1
|
Donnelly RP. Sorting Out the SOCS Genes and Their Role in Macrophage Activation. J Interferon Cytokine Res 2025; 45:39-42. [PMID: 39866122 DOI: 10.1089/jir.2025.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The suppressors of cytokine signaling (SOCS) genes were first described in a group of articles published in 1997. Since that time, much has been learned about the functional activities mediated by the corresponding proteins encoded by the SOCS genes. The SOCS gene family contains eight members: SOCS1 through SOCS7 and a highly related gene known as CISH (cytokine-inducible SH2-containing protein). Although much is known about the ability of the SOCS proteins to autoregulate responses to individual cytokines, much less is known about the ability of the SOCS proteins to cross-regulate cytokine signaling. The studies described in a new report by Bidgood et al. in this issue of JICR demonstrate that SOCS1 expression induced by one cytokine, interferon (IFN)-γ, can cross-regulate signaling induced by another cytokine, granulocyte macrophage colony-stimulating factor (GM-CSF), in murine bone marrow-derived macrophages. The authors show that the ability of SOCS1 to inhibit cytokine signaling is dose- and time-dependent. SOCS1 must reach a critical threshold level before it can exert a marked inhibitory effect on autocrine signaling through the IFN-γ receptor or paracrine signaling through the GM-CSF receptor.
Collapse
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Bidgood GM, Keating N, Meza Guzman L, Li K, Leong E, Kueh A, Babon JJ, Hockings C, Doggett K, Nicholson SE. The Ability of SOCS1 to Cross-Regulate GM-CSF Signaling is Dose Dependent. J Interferon Cytokine Res 2025; 45:53-67. [PMID: 39787022 DOI: 10.1089/jir.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 is a key negative regulator of interferon (IFN), interleukin (IL)12, and IL-2 family cytokine signaling through inhibition of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. To investigate the temporal induction of SOCS1 in response to cytokine in live cells and its selective regulation of signaling pathways, we generated a mouse expressing a Halo-tag-SOCS1 fusion protein (Halo-SOCS1) under control of the endogenous Socs1 promoter. Homozygous Halo-SOCS1 mice (Halo-Socs1KI/KI) were viable with minor T cell abnormalities, most likely due to enhanced Halo-SOCS1 expression in thymocytes compared with the untagged protein. IFNγ and IL-4 induced Halo-SOCS1 expression in macrophages derived from Halo-Socs1KI/KI mice, and a critical level of SOCS1 expression was required for inhibition of both IFNγ and granulocyte macrophage-colony stimulating factor (GM-CSF)-driven JAK-STAT signaling. In contrast, IFNγ priming to induce SOCS1 did not cross-regulate IL-4 signaling. This study indicates that while SOCS1 expression needs to exceed a critical threshold to inhibit IFNγ signaling, its selective regulation of cytokine signaling results from an as yet undetermined, level of regulatory control.
Collapse
Affiliation(s)
- Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Lizeth Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Kuula J, Czamara D, Hauta-Alus H, Lahti J, Hovi P, Miettinen ME, Ronkainen J, Eriksson JG, Andersson S, Järvelin MR, Sebert S, Räikkönen K, Binder EB, Kajantie E. Epigenetic signature of very low birth weight in young adult life. Pediatr Res 2025; 97:229-238. [PMID: 38898107 PMCID: PMC11798856 DOI: 10.1038/s41390-024-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Globally, one in ten babies is born preterm (<37 weeks), and 1-2% preterm at very low birth weight (VLBW, <1500 g). As adults, they are at increased risk for a plethora of health conditions, e.g., cardiometabolic disease, which may partly be mediated by epigenetic regulation. We compared blood DNA methylation between young adults born at VLBW and controls. METHODS 157 subjects born at VLBW and 161 controls born at term, from the Helsinki Study of Very Low Birth Weight Adults, were assessed for peripheral venous blood DNA methylation levels at mean age of 22 years. Significant CpG-sites (5'-C-phosphate-G-3') were meta-analyzed against continuous birth weight in four independent cohorts (pooled n = 2235) with cohort mean ages varying from 0 to 31 years. RESULTS In the discovery cohort, 66 CpG-sites were differentially methylated between VLBW adults and controls. Top hits were located in HIF3A, EBF4, and an intergenic region nearest to GLI2 (distance 57,533 bp). Five CpG-sites, all in proximity to GLI2, were hypermethylated in VLBW and associated with lower birth weight in the meta-analysis. CONCLUSION We identified differentially methylated CpG-sites suggesting an epigenetic signature of preterm birth at VLBW present in adult life. IMPACT Being born preterm at very low birth weight has major implications for later health and chronic disease risk factors. The mechanism linking preterm birth to later outcomes remains unknown. Our cohort study of 157 very low birth weight adults and 161 controls found 66 differentially methylated sites at mean age of 22 years. Our findings suggest an epigenetic mark of preterm birth present in adulthood, which opens up opportunities for mechanistic studies.
Collapse
Affiliation(s)
- Juho Kuula
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland.
- HUS Medical Imaging Center, Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helena Hauta-Alus
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Petteri Hovi
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E Miettinen
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Justiina Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Johan G Eriksson
- Folkhälsan Research Centre, Topeliusgatan 20, 00250, Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Eero Kajantie
- Population Health Research, Finnish Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Medicine Research Unit, University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
5
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
6
|
Bidgood GM, Keating N, Doggett K, Nicholson SE. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity. Front Immunol 2024; 15:1419951. [PMID: 38947335 PMCID: PMC11211259 DOI: 10.3389/fimmu.2024.1419951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Grace M. Bidgood
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Narelle Keating
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Karen Doggett
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra E. Nicholson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Körholz J, Chen LS, Strauss T, Schuetz C, Dalpke AH. One gene to rule them all - clinical perspectives of a potent suppressor of cytokine signaling - SOCS1. Front Immunol 2024; 15:1385190. [PMID: 38711523 PMCID: PMC11070515 DOI: 10.3389/fimmu.2024.1385190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.
Collapse
Affiliation(s)
- Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lan-Sun Chen
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, University Heidelberg, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander H. Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, University Heidelberg, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Ilangumaran S, Gui Y, Shukla A, Ramanathan S. SOCS1 expression in cancer cells: potential roles in promoting antitumor immunity. Front Immunol 2024; 15:1362224. [PMID: 38415248 PMCID: PMC10897024 DOI: 10.3389/fimmu.2024.1362224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can boost antitumor immunity, whereas its loss in tumor cells increases tumor aggressivity. Investigations into the tumor suppression mechanisms so far focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that SOCS1 expression in tumor cells also regulate antitumor immune responses in a cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the evidence supporting the latter, and its implications for antitumor immunity.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
9
|
Shukla A, Khan MGM, Cayarga AA, Namvarpour M, Chowdhury MMH, Levesque D, Lucier JF, Boisvert FM, Ramanathan S, Ilangumaran S. The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:292. [PMID: 38254783 PMCID: PMC10814246 DOI: 10.3390/cancers16020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Md Gulam Musawwir Khan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mohammad Mobarak H. Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Du Y, Brodeur KE, Hsu E, Chen L, Chen Q, Liu M, Cheng Q, Rosen S, Michniacki TF, Chou J, Lo MS, Platt CD, Lee PY. In cis "benign" SOCS1 variants linked to enhanced interferon signaling and autoimmunity. J Autoimmun 2023; 140:103119. [PMID: 37797401 PMCID: PMC10987394 DOI: 10.1016/j.jaut.2023.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
We aimed to characterize the genetic basis of disease in a family with multiple autoimmune manifestations, including systemic lupus erythematosus (SLE), immune thrombocytopenia, and autoimmune thyroiditis. Whole exome sequencing (WES) was conducted to identify candidate variants, which were analyzed by flow cytometry, immunoblotting, immunoprecipitation, and luciferase reporter assay in transfected 293T cells. Gene expression in peripheral blood mononuclear cells (PBMC) was profiled by bulk RNA sequencing and plasma cytokines were measured by proximity extension assay. In two siblings with early-onset SLE and immune thrombocytopenia, WES identified two maternally inherited in cis variants (p. Pro50Leu and p.Ala76Gly) in Suppressor of cytokine signaling 1 (SOCS1), flanking the kinase inhibitory domain that interacts with Janus kinases (JAK). Both variants were predicted to be benign by most in silico algorithms and neither alone affected the ability of SOCS1 to inhibit JAK-STAT1 signaling by functional studies. When both variants were expressed in cis, the mutant SOCS1 protein displayed decreased binding to JAK1 and reduced capacity to inhibit type I interferon (IFN-I) signaling by ∼20-30% compared to the wildtype protein. PBMC from the probands and their mother showed increased expression of interferon-inducible genes compared to healthy controls, supporting defective regulation of IFN-I signaling. Cells from all three subjects displayed heightened sensitivity to IFN-I stimulation, while response to IFN-γ, IL-4, and IL-6 was comparable to healthy controls. Our work illustrates the critical fine-tuning of IFN-I signaling by SOCS1 to prevent autoimmunity. We show that a combination of genetic variants that are individually benign may have deleterious consequences.
Collapse
Affiliation(s)
- Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kailey E Brodeur
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Hsu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liang Chen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Thomas F Michniacki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Liu M, Hsu E, Du Y, Lee PY. Suppressor of Cytokine Signaling 1 Haploinsufficiency: A New Driver of Autoimmunity and Immunodysregulation. Rheum Dis Clin North Am 2023; 49:757-772. [PMID: 37821194 DOI: 10.1016/j.rdc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of cytokine signaling that inhibits the activation of Janus kinases. A human disease caused by SOCS1 haploinsufficiency was first identified in 2020. To date, 18 cases of SOCS1 haploinsufficiency have been described. These patients experience enhanced activation of leukocytes and multiorgan system immunodysregulation, with immune-mediated cytopenia as the most common feature. In this review, the authors provide an overview on the biology of SOCS1 and summarize their knowledge of SOCS1 haploinsufficiency including genetics and clinical manifestations. They discuss the available treatment experience and outline an approach for the evaluation of suspected cases.
Collapse
Affiliation(s)
- Meng Liu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Evan Hsu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan Du
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Şenol N, Şahin M, Şahin U. The protective role of 5-hydroxy-1,4-naphthoquinone against the harmful effects of 50 Hz electric field in rat lung tissue. Electromagn Biol Med 2023; 42:133-143. [PMID: 37811636 DOI: 10.1080/15368378.2023.2265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
There is strong scientific evidence that the electric field is harmful to life. Exposure to an electric field (EF) can cause lung toxicity and respiratory disorders. In addition, the electric field has been shown to cause tissue damage through inflammation and apoptosis. Juglone (JUG) is one of the powerful antioxidants with anti-apoptotic and anti-inflammatory, various pharmacological properties in the biological system. In this study, we evaluated the efficacy of JUG against the potential adverse effects of electric field on the lung. Twenty-four Wistar albino rats were randomly divided into three groups; control group (Cont), EF group, and EF exposure+JUG-treated group (EJUG). After routine histological procedures, sections stained with hematoxylin-eosin (H&E) showed significant changes in lung tissues in the EF group compared to the Cont group. Significant protective effects were observed in the building volumes and histopathology in the EJUG group. Our immunohistochemical and gene expression results increased the expression of caspase-3 and tumor necrosis factor alpha (TNF-α) in the EF group (p < 0.05). Juglon increased cytokine signal suppressor (SOCS) expression (p < 0.001). These findings were consistent with the antioxidant effect of JUG treatment. We reasoned that exposure to EF damaged rat lung tissues and administration of JUG alleviated the complications caused by 50 Hz EF.
Collapse
Affiliation(s)
- Nurgül Şenol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Melda Şahin
- Department of Bioengineering, Institute of Science, Süleyman Demirel University, Isparta, Türkiye
| | - Uğur Şahin
- Department of Chemistry, Faculty of Art and Science, University of Süleyman Demirel, Isparta, Türkiye
- Genetic Research Unit, Innovative Technologies Application and Research Center, Süleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
13
|
Luo Y, Vermeer MH, de Haan S, Kinderman P, de Gruijl FR, van Hall T, Tensen CP. Socs1-knockout in skin-resident CD4 + T cells in a protracted contact-allergic reaction results in an autonomous skin inflammation with features of early-stage mycosis fungoides. Biochem Biophys Rep 2023; 35:101535. [PMID: 37664523 PMCID: PMC10470183 DOI: 10.1016/j.bbrep.2023.101535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Recent detailed genomic analysis of mycosis fungoides (MF) identified suppressor of cytokine signaling 1 (SOCS1), an inhibitor of JAK/STAT signaling, as one of the frequently deleted tumor suppressors in MF, and one-copy deletion of SOCS1 was confirmed in early-stage MF lesions. To better understand the functional role of SOCS1 in the genesis of MF, we used a genetically engineered mouse model emulating heterozygous SOCS1 loss in skin resident CD4+ T cells. In these mice an experimentally induced contact-allergic reaction was maintained for 20 weeks. Ten weeks after discontinuing contact-allergic challenges, only the skin with locally one-copy deletion of Socs1 in CD4+ T cells still showed high numbers of CD3+/CD4+ Socs1 k.o. cells in the dermis (p < 0.0001) with prevalent Stat3 activation (p <0.001). And in one out of 9 mice, this had progressed to far more dramatic increases, including the thickened epidermis, and with an explosive growth of Socs1 k.o. T cells in circulation; indicative of cutaneous lymphoma. Hence, we show that Socs1 mono-allelic loss in CD4+ T cells locally in protractedly inflamed skin results in autonomous skin inflammation with features of early-stage MF.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanne de Haan
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank R. de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
15
|
Tai X, Indart A, Rojano M, Guo J, Apenes N, Kadakia T, Craveiro M, Alag A, Etzensperger R, Badr ME, Zhang F, Zhang Z, Mu J, Guinter T, Crossman A, Granger L, Sharrow S, Zhou X, Singer A. How autoreactive thymocytes differentiate into regulatory versus effector CD4 + T cells after avoiding clonal deletion. Nat Immunol 2023; 24:637-651. [PMID: 36959291 PMCID: PMC10063450 DOI: 10.1038/s41590-023-01469-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
Thymocytes bearing autoreactive T cell receptors (TCRs) are agonist-signaled by TCR/co-stimulatory molecules to either undergo clonal deletion or to differentiate into specialized regulatory T (Treg) or effector T (Teff) CD4+ cells. How these different fates are achieved during development remains poorly understood. We now document that deletion and differentiation are agonist-signaled at different times during thymic selection and that Treg and Teff cells both arise after clonal deletion as alternative lineage fates of agonist-signaled CD4+CD25+ precursors. Disruption of agonist signaling induces CD4+CD25+ precursors to initiate Foxp3 expression and become Treg cells, whereas persistent agonist signaling induces CD4+CD25+ precursors to become IL-2+ Teff cells. Notably, we discovered that transforming growth factor-β induces Foxp3 expression and promotes Treg cell development by disrupting weaker agonist signals and that Foxp3 expression is not induced by IL-2 except under non-physiological in vivo conditions. Thus, TCR signaling disruption versus persistence is a general mechanism of lineage fate determination in the thymus that directs development of agonist-signaled autoreactive thymocytes.
Collapse
Affiliation(s)
- Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alyssa Indart
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Guo
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Nicolai Apenes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tejas Kadakia
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Etzensperger
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed Elsherif Badr
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Flora Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Mu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Larry Granger
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Sharrow
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuyu Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Doggett K, Keating N, Dehkhoda F, Bidgood GM, Meza Guzman LG, Leong E, Kueh A, Nicola NA, Kershaw NJ, Babon JJ, Alexander WS, Nicholson SE. The SOCS1 KIR and SH2 domain are both required for suppression of cytokine signaling in vivo. Cytokine 2023; 165:156167. [PMID: 36934508 DOI: 10.1016/j.cyto.2023.156167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.
Collapse
Affiliation(s)
- Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
17
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
18
|
Luo Y, Vermeer MH, de Gruijl FR, Zoutman WH, Sluijter M, van Hall T, Tensen CP. In vivo modelling of cutaneous T-cell lymphoma: The role of SOCS1. Front Oncol 2022; 12:1031052. [PMID: 36505769 PMCID: PMC9730277 DOI: 10.3389/fonc.2022.1031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Mycosis fungoides (MF), the most common type of Cutaneous T cell Lymphoma (CTCL), is characterized by an inflamed skin intermixed with proliferating malignant mature skin-homing CD4+ T cells. Detailed genomic analyses of MF skin biopsies revealed several candidate genes possibly involved in genesis of these tumors and/or potential targets for therapy. These studies showed, in addition to common loss of cell cycle regulator CDKN2A, activation of several oncogenic pathways, most prominently and consistently involving JAK/STAT signaling. SOCS1, an endogenous inhibitor of the JAK/STAT signaling pathway, was identified as a recurrently deleted gene in MF, already occurring in the earliest stages of the disease. Methods To explore the mechanisms of MF, we create in vivo mouse models of autochthonous CTCLs and these genetically engineered mouse models (GEMMS) can also serve as valid experimental models for targeted therapy. We describe the impact of allelic deletion of Socs1 in CD4 T cells of the skin. To achieve this, we crossed inducible Cre-transgenic mice in the CD4 lineage with transgenic mice carrying floxed genes of Socs1. We first determined optimal conditions for Socs1 ablation with limited effects on circulating CD4 T-cells in blood. Next, we started time-course experiments mimicking sustained inflammation, typical in CTCL. FACS analysis of the blood was done every week. Skin biopsies were analyzed by immunocytochemical staining at the end of the experiment. Results We found that the Socs1 knockout transgenic group had thicker epidermis of treated skin compared with the control group and had more CD3 and CD4 in the skin of the transgenic group compared to the control group. We also noted more activation of Stat3 by staining for P-Stat3 in Socs1 knockout compared to wt CD4+T cells in the skin. The results also indicated that single copy loss of Socs1 in combination with sustained inflammation is insufficient to start a phenotype resembling early stage mycosis fungoides within eight weeks in these mice. Conclusion In sum, we developed and optimized an autochthonous murine model permitting selective knockout of Socs1 in skin infiltrating CD4 T-cells. This paves the way for more elaborate experiments to gain insight in the oncogenesis of CTCL.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank R. de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Willem H. Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Cornelis P. Tensen,
| |
Collapse
|
19
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
20
|
Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27:molecules27144660. [PMID: 35889539 PMCID: PMC9319717 DOI: 10.3390/molecules27144660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.
Collapse
Affiliation(s)
| | - Venkata Prakash Annamneedi
- Convergence Science Research Center, College of Pharmacy and Institute of Chronic Diseases, Sahmyook University, Seoul 01795, Korea;
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27381, Korea
- Correspondence:
| |
Collapse
|
21
|
The ubiquitin ligase Cul5 regulates CD4 + T cell fate choice and allergic inflammation. Nat Commun 2022; 13:2786. [PMID: 35589717 PMCID: PMC9120070 DOI: 10.1038/s41467-022-30437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Antigen encounter directs CD4+ T cells to differentiate into T helper or regulatory cells. This process focuses the immune response on the invading pathogen and limits tissue damage. Mechanisms that govern T helper cell versus T regulatory cell fate remain poorly understood. Here, we show that the E3 ubiquitin ligase Cul5 determines fate selection in CD4+ T cells by regulating IL-4 receptor signaling. Mice lacking Cul5 in T cells develop Th2 and Th9 inflammation and show pathophysiological features of atopic asthma. Following T cell activation, Cul5 forms a complex with CIS and pJak1. Cul5 deletion reduces ubiquitination and subsequent degradation of pJak1, leading to an increase in pJak1 and pSTAT6 levels and reducing the threshold of IL-4 receptor signaling. As a consequence, Cul5 deficient CD4+ T cells deviate from Treg to Th9 differentiation in low IL-4 conditions. These data support the notion that Cul5 promotes a tolerogenic T cell fate choice and reduces susceptibility to allergic asthma. Cytokine signaling influences the differentiation of CD4+ T cells into varying functional subsets. Here the authors show that an E3 ubiquitin ligase Cul5 alters TH2 and TH9 development and absence of Cul5 in T cells results in higher levels of allergy-associated IL-4 and IL-9 secreting T cells.
Collapse
|
22
|
Wang G, Liu W, Wang C, Wang J, Liu H, Hao D, Zhang M. Molecular characterization and immunoregulatory analysis of suppressors of cytokine signaling 1 (SOCS1) in black rockfish, Sebastes schlegeli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104355. [PMID: 35077723 DOI: 10.1016/j.dci.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The suppressors of cytokine signaling (SOCS) family are important soluble mediators to inhibit signal transduction via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway in the innate and adaptive immune responses. SOCS1 is the primary regulator of a number of cytokines. In this study, two spliced transcripts of SOCS1 were identified and characterized from black rockfish (Sebastes schlegeli), named SsSOCS1a and SsSOCS1b. SsSOCS1a and SsSOCS1b contained conserved structural and functional domains including KIR region, ESS region, SH2 domain and SOCS box. SsSOCS1a and SsSOCS1b were distributed ubiquitously in all the detected tissues with the higher expression level in liver and spleen. After stimulation in vivo with Vibrio anguillarum and Edwardsiella tarda, the mRNA expression of SsSOCS1a and SsSOCS1b were induced in most of the immune-related tissues, including head kidney, spleen and liver. Meanwhile, poly I:C and IFNγ up-regulated the expression of SsSOCS1a and SsSOCS1b that reached the highest level at 24 h in macrophages in vitro. Luciferase assays in HEK293 cells showed SsSOCS1a and SsSOCS1b had the similar function in inhibiting ISRE activity after poly I:C and IFNγ treatment. Furthermore, KIR domain in black rockfish was determined to have a negative regulatory role in IFN signaling. SsSOCS1a and SsSOCS1b were found to interact strongly with each other by Co-immunoprecipitation analyses. These results indicated that the function of SOCS1 in the negative regulation of IFN signaling is conserved from teleost to mammals which will be helpful to further understanding of the biological functions of teleosts SOCS1 in innate immunity.
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jingjing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
23
|
Wang D, Bai X, Wang B, Yi Q, Yu W, Zhang X, Tian R, Zhang X, Li C, Chen Y, Liu Y, Cheng Y, He S. CTLA4Ig/VISTAIg combination therapy selectively induces CD4 + T cell-mediated immune tolerance by targeting the SOCS1 signaling pathway in porcine islet xenotransplantation. Immunology 2022; 166:169-184. [PMID: 35263451 DOI: 10.1111/imm.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
T cell inhibitory receptors can regulate the proliferation or function of T cells by binding to their ligands and present a unique opportunity to manage destructive immune responses during porcine islet xenotransplantation. We applied ex vivo porcine islet xenotransplantation and in vitro mixed lymphocyte-islet reaction models to assess immune checkpoint receptor expression profiles in recipient T cells, investigate whether CTLA4 or VISTA immunoglobulin (Ig) combination therapy alone could suppress porcine islet xenograft rejection and further analyze its potential immune tolerance mechanism. Recipient T cells expressed moderate to high levels of CTLA4, PD-1, TIGIT, and VISTA, and the frequency of CTLA4+ CD4+ , TIGIT+ CD4+ , VISTA+ CD4+ and VISTA+ CD8+ T cells was positively correlated with porcine islet xenograft survival time in xenotransplant recipients. Combined treatment with CTLA4Ig and VISTAIg selectively inhibited recipient CD4+ T cell hyperresponsiveness and proinflammatory cytokine production and significantly delayed xenograft rejection. SOCS1 deficiency in CD4+ T cells stimulated by xenogeneic islets facilitated hyperresponsiveness and abolished the suppressive effect of combination therapy on recipient T cell-mediated porcine islet damage in vivo and in vitro. Further mechanistic studies revealed that combined treatment significantly induced SOCS1 expression and inhibited the Jak-STAT signaling pathway in wild-type recipient CD4+ T cells stimulated by xenogeneic islets, whereas SOCS1 deficiency resulted in Jak-STAT signaling pathway activation in recipient CD4+ T cells. We demonstrated a major role for CTLA4 and VISTA as key targets in CD4+ T cell hyperresponsiveness and porcine islet xenograft rejection. The selective inhibition of CD4+ T cell immunity by CTLA4Ig/VISTAIg is based on SOCS1-dependent signaling.
Collapse
Affiliation(s)
- Dan Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Bin Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiao Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yi Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yang Liu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
24
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
25
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Gould RL, Craig SW, McClatchy S, Churchill GA, Pazdro R. Quantitative trait mapping in Diversity Outbred mice identifies novel genomic regions associated with the hepatic glutathione redox system. Redox Biol 2021; 46:102093. [PMID: 34418604 PMCID: PMC8385155 DOI: 10.1016/j.redox.2021.102093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 11/01/2022] Open
Abstract
The tripeptide glutathione (GSH) is instrumental to antioxidant protection and xenobiotic metabolism, and the ratio of its reduced and oxidized forms (GSH/GSSG) indicates the cellular redox environment and maintains key aspects of cellular signaling. Disruptions in GSH levels and GSH/GSSG have long been tied to various chronic diseases, and many studies have examined whether variant alleles in genes responsible for GSH synthesis and metabolism are associated with increased disease risk. However, past studies have been limited to established, canonical GSH genes, though emerging evidence suggests that novel loci and genes influence the GSH redox system in specific tissues. The present study marks the most comprehensive effort to date to directly identify genetic loci associated with the GSH redox system. We employed the Diversity Outbred (DO) mouse population, a model of human genetics, and measured GSH and the essential redox cofactor NADPH in liver, the organ with the highest levels of GSH in the body. Under normal physiological conditions, we observed substantial variation in hepatic GSH and NADPH levels and their redox balances, and discovered a novel, significant quantitative trait locus (QTL) on murine chromosome 16 underlying GSH/GSSG; bioinformatics analyses revealed Socs1 to be the most likely candidate gene. We also discovered novel QTL associated with hepatic NADP+ levels and NADP+/NADPH, as well as unique candidate genes behind each trait. Overall, these findings transform our understanding of the GSH redox system, revealing genetic loci that govern it and proposing new candidate genes to investigate in future mechanistic endeavors.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Susan McClatchy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Yoshimura A, Ito M, Mise-Omata S, Ando M. SOCS: negative regulators of cytokine signaling for immune tolerance. Int Immunol 2021; 33:711-716. [PMID: 34415326 DOI: 10.1093/intimm/dxab055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
Cytokines are important intercellular communication tools for immunity. Many cytokines promote gene transcription and proliferation through the JAK/STAT (Janus kinase / signal transducers and activators of transcription) and the Ras/ERK (GDP/GTP-binding rat sarcoma protein / extracellular signal-regulated kinase) pathways, and these signaling pathways are tightly regulated. The SOCS (suppressor of cytokine signaling) family are representative negative regulators of JAK/STAT-mediated cytokine signaling and regulate the differentiation and function of T cells, thus being involved in immune tolerance. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergy and tumorigenesis. SOCS family proteins also function as immune-checkpoint molecules that contribute to the unresponsiveness of T cells to cytokines.
Collapse
Affiliation(s)
- Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
28
|
Froggatt HM, Harding AT, Chaparian RR, Heaton NS. ETV7 limits antiviral gene expression and control of influenza viruses. Sci Signal 2021; 14:14/691/eabe1194. [PMID: 34257104 DOI: 10.1126/scisignal.abe1194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The type I interferon (IFN) response is an important component of the innate immune response to viral infection. Precise control of IFN responses is critical because insufficient expression of IFN-stimulated genes (ISGs) can lead to a failure to restrict viral spread, whereas excessive ISG activation can result in IFN-related pathologies. Although both positive and negative regulatory factors control the magnitude and duration of IFN signaling, it is also appreciated that several ISGs regulate aspects of the IFN response themselves. In this study, we performed a CRISPR activation screen to identify previously unknown regulators of the type I IFN response. We identified the strongly induced ISG encoding ETS variant transcription factor 7 (ETV7) as a negative regulator of the type I IFN response. However, ETV7 did not uniformly suppress ISG transcription. Instead, ETV7 preferentially targeted a subset of antiviral ISGs that were particularly important for IFN-mediated control of influenza viruses. Together, our data assign a function for ETV7 as an IFN response regulator and also identify ETV7 as a potential therapeutic target to increase innate antiviral responses and enhance IFN-based antiviral therapies.
Collapse
Affiliation(s)
- Heather M Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan R Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Karki P, Cha B, Zhang CO, Li Y, Ke Y, Promnares K, Kaibuchi K, Yoshimura A, Birukov KG, Birukova AA. Microtubule-dependent mechanism of anti-inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB J 2021; 35:e21388. [PMID: 33724556 PMCID: PMC10069762 DOI: 10.1096/fj.202001477rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Suppressors of cytokine signaling (SOCS) provide negative regulation of inflammatory reaction. The role and precise cellular mechanisms of SOCS1 in control of endothelial dysfunction and barrier compromise associated with acute lung injury remain unexplored. Our results show that siRNA-mediated SOCS1 knockdown augmented lipopolysaccharide (LPS)-induced pulmonary endothelial cell (EC) permeability and enhanced inflammatory response. Consistent with in vitro data, EC-specific SOCS1 knockout mice developed more severe lung vascular leak and accumulation of inflammatory cells in bronchoalveolar lavage fluid. SOCS1 overexpression exhibited protective effects against LPS-induced endothelial permeability and inflammation, which were dependent on microtubule (MT) integrity. Biochemical and image analysis of unstimulated EC showed SOCS1 association with the MT, while challenge with LPS or MT depolymerizing agent colchicine impaired this association. SOCS1 directly interacted with N2 domains of MT-associated proteins CLIP-170 and CLASP2. Furthermore, N-terminal region of SOCS1 was indispensable for these interactions and SOCS1-ΔN mutant lacking N-terminal 59 amino acids failed to rescue LPS-induced endothelial dysfunction. Depletion of endogenous CLIP-170 or CLASP2 abolished SOCS1 interaction with Toll-like receptor-4 and Janus kinase-2 leading to impairment of SOCS1 inhibitory effects on LPS-induced inflammation. Altogether, these findings suggest that endothelial barrier protective and anti-inflammatory effects of SOCS1 are critically dependent on its targeting to the MT.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Sharma J, Collins TD, Roach T, Mishra S, Lam BK, Mohamed ZS, Veal AE, Polk TB, Jones A, Cornaby C, Haider MI, Zeumer-Spataro L, Johnson HM, Morel LM, Larkin J. Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model. Sci Rep 2021; 11:6354. [PMID: 33737712 PMCID: PMC7973732 DOI: 10.1038/s41598-021-86017-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune diseases are driven largely by a pathogenic cytokine milieu produced by aberrantly activated lymphocytes. Many cytokines, including interferon gamma (IFN-γ), utilize the JAK/STAT pathway for signal propagation. Suppressor of Cytokine Signaling-1 (SOCS1) is an inducible, intracellular protein that regulates IFN-γ signaling by dampening JAK/STAT signaling. Using Fas deficient, MRL/MpJ-Faslpr/J (MRL/lpr) mice, which develop lupus-like disease spontaneously, we tested the hypothesis that a peptide mimic of the SOCS1 kinase inhibitory region (SOCS1-KIR) would inhibit lymphocyte activation and modulate lupus-associated pathologies. Consistent with in vitro studies, SOCS1-KIR intraperitoneal administration reduced the frequency, activation, and cytokine production of memory CD8+ and CD4+ T lymphocytes within the peripheral blood, spleen, and lymph nodes. In addition, SOCS1-KIR administration reduced lymphadenopathy, severity of skin lesions, autoantibody production, and modestly reduced kidney pathology. On a cellular level, peritoneal SOCS1-KIR administration enhanced Foxp3 expression in total splenic and follicular regulatory T cells, reduced the effector memory/naïve T lymphocyte ratio for both CD4+ and CD8+ cells, and reduced the frequency of GL7+ germinal center enriched B cells. Together, these data show that SOCS1-KIR treatment reduced auto-reactive lymphocyte effector functions and suggest that therapeutic targeting of the SOCS1 pathway through peptide administration may have efficacy in mitigating autoimmune pathologies.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Teresa D Collins
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Tracoyia Roach
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shiwangi Mishra
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Brandon K Lam
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zaynab Sidi Mohamed
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Antia E Veal
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Timothy B Polk
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Amari Jones
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Caleb Cornaby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mohammed I Haider
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Howard M Johnson
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA
| | - Laurence M Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph Larkin
- Department of Microbiology & Cell Science, University of Florida, Museum Road Building 981, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
SILAC proteomics implicates SOCS1 in modulating cellular macromolecular complexes and the ubiquitin conjugating enzyme UBE2D involved in MET receptor tyrosine kinase downregulation. Biochimie 2021; 182:185-196. [PMID: 33493533 DOI: 10.1016/j.biochi.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023]
Abstract
Suppressor of Cytokine Signaling 1 (SOCS1) functions as a tumor suppressor in hepatocellular carcinoma and many other types of cancers. SOCS1 mediates its functions by inhibiting tyrosine kinases, promoting ubiquitination and proteasomal degradation of signal transducing proteins, and by modulating transcription factors. Here, we studied the impact of SOCS1 on the hepatocyte proteome using Stable Isotopic Labelling of Amino acids in Cell culture (SILAC)-based mass spectrometry on the Hepa1-6 murine HCC cell line stably expressing wildtype SOCS1 or a mutant SOCS1 with impaired SH2 domain. As SOCS1 regulates the hepatocyte growth factor (HGF) receptor, the MET receptor tyrosine kinase (RTK), the SILAC-labelled cells were stimulated or not with HGF. Following mass spectrometry analysis, differentially modulated proteins were identified, quantified and analyzed for pathway enrichment. Of the 3440 proteins identified in Hepa-SOCS1 cells at steady state, 181 proteins were significantly modulated compared to control cells. The SH2 domain mutation and HGF increased the number of differentially modulated proteins. Protein interaction network analysis revealed enrichment of SOCS1-modulated proteins within multiprotein complexes such as ubiquitin conjugating enzymes, proteasome, mRNA spliceosome, mRNA exosome and mitochondrial ribosome. Notably, the expression of UBE2D ubiquitin conjugating enzyme, which is implicated in the control of growth factor receptor tyrosine kinase signaling, was found to be regulated by SOCS1. These findings suggest that SOCS1, induced by cytokines, growth factors and diverse other stimuli, has the potential to dynamically modulate of large macromolecular regulatory complexes to help maintain cellular homeostasis.
Collapse
|
32
|
Westerberg J, Tideholm E, Piersiala K, Drakskog C, Kumlien Georén S, Mäki-Torkko E, Cardell LO. JAK/STAT Dysregulation With SOCS1 Overexpression in Acquired Cholesteatoma-Adjacent Mucosa. Otol Neurotol 2021; 42:e94-e100. [PMID: 33201080 DOI: 10.1097/mao.0000000000002850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IMPORTANCE Surgery remains the gold standard in cholesteatoma treatment. However, the rate of recurrence is significant and the development of new nonsurgical treatment alternatives is warranted. One of the possible molecular pathways to target is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. OBJECTIVE To investigate the JAK/STAT pathway in the middle ear mucosa in patients with acquired cholesteatoma compared with middle ear mucosa from healthy controls. DESIGN Case-control study. SETTING Linköping University Hospital, Sweden, and Karolinska Institutet, Stockholm, Sweden. Sampling period: February 2011 to December 2016. PARTICIPANTS Middle ear mucosa from 26 patients with acquired cholesteatoma undergoing tympanoplasty and mastoidectomy, and 27 healthy controls undergoing translabyrinthine surgery for vestibular schwannoma or cochlear implantation was investigated. MAIN OUTCOMES/MEASURES The expression of Interleukin-7 receptor alpha, JAK1, JAK2, JAK3, STAT5A, STAT5B, and suppressor of cytokine signaling-1 (SOCS1) were quantified using quantitative polymerase chain reaction. In addition, expression level of cyclin D2, transforming growth factor beta 1, thymic stromal lymphopoietin, CD3, and CD19 was evaluated. RESULTS In cholesteatoma-adjacent mucosa, SOCS1 was significantly upregulated (p= 0.0003) compared with healthy controls, whereas STAT5B was significantly downregulated (p = 0.0006). The expression of JAK1, JAK2, JAK3, and STAT5A did not differ significantly between groups. CONCLUSIONS AND RELEVANCE To the best of our knowledge, this is the first article reporting dysregulation of the JAK/STAT pathway in cholesteatoma-adjacent mucosa. The main finding is that important players of the aforementioned pathway are significantly altered, namely SOCS1 is upregulated and STAT5B is downregulated compared with healthy controls.
Collapse
Affiliation(s)
- Johanna Westerberg
- Department of Biomedical and Clinical Sciences, Division of Sensory Organs and Communication, Linköping University, Region Östergötland, Sweden
| | - Ellen Tideholm
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Drakskog
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Elina Mäki-Torkko
- Department of Biomedical and Clinical Sciences, Division of Sensory Organs and Communication, Linköping University, Region Östergötland, Sweden
- Audiological Research Center, Faculty of Medicine and Health, Örebro university, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Du J, Liao W, Liu W, Deb DK, He L, Hsu PJ, Nguyen T, Zhang L, Bissonnette M, He C, Li YC. N 6-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation. Dev Cell 2020; 55:737-753.e7. [PMID: 33220174 DOI: 10.1016/j.devcel.2020.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/12/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Bacterial infection triggers a cytokine storm that needs to be resolved to maintain the host's wellbeing. Here, we report that ablation of m6A methyltransferase subunit METTL14 in myeloid cells exacerbates macrophage responses to acute bacterial infection in mice, leading to high mortality due to sustained production of pro-inflammatory cytokines. METTL14 depletion blunts Socs1 m6A methylation and reduces YTHDF1 binding to the m6A sites, which diminishes SOCS1 induction leading to the overactivation of TLR4/NF-κB signaling. Forced expression of SOCS1 in macrophages depleted of METTL14 or YTHDF1 rescues the hyper-responsive phenotype of these macrophages in vitro and in vivo. We further show that LPS treatment induces Socs1 m6A methylation and sustains SOCS1 induction by promoting Fto mRNA degradation, and forced FTO expression in macrophages mimics the phenotype of METTL14-depleted macrophages. We conclude that m6A methylation-mediated SOCS1 induction is required to maintain the negative feedback control of macrophage activation in response to bacterial infection.
Collapse
Affiliation(s)
- Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA; Department of Cardiology, Hainan General Hospital, Hainan Clinical Research Institute, Haikou, Hainan, China
| | - Weicheng Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Dilip K Deb
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Phillip J Hsu
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tivoli Nguyen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Linda Zhang
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Departments of Chemistry, Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Johnson HM, Lewin AS, Ahmed CM. SOCS, Intrinsic Virulence Factors, and Treatment of COVID-19. Front Immunol 2020; 11:582102. [PMID: 33193390 PMCID: PMC7644869 DOI: 10.3389/fimmu.2020.582102] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular checkpoint inhibitors has received little recognition compared to other checkpoint inhibitors. Two members of this family, SOCS1 and SOCS3, are indispensable, since SOCS1 knockout in mice results in neonatal death due to interferon gamma (IFNγ) induced inflammatory disease, and SOCS3 knockout leads to embryonic lethality. We have shown that SOCS1 and SOCS3 (SOCS1/3) function as virus induced intrinsic virulence factors for influenza A virus, EMC virus, herpes simplex virus 1 (HSV-1), and vaccinia virus infections. Other viruses such as pathogenic pig enteric coronavirus and coronavirus induced severe acute respiratory syndrome (SARS) spike protein also induce SOCS virus intrinsic virulence factors. SOCS1/3 exert their viral virulence effect via inhibition of type I and type II interferon (IFN) function. Specifically, the SOCS bind to the activation loop of receptor-associated tyrosine kinases JAK2 and TYK2 through the SOCS kinase inhibitory region (KIR), which inhibits STAT transcription factor activation by the kinases. Activated STATs are required for IFN function. We have developed a small peptide antagonist of SOCS1/3 that blocks SOCS1/3 inhibitory activity and prevents virus pathogenesis. The antagonist, pJAK2(1001-1013), is comprised of the JAK2 activation loop, phosphorylated at tyrosine 1007 with a palmitate for cell penetration. The remarkable thing about SOCS1/3 is that it serves as a broad, simple tool of perhaps most pathogenic viruses to avoid innate host IFN defense. We suggest in this Perspective that SOCS1/3 antagonist is a simple counter measure to SOCS1/3 and should be an effective mechanism as a prophylactic and/or therapeutic against the COVID-19 pandemic that is caused by coronavirus SARS-CoV2.
Collapse
Affiliation(s)
- Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, Armstrong M, Ashrafian H, Cutcutache I, Ebetsberger-Dachs G, Elliott KS, Durieu I, Fabien N, Fusaro M, Heeg M, Schmitt Y, Bras M, Knight JC, Lega JC, Lesca G, Mathieu AL, Moreews M, Moreira B, Nosbaum A, Page M, Picard C, Ronan Leahy T, Rouvet I, Ryan E, Sanlaville D, Schwarz K, Skelton A, Viallard JF, Viel S, Villard M, Callebaut I, Picard C, Walzer T, Ehl S, Fischer A, Neven B, Belot A, Rieux-Laucat F. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 2020; 11:5341. [PMID: 33087723 PMCID: PMC7578789 DOI: 10.1038/s41467-020-18925-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity can occur when a checkpoint of self-tolerance fails. The study of familial autoimmune diseases can reveal pathophysiological mechanisms involved in more common autoimmune diseases. Here, by whole-exome/genome sequencing we identify heterozygous, autosomal-dominant, germline loss-of-function mutations in the SOCS1 gene in ten patients from five unrelated families with early onset autoimmune manifestations. The intracellular protein SOCS1 is known to downregulate cytokine signaling by inhibiting the JAK-STAT pathway. Accordingly, patient-derived lymphocytes exhibit increased STAT activation in vitro in response to interferon-γ, IL-2 and IL-4 that is reverted by the JAK1/JAK2 inhibitor ruxolitinib. This effect is associated with a series of in vitro and in vivo immune abnormalities consistent with lymphocyte hyperactivity. Hence, SOCS1 haploinsufficiency causes a dominantly inherited predisposition to early onset autoimmune diseases related to cytokine hypersensitivity of immune cells.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marie-Claude Stolzenberg
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Fabienne Mazerolles
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), CIC 1401, Inserm CICP, Bordeaux, France.,Pediatric Oncology Hematology Unit, University Hospital, place Amélie Raba Léon, CIC 1401, Inserm, CICP, Bordeaux, France
| | | | - Houman Ashrafian
- Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Georg Ebetsberger-Dachs
- Department of Pediatrics, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria
| | | | - Isabelle Durieu
- Internal Medicine and Vascular Pathology Department, Adult Cystic Fibrosis Center, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,EA 7425 HESPER. Université de Lyon, Lyon, France
| | - Nicole Fabien
- Immunology laboratory; Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Fusaro
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yohan Schmitt
- Genomic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Marc Bras
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jean-Christophe Lega
- Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France.,UMR 5558, Equipe Evaluation et Modélisation des Effets Thérapeutiques, Laboratoire de Biométrie et Biologie Evolutive, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marion Moreews
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Baptiste Moreira
- Immunology Laboratory, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Allergy and Clinical Immunology department, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Matthew Page
- Translational Medicine, UCB Pharma, Braine-l'Alleud, Belgium
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Isabelle Rouvet
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Ethel Ryan
- Department of Paediatrics, University Hospital Galway, Co, Galway, Ireland
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Klaus Schwarz
- Institute for Transfusion Medicin, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081, Ulm, Germany
| | - Andrew Skelton
- Translational Medicine, UCB Pharma, Slough, United Kingdom
| | - Jean-Francois Viallard
- Département de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire Haut Lévêque, Université de Bordeaux, Pessac, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Service d'Immunologie Biologique, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Imagine institute, laboratory of Iymphocyte activation and susceptibility to EBV, INSERM UMR 1163, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alain Fischer
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Collège de France, Paris, France
| | - Bénédicte Neven
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France. .,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France. .,Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France.
| | - Frédéric Rieux-Laucat
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France. .,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.
| |
Collapse
|
37
|
Huber A, Killy B, Grummel N, Bodendorfer B, Paul S, Wiesmann V, Naschberger E, Zimmer J, Wirtz S, Schleicher U, Vera J, Ekici AB, Dalpke A, Lang R. Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-γ towards Enhanced Inflammation yet Impaired Antigen Presentation and Expression of GBP1. THE JOURNAL OF IMMUNOLOGY 2020; 205:1580-1592. [PMID: 32796022 DOI: 10.4049/jimmunol.2000337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Mycobacteria survive in macrophages despite triggering pattern recognition receptors and T cell-derived IFN-γ production. Mycobacterial cord factor trehalose-6,6-dimycolate (TDM) binds the C-type lectin receptor MINCLE and induces inflammatory gene expression. However, the impact of TDM on IFN-γ-induced macrophage activation is not known. In this study, we have investigated the cross-regulation of the mouse macrophage transcriptome by IFN-γ and by TDM or its synthetic analogue trehalose-6,6-dibehenate (TDB). As expected, IFN-γ induced genes involved in Ag presentation and antimicrobial defense. Transcriptional programs induced by TDM and TDB were highly similar but clearly distinct from the response to IFN-γ. The glycolipids enhanced expression of a subset of IFN-γ-induced genes associated with inflammation. In contrast, TDM/TDB exerted delayed inhibition of IFN-γ-induced genes, including pattern recognition receptors, MHC class II genes, and IFN-γ-induced GTPases, with antimicrobial function. TDM downregulated MHC class II cell surface expression and impaired T cell activation by peptide-pulsed macrophages. Inhibition of the IFN-γ-induced GTPase GBP1 occurred at the level of transcription by a partially MINCLE-dependent mechanism that may target IRF1 activity. Although activation of STAT1 was unaltered, deletion of Socs1 relieved inhibition of GBP1 expression by TDM. Nonnuclear Socs1 was sufficient for inhibition, suggesting a noncanonical, cytoplasmic mechanism. Taken together, unbiased analysis of transcriptional reprogramming revealed a significant degree of negative regulation of IFN-γ-induced Ag presentation and antimicrobial gene expression by the mycobacterial cord factor that may contribute to mycobacterial persistence.
Collapse
Affiliation(s)
- Alexandra Huber
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Killy
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Nadine Grummel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Veit Wiesmann
- Fraunhofer-Institut für Integrierte Schaltungen, D-91058 Erlangen, Germany
| | - Elisabeth Naschberger
- Molekulare und Experimentelle Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Jana Zimmer
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Arif Bülent Ekici
- Institut für Humangenetik, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; and
| | - Alexander Dalpke
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany;
| |
Collapse
|
38
|
Mafanda EK, Kandhi R, Bobbala D, Khan MGM, Nandi M, Menendez A, Ramanathan S, Ilangumaran S. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis. Cytokine 2019; 124:154501. [DOI: 10.1016/j.cyto.2018.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/31/2022]
|
39
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 547] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
40
|
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol 2019; 36:393-411. [PMID: 30521052 PMCID: PMC6368001 DOI: 10.1093/molbev/msy230] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
Collapse
Affiliation(s)
- Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
41
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
42
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
43
|
Devalraju KP, Neela VSK, Chintala S, Krovvidi SS, Valluri VL. Transforming Growth Factor-β Suppresses Interleukin (IL)-2 and IL-1β Production in HIV-Tuberculosis Co-Infection. J Interferon Cytokine Res 2019; 39:355-363. [PMID: 30939065 DOI: 10.1089/jir.2018.0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-1β and IL-2 play important roles in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the factors that regulate the production of these cytokines in the context of human immunodeficiency virus and latent tuberculosis infection (LTBI) or active tuberculosis (TB) disease is limited. In this study, we compared the production of these cytokines by peripheral blood mononuclear cells (PBMCs) from HIV- and HIV+ individuals with latent and active Tuberculosis infection in response to Mtb Antigen 85A. PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced low IL-1β, IL-2 but high transforming growth factor beta (TGF-β) compared to healthy controls. CD4+ T cells from HIV patients expressed low retinoic acid-related orphan receptor gamma (RORγ), and high suppressors of cytokine signaling-3 (SOCS-3). Active TB infection in HIV+ individuals further inhibited antigen-specific IL-1β and IL-2 production compared with those with LTBI. Neutralization of TGF-β restored IL-1β and IL-2 levels and lowered SOCS-3 production by CD4+ T cells. We hypothesize that high TGF-β in HIV patients could be a reason for defective Mtb-specific IL-1β, IL-2 production and activation of latent TB in HIV. Coupling anti-TGF-β antibodies with antiretroviral therapy treatment might increase T cell function to boost the immune system for effective clearance of Mtb.
Collapse
Affiliation(s)
| | | | - Sreedhar Chintala
- 2 Division of Clinical and Epidemiology, Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Siva Sai Krovvidi
- 3 Department of Biotechnology, Sreenidhi Institute of Science and Technology, Hyderabad, India
| | - Vijaya Lakshmi Valluri
- 1 Department of Immunology and Molecular Biology, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| |
Collapse
|
44
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
45
|
Alspach E, Lussier DM, Schreiber RD. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol 2019; 11:a028480. [PMID: 29661791 PMCID: PMC6396335 DOI: 10.1101/cshperspect.a028480] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Originally identified in studies of cellular resistance to viral infection, interferon (IFN)-γ is now known to represent a distinct member of the IFN family and plays critical roles not only in orchestrating both innate and adaptive immune responses against viruses, bacteria, and tumors, but also in promoting pathologic inflammatory processes. IFN-γ production is largely restricted to T lymphocytes and natural killer (NK) cells and can ultimately lead to the generation of a polarized immune response composed of T helper (Th)1 CD4+ T cells and CD8+ cytolytic T cells. In contrast, the temporally distinct elaboration of IFN-γ in progressively growing tumors also promotes a state of adaptive resistance caused by the up-regulation of inhibitory molecules, such as programmed-death ligand 1 (PD-L1) on tumor cell targets, and additional host cells within the tumor microenvironment. This review focuses on the diverse positive and negative roles of IFN-γ in immune cell activation and differentiation leading to protective immune responses, as well as the paradoxical effects of IFN-γ within the tumor microenvironment that determine the ultimate fate of that tumor in a cancer-bearing individual.
Collapse
Affiliation(s)
- Elise Alspach
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle M Lussier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
46
|
Gendo Y, Matsumoto T, Kamiyama N, Saechue B, Fukuda C, Dewayani A, Hidano S, Noguchi K, Sonoda A, Ozaki T, Sachi N, Hirose H, Ozaka S, Eshita Y, Mizukami K, Okimoto T, Kodama M, Yoshimatsu T, Nishida H, Daa T, Yamaoka Y, Murakami K, Kobayashi T. Dysbiosis of the Gut Microbiota on the Inflammatory Background due to Lack of Suppressor of Cytokine Signalling-1 in Mice. Inflamm Intest Dis 2019; 3:145-154. [PMID: 30820436 DOI: 10.1159/000495462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022] Open
Abstract
Background Both environmental and genetic factors have been implicated in the induction of autoimmune disease. Therefore, it is important to understand the pathophysiological significance of the gut microbiota and host genetic background that contribute to an autoimmune disease such as inflammatory bowel disease (IBD). We have previously reported that mice deficient for suppressor of cytokine signaling-1 (SOCS1), in which SOCS1 expression was restored in T and B cells on an SOCS1-/- background (SOCS1-/-Tg mice), developed systemic autoimmune diseases accompanied by spontaneous colitis. Methods To investigate whether the proinflammatory genetic background affects the gut microbiota, we used SOCS1-/-Tg mice as a model of spontaneous chronic colitis. Fecal samples were collected from SOCS1-/-Tg mice and SOCS1+/+Tg (control) mice at 1 and 6 months of age, and the fecal bacterial 16S ribosomal RNA genes were sequenced using the Illumina MiSeq platform. Results Gut microbial diversity was significantly reduced and the intestinal bacterial community composition changed in SOCS1-/-Tg mice in comparison with the control mice. Interestingly, the population of Prevotella species, which is known to be elevated in ulcerative colitis and colorectal cancer patients, was significantly increased in SOCS1-/-Tg mice regardless of age. Conclusion Taken together, these results suggest that the proinflammatory genetic background owing to SOCS1 deficiency causes dysbiosis of the gut microbiota, which in turn generates a procolitogenic environment.
Collapse
Affiliation(s)
- Yoshiko Gendo
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ciaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kaori Noguchi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Ozaki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruna Hirose
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuki Eshita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tomoko Yoshimatsu
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
47
|
Primary Role of Suppressor of Cytokine Signaling 1 in Mycobacterium bovis BCG Infection. Infect Immun 2018; 86:IAI.00376-18. [PMID: 30181351 DOI: 10.1128/iai.00376-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of JAK/STAT signaling and is induced by mycobacterial infection. To understand the major function of SOCS1 during infection, we established a novel system in which recombinant Mycobacterium bovis bacillus Calmette-Guérin expressed dominant-negative SOCS1 (rBCG-SOCS1DN) because it would not affect the function of SOCS1 in uninfected cells. When C57BL/6 mice and RAG1-/- mice were intratracheally inoculated with rBCG-SOCS1DN, the amount of rBCG-SOCS1DN in the lungs was significantly reduced compared to that in the lungs of mice inoculated with a vector control counterpart and wild-type BCG. However, these significant differences were not observed in NOS2-/- mice and RAG1-/- NOS2-/- double-knockout mice. These findings demonstrated that SOCS1 inhibits nitric oxide (NO) production to establish mycobacterial infection and that rBCG-SOCS1DN has the potential to be a powerful tool for studying the primary function of SOCS1 in mycobacterial infection.
Collapse
|
48
|
Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 2018; 92:JVI.00526-18. [PMID: 29976680 DOI: 10.1128/jvi.00526-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. To study mechanisms of this disease, we used a clinically relevant animal model of murine cytomegalovirus (MCMV) retinitis with retrovirus-induced murine AIDS (MAIDS) that mimics the progression of AIDS in humans. We found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling 1 (SOCS1) and SOCS3, host proteins which hinder immune-related signaling by cytokines, including antiviral type I and type II interferons. The present study demonstrates that in the absence of retinal disease, systemic MCMV infection of mice without MAIDS, but not in mice with MAIDS, leads to mild stimulation of splenic SOCS1 mRNA. In sharp contrast, when MCMV is directly inoculated into the eyes of retinitis-susceptible MAIDS mice, high levels of intraocular SOCS1 and SOCS3 mRNA and protein are produced which are associated with significant intraocular upregulation of gamma interferon (IFN-γ) and interleukin-6 (IL-6) mRNA expression. We also show that infiltrating macrophages, granulocytes, and resident retinal cells are sources of intraocular SOCS1 and SOCS3 protein production during development of MAIDS-related MCMV retinitis, and SOCS1 and SOCS3 mRNA transcripts are detected in retinal areas histologically characteristic of MCMV retinitis. Furthermore, SOCS1 and SOCS3 are found in both MCMV-infected cells and uninfected cells, suggesting that these SOCS proteins are stimulated via a bystander mechanism during MCMV retinitis. Taken together, our findings suggest a role for MCMV-related stimulation of SOCS1 and SOCS3 in the progression of retinal disease during ocular, but not systemic, MCMV infection.IMPORTANCE Cytomegalovirus infection frequently causes blindness in untreated HIV/AIDS patients. This virus manipulates host cells to dysregulate immune functions and drive disease. Here, we use an animal model of this disease to demonstrate that cytomegalovirus infection within eyes during retinitis causes massive upregulation of immunosuppressive host proteins called SOCS. As viral overexpression of SOCS proteins exacerbates infection with other viruses, they may also enhance cytomegalovirus infection. Alternatively, the immunosuppressive effect of SOCS proteins may be protective against immunopathology during cytomegalovirus retinitis, and in such a case SOCS mimetics or overexpression treatment strategies might be used to combat this disease. The results of this work therefore provide crucial basic knowledge that contributes to our understanding of the mechanisms of AIDS-related cytomegalovirus retinitis and, together with future studies, may contribute to the development of novel therapeutic targets that could improve the treatment or management of this sight-threatening disease.
Collapse
|
49
|
Sun X, Sun J, Shao X, Feng J, Yan J, Qin Y. Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia. Exp Ther Med 2018; 15:4709-4716. [PMID: 29805490 PMCID: PMC5952101 DOI: 10.3892/etm.2018.6032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Endotoxin tolerance is an immunohomeostatic reaction to reiterant lipopolysaccharide (LPS) exposure that maintains a state of altered responsiveness in immune cells, resulting in the inhibition of the pro-inflammatory response and the resolution of inflammation. Microglia constitutes the first line of defense against endogenous and external challenges in the brain. MicroRNAs (miRs) serve a critical function in the regulation of inflammation. The aim of the present study was to investigate whether miR-155 regulates endotoxin tolerance. miR-155 and suppressor of cytokine signaling-1 (SOCS1) mRNA expression was measured using RT-qPCR. The expression of SOCS1 was measured by western blotting and immunofluorescence. TNF-α levels were detected by an enzyme-linked immunosorbent assay. The results indicated that miR-155 expression was significantly downregulated in the microglia and cortex tissue following the induction of endotoxin tolerance. This was consistent with an increase in the expression of SOCS1, a predicted target of miR-155 and key inhibitor of the inflammatory reaction. Transfection with miR-155 inhibitor significantly enhanced SOCS1 expression in the microglia following the induction of endotoxin tolerance. SOCS1 knockdown using short hairpin RNA partly inhibited the anti-inflammatory process and promoted the inflammatory response during endotoxin tolerance. The results of the current study indicate that miR-155 inhibition contributes to the development of endotoxin tolerance. Understanding how miRs regulate inflammatory mechanisms may facilitate the development of novel therapeutic strategies to treat CNS disorders.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jie Sun
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoyi Shao
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jinrong Feng
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junming Yan
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongwei Qin
- Department of Pathogen Biology and Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
50
|
Keating N, Nicholson SE. SOCS-mediated immunomodulation of natural killer cells. Cytokine 2018; 118:64-70. [PMID: 29609875 DOI: 10.1016/j.cyto.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Natural killer (NK) cells are innate immune cells with an intrinsic ability to detect and kill infected and cancerous cells. The success of therapies targeting immune checkpoints on CD8 cells has intensified interest in harnessing the cytolytic effector functions of NK cells for new cancer treatments. NK cell development, survival and effector activity is dependent on exposure to the cytokine interleukin (IL)-15. The suppressor of cytokine (SOCS) proteins (CIS; SOCS1-7) are important negative regulators of cytokine signaling, and both CIS and SOCS2 are reported to have roles in regulating NK cell responses. Their immunomodulatory effects on NK cells suggest that these SOCS proteins are promising targets that can potentially form the basis of novel cancer therapies. Here we discuss the role of NK cells in tumor immunity as well as review the role of the SOCS proteins in regulating IL-15 signaling and NK cell function.
Collapse
Affiliation(s)
- Narelle Keating
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|