1
|
Ritter MJ, Amano I, Hollenberg AN. Transcriptional Cofactors for Thyroid Hormone Receptors. Endocrinology 2025; 166:bqae164. [PMID: 39679543 PMCID: PMC11702866 DOI: 10.1210/endocr/bqae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Thyroid hormone (TH) is essential throughout life. Its actions are mediated primarily by the thyroid hormone receptor (THR), which is a nuclear receptor. Classically, the THRs act as inducible transcription factors. In the absence of TH, a corepressor complex is recruited to the THR to limit TH-related gene expression. In the presence of TH, the corepressor complex is dismissed and a coactivator complex is recruited to facilitate TH-related gene expression. These coregulators can interact with multiple nuclear receptors and are also key in maintaining normal physiologic function. The nuclear receptor corepressor 1 (NCOR1) and the nuclear receptor corepressor 2 (NCOR2) have been the most extensively studied corepressors of the THR involved in histone deacetylation. The steroid receptor coactivator/p160 (SRC) family and in particular, SRC-1, plays a key role in histone acetylation associated with the THR. The Mediator Complex is also required for pretranscription machinery assembly. This mini-review focuses on how these transcriptional cofactors influence TH-action and signaling, primarily via histone modifications.
Collapse
Affiliation(s)
- Megan J Ritter
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Izuki Amano
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Anthony N Hollenberg
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
3
|
Nazir SU, Mishra J, Maurya SK, Ziamiavaghi N, Bodas S, Teply BA, Dutta S, Datta K. Deciphering the genetic and epigenetic architecture of prostate cancer. Adv Cancer Res 2024; 161:191-221. [PMID: 39032950 DOI: 10.1016/bs.acr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer, one of the most frequently diagnosed cancers in men, leads to significant mortality worldwide. Its study is important due to the complexity and diversity in its progression, highlighting the urgent need for improved therapeutic strategies. This chapter probes into the genetic and epigenetic factors influencing prostate cancer progression, underscoring the importance of understanding the disease's molecular fundamentals for the development of targeted therapies. It specifically reviews the role of key genetic mutations in genes such as Androgen Receptor, TP53, SPOP, FOXA1 and PTEN which are crucial for the disease onset and a progression. Furthermore, it examines the impact of epigenetic modifications, including DNA methylation and histone modification, which contribute to the cancer's progression by affecting gene expression and cellular behavior. Further, in this chapter we delve into the underlying signaling mechanism, the advancements in targeting genetic and epigenetic alterations in prostate cancer. These findings have revealed promising targets for therapeutic advancements, aiming to understand and identify promising avenues for future therapies. This chapter improves our current understanding of prostate cancer genetic and epigenetic landscape, emphasizing the necessity of advancing our knowledge to refine and expand treatment options for prostate cancer patients.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Negin Ziamiavaghi
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanika Bodas
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
4
|
Tribe AKW, Peng L, Teesdale-Spittle PH, McConnell MJ. BCL6 is a context-dependent mediator of the glioblastoma response to irradiation therapy. Int J Biol Macromol 2024; 270:131782. [PMID: 38734343 DOI: 10.1016/j.ijbiomac.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/14/2023] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma is a rapidly fatal brain cancer that does not respond to therapy. Previous research showed that the transcriptional repressor protein BCL6 is upregulated by chemo and radiotherapy in glioblastoma, and inhibition of BCL6 enhances the effectiveness of these therapies. Therefore, BCL6 is a promising target to improve the efficacy of current glioblastoma treatment. BCL6 acts as a transcriptional repressor in germinal centre B cells and as an oncogene in lymphoma and other cancers. However, in glioblastoma, BCL6 induced by therapy may not be able to repress transcription. Using a BCL6 inhibitor, the whole proteome response to irradiation was compared with and without BCL6 activity. Acute high dose irradiation caused BCL6 to switch from repressing the DNA damage response to promoting stress response signalling. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) enabled comparison of BCL6 partner proteins between untreated and irradiated glioblastoma cells. BCL6 was associated with transcriptional coregulators in untreated glioblastoma including the known partner NCOR2. However, this association was lost in response to acute irradiation, where BCL6 unexpectedly associated with synaptic and plasma membrane proteins. These results reveal the activity of BCL6 under therapy-induced stress is context-dependent, and potentially altered by the intensity of that stress.
Collapse
Affiliation(s)
- Anna K W Tribe
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Lifeng Peng
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Paul H Teesdale-Spittle
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Melanie J McConnell
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
5
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
6
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
7
|
Stokes G, Li Z, Talaba N, Genthe W, Brix MB, Pham B, Wienhold MD, Sandok G, Hernan R, Wynn J, Tang H, Tabima DM, Rodgers A, Hacker TA, Chesler NC, Zhang P, Murad R, Yuan JXJ, Shen Y, Chung WK, McCulley DJ. Rescuing lung development through embryonic inhibition of histone acetylation. Sci Transl Med 2024; 16:eadc8930. [PMID: 38295182 DOI: 10.1126/scitranslmed.adc8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Collapse
Affiliation(s)
- Giangela Stokes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Zhuowei Li
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - William Genthe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria B Brix
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Betty Pham
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Gracia Sandok
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yufeng Shen
- Department of Systems Biology, Department of Biomedical Informatics, and JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Chen CH, Lin HW, Huang MF, Chiang CW, Lee KH, Phuong NT, Cai ZY, Chang WC, Lin DY. Sumoylation of SAP130 regulates its interaction with FAF1 as well as its protein stability and transcriptional repressor function. BMC Mol Cell Biol 2024; 25:2. [PMID: 38172660 PMCID: PMC10765799 DOI: 10.1186/s12860-023-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.
Collapse
Affiliation(s)
- Chang-Han Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan, ROC
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, 545301, Taiwan, ROC
| | - Hung-Wei Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Meng-Fang Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Kuen-Haur Lee
- Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Nguyen Thanh Phuong
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Zong-Yan Cai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Ding-Yen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
9
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
10
|
Wang TK, Xu S, Fan Y, Wu J, Wang Z, Chen Y, Zhang Y. The Synergistic Effect of Proanthocyanidin and HDAC Inhibitor Inhibit Breast Cancer Cell Growth and Promote Apoptosis. Int J Mol Sci 2023; 24:10476. [PMID: 37445654 DOI: 10.3390/ijms241310476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Histone deacetylase inhibitor (HDACi) is a drug mainly used to treat hematological tumors and breast cancer, but its inhibitory effect on breast cancer falls short of expectations. Grape seed proanthocyanidin extract (GSPE) with abundant proanthocyanidins (PAs) has been explored for its inhibition of HDAC activity in vitro and in vivo. To enhance HDACi's effectiveness, we investigated the potential of PA to synergistically enhance HDACi chidamide (Chi), and determined the underlying mechanism. We evaluated the half-inhibitory concentration (IC50) of PA and Chi using the cell counting kit 8 (CCK8), and analyzed drugs' synergistic effect with fixed-ratio combination using the software Compusyn. Breast cancer cell's phenotypes, including short-term and long-term proliferation, migration, invasion, apoptosis, and reactive oxygen species (ROS) levels, were assessed via CCK8, clone-formation assay, wound-healing test, Transwell Matrigel invasion assay, and flow-cytometry. Protein-protein interaction analysis (PPI) and KEGG pathway analysis were used to determine the underlying mechanism of synergy. PA + Chi synergistically inhibited cell growth in T47D and MDA-MB-231 breast cancer cell lines. Short-term and long-term proliferation were significantly inhibited, while cell apoptosis was promoted. Ten signaling pathways were identified to account for the synergistic effect after RNA sequencing. Their synergism may be closely related to the steroid biosynthesis and extracellular matrix (ECM) receptor interaction pathways. PA + Chi can synergistically inhibit breast cancer cell growth and proliferation, and promote apoptosis. These effects may be related to steroid biosynthesis or the ECM receptor pathway.
Collapse
Affiliation(s)
- Tsz Ki Wang
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Shaoting Xu
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Yuanjian Fan
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Jing Wu
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Zilin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Yue Chen
- Laboratory of Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| | - Yunjian Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510080, China
| |
Collapse
|
11
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
12
|
Perucho L, Icardi L, Di Simone E, Basso V, Agresti A, Vilas Zornoza A, Lozano T, Prosper F, Lasarte JJ, Mondino A. The transcriptional regulator Sin3A balances IL-17A and Foxp3 expression in primary CD4 T cells. EMBO Rep 2023; 24:e55326. [PMID: 36929576 PMCID: PMC10157306 DOI: 10.15252/embr.202255326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.
Collapse
Affiliation(s)
- Laura Perucho
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Icardi
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Agresti
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amaia Vilas Zornoza
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
14
|
Li Y, Meng R, Li S, Gu B, Xu X, Zhang H, Tan X, Shao T, Wang J, Xu D, Wang F. The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics 2022; 49:1029-1041. [PMID: 35341968 DOI: 10.1016/j.jgg.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Meiosis is essential for fertility in sexually reproducing species and this sophisticated process has been extensively studied. Notwithstanding these efforts, key factors involved in meiosis have not been fully characterized. In this study, we investigate the regulatory roles of zinc finger protein 541 (ZFP541) and its interacting protein potassium channel tetramerization domain containing 19 (KCTD19) in spermatogenesis. ZFP541 is expressed from leptotene to the round spermatid stage, while the expression of KCTD19 is initiated in pachytene. Depletion of Zfp541 or Kctd19 leads to infertility in male mice and delays progression from early to mid/late pachynema. In addition, Zfp541-/- spermatocytes show abnormal programmed DNA double-strand break repair, impaired crossover formation and resolution, and asynapsis of the XY chromosomes. ZFP541 interacts with KCTD19, histone deacetylase 1/2 (HDAC1/2), and deoxynucleotidyl transferase terminal-interacting protein 1 (DNTTIP1). Moreover, ZFP541 binds to and activates the expression of genes involved in meiosis and post-meiosis including Kctd19; in turn, KCTD19 promotes the transcriptional activation activity of ZFP541. Taken together, our studies reveal that the ZFP541/KCTD19 signaling complex, acting as a key transcription regulator, plays an indispensable role in male fertility by regulating pachytene progression.
Collapse
Affiliation(s)
- Yushan Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ranran Meng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Shanze Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Bowen Gu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Haihang Zhang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xinshui Tan
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Tianyu Shao
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Jiawen Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Dan Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Miceli M, Maruotti GM, Sarno L, Carbone L, Guida M, Pelagalli A. Preliminary Characterization of the Epigenetic Modulation in the Human Mesenchymal Stem Cells during Chondrogenic Process. Int J Mol Sci 2022; 23:ijms23179870. [PMID: 36077266 PMCID: PMC9456537 DOI: 10.3390/ijms23179870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.
Collapse
Affiliation(s)
- Marco Miceli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- Correspondence: (M.M.); (A.P.)
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
- Correspondence: (M.M.); (A.P.)
| |
Collapse
|
16
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
17
|
Bi G, Liang J, Bian Y, Shan G, Besskaya V, Wang Q, Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin Exp Med 2022:10.1007/s10238-022-00860-x. [PMID: 35829844 DOI: 10.1007/s10238-022-00860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Valeria Besskaya
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
18
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
19
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Dahiya NR, Leibovitch BA, Kadamb R, Bansal N, Waxman S. The Sin3A/MAD1 Complex, through Its PAH2 Domain, Acts as a Second Repressor of Retinoic Acid Receptor Beta Expression in Breast Cancer Cells. Cells 2022; 11:cells11071179. [PMID: 35406744 PMCID: PMC8997856 DOI: 10.3390/cells11071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Retinoids are essential in balancing proliferation, differentiation and apoptosis, and they exert their effects through retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RARβ is a tumor-suppressor gene silenced by epigenetic mechanisms such as DNA methylation in breast, cervical and non-small cell lung cancers. An increased expression of RARβ has been associated with improved breast cancer-specific survival. The PAH2 domain of the scaffold protein SIN3A interacts with the specific Sin3 Interaction Domain (SID) of several transcription factors, such as MAD1, bringing chromatin-modifying proteins such as histone deacetylases, and it targets chromatin for specific modifications. Previously, we have established that blocking the PAH2-mediated Sin3A interaction with SID-containing proteins using SID peptides or small molecule inhibitors (SMI) increased RARβ expression and induced retinoic acid metabolism in breast cancer cells, both in in vitro and in vivo models. Here, we report studies designed to understand the mechanistic basis of RARβ induction and function. Using human breast cancer cells transfected with MAD1 SID or treated with the MAD SID peptide, we observed a dissociation of MAD1, RARα and RARβ from Sin3A in a coimmunoprecipitation assay. This was associated with increased RARα and RARβ expression and function by a luciferase assay, which was enhanced by the addition of AM580, a specific RARα agonist; EMSA showed that MAD1 binds to E-Box, similar to MYC, on the RARβ promoter, which showed a reduced enrichment of Sin3A and HDAC1 by ChIP and was required for the AM580-enhanced RARβ activation in MAD1/SID cells. These data suggest that the Sin3A/HDAC1/2 complex co-operates with the classical repressors in regulating RARβ expression. These data suggest that SIN3A/MAD1 acts as a second RARβ repressor and may be involved in fine-tuning retinoid sensitivity.
Collapse
Affiliation(s)
- Nisha Rani Dahiya
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
| | - Boris A. Leibovitch
- Department of Pathology, New York University School of Medicine, New York, NY 10029, USA;
| | - Rama Kadamb
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Nidhi Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
| | - Samuel Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
- Correspondence:
| |
Collapse
|
21
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
22
|
Surcel C, Kretschmer A, Mirvald C, Sinescu I, Heidegger I, Tsaur I. Molecular Mechanisms Related with Oligometastatic Prostate Cancer-Is It Just a Matter of Numbers? Cancers (Basel) 2022; 14:cancers14030766. [PMID: 35159033 PMCID: PMC8833728 DOI: 10.3390/cancers14030766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
During the last decade, the body of knowledge regarding the oligometastatic state has increased exponentially. Several molecular frameworks have been established, aiding our understanding of metastatic spread caused by genetically unstable cells that adapt to a tissue environment which is distant from the primary tumor. In the current narrative review, we provide an overview of the current treatment landscape of oligometastatic cancer, focusing on the current biomarkers used in the identification of true oligometastatic disease and highlighting the impact of molecular imaging on stage shift in different scenarios. Finally, we address current and future directions regarding the use of genetic and epigenetic targeting treatments in oligometastatic prostate cancer.
Collapse
Affiliation(s)
- Cristian Surcel
- Center of Urologic Surgery, Dialysis and Renal Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 00238 Bucharest, Romania; (C.M.); (I.S.)
- Correspondence:
| | | | - Cristian Mirvald
- Center of Urologic Surgery, Dialysis and Renal Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 00238 Bucharest, Romania; (C.M.); (I.S.)
| | - Ioanel Sinescu
- Center of Urologic Surgery, Dialysis and Renal Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 00238 Bucharest, Romania; (C.M.); (I.S.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany;
| |
Collapse
|
23
|
Wright D, Nagy L. An open chat with… Laszlo Nagy. FEBS Open Bio 2022; 12:554-559. [PMID: 35090097 PMCID: PMC8886519 DOI: 10.1002/2211-5463.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Laszlo Nagy has been on the Editorial Board of FEBS Open Bio since the journal’s inception and is a passionate supporter of FEBS Press and other society journals. Currently, he is also an editor of FEBS Letters and The Journal of Clinical Investigation (JCI). He studied medicine at the University Medical School of Debrecen in Hungary, where he graduated with an M.D. and later Ph.D., and then moved to the United States to conduct postdoctoral research at the University of Texas–Houston and subsequently the Salk Institute in San Diego. Laszlo is a Professor of Medicine and Biological Chemistry at John Hopkins School of Medicine, where he is Co‐Director of the Institute for Fundamental Biomedical Research and Associate Director of the Center for Metabolic Origins of Disease, and Adjunct Professor at the University of Debrecen. Formerly, he was a Professor and Founding Director of the Genomic Control of Metabolism Program at the Sanford Burnham Prebys Medical Discovery Institute. He is also a member of the European Molecular Biology Organisation (EMBO), Academia Europaea, the Hungarian Academy of Sciences and The Henry Kunkel Society, and recipient of several awards, including the Boehringer Ingelheim Research Award, Cheryl Whitlock/Pathology Prize, a Wellcome Trust Senior Research Fellowship in Biomedical Sciences, and three Howard Hughes Medical Institute International Research Scholar Awards. In this fascinating interview, Laszlo Nagy shares the advice that changed his career trajectory, relates his views on scientific publishing, discusses new developments at The Johns Hopkins Center for Metabolic Origins of Disease, and outlines the prospects for future development of research and technology infrastructures in eastern Europe.
Collapse
Affiliation(s)
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
25
|
Roggero CM, Esser V, Duan L, Rice AM, Ma S, Raj GV, Rosen MK, Liu ZP, Rizo J. Poly-glutamine-dependent self-association as a potential mechanism for regulation of androgen receptor activity. PLoS One 2022; 17:e0258876. [PMID: 34986150 PMCID: PMC8730435 DOI: 10.1371/journal.pone.0258876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
The androgen receptor (AR) plays a central role in prostate cancer. Development of castration resistant prostate cancer (CRPC) requires androgen-independent activation of AR, which involves its large N-terminal domain (NTD) and entails extensive epigenetic changes depending in part on histone lysine demethylases (KDMs) that interact with AR. The AR-NTD is rich in low-complexity sequences, including a polyQ repeat. Longer polyQ sequences were reported to decrease transcriptional activity and to protect against prostate cancer, although they can lead to muscular atrophy. However, the molecular mechanisms underlying these observations are unclear. Using NMR spectroscopy, here we identify weak interactions between the AR-NTD and the KDM4A catalytic domain, and between the AR ligand-binding domain and a central KDM4A region that also contains low-complexity sequences. We also show that the AR-NTD can undergo liquid-liquid phase separation in vitro, with longer polyQ sequences phase separating more readily. Moreover, longer polyQ sequences hinder nuclear localization in the absence of hormone and increase the propensity for formation of AR-containing puncta in the nucleus of cells treated with dihydrotestosterone. These results lead us to hypothesize that polyQ-dependent liquid-liquid phase separation may provide a mechanism to decrease the transcriptional activity of AR, potentially opening new opportunities to design effective therapies against CRPC and muscular atrophy.
Collapse
Affiliation(s)
- Carlos M. Roggero
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lingling Duan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Allyson M. Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ganesh V. Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael K. Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhi-Ping Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
26
|
Sanz MA, Barragán E. History of Acute Promyelocytic Leukemia. Clin Hematol Int 2021; 3:142-152. [PMID: 34938986 PMCID: PMC8690702 DOI: 10.2991/chi.k.210703.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, we discuss the history of acute promyelocytic leukemia (APL) from the pre-therapeutic era, which began after its recognition by Hillestad in 1947 as a nosological entity, to the present day. It is a paradigmatic history that has transformed the “most malignant leukemia form” into the most curable one. The identification of a balanced reciprocal translocation between chromosomes 15 and 17, resulting in fusion between the promyelocytic leukemia gene and the retinoic acid receptor alpha, has been crucial in understanding the mechanisms of leukemogenesis, and responsible for the peculiar response to targeted therapy with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). We review the milestones that marked successive therapeutic advances, beginning with the introduction of the first successful chemotherapy in the early 1970s, followed by a subsequent incorporation of ATRA and ATO in the late 1980s and early 1990s which have revolutionized the treatment of this disease. Over the past two decades, treatment optimization has relied on the combination of ATRA, ATO, and chemotherapy according to risk-adapted approaches, which together with improvements in supportive therapy have paved the way for cure for most patients with APL.
Collapse
Affiliation(s)
- Miguel A Sanz
- Department of Hematology, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eva Barragán
- Clinical Laboratory, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Carlos III Institute, Madrid, Spain
| |
Collapse
|
27
|
Stephan OOH. Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network. FEMS Yeast Res 2021; 22:6461095. [PMID: 34905017 DOI: 10.1093/femsyr/foab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/11/2021] [Indexed: 11/12/2022] Open
Abstract
Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
28
|
Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Rep 2021; 37:110109. [PMID: 34910907 PMCID: PMC8889623 DOI: 10.1016/j.celrep.2021.110109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023] Open
Abstract
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients with PC receiving adjuvant ADT. Utilizing the CWR22 xenograft model, we demonstrate that stably reduced NCOR2 expression accelerates disease recurrence following ADT, associates with gene expression patterns that include neuroendocrine features, and induces DNA hypermethylation. Stably reduced NCOR2 expression in isogenic LNCaP (androgen-sensitive) and LNCaP-C4–2 (androgen-independent) cells revealed that NCOR2 reduction phenocopies the impact of androgen treatment and induces global DNA hypermethylation patterns. NCOR2 genomic binding is greatest in LNCaP-C4–2 cells and most clearly associates with forkhead box (FOX) transcription factor FOXA1 binding. NCOR2 binding significantly associates with transcriptional regulation most when in active enhancer regions. These studies reveal robust roles for NCOR2 in regulating the PC transcriptome and epigenome and underscore recent mutational studies linking NCOR2 loss of function to PC disease progression. Long et al. show that reduced levels of NCOR2 lead to accelerated prostate cancer recurrence during androgen withdrawal in a patient-derived xenograft model. NCOR2 reduction is characterized by incomplete response to androgen withdrawal, and recurrent tumors show increased neuroendocrine traits. These phenotypic changes are associated with hypermethylated enhancers.
Collapse
|
29
|
Martinez Lyons A, Boulter L. The developmental origins of Notch-driven intrahepatic bile duct disorders. Dis Model Mech 2021; 14:dmm048413. [PMID: 34549776 PMCID: PMC8480193 DOI: 10.1242/dmm.048413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Notch signaling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, cell fate specification, and maintenance of stem and progenitor cell populations. In the vertebrate liver, an absence of Notch signaling results in failure to form bile ducts, a complex tubular network that radiates throughout the liver, which, in healthy individuals, transports bile from the liver into the bowel. Loss of a functional biliary network through congenital malformations during development results in cholestasis and necessitates liver transplantation. Here, we examine to what extent Notch signaling is necessary throughout embryonic life to initiate the proliferation and specification of biliary cells and concentrate on the animal and human models that have been used to define how perturbations in this signaling pathway result in developmental liver disorders.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
30
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
32
|
He YZ, Aksoy E, Ding Y, Raikhel AS. Hormone-dependent activation and repression of microRNAs by the ecdysone receptor in the dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2102417118. [PMID: 34155112 PMCID: PMC8256052 DOI: 10.1073/pnas.2102417118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.
Collapse
Affiliation(s)
- Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Emre Aksoy
- Department of Entomology, University of California, Riverside, CA 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92521
| | - Yike Ding
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
33
|
Long J, Galvan DL, Mise K, Kanwar YS, Li L, Poungavrin N, Overbeek PA, Chang BH, Danesh FR. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J Biol Chem 2020; 295:15840-15852. [PMID: 32467232 PMCID: PMC7681008 DOI: 10.1074/jbc.ra120.013228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in a variety of biological activities of the cell. However, less is known about how lncRNAs respond to environmental cues and what transcriptional mechanisms regulate their expression. Studies from our laboratory have shown that the lncRNA Tug1 (taurine upregulated gene 1) is crucial for the progression of diabetic kidney disease, a major microvascular complication of diabetes. Using a combination of proximity labeling with the engineered soybean ascorbate peroxidase (APEX2), ChIP-qPCR, biotin-labeled oligonucleotide pulldown, and classical promoter luciferase assays in kidney podocytes, we extend our initial observations in the current study and now provide a detailed analysis on a how high-glucose milieu downregulates Tug1 expression in podocytes. Our results revealed an essential role for the transcription factor carbohydrate response element binding protein (ChREBP) in controlling Tug1 transcription in the podocytes in response to increased glucose levels. Along with ChREBP, other coregulators, including MAX dimerization protein (MLX), MAX dimerization protein 1 (MXD1), and histone deacetylase 1 (HDAC1), were enriched at the Tug1 promoter under high-glucose conditions. These observations provide the first characterization of the mouse Tug1 promoter's response to the high-glucose milieu. Our findings illustrate a molecular mechanism by which ChREBP can coordinate glucose homeostasis with the expression of the lncRNA Tug1 and further our understanding of dynamic transcriptional regulation of lncRNAs in a disease state.
Collapse
Affiliation(s)
- Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paul A Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
34
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
35
|
Li Y, Coons LA, Houtman R, Carlson KE, Martin TA, Mayne CG, Melchers D, Jefferson TB, Ramsey JT, Katzenellenbogen JA, Korach KS. A mutant form of ERα associated with estrogen insensitivity affects the coupling between ligand binding and coactivator recruitment. Sci Signal 2020; 13:eaaw4653. [PMID: 32963012 PMCID: PMC7597377 DOI: 10.1126/scisignal.aaw4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A homozygous missense mutation in the gene encoding the estrogen receptor α (ERα) was previously identified in a female patient with estrogen insensitivity syndrome. We investigated the molecular features underlying the impaired transcriptional response of this mutant (ERα-Q375H) and four other missense mutations at this position designed to query alternative mechanisms. The identity of residue 375 greatly affected the sensitivity of the receptor to agonists without changing the ligand binding affinity. Instead, the mutations caused changes in the affinity of coactivator binding and alterations in the balance of coactivator and corepressor recruitment. Comparisons among the transcriptional regulatory responses of these six ERα genotypes to a set of ER agonists showed that both steric and electrostatic factors contributed to the functional deficits in gene regulatory activity of the mutant ERα proteins. ERα-coregulator peptide binding in vitro and RIME (rapid immunoprecipitation mass spectrometry of endogenous) analysis in cells showed that the degree of functional impairment paralleled changes in receptor-coregulator binding interactions. These findings uncover coupling between ligand binding and coregulator recruitment that affects the potency rather than the efficacy of the receptor response without substantially altering ligand binding affinity. This highlights a molecular mechanism for estrogen insensitivity syndrome involving mutations that perturb a bidirectional allosteric coupling between ligand binding and coregulator binding that determines receptor transcriptional output.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA.
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - René Houtman
- Precision Medicine Lab, Kloosterstraat 9, 5349 AB, Oss, Netherlands
| | - Kathryn E Carlson
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Teresa A Martin
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher G Mayne
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Diana Melchers
- Precision Medicine Lab, Kloosterstraat 9, 5349 AB, Oss, Netherlands
| | - Tanner B Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - J Tyler Ramsey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - John A Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA.
| |
Collapse
|
36
|
Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells 2020; 38:822-833. [PMID: 32232889 DOI: 10.1002/stem.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022]
Abstract
Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
37
|
Abstract
Retinoic acid receptors were discovered during early studies of the actions and mechanisms of essential vitamins. Vitamin A is metabolized in the body to retinoic acid (RA) which is a key compound in the control of many developmental processes in chordates. These functions are mediated by a subfamily of nuclear receptors, divided into two classes, the retinoic acid receptors (RAR) and the retinoid X receptors (RXR). Each class is encoded by three closely related genes that are located on different chromosomes. The three proteins in each class are designated α, β and γ, respectively. A wealth of structural studies have shown that they all share the same architecture including a DNA-binding domain connected by a flexible linker to the ligand and co-activator binding domain. Retinoic acid incorporation into the ligand-binding domain leads to a conformational change enabling the formation of RAR homodimers or RAR/RXR heterodimers that in turn bind specifically to target DNA sequences. The consensus sequences located on the promotors of regulated genes are known as retinoic acid response elements (RARE). The activated RAR/RXR homodimers recruit co-activators with histone acetylase activity leading to an opening of the chromatin structure and enabling downstream transcription of regulated genes. These canonical pathways describe the control mechanism for the majority of developmental processes mediated by retinoic acid and its derivatives.
Collapse
Affiliation(s)
- Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom; Department of Bioscience, Durham University, Durham, United Kingdom; Biophysical Sciences Institute, Durham University, Durham, United Kingdom.
| | | |
Collapse
|
38
|
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers (Basel) 2020; 12:cancers12030624. [PMID: 32182684 PMCID: PMC7139833 DOI: 10.3390/cancers12030624] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although acute promyelocytic leukemia (APL) is one of the most characterized forms of acute myeloid leukemia (AML), the molecular mechanisms involved in the development and progression of this disease are still a matter of study. APL is defined by the PML-RARA rearrangement as a consequence of the translocation t(15;17)(q24;q21). However, this abnormality alone is not able to trigger the whole leukemic phenotype and secondary cooperating events might contribute to APL pathogenesis. Additional somatic mutations are known to occur recurrently in several genes, such as FLT3, WT1, NRAS and KRAS, whereas mutations in other common AML genes are rarely detected, resulting in a different molecular profile compared to other AML subtypes. How this mutational spectrum, including point mutations in the PML-RARA fusion gene, could contribute to the 10%–15% of relapsed or resistant APL patients is still unknown. Moreover, due to the uncertain impact of additional mutations on prognosis, the identification of the APL-specific genetic lesion is still the only method recommended in the routine evaluation/screening at diagnosis and for minimal residual disease (MRD) assessment. However, the gene expression profile of genes, such as ID1, BAALC, ERG, and KMT2E, once combined with the molecular events, might improve future prognostic models, allowing us to predict clinical outcomes and to categorize APL patients in different risk subsets, as recently reported. In this review, we will focus on the molecular characterization of APL patients at diagnosis, relapse and resistance, in both children and adults. We will also describe different standardized molecular approaches to study MRD, including those recently developed. Finally, we will discuss how novel molecular findings can improve the management of this disease.
Collapse
Affiliation(s)
- Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Mariam Ibañez
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Claudia Sargas
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Miguel Ángel Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
39
|
le Maire A, Germain P, Bourguet W. Protein-protein interactions in the regulation of RAR–RXR heterodimers transcriptional activity. Methods Enzymol 2020; 637:175-207. [DOI: 10.1016/bs.mie.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
42
|
Liu YC, Yeh CT, Lin KH. Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int J Mol Sci 2019; 20:ijms20204986. [PMID: 31600974 PMCID: PMC6834155 DOI: 10.3390/ijms20204986] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
Several physiological processes, including cellular growth, embryonic development, differentiation, metabolism and proliferation, are modulated by genomic and nongenomic actions of thyroid hormones (TH). Several intracellular and extracellular candidate proteins are regulated by THs. 3,3,5-Triiodo-L-thyronine (T3) can interact with nuclear thyroid hormone receptors (TR) to modulate transcriptional activities via thyroid hormone response elements (TRE) in the regulatory regions of target genes or bind receptor molecules showing no structural homology to TRs, such as the cell surface receptor site on integrin αvβ3. Additionally, L-thyroxine (T4) binding to integrin αvβ3 is reported to induce gene expression through initiating non-genomic actions, further influencing angiogenesis and cell proliferation. Notably, thyroid hormones not only regulate the physiological processes of normal cells but also stimulate cancer cell proliferation via dysregulation of molecular and signaling pathways. Clinical hypothyroidism is associated with delayed cancer growth. Conversely, hyperthyroidism is correlated with cancer prevalence in various tumor types, including breast, thyroid, lung, brain, liver and colorectal cancer. In specific types of cancer, both nuclear thyroid hormone receptor isoforms and those on the extracellular domain of integrin αvβ3 are high risk factors and considered potential therapeutic targets. In addition, thyroid hormone analogs showing substantial thyromimetic activity, including triiodothyroacetic acid (Triac), an acetic acid metabolite of T3, and tetraiodothyroacetic acid (Tetrac), a derivative of T4, have been shown to reduce risk of cancer progression, enhance therapeutic effects and suppress cancer recurrence. Here, we have reviewed recent studies focusing on the roles of THs and TRs in five cancer types and further discussed the potential therapeutic applications and underlying molecular mechanisms of THs.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
43
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P. Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure 2019; 27:1270-1285.e6. [DOI: 10.1016/j.str.2019.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
45
|
Wang F, Wang H, Wu Y, Wang L, Zhang L, Ye X, Peng D, Chen W. Activation of Pregnane X Receptor-Cytochrome P450s Axis: A Possible Reason for the Enhanced Accelerated Blood Clearance Phenomenon of PEGylated Liposomes In Vivo. Drug Metab Dispos 2019; 47:785-793. [PMID: 31118196 DOI: 10.1124/dmd.119.086769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, we reported that repeated injection of PEGylated liposomes (PEG-L) at certain intervals to the same rat lead to the disappearance of their long-circulation properties, referred to as the "accelerated blood clearance (ABC) phenomenon". Evidence from our recent studies suggested that cytochrome P450s (P450s) contribute to induction of the ABC phenomenon, a possibility that had been previously ignored. However, few details are known about the mechanism for induction of P450s. The present study was undertaken to investigate the roles in the ABC phenomenon of pregnane X receptor (PXR) and constitutive androstane receptor (CAR), the major upstream transcriptional regulators of the P450 genes, including CYP3A1, CYP2C6, and CYP1A2. The results demonstrated that expression of rat PXR and CAR was significantly increased in the ABC phenomenon and was accompanied by elevated CYP3A1, CYP2C6, and CYP1A2 levels. Further findings revealed that PXR but not CAR protein was substantially upregulated in the hepatocyte nucleus, together with marked nuclear colocalization of the PXR-retinoid X receptor alpha (RXRα) transcriptionally active heterodimer, indicating that nuclear translocation of PXR was induced in the ABC phenomenon, whereas nuclear translocation of CAR was not observed. Notably, pretreatment with the specific PXR inducer dexamethasone significantly induced accelerated systemic clearance of the subsequent injection of PEG-L, associating with increased nuclear colocalization of PXR-RXRα These results revealed that the induction of P450s in the ABC phenomenon may be attributable largely to the activation of PXR induced by sequential injections of PEG-L, thus confirming the crucial involvement of the PXR-P450s axis in promoting the ABC phenomenon. SIGNIFICANCE STATEMENT: The results of this study revealed that the induction of P450s in the ABC phenomenon may be largely attributable to the activation of PXR induced by sequential injections of PEG-L, thus confirming the crucial involvement of the PXR-P450s axis in promoting the ABC phenomenon. The data may help to extend our insights into 1) the role of P450s, which are regulated by the liver-enriched nuclear receptor PXR, in the ABC phenomenon, and 2) the therapeutic potential of targeting the PXR-P450 axis for reducing the magnitude of the ABC phenomenon in clinical practice.
Collapse
Affiliation(s)
- Fengling Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Huihui Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Yifan Wu
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Lei Wang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Ling Zhang
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Xi Ye
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Daiyin Peng
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| | - Weidong Chen
- Institute of Drug Metabolism (F.W., H.W., Y.W., L.W., L.Z., D.P., W.C.) and Institute of Pharmaceutics (W.C.), School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui, China (F.W., X.Y.); Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China (L.W., L.Z., D.P., W.C.); and Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China (D.P., W.C.)
| |
Collapse
|
46
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
47
|
Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). Biol Res 2019; 52:20. [PMID: 30954076 PMCID: PMC6451785 DOI: 10.1186/s40659-019-0227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone acetylation is an important epigenetic modification that regulates gene activity in response to stress. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The imperative roles of HDACs in gene transcription, transcriptional regulation, growth and responses to stressful environment have been widely investigated in Arabidopsis. However, data regarding HDACs in kenaf crop has not been disclosed yet. RESULTS In this study, six HDACs genes (HcHDA2, HcHDA6, HcHDA8, HcHDA9, HcHDA19, and HcSRT2) were isolated and characterized. Phylogenetic tree revealed that these HcHDACs shared high degree of sequence homology with those of Gossypium arboreum. Subcellular localization analysis showed that GFP-tagged HcHDA2 and HcHDA8 were predominantly localized in the nucleus, HcHDA6 and HcHDA19 in nucleus and cytosol. The HcHDA9 was found in both nucleus and plasma membranes. Real-time quantitative PCR showed that the six HcHDACs genes were expressed with distinct expression patterns across plant tissues. Furthermore, we determined differential accumulation of HcHDACs transcripts under salt and drought treatments, indicating that these enzymes may participate in the biological process under stress in kenaf. Finally, we showed that the levels of histone H3 and H4 acetylation were modulated by salt and drought stress in kenaf. CONCLUSIONS We have isolated and characterized six HDACs genes from kenaf. These data showed that HDACs are imperative players for growth and development as well abiotic stress responses in kenaf.
Collapse
|
48
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Ventura C, Zappia CD, Lasagna M, Pavicic W, Richard S, Bolzan AD, Monczor F, Núñez M, Cocca C. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J Steroid Biochem Mol Biol 2019; 186:96-104. [PMID: 30290214 DOI: 10.1016/j.jsbmb.2018.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 11/21/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide used for agricultural pest control all over the world. We have previously demonstrated that environmental concentrations of this pesticide alter mammary gland histological structure and hormonal balance in rats chronically exposed. In this work, we analyzed the effects of CPF on mammary tumors development. Our results demonstrated that CPF increases tumor incidence and reduces latency of NMU-induced mammary tumors. Although no changes were observed in tumor growth rate, we found a reduced steroid hormone receptor expression in the tumors of animals exposed to the pesticide. Moreover, we analyzed the role of epigenetic mechanisms in CPF effects. Our results indicated that CPF alters HDAC1 mRNA expression in mammary gland, although no changes were observed in DNA methylation. In summary, we demonstrate that the exposure to CPF promotes mammary tumors development with a reduced steroid receptors expression. It has also been found that CPF affects HDAC1 mRNA levels in mammary tissue pointing that CPF may act as a breast cancer risk factor.
Collapse
Affiliation(s)
- C Ventura
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - C D Zappia
- Laboratorio de Farmacología de Receptores, ININFA, UBA-CONICET, Argentina
| | - M Lasagna
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - W Pavicic
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - S Richard
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - A D Bolzan
- Laboratorio de Citogenética y Mutagénesis, IMBICE (CONICET La Plata-UNLP-CICPBA), Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo. La Plata, Buenos Aires, Argentina
| | - F Monczor
- Laboratorio de Farmacología de Receptores, ININFA, UBA-CONICET, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - C Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", IQUIFIB UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
50
|
Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proc Natl Acad Sci U S A 2018; 115:10381-10386. [PMID: 30254164 PMCID: PMC6187131 DOI: 10.1073/pnas.1809480115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid (RA) is an important transcriptional regulator during both vertebrate and invertebrate body pattern formation. The Homeobox (Hox) gene family is activated by a gradient of RA formed along the length of the embryo at specific time points during fetal development. Generation of a genetically modified mouse harboring mutations in the SMRT repressor demonstrated that SMRT-dependent repression of retinoic acid receptor (RAR) is critical to establish and maintain the somitic Hox code and segmental identity during fetal development via epigenetic marking of target loci. Nuclear hormone receptors (NRs), such as retinoic acid receptors (RARs), play critical roles in vertebrate development and homeostasis by regulating target gene transcription. Their activity is controlled by ligand-dependent release of corepressors and subsequent recruitment of coactivators, but how these individual receptor modes contribute to development are unknown. Here, we show that mice carrying targeted knockin mutations in the corepressor Silencing Mediator of Retinoid and Thyroid hormone receptor (SMRT) that specifically disable SMRT function in NR signaling (SMRTmRID), display defects in cranial neural crest cell-derived structures and posterior homeotic transformations of axial vertebrae. SMRTmRID embryos show enhanced transcription of RAR targets including Hox loci, resulting in respecification of vertebral identities. Up-regulated histone acetylation and decreased H3K27 methylation are evident in the Hox loci whose somitic expression boundaries are rostrally shifted. Furthermore, enhanced recruitment of super elongation complex is evident in rapidly induced non-Pol II-paused targets in SMRTmRID embryonic stem cells. These results demonstrate that SMRT-dependent repression of RAR is critical to establish and maintain the somitic Hox code and segmental identity during fetal development via epigenetic marking of target loci.
Collapse
|