal wellbeing and behavioural test outcomes. However, present research has focused on handling effects in common strains of laboratory mice despite the knowledge that environmental factors can modify established phenotypes of genetic mouse models. Thus, we examined the impact of handling on the face validity of a transgenic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. Nrg1 type III overexpression). Nrg1 III tg and wild type-like (WT) control mice of both sexes underwent tail or tunnel handling before being assessed in the open field (OF), elevated plus maze (EPM), social preference/novelty, prepulse inhibition, and fear conditioning tests. Tunnel-handling reduced the startle response in all mice, increased OF locomotion and exploration in males and reduced anxiety in males (OF) and females (EPM) compared to tail-handling. Importantly, tunnel handling induced a more pronounced startle response to increasing startle stimuli in Nrg1 III tg females compared to respective controls, a phenomenon absent in tail-handled females. Finally, Nrg1 III tg males displayed reduced OF exploration and centre locomotion and Nrg1 III tg females displayed increased cue freezing over time compared to controls. In conclusion, handling methods have a significant impact on a variety of behavioural domains thus the impact of routine handling procedures need be considered when testing behavioural phenotypes. Handling did not change the main schizophrenia-relevant characteristics of Nrg1 III tg mice but affected the acoustic startle-response in a genotype- and sex-specific manner. Future research should evaluate the effect of handling on other genetic models.
Collapse
|
45
|
The effect of Ipomoea carnea on maternal reproductive outcomes and fetal and postnatal development in rats. Toxicon 2020; 190:3-10. [PMID: 33253700 DOI: 10.1016/j.toxicon.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
Ipomoea carnea is a toxic plant found in Brazil and other tropical countries. The plant contains the alkaloids calystegines and swainsonine, which inhibit key cellular enzymes and cause systematic cell death. It is known that swainsonine is excreted in the amniotic fluid of dams exposed to the plant. Thus, the aim of this study was to verify whether the toxic effect of I. carnea on fetuses is due to exclusively the passage of the active principle of the plant through the placenta, or if the placentotoxic effect of swainsonine could collaborate in the adverse effects observed in the fetus. The teratogenic effects of exposure to the toxic principles of I. carnea were evaluated not only using the conventional protocol but also at later stages in the postnatal developmental period. Females were treated, from gestation day (GD) 6 until GD19, with 0.0, 1.0, 3.0 or 7.0 g/kg body weight of I. carnea dry leaves. The plant did not induce changes in reproductive performance or biochemical profile of the dams. Dams that received the highest dose of I. carnea showed cytoplasmic vacuolization in the liver, kidney and placental tissue. I. carnea promoted different lectin binding patterns in different areas of placental tissue. No fetal skeletal or visceral malformations was observed. The postnatal evaluation revealed a lower litter weight and a lower pup body weight one day after birth in the group that received the highest dose of I. carnea. Physical milestones were unaffected by the treatments. Female pups from all experimental groups exhibited a delay in achieving a negative geotaxis response. The results show that the toxic principle of I. carnea produces injury in utero in mothers and fetuses, but these deleterious effects were better demonstrated using postnatal evaluation.
Collapse
|
46
|
De Guzman RM, Medina J, Saulsbery AI, Workman JL. Rotated nursing environment with underfeeding: A form of early-life adversity with sex- and age-dependent effects on coping behavior and hippocampal neurogenesis. Physiol Behav 2020; 225:113106. [PMID: 32717197 DOI: 10.1016/j.physbeh.2020.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 01/06/2023]
Abstract
We investigated how a unique form of early-life adversity (ELA), caused by rotated nursing environment to induce underfeeding, alters anxiety-like and stress-coping behaviors in male and female Sprague Dawley rats in adolescence and adulthood. Adult female rats underwent either thelectomy (thel; surgical removal of teats), sham surgery, or no surgery (control) before mating. Following parturition, litters were rotated between sham and thel rats every 12 h to generate a group of rats that experienced ELA (rotated housing, rotated mother, and 50% food restriction) from postnatal day 0 to 26. Control litters remained with their natal, nursing dams. Regardless of age and sex, ELA reduced activity in the periphery of the open field. ELA increased immobility in the forced swim test, particularly in adults. We used doublecortin immunohistochemistry to identify immature neurons in the hippocampus. ELA increased the number and density of immature neurons in the dentate gyrus of adolescent males (but not females) and reduced the density of immature neurons in adult males (but not females). This research indicates that a unique form of ELA alters stress-related passive coping and hippocampal neurogenesis in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Rose M De Guzman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Joanna Medina
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Angela I Saulsbery
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Joanna L Workman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States; Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, United States.
| |
Collapse
|
47
|
Le Moëne O, Ramírez-Rentería ML, Ågmo A. Male and female immediate fear reaction to white noise in a semi-natural environment: A detailed behavioural analysis of the role of sex and oestrogen receptors. J Neuroendocrinol 2020; 32:e12902. [PMID: 32985022 DOI: 10.1111/jne.12902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/18/2023]
Abstract
In classical rodent anxiety models, females usually display lower anxiety than males, whereas anxiety disorders are more prevalent in women. Perhaps this contradiction is caused by the use of behavioural models with low external validity. Therefore, we analysed immediate reactions to a sudden 90-dB white noise in a semi-natural environment. We observed mixed-sex groups of rats for the 60 seconds preceding noise onset and the first 60 seconds of exposure. White noise elicited fear-specific behaviours hiding alone and huddling. It also increased exploratory and ambulatory behaviours, although only in the burrow zone farthest from the open area. Thus, in a semi-natural environment, white noise enhanced motor activity as a product of fear-induced general arousal. Then, we compared male and female sexual, social, exploratory and anxiety-related behaviour, and found little sex difference. This absence of behavioural effect, also observed in other studies, might be a result of our study design, a familiar environment with an ecologically relevant social context. Fear and anxiety responses are modulated by oestrogens through the activation of oestrogen receptors α and β. Thus, in a third part of out study, we analysed how treatment with either oil, oestradiol benzoate (EB), an agonist to the oestrogen receptor α (propylpyrazoletriol [PPT]) or β (diarylpropionitrile [DPN]) influenced female behaviour. The effect of treatment was limited, both EB and PPT stimulated motor activity in the open area before white noise, probably because of sexual activity. PPT increased the probability of fleeing from the noise, and decreased the latency to do so, which is consistent with a pattern of anxiogenic properties found in previous studies. Contrary to reports in classical procedures, we failed to detect any effect of DPN on immediate fear reactions in a semi-natural environment.
Collapse
Affiliation(s)
- Olivia Le Moëne
- Department of Psychology, University of Tromsø, Tromsø, Norway
| | | | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
48
|
Stielper ZF, Fucich EA, Middleton JW, Hillard CJ, Edwards S, Molina PE, Gilpin NW. Traumatic Brain Injury and Alcohol Drinking Alter Basolateral Amygdala Endocannabinoids in Female Rats. J Neurotrauma 2020; 38:422-434. [PMID: 32838651 DOI: 10.1089/neu.2020.7175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 3 million Americans yearly and increases vulnerability to developing psychiatric comorbidities. Alcohol use disorder (AUD) is the most prevalent psychiatric diagnosis preceding injury and TBI may increase subsequent alcohol use. The basolateral amygdala (BLA) is a limbic structure commonly affected by TBI that is implicated in anxiety and AUD. Endocannabinoids (eCBs) regulate synaptic activity in the BLA, and BLA eCB modulation alters anxiety-like behavior and stress reactivity. Previous work from our laboratories showed that systemic eCB degradation inhibition ameliorates TBI-induced increases in anxiety-like behavior and motivation to respond for alcohol in male rats. Here, we used a lateral fluid percussion model to test moderate TBI effects on anxiety-like behavior, alcohol drinking, and eCB levels and cell signaling in BLA, as well as the effect of alcohol drinking on anxiety-like behavior and the BLA eCB system, in female rats. Our results show that TBI does not promote escalation of operant alcohol self-administration or increase anxiety-like behavior in female rats. In the BLA, TBI and alcohol drinking alter tissue amounts of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA) 1 h post-injury, and 2-AG levels remain low 11 days post-injury. Eleven days after injury, BLA pyramidal neurons were hyperexcitable, but measures of synaptic transmission and eCB signaling were unchanged. These data show that TBI impacts BLA 2-AG tissue levels, that this effect is modified by alcohol drinking, and also that TBI increases BLA cell excitability.
Collapse
Affiliation(s)
- Zachary F Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Elizabeth A Fucich
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Jason W Middleton
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
49
|
Abstract
Differences in the prevalence and presentation of psychiatric illnesses in men and women suggest that neurobiological sex differences confer vulnerability or resilience in these disorders. Rodent behavioral models are critical for understanding the mechanisms of these differences. Reward processing and punishment avoidance are fundamental dimensions of the symptoms of psychiatric disorders. Here we explored sex differences along these dimensions using multiple and distinct behavioral paradigms. We found no sex difference in reward-guided associative learning but a faster punishment-avoidance learning in females. After learning, females were more sensitive than males to probabilistic punishment but less sensitive when punishment could be avoided with certainty. No sex differences were found in reward-guided cognitive flexibility. Thus, sex differences in goal-directed behaviors emerged selectively when there was an aversive context. These differences were critically sensitive to whether the punishment was certain or unpredictable. Our findings with these new paradigms provide conceptual and practical tools for investigating brain mechanisms that account for sex differences in susceptibility to anxiety and impulsivity. They may also provide insight for understanding the evolution of sex-specific optimal behavioral strategies in dynamic environments.
Collapse
|
50
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|