1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q. Enabling systemic identification and functionality profiling for Cdc42 homeostatic modulators. Commun Chem 2024; 7:271. [PMID: 39562759 PMCID: PMC11577034 DOI: 10.1038/s42004-024-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Maintaining body homeostasis is the ultimate key to health. There are rich resources of bioactive materials for the functionality of homeostatic modulators (HMs) from both natural and synthetic chemical repertories1-3. HMs are powerful modern therapeutics for human diseases including neuropsychiatric diseases, mental disorders, and drug addiction (e.g. Buspirone and benzodiazepines)4-7. However, the identification of therapeutic HMs are often unpredictable and limited to membrane protein receptors and ion channels. Based on a serendipitously encountered small molecule ZCL278 with partial agonist (PA) profile as a model compound8-10, the Mant-GTP fluorophore-based Cdc42-GEF (guanine nucleotide exchange factor) screening uncovered a near holistic spectrum of HMs for Cdc42, a cytoplasmic small GTPase in the Ras superfamily11,12. We categorized these HMs as functionally distinct, with some previously understudied classes: Class I-competitive PAs, Class II-hormetic agonists, Class III-bona fide inhibitors, Class IV-bona fide activators, and Class V-ligand-enhanced agonists. The model HMs elicited striking biological functionalities in modulating bradykinin activation of Cdc42 signaling as well as actin remodeling while they ameliorated Alzheimer's disease-like social behavior in mouse model. Furthermore, molecular structural modeling analyses led to the concept of preferential binding pocket order (PBPO) for profiling HMs that target Cdc42 complexed with intersectin (ITSN), a GEF selectively activating Cdc42. Remarkably, the PBPO enabled a prediction of HM class that mimics the pharmacological functionality. Therefore, our study highlights a model path to actively capture different classes of HM to broaden therapeutic landscape.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fereshteh Azimian
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Yan-Hua Chen
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, USA
| | - Christi Boykin
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Shayan Nik Akhtar
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Qun Lu
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA.
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- Laboratory of Molecular Neurotherapeutics, Center for Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
3
|
Taira R, Akamine S, Okuzono S, Fujii F, Hatai E, Yonemoto K, Takemoto R, Kato H, Masuda K, Kato TA, Kira R, Tsujimura K, Yamamura K, Ozaki N, Ohga S, Sakai Y. Gnao1 is a molecular switch that regulates the Rho signaling pathway in differentiating neurons. Sci Rep 2024; 14:17097. [PMID: 39048611 PMCID: PMC11269603 DOI: 10.1038/s41598-024-68062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.
Collapse
Affiliation(s)
- Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Eriko Hatai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Ryuichi Takemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Shionogi Pharma Co., Ltd., Settsu, Osaka, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRAS G12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189108. [PMID: 38723697 DOI: 10.1016/j.bbcan.2024.189108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yue Qiao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
8
|
Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q. Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574351. [PMID: 38260445 PMCID: PMC10802479 DOI: 10.1101/2024.01.05.574351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Homeostatic modulation is pivotal in modern therapeutics. However, the discovery of bioactive materials to achieve this functionality is often random and unpredictive. Here, we enabled a systemic identification and functional classification of chemicals that elicit homeostatic modulation of signaling through Cdc42, a classical small GTPase of Ras superfamily. Rationally designed for high throughput screening, the capture of homeostatic modulators (HMs) along with molecular re-docking uncovered at least five functionally distinct classes of small molecules. This enabling led to partial agonists, hormetic agonists, bona fide activators and inhibitors, and ligand-enhanced agonists. Novel HMs exerted striking functionality in bradykinin-Cdc42 activation of actin remodelingand modified Alzheimer's disease-like behavior in mouse model. This concurrent computer-aided and experimentally empowered HM profiling highlights a model path for predicting HM landscape. One Sentence Summary With concurrent experimental biochemical profiling and in silico computer-aided drug discovery (CADD) analysis, this study enabled a systemic identification and holistic classification of Cdc42 homeostatic modulators (HMs) and demonstrated the power of CADD to predict HM classes that can mimic the pharmacological functionality of interests. Introduction Maintainingbody homeostasisis the ultimate keyto health. Thereare rich resources of bioactive materials for this functionality from both natural and synthetic chemical repertories including partial agonists (PAs) and various allosteric modulators. These homeostatic modulators (HMs) play a unique role in modern therapeutics for human diseases such as mental disorders and drug addiction. Buspirone, for example, acts as a PA for serotonin 5-HT 1A receptor but is an antagonist of the dopamine D 2 receptor. Such medical useto treat general anxietydisorders (GADs) has become one of the most-commonly prescribed medications. However, most HMs in current uses target membrane proteins and are often derived from random discoveries. HMs as therapeutics targeting cytoplasmic proteins are even more rare despite that they are in paramount needs (e. g. targeting Ras superfamily small GTPases). Rationale Cdc42, a classical member of small GTPases of Ras superfamily, regulates PI3K-AKT and Raf-MEK-ERK pathways and has been implicated in various neuropsychiatric and mental disorders as well as addictive diseases and cancer. We previously reported the high-throughput in-silico screening followed by biological characterization of novel small molecule modulators (SMMs) of Cdc42-intersectin (ITSN) protein-protein interactions (PPIs). Based on a serendipitously discovered SMM ZCL278 with PA profile as a model compound, we hypothesized that there are more varieties of such HMs of Cdc42 signaling, and the model HMs can be defined by their distinct Cdc42-ITSN binding mechanisms using computer-aided drug discovery (CADD) analysis. We further reasoned that molecular modeling coupled with experimental profiling can predict HM spectrum and thus open the door for the holistic identification and classification of multifunctional cytoplasmic target-dependent HMs as therapeutics. Results The originally discovered Cdc42 inhibitor ZCL278 displaying PA properties prompted the inquiry whether this finding represented a random encounter of PAs or whether biologically significant PAs can be widely present. The top ranked compounds were initially defined by structural fitness and binding scores to Cdc42. Because higher binding scores do not necessarily translate to higher functionality, we performed exhaustive experimentations with over 2,500 independent Cdc42-GEF (guanine nucleotide exchange factor) assays to profile the GTP loading activities on all 44 top ranked compounds derived from the SMM library. The N-MAR-GTP fluorophore-based Cdc42-GEF assay platform provided the first glimpse of the breadth of HMs. A spectrum of Cdc42 HMs was uncovered that can be categorized into five functionally distinct classes: Class I-partial competitive agonists, Class II-hormetic agonists, Class III- bona fide inhibitors (or inverse agonists), Class IV- bona fide activators or agonists, and Class V-ligand-enhanced agonists. Remarkably, model HMs such as ZCL278, ZCL279, and ZCL367 elicited striking biological functionality in bradykinin-Cdc42 activation of actin remodeling and modified Alzheimer's disease (AD)-like behavior in mouse model. Concurrently, we applied Schrödinger-enabled analyses to perform CADD predicted classification of Cdc42 HMs. We modified the classic molecular docking to instill a preferential binding pocket order (PBPO) of Cdc42-ITSN, which was based on the five binding pockets in interface of Cdc42-ITSN. We additionally applied a structure-based pharmacophore hypothesis generation for the model compounds. Then, using Schrödinger's Phase Shape, 3D ligand alignments assigned HMs to Class I, II, III, IV, and V compounds. In this HM library compounds, PBPO, matching pharmacophoric featuring, and shape alignment, all put ZCL993 in Class II compound category, which was confirmed in the Cdc42-GEF assay. Conclusion HMs can target diseased cells or tissues while minimizing impacts on tissues that are unaffected. Using Cdc42 HM model compounds as a steppingstone, GTPase activation-based screening of SMM library uncovered five functionally distinct Cdc42 HM classes among which novel efficacies towards alleviating dysregulated AD-like features in mice were identified. Furthermore, molecular re-docking of HM model compounds led to the concept of PBPO. The CADD analysis with PBPO revealed similar profile in a color-coded spectrum to these five distinct classes of Cdc42 HMs identified by biochemical functionality-based screening. The current study enabled a systemic identification and holistic classification of Cdc42 HMs and demonstrated the power of CADD to predict an HM category that can mimic the pharmacological functionality of interests. With artificial intelligence/machine learning (AI/ML) on the horizon to mirror experimental pharmacological discovery like AlphaFold for protein structure prediction, our study highlights a model path to actively capture and profile HMs in potentially any PPI landscape. Graphic Abstract Identification and functional classification of Cdc42 homeostatic modulators HMs Using Cdc42 HM model compounds as reference, GTPase activation-based screening of compound libraries uncovered five functionally distinct Cdc42 HM classes. HMs showed novel efficacies towards alleviating dysregulated Alzheimer's disease (AD)-like behavioral and molecular deficits. In parallel, molecular re-docking of HM model compounds established their preferential binding pocket orders (PBPO). PBPO-based profiling (Red reflects the most, whereas green reflects the least, preferable binding pocket) revealed trends of similar pattern to the five classes from the functionality-based classification.
Collapse
|
9
|
Zeng C, Li H, Liang W, Chen J, Zhang Y, Zhang H, Xiao H, Li Y, Guan H. Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine 2024; 83:127-141. [PMID: 37541962 DOI: 10.1007/s12020-023-03468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored. METHODS The gene expression and clinical information of thyroid cancer were downloaded using "TCGAbiolinks" R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting. RESULTS In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT). CONCLUSION Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.
Collapse
Affiliation(s)
- Chuimian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanrong Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Hua X, Zou R, Bai X, Yang Y, Lu J, Huang C. Differential functions of RhoGDIβ in malignant transformation and progression of urothelial cell following N-butyl-N-(4-hydmoxybutyl) nitrosamine exposure. BMC Biol 2023; 21:181. [PMID: 37635218 PMCID: PMC10463823 DOI: 10.1186/s12915-023-01683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIβ) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIβ expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS It was seen that compared to expression in vehicle-treated control cells, RhoGDIβ protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIβ inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIβ mRNA 3'UTR, and reduced RhoGDIβ protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIβ mRNA transcription and protein expression as well as invasion. CONCLUSIONS These findings indicate that RhoGDIβ is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIβ may be a useful biomarker for evaluating the progression of human bladder cancers.
Collapse
Affiliation(s)
- Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
11
|
Ősz BE, Jîtcă G, Sălcudean A, Rusz CM, Vari CE. Benzydamine-An Affordable Over-the-Counter Drug with Psychoactive Properties-From Chemical Structure to Possible Pharmacological Properties. Pharmaceuticals (Basel) 2023; 16:ph16040566. [PMID: 37111323 PMCID: PMC10144213 DOI: 10.3390/ph16040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Benzydamine is a non-steroidal anti-inflammatory drug with distinct pharmacological properties from other compounds in the same therapeutic class. The differences are structural and pharmacological in nature; the anti-inflammatory mechanism is not strictly explained by the ability to interfere with the synthesis of prostaglandins. The compound is used strictly in local inflammatory diseases (inflammation in the oral and vaginal mucosa). In addition to the therapeutic indications found in the summary of product characteristics (SPC), the compound is used, in high doses, as a psychotropic substance for oral administration, having similar properties to lysergic acid diethylamide (LSD). As an over-the-counter (OTC) compound, it is easy to obtain, and the consequences of using it for purposes other than those assumed by the manufacturer raise various concerns. The reasons are related to the pharmacodynamic and pharmaco-toxicological properties, since neither the mechanism of action nor the possible side effects that would result from systemic consumption, in high doses, even occasionally, have been fully elucidated. The present review aims to analyze the pharmacodynamic properties of benzydamine, starting from the chemical structure, by comparison with structurally similar compounds registered in therapy (as an anti-inflammatory or analgesic) or used for recreational purposes.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Andreea Sălcudean
- Department of Ethics and Social Sciences, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Carmen Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
12
|
Xue Q, Varady SR, Waddell TQA, Roman MR, Carrington J, Roh-Johnson M. Lack of Paxillin phosphorylation promotes single-cell migration in vivo. J Cell Biol 2023; 222:213850. [PMID: 36723624 PMCID: PMC9929932 DOI: 10.1083/jcb.202206078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Focal adhesions are structures that physically link the cell to the extracellular matrix for cell migration. Although cell culture studies have provided a wealth of information regarding focal adhesion biology, it is critical to understand how focal adhesions are dynamically regulated in their native environment. We developed a zebrafish system to visualize focal adhesion structures during single-cell migration in vivo. We find that a key site of phosphoregulation (Y118) on Paxillin exhibits reduced phosphorylation in migrating cells in vivo compared to in vitro. Furthermore, expression of a non-phosphorylatable version of Y118-Paxillin increases focal adhesion disassembly and promotes cell migration in vivo, despite inhibiting cell migration in vitro. Using a mouse model, we further find that the upstream kinase, focal adhesion kinase, is downregulated in cells in vivo, and cells expressing non-phosphorylatable Y118-Paxillin exhibit increased activation of the CRKII-DOCK180/RacGEF pathway. Our findings provide significant new insight into the intrinsic regulation of focal adhesions in cells migrating in their native environment.
Collapse
Affiliation(s)
- Qian Xue
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia R.S. Varady
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Mackenzie R. Roman
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Carrington
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA,School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Rahman SU, Kim WJ, Chung SH, Woo KM. Nanofibrous topography-driven altered responsiveness to Wnt5a mediates the three-dimensional polarization of odontoblasts. Mater Today Bio 2022; 17:100479. [DOI: 10.1016/j.mtbio.2022.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
14
|
Hu L, Zhang X, Li H, Lin S, Zang S. Targeting TET2 as a Therapeutic Approach for Angioimmunoblastic T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14225699. [PMID: 36428791 PMCID: PMC9688210 DOI: 10.3390/cancers14225699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), a type of malignant lymphoma with unique genomic aberrations, significant clinicopathological features, and poor prognosis, is characterized by immune system dysregulation. Recent sequencing studies have identified recurrent mutations and interactions in tet methylcytosine dioxygenase 2 (TET2), ras homology family member A (RHOA), DNA methyltransferase 3 alpha (DNMT3A), and mitochondrial isocitrate dehydrogenase II (IDH2). Notably, since B-cell lymphomas are frequently observed along with AITL, this review first summarizes its controversial mechanisms based on traditional and recent views. Epigenetic regulation represented by TET2 plays an increasingly important role in understanding the multi-step and multi-lineage tumorigenesis of AITL, providing new research directions and treatment strategies for patients with AITL. Here, we review the latest advances in our understanding of AITL and highlight relevant issues that have yet to be addressed in clinical practice.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huifeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-13559131526
| |
Collapse
|
15
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Kahsay A, Rodriguez-Marquez E, López-Pérez A, Hörnblad A, von Hofsten J. Pax3 loss of function delays tumour progression in kRAS-induced zebrafish rhabdomyosarcoma models. Sci Rep 2022; 12:17149. [PMID: 36229514 PMCID: PMC9561152 DOI: 10.1038/s41598-022-21525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.
Collapse
Affiliation(s)
- A. Kahsay
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - E. Rodriguez-Marquez
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. López-Pérez
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. Hörnblad
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - J. von Hofsten
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| |
Collapse
|
17
|
Volmar AY, Guterres H, Zhou H, Reid D, Pavlopoulos S, Makowski L, Mattos C. Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. Biophys J 2022; 121:3616-3629. [PMID: 35794829 PMCID: PMC9617160 DOI: 10.1016/j.bpj.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.
Collapse
Affiliation(s)
- Alicia Y Volmar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hugo Guterres
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hao Zhou
- Department of Electrical and Computing Engineering, Northeastern University, Boston, Massachusetts
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Spiro Pavlopoulos
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
18
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, Gutkind JS, Li S, Tesmer JJG. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. J Biol Chem 2022; 298:102209. [PMID: 35779635 PMCID: PMC9372627 DOI: 10.1016/j.jbc.2022.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/20/2023] Open
Abstract
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Chun-Liang Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Sandeep K Ravala
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer N Cash
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, USA
| | - Larisa V Avramova
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mariya V Zhalnina
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, San Diego, California, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
21
|
Díaz-Beyá M, García-Fortes M, Valls R, Artigas L, Gómez-Casares MT, Montesinos P, Sánchez-Guijo F, Coma M, Vendranes M, Martínez-López J. A Systems Biology- and Machine Learning-Based Study to Unravel Potential Therapeutic Mechanisms of Midostaurin as a Multitarget Therapy on FLT3-Mutated AML. BIOMEDINFORMATICS 2022; 2:375-397. [DOI: 10.3390/biomedinformatics2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Acute myeloid leukemia (AML), a hematologic malignancy that results in bone marrow failure, is the most common acute leukemia in adults. The presence of FMS-related tyrosine kinase 3 (FLT3) mutations is associated with a poor prognosis, making the evaluation of FLT3-inhibitors an imperative goal in clinical trials. Midostaurin was the first FLT3-inhibitor approved by the FDA and EMA for the treatment of FLT3-mutated AML, and it showed a significant improvement in overall survival for newly diagnosed patients treated with midostaurin, in combination with standard chemotherapy (RATIFY study). The main interest of midostaurin has been the FLT3-specific inhibition, but little is known about its role as a multikinase inhibitor and whether it may be used in relapse and maintenance therapy. Here, we used systems biology- and machine learning-based approaches to deepen the potential benefits of the multitarget activity of midostaurin and to better understand its anti-leukemic effect on FLT3-mutated AML. The resulting in silico study revealed that the multikinase activity of midostaurin may play a role in the treatment’s efficacy. Additionally, we propose a series of molecular mechanisms that support a potential benefit of midostaurin as a maintenance therapy in FLT3-mutated AML, by regulating the microenvironment. The obtained results are backed up using independent gene expression data.
Collapse
Affiliation(s)
- Marina Díaz-Beyá
- Department of Hematology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raquel Valls
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Laura Artigas
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Mª Teresa Gómez-Casares
- Hematology Service, Hospital Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Pau Montesinos
- Departament of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Fermín Sánchez-Guijo
- Cancer Research Center (CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mireia Coma
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | | | - Joaquín Martínez-López
- Hospital 12 de Octubre. Universidad Complutense. CNIO. Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto Carlos III, 28041 Madrid, Spain
| |
Collapse
|
22
|
Xu R, Höß C, Swiercz JM, Brandt DT, Lutz V, Petersen N, Li R, Zhao D, Oleksy A, Creigh-Pulatmen T, Trokter M, Fedorova M, Atzberger A, Strandby RB, Olsen AA, Achiam MP, Matthews D, Huber M, Gröne HJ, Offermanns S, Worzfeld T. A semaphorin-plexin-Rasal1 signaling pathway inhibits gastrin expression and protects against peptic ulcers. Sci Transl Med 2022; 14:eabf1922. [PMID: 35857828 DOI: 10.1126/scitranslmed.abf1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Höß
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dominique T Brandt
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Veronika Lutz
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dandan Zhao
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | | | | | | | | | - Ann Atzberger
- Flow Cytometry Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - August A Olsen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.,Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
23
|
Vahedi SM, Salek Ardestani S, Pahlevan Afshari K, Ghoreishifar SM, Moghaddaszadeh-Ahrabi S, Banabazi MH, Brito LF. Genome-Wide Selection Signatures and Human-Mediated Introgression Events in Bos taurus indicus-influenced Composite Beef Cattle. Front Genet 2022; 13:844653. [PMID: 35719394 PMCID: PMC9201998 DOI: 10.3389/fgene.2022.844653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic introgression from interbreeding hybridization of European Bos taurus taurus (EBT) and Indian Bos taurus indicus (IBI) cattle breeds have been widely used to combine the climatic resilience of the IBI cattle and the higher productivity of EBT when forming new composite beef cattle (CB) populations. The subsequent breeding strategies have shifted their initial genomic compositions. To uncover population structure, signatures of selection, and potential introgression events in CB populations, high-density genotypes [containing 492,954 single nucleotide polymorphisms (SNPs) after the quality control] of 486 individuals from 15 cattle breeds, including EBT, IBI, and CB populations, along with two Bos grunniens genotypes as outgroup were used in this study. Then, in-depth population genetics analyses were performed for three CB breeds of Beefmaster, Brangus, and Santa Gertrudis. Neighbor-joining, principal components, and admixture analyses confirmed the historical introgression of EBT and IBI haplotypes into CB breeds. The fdM statistics revealed that only 12.9% of CB populations' genetic components are of IBI origin. The results of signatures of selection analysis indicated different patterns of selection signals in the three CB breeds with primary pressure on pathways involved in protein processing and stress response in Beefmaster, cell proliferation regulation and immune response in Brangus, and amino acids and glucose metabolisms in Santa Gertrudis. An average of >90% of genomic regions underlying selection signatures were of EBT origin in the studied CB populations. Investigating the CB breeds' genome allows the estimation of EBT and IBI ancestral proportions and the locations within the genome where either taurine or indicine origin alleles are under selective pressure. Such findings highlight various opportunities to control the selection process more efficiently and explore complementarity at the genomic level in CB populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kian Pahlevan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
24
|
Kann AP, Hung M, Wang W, Nguyen J, Gilbert PM, Wu Z, Krauss RS. An injury-responsive Rac-to-Rho GTPase switch drives activation of muscle stem cells through rapid cytoskeletal remodeling. Cell Stem Cell 2022; 29:933-947.e6. [PMID: 35597234 PMCID: PMC9177759 DOI: 10.1016/j.stem.2022.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Many tissues harbor quiescent stem cells that are activated upon injury, subsequently proliferating and differentiating to repair tissue damage. Mechanisms by which stem cells sense injury and transition from quiescence to activation, however, remain largely unknown. Resident skeletal muscle stem cells (MuSCs) are essential orchestrators of muscle regeneration and repair. Here, with a combination of in vivo and ex vivo approaches, we show that quiescent MuSCs have elaborate, Rac GTPase-promoted cytoplasmic projections that respond to injury via the upregulation of Rho/ROCK signaling, facilitating projection retraction and driving downstream activation events. These early events involve rapid cytoskeletal rearrangements and occur independently of exogenous growth factors. This mechanism is conserved across a broad range of MuSC activation models, including injury, disease, and genetic loss of quiescence. Our results redefine MuSC activation and present a central mechanism by which quiescent stem cells initiate responses to injury.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Wang
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
| | - Zhuhao Wu
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
25
|
Abstract
Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates non-selective uptake of extracellular fluid in bulk. Macropinocytosis is initiated by localized polymerization of the actin cytoskeleton, which generates plasma membrane protrusions that enclose part of the environment into large endocytic vesicles. From amoebae to mammalian cells, the actin dynamics that drive macropinosome formation are regulated by a conserved set of intracellular signaling proteins including Ras superfamily GTPases and PI3-kinases. In mammalian cells, multiple upstream signaling pathways control activity of these core regulators in response to cell-extrinsic and cell-intrinsic stimuli. Growth factor signaling pathways play a central role in macropinocytosis induction. In addition, an increasing number of functionally diverse processes has been identified as macropinocytosis regulators, including several nutrient-sensing and developmental signaling pathways. Many of these signaling pathways have proto-oncogenic properties, and their dysregulation drives the high macropinocytic activity that is commonly observed in cancer cells. These regulatory principles illustrate how macropinocytosis is controlled by complex upstream inputs to exert diverse cellular functions in physiological and pathological contexts.
Collapse
|
26
|
Zheng C, Wu H, Jin S, Li D, Tan S, Zhu X. Roles of Myc-associated zinc finger protein in malignant tumors. Asia Pac J Clin Oncol 2022; 18:506-514. [PMID: 35098656 DOI: 10.1111/ajco.13748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
As an important transcription factor that is widely expressed in most tissues of the human body, Myc-associated zinc finger protein (MAZ) has been reported highly expressed in many malignant tumors and thought to be a promising therapeutic target for cancer treatment. In this review, we aim to offer a comprehensive understanding of MAZ regulation in malignant tumors. The carboxy terminal of MAZ protein contains six C2H2 zinc fingers, and its regulation of transcription is based on the interaction between the GC-rich DNA binding sites of target genes and its carboxy-terminal zinc finger motifs. MAZ protein has been found to activate or inhibit the transcriptional initiation process of many target genes, as well as play an important role in the transcriptional termination process of some target genes, so MAZ poses dual regulatory functions in the initiation and termination process of gene transcription. Through the transcriptional regulation of c-myc and Ras gene family, MAZ poses an important role in the occurrence and development of breast cancer, pancreatic cancer, prostate cancer, glioblastoma, neuroblastoma, and other malignant tumors. Our review shows a vital role of MAZ in many malignant tumors and provides novel insight for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanjun Zheng
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Hongmei Wu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Song Jin
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Di Li
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
27
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
28
|
Lin KH, Kumar VB, Shanmugam T, Shibu MA, Chen RJ, Kuo CH, Ho TJ, Padma VV, Yeh YL, Huang CY. miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem 2021; 476:3253-3260. [PMID: 33886061 DOI: 10.1007/s11010-021-04100-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3'UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3'UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tamilselvi Shanmugam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
29
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
30
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
31
|
Seiz JR, Klinke J, Scharlibbe L, Lohfink D, Heipel M, Ungefroren H, Giehl K, Menke A. Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma. Biol Chem 2021; 401:517-531. [PMID: 31811797 DOI: 10.1515/hsz-2019-0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Rac1 is a ubiquitously expressed Rho GTPase and an important regulator of the actin cytoskeleton. Its splice variant Rac1b exhibits a 19-amino acid (aa) in-frame insertion and is predominantly active. Both proteins were described in tumorigenesis or metastasis. We investigated the contribution of Rac1 and Rac1b to tumor progression of human non-small-cell lung adenocarcinoma (NSCLA). Rac1 protein was present in 8/8 NSCLA cell lines analyzed, whereas Rac1b was expressed in only 6/8. In wound-healing assays, enhanced green fluorescence protein (EGFP)-Rac1 slightly decreased cell migration, whereas proliferation was increased in both, Rac1- and Rac1b-expressing cells. In the in vivo chorioallantoic invasion model, EGFP-Rac1-expressing cells formed more invasive tumors compared to EGFP-Rac1b. This increased invasiveness correlated with enhanced phosphorylation of p38α, AKT and glycogen synthase kinase 3β (GSK3β), and activation of serum response- and Smad-dependent gene promoters by Rac1. In contrast, Rac1b solely activated the mitogen-activated protein kinase (MAPK) JNK2, together with TCF/LEF1- and nuclear factor kappa B (NFκB)-responsive gene reporters. Rac1b, as Rac1, phosphorylated p38α, AKT and GSK3β. Knockdown of the splicing factor epithelial splicing regulatory protein 1 (ESRP1), which mediates out-splicing of exon 3b from Rac1 pre-messenger RNA, resulted in increased Rac1b messenger RNA (mRNA) and suppression of the epithelial-mesenchymal transition (EMT)-associated transcription factor ZEB1. Our data demonstrate different signaling and functional activities of Rac1 and Rac1b and an important role for Rac1 in lung cancer metastasis.
Collapse
Affiliation(s)
- Julia R Seiz
- Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Johannes Klinke
- Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Laura Scharlibbe
- Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Dirk Lohfink
- Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Marisa Heipel
- Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| | - Andre Menke
- Molecular Oncology of Solid Tumors, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany
| |
Collapse
|
32
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
33
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
34
|
Dai W, Xie S, Chen C, Choi BH. Ras sumoylation in cell signaling and transformation. Semin Cancer Biol 2021; 76:301-309. [PMID: 33812985 DOI: 10.1016/j.semcancer.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.
Collapse
Affiliation(s)
- Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, USA
| | - Suqing Xie
- Institute of Pathology, Kings County Hospital Center, Brooklyn, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Byeong Hyeok Choi
- Department of Environmental Medicine, New York University Langone Medical Center, USA.
| |
Collapse
|
35
|
Matsuoka Y, Al-Shareef H, Kogo M, Nakahara H. Effects of decreased Rac activity and malignant state on oral squamous cell carcinoma in vitro. PLoS One 2021; 16:e0212323. [PMID: 33444335 PMCID: PMC7808617 DOI: 10.1371/journal.pone.0212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022] Open
Abstract
Rac proteins, members of the Rho family of small GTP-binding proteins, have been implicated in transducing a number of signals for various biological mechanisms, including cell cytoskeleton organization, transcription, proliferation, migration, and cancer cell motility. Among human cancers, Rac proteins are highly activated by either overexpression of the genes, up-regulation of the protein, or by mutations that allow the protein to elude normal regulatory signaling pathways. Rac proteins are involved in controlling cell survival and apoptosis. The effects of Rac inhibition by the Rac-specific small molecule inhibitor NSC23766 or by transfection of dominant negative Rac (Rac-DN) were examined on three human-derived oral squamous cell carcinoma cell lines that exhibit different malignancy grades, OSC-20 (grade 3), OSC-19 (grade 4C), and HOC313 (grade 4D). Upon suppression of Rac, OSC-19 and HOC313 cells showed significant decreases in Rac activity and resulted in condensation of the nuclei and up-regulation of c-Jun N-terminal kinase (JNK), leading to caspase-dependent apoptosis. In contrast, OSC-20 cells showed only a slight decrease in Rac activity, which resulted in slight activation of JNK and no change in the nuclei. Fibroblasts treated with NSC23766 also showed only a slight decrease in Rac activity with no change in the nuclei or JNK activity. Our results indicated that apoptosis elicited by the inhibition of Rac depended on the extent of decreased Rac activity and the malignant state of the squamous cell carcinoma. In addition, activation of JNK strongly correlated with apoptosis. Rac inhibition may represent a novel therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Yudai Matsuoka
- The First Department of Oral & Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hani Al-Shareef
- Department of Oral & Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Mikihiko Kogo
- The First Department of Oral & Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hirokazu Nakahara
- The First Department of Oral & Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral & Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka, Osaka, Japan
- * E-mail:
| |
Collapse
|
36
|
Tran KB, Buchanan CM, Shepherd PR. Evolution of Molecular Targets in Melanoma Treatment. Curr Pharm Des 2020; 26:396-414. [PMID: 32000640 DOI: 10.2174/1381612826666200130091318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the deadliest type of skin cancers, accounting for more than 80% of skin cancer mortality. Although melanoma was known very early in the history of medicine, treatment for this disease had remained largely the same until very recently. Previous treatment options, including removal surgery and systemic chemotherapy, offered little benefit in extending the survival of melanoma patients. However, the last decade has seen breakthroughs in melanoma treatment, which all emerged following new insight into the oncogenic signaling of melanoma. This paper reviewed the evolution of drug targets for melanoma treatment based on the emergence of novel findings in the molecular signaling of melanoma. One of the findings that are most influential in melanoma treatment is that more than 50% of melanoma tumors contain BRAF mutations. This is fundamental for the development of BRAF inhibitors, which is the first group of drugs that significantly improves the overall survival of melanoma patients compared to the traditional chemotherapeutic dacarbazine. More recently, findings of the role of immune checkpoint molecules such as CTLA-4 and PD1/PD-L1 in melanoma biology have led to the development of a new therapeutic category: immune checkpoint inhibitors, which, for the first time in the history of cancer treatment, produced a durable response in a subset of melanoma patients. However, as this paper discussed next, there is still an unmet need for melanoma treatment. A significant population of patients did not respond to either BRAF inhibitors or immune checkpoint inhibitors. Of those patients who gained an initial response from those therapies, a remarkable percentage would develop drug resistance even when MEK inhibitors were added to the treatment. Finally, this paper discusses some possible targets for melanoma treatment.
Collapse
Affiliation(s)
- Khanh B Tran
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christina M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| |
Collapse
|
37
|
Joo E, Olson MF. Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases 2020; 12:358-371. [PMID: 33126816 PMCID: PMC8583009 DOI: 10.1080/21541248.2020.1840889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since the discovery by Madaule and Axel in 1985 of the first Ras homologue (Rho) protein in Aplysia and its human orthologue RhoB, membership in the Rho GTPase family has grown to 20 proteins, with representatives in all eukaryotic species. These GTPases are molecular switches that cycle between active (GTP bound) and inactivate (GDP bound) states. The exchange of GDP for GTP on Rho GTPases is facilitated by guanine exchange factors (GEFs). Approximately 80 Rho GEFs have been identified to date, and only a few GEFs associate with microtubules. The guanine nucleotide exchange factor H1, GEF-H1, is a unique GEF that associates with microtubules and is regulated by the polymerization state of microtubule networks. This review summarizes the regulation and functions of GEF-H1 and discusses the roles of GEF-H1 in human diseases.
Collapse
Affiliation(s)
- Emily Joo
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
38
|
Ong T, Trivedi N, Wakefield R, Frase S, Solecki DJ. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. Nat Commun 2020; 11:5312. [PMID: 33082319 PMCID: PMC7576183 DOI: 10.1038/s41467-020-19063-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence is lacking as to how developing neurons integrate mitogenic signals with microenvironment cues to control proliferation and differentiation. We determine that the Siah2 E3 ubiquitin ligase functions in a coincidence detection circuit linking responses to the Shh mitogen and the extracellular matrix to control cerebellar granule neurons (CGN) GZ occupancy. We show that Shh signaling maintains Siah2 expression in CGN progenitors (GNPs) in a Ras/Mapk-dependent manner. Siah2 supports ciliogenesis in a feed-forward fashion by restraining cilium disassembly. Efforts to identify sources of the Ras/Mapk signaling led us to discover that GNPs respond to laminin, but not vitronectin, in the GZ microenvironment via integrin β1 receptors, which engages the Ras/Mapk cascade with Shh, and that this niche interaction is essential for promoting GNP ciliogenesis. As GNPs leave the GZ, differentiation is driven by changing extracellular cues that diminish Siah2-activity leading to primary cilia shortening and attenuation of the mitogenic response. In neural development, progenitors transition from a proliferative to a differentiated state. Here, the authors show that cerebellar granule neurons retract primary cilia as they exit their proliferative niche upon decreased ECM engagement, enabling radial migration due to loss of Shh sensitivity.
Collapse
Affiliation(s)
- Taren Ong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Randall Wakefield
- Cell and Tissue Imaging Center-EM, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sharon Frase
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
39
|
S UK, R B, D TK, Doss CGP, Zayed H. Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. J Biomol Struct Dyn 2020; 40:1571-1585. [PMID: 33034275 DOI: 10.1080/07391102.2020.1830177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
K-Ras is a small GTPase and acts as a molecular switch by recruiting GEFs and GAPs, and alternates between the inert GDP-bound and the dynamic GTP-bound forms. The amino acid at position 12 of K-Ras is a hot spot for oncogenic mutations (G12A, G12C, G12D, G12R, G12S, and G12V), disturbing the active fold of the protein, leading to cancer development. This study aimed to investigate the potential conformational changes induced by these oncogenic mutations at the 12th position, impairing GAP-mediated GTP hydrolysis. Comprehensive computational tools (iStable, FoldX, SNPeffect, DynaMut, and CUPSAT) were used to evaluate the effect of these six mutations on the stability of wild type K-Ras protein. The docking of GTP with K-Ras was carried out using AutoDock4.2, followed by molecular dynamics simulations. Furthermore, on comparison of binding energies between the wild type K-Ras and the six mutants, we have demonstrated that the G12A and G12V mutants exhibited the strongest binding efficiency compared to the other four mutants. Trajectory analyses of these mutations revealed that G12A encountered the least deviation, fluctuation, intermolecular H-bonds, and compactness compared to the wildtype, which was supported by the lower Gibbs free energy value. Our study investigates the molecular dynamics simulations of the mutant K-Ras forms at the 12th position, which expects to provide insights about the molecular mechanisms involved in cancer development, and may serve as a platform for targeted therapies against cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udhaya Kumar S
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bithia R
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Zhang Q, Cao C, Gong W, Bao K, Wang Q, Wang Y, Bi L, Ma S, Zhao J, Liu L, Tian S, Zhang K, Yang J, Yao Z, Song N, Shi L. A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis. Am J Cancer Res 2020; 10:10769-10790. [PMID: 32929379 PMCID: PMC7482815 DOI: 10.7150/thno.46878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: A number of guanine nucleotide exchange factors (GEFs) including epithelial cell transforming factor ECT2 are believed to drive carcinogenesis through activating distinct oncogenic GTPases. Yet, whether GEF-independent activity of ECT2 also plays a role in tumorigenesis remains unclear. Methods: Immunohistochemical (IHC) staining, colony formation and xenograft assays were used to examine the role of ECT2 in breast carcinogenesis. Co-immunoprecipitation, immunofluorescent stainings, in vivo deubiquitination and in vitro deubiquitination experiments were performed to examine the physical and functional interaction between ECT2 and ubiquitin-specific protease USP7. High-throughput RNA sequencing, quantitative reverse transcription-PCR and Western blotting were employed to investigate the biological significance of the interplay between ECT2 and USP7. Results: We report that ECT2 plays a tumor-promoting role in breast cancer, and GEF activity-deficient ECT2 is able to alleviate ECT2 depletion associated growth defects in breast cancer cells. Mechanistically, we demonstrated that ECT2 physically interacts with ubiquitin-specific protease USP7 and functionally facilitates USP7 intermolecular self-association, -deubiquitination and -stabilization in a GEF activity-independent manner. USP7 in turn, deubiquitinates and stabilizes ECT2, resulting in a feedforward regulatory circuit that ultimately sustains the expression of oncogenic protein MDM2. Conclusion: Our study uncovers a GEF-independent role of ECT2 in promoting survival of breast cancer cells, provides a molecular insight for the reciprocal regulation of ECT2 and USP7, and supports the pursuit of ECT2/USP7 as potential targets for breast cancer intervention.
Collapse
|
41
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
42
|
Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z, Yang Y. CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol 2020; 235:9121-9132. [PMID: 32401349 DOI: 10.1002/jcp.29782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Chemokines constitute a superfamily of small chemotactic cytokines with functions that are based on interactions with their corresponding receptors. It has been found that, among other functions, chemokines regulate the migratory and invasive abilities of cancer cells. Multiple studies have confirmed that chemokine receptor 9 (CCR9) and its exclusive ligand, chemokine 25 (CCL25), are overexpressed in a variety of malignant tumors and are closely associated with tumor proliferation, apoptosis, invasion, migration and drug resistance. This review evaluates recent advances in understanding the role of CCR9/CCL25 in cancer development. First, we outline the general background of chemokines in cancer and the structure and function of CCR9 and CCL25. Next, we describe the basic function of CCR9/CCL25 in the cancer process. Then, we introduce the role of CCR9/CCL25 and related signaling pathways in various cancers. Finally, future research directions are proposed. In general, this paper is intended to serve as a comprehensive repository of information on this topic and is expected to contribute to the design of other research projects and future efforts to develop treatment strategies for ameliorating the effects of CCR9/CCL25 in cancer.
Collapse
Affiliation(s)
- Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
43
|
Haumann I, Sturm MA, Anstötz M, Rune GM. GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells. iScience 2020; 23:101077. [PMID: 32361597 PMCID: PMC7200306 DOI: 10.1016/j.isci.2020.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. GPER1 is expressed within all cell types of the stem cell lineage in the V-SVZ Blocking of GPER1 leads to a decrease in migration of V-SVZ-derived neuroblasts GPER1 signaling in V-SVZ Matrigel cultures involves Ras-induced p21 Blocking of GPER1 signaling leads to an increase in the ratio of p-cofilin/cofilin
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Muriel Anne Sturm
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
44
|
Hung PS, Huang MH, Kuo YY, Yang JCH. The Inhibition of Wnt Restrain KRAS G12V-Driven Metastasis in Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12040837. [PMID: 32244355 PMCID: PMC7226522 DOI: 10.3390/cancers12040837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
The KRAS mutations have been an obstacle to identify therapeutic targets in cancer treatment. In this work, we clarified the distinct metastasis pattern of non-small-cell lung carcinoma (NSCLC) induced by KRASG12V/KRASG12D mutations and inhibited the KRASG12V mediated metastasis by Wnt inhibitor. First, we found that KRASG12V induced more aggressive phenotype in vitro and in vivo experiments. The Gene Set Enrichment Analysis (GSEA) results of H838 KRASG12V cells showed a significant negative correlation with RhoA-related signaling. Following this clue, we observed KRASG12D induced higher activation of RhoA and suppressed activation of Wnt/β-catenin in H838KRASG12D cells. The restored activation of Wnt/β-catenin in H838KRASG12D cells could be detected when expression with a dominant-negative mutant of RhoA or treatment with RhoA inhibitor. Furthermore, the Wnt inhibitor abolished the KRASG12V-induced migration. We elucidated the importance of the axis of RhoA/Wnt in regulatory NSCLC metastasis driven by KRAS mutations. Our data indicate that KRASG12V driven NSCLC metastasis is Wnt-dependent and the mechanisms of NSCLC metastasis induced by KRASG12V/KRASG12D is distinct.
Collapse
Affiliation(s)
- Pei-Shan Hung
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
| | - Ming-Hung Huang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
| | - Yuan-Yeh Kuo
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei 100, Taiwan;
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
- Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
- National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence:
| |
Collapse
|
45
|
IODVA1, a guanidinobenzimidazole derivative, targets Rac activity and Ras-driven cancer models. PLoS One 2020; 15:e0229801. [PMID: 32163428 PMCID: PMC7067412 DOI: 10.1371/journal.pone.0229801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.
Collapse
|
46
|
Raza A, Pandey MS, Jin Q, Mulder KM. km23-1/DYNLRB1 regulation of MEK/ERK signaling and R-Ras in invasive human colorectal cancer cells. Cell Biol Int 2020; 44:155-165. [PMID: 31393067 PMCID: PMC7007335 DOI: 10.1002/cbin.11215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/03/2019] [Indexed: 01/25/2023]
Abstract
We previously found that km23-1/DYNLRB1 is required for transforming growth factor-β (TGFβ) production through Ras/ERK pathways in TGFβ-sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23-1/DYNLRB1 is required for mitogen-activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23-1/DYNLRB1-siRNA inhibition of phospho-(p)-MEK immunostaining in RKO cells. Furthermore, we show that CRISPR-Cas9 knock-out (KO) of km23-1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD-1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ-mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ-mediated activation of MEK1/2 or c-Jun N-terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B-Raf, extracellular signal-regulated kinase (ERK), and p-ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23-1/DYNLRB1 co-sedimented with Ras, p-ERK, and ERK in fractions that did not contain components of holo-dynein. Thus, km23-1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein-independent km23-1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R-Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23-1/DYNLRB1 and RRas wase co-localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23-1/DYNLRB1-R-Ras complex in CRC invasion.
Collapse
Affiliation(s)
| | | | | | - Kathleen M. Mulder
- To whom correspondence should be addressed: Dr. Kathleen M. Mulder, Professor, Department of Biochemistry and Molecular Biology-MC H171, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, Telephone: 1-717-531-6789; FAX: 1-717-531-0939
| |
Collapse
|
47
|
Che Y, Siprashvili Z, Kovalski JR, Jiang T, Wozniak G, Elcavage L, Khavari PA. KRAS regulation by small non-coding RNAs and SNARE proteins. Nat Commun 2019; 10:5118. [PMID: 31712554 PMCID: PMC6848142 DOI: 10.1038/s41467-019-13106-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/13/2019] [Indexed: 12/30/2022] Open
Abstract
KRAS receives and relays signals at the plasma membrane (PM) where it transmits extracellular growth factor signals to downstream effectors. SNORD50A/B were recently found to bind KRAS and inhibit its tumorigenic action by unknown mechanisms. KRAS proximity protein labeling was therefore undertaken in SNORD50A/B wild-type and knockout cells, revealing that SNORD50A/B RNAs shape the composition of proteins proximal to KRAS, notably by inhibiting KRAS proximity to the SNARE vesicular transport proteins SNAP23, SNAP29, and VAMP3. To remain enriched on the PM, KRAS undergoes cycles of endocytosis, solubilization, and vesicular transport to the PM. Here we report that SNAREs are essential for the final step of this process, with KRAS localization to the PM facilitated by SNAREs but antagonized by SNORD50A/B. Antagonism between SNORD50A/B RNAs and specific SNARE proteins thus controls KRAS localization, signaling, and tumorigenesis, and disrupting SNARE-enabled KRAS function represents a potential therapeutic opportunity in KRAS-driven cancer.
Collapse
Affiliation(s)
- Yonglu Che
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| | - Joanna R Kovalski
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tiffany Jiang
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Glenn Wozniak
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Lara Elcavage
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA.
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA.
- VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
48
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
49
|
Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, He A. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling. Mol Cell 2019; 76:206-216.e7. [DOI: 10.1016/j.molcel.2019.07.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
|
50
|
A novel hiPSC-derived system for hematoendothelial and myeloid blood toxicity screens identifies compounds promoting and inhibiting endothelial-to-hematopoietic transition. Toxicol In Vitro 2019; 61:104622. [PMID: 31404653 DOI: 10.1016/j.tiv.2019.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/16/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
Abstract
The exposure to toxic environmental and pharmaceutical substances can pose a long-term risk to human's health. In this study, we sought to investigate the potential of our recently developed method for induction of myeloid hematoendothelial and blood cells by overexpression of two transcription factors, GATA2 and ETV2, in human induced pluripotent stem cells (hiPSCs) for toxicity screening. For the primary screen in a high-throughput format, we selected twenty-two chemicals with various degrees of cytotoxicity available from the NIEHS National Toxicology Program (Tox21). The compounds were applied during the endothelial-to-hematopoietic transition and to differentiated myeloid progenitors growing in suspension. The system was capable of identifying compounds with both inhibitory and favorable effects on hematopoietic network, changes in expression of hematopoietic markers, and mitochondrial and cytotoxicity. The findings were confirmed and further investigated by secondary screens, colony forming cell assay, and gene expression profiling. The hematoendothelial toxicity of 5-fluorouracil, berberine chloride, and benzo(a)pyrene is characterized by the inhibition of cell division and a shift of hematopoietic programming to non-hemogenic endothelial and mesenchymal fates. This study demonstrates the feasibility of transcription factor (TF)-based differentiation systems to monitor endothelial and hematotoxicity and serves as an informative platform for screening myelosuppressive or stimulatory drugs and mechanistic studies of their action.
Collapse
|