1
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2025; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Hausott B, Pircher L, Kind M, Park JW, Claus P, Obexer P, Klimaschewski L. Sprouty2 Regulates Endocytosis and Degradation of Fibroblast Growth Factor Receptor 1 in Glioblastoma Cells. Cells 2024; 13:1967. [PMID: 39682716 PMCID: PMC11639775 DOI: 10.3390/cells13231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels. SPRY2 overexpression (SPRY2-OE) inhibited clathrin- and caveolae-mediated endocytosis of FGFR1, reduced the number of caveolin-1 vesicles and the uptake of transferrin. Furthermore, FGFR1 protein was decreased by SPRY2-OE, whereas EGFR protein was increased. SPRY2-OE enhanced FGFR1 degradation by increased c-casitas b-lineage lymphoma (c-CBL)-mediated ubiquitination, but it diminished binding of phospholipase Cγ1 (PLCγ1) to FGFR1. Consequently, SPRY2-OE inhibited FGF2-induced activation of PLCγ1, whereas it enhanced EGF-induced PLCγ1 activation. Despite the reduction of FGFR1 protein and the inhibition of FGF signaling, SPRY2-OE increased cell viability, and knockdown of SPRY2 enhanced the sensitivity to cisplatin. These results demonstrate that the inhibitory effect of SPRY2-OE on FGF signaling is at least in part due to the reduction in FGFR1 levels and the decreased binding of PLCγ1 to the receptor.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Lena Pircher
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Michaela Kind
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Jong-Whi Park
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| | - Peter Claus
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Petra Obexer
- Department of Pediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.P.); (M.K.); (J.-W.P.); (L.K.)
| |
Collapse
|
3
|
Cui YZ, Xu F, Zhou Y, Wang ZY, Yang XY, Fu NC, Chen XB, Zheng YX, Chen XY, Ye LR, Li YY, Man XY. SPRY1 Deficiency in Keratinocytes Induces Follicular Melanocyte Stem Cell Migration to the Epidermis through p53/Stem Cell Factor/C-KIT Signaling. J Invest Dermatol 2024; 144:2255-2266.e4. [PMID: 38462125 DOI: 10.1016/j.jid.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes (KCs). KCs and melanocytes respond to UV exposure by eliciting a tanning response. However, how KCs and melanocytes interact in the absence of UV exposure is unknown. In this study, we demonstrate that after SPRY1 knockout in epidermal KCs, melanocyte stem cells in the hair follicle exit the niche without depleting the pool of these cells. We also found that melanocyte stem cells migrate to the epidermis in a p53/stem cell factor/C-KIT-dependent manner induced by a tanning-like response resulting from SPRY1 loss in epidermal KCs. Once there, these cells differentiate into functional melanocytes. These findings provide an example in which the migration of melanocyte stem cells to the epidermis is due to loss of SPRY1 in epidermal KCs and show the potential for developing therapies for skin pigmentation disorders by manipulating melanocyte stem cells.
Collapse
Affiliation(s)
- Ying-Zhe Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing-Yu Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ni-Chang Fu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Xin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Ran Ye
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Pan H, Xu R, Zhang Y. Role of SPRY4 in health and disease. Front Oncol 2024; 14:1376873. [PMID: 38686189 PMCID: PMC11056578 DOI: 10.3389/fonc.2024.1376873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
SPRY4 is a protein encoding gene that belongs to the Spry family. It inhibits the mitogen-activated protein kinase (MAPK) signaling pathway and plays a role in various biological functions under normal and pathological conditions. The SPRY4 protein has a specific structure and interacts with other molecules to regulate cellular behavior. It serves as a negative feedback inhibitor of the receptor protein tyrosine kinases (RTK) signaling pathway and interferes with cell proliferation and migration. SPRY4 also influences inflammation, oxidative stress, and cell apoptosis. In different types of tumors, SPRY4 can act as a tumor suppressor or an oncogene. Its dysregulation is associated with the development and progression of various cancers, including colorectal cancer, glioblastoma, hepatocellular carcinoma, perihilar cholangiocarcinoma, gastric cancer, breast cancer, and lung cancer. SPRY4 is also involved in organ development and is associated with ischemic diseases. Further research is ongoing to understand the expression and function of SPRY4 in specific tumor microenvironments and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wazin F, Lovicu FJ. Conditional Ablation of Spred1 and Spred2 in the Eye Lens Negatively Impacts Its Development and Growth. Cells 2024; 13:290. [PMID: 38391903 PMCID: PMC10886530 DOI: 10.3390/cells13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The development and growth of the eye depends on normal lens morphogenesis and its growth. This growth, in turn, is dependent on coordinated proliferation of the lens epithelial cells and their subsequent differentiation into fiber cells. These cellular processes are tightly regulated to maintain the precise cellular structure and size of the lens, critical for its transparency and refractive properties. Growth factor-mediated MAPK signaling driven by ERK1/2 has been reported as essential for regulating cellular processes of the lens, with ERK1/2 signaling tightly regulated by endogenous antagonists, including members of the Sprouty and related Spred families. Our previous studies have demonstrated the importance of both these inhibitory molecules in lens and eye development. In this study, we build on these findings to highlight the importance of Spreds in regulating early lens morphogenesis by modulating ERK1/2-mediated lens epithelial cell proliferation and fiber differentiation. Conditional loss of both Spred1 and Spred2 in early lens morphogenesis results in elevated ERK1/2 phosphorylation, hyperproliferation of lens epithelia, and an associated increase in the rate of fiber differentiation. This results in transient microphakia and microphthalmia, which disappears, owing potentially to compensatory Sprouty expression. Our data support an important temporal role for Spreds in the early stages of lens morphogenesis and highlight how negative regulation of ERK1/2 signaling is critical for maintaining lens proliferation and fiber differentiation in situ throughout life.
Collapse
Affiliation(s)
- Fatima Wazin
- Molecular and Cellular Biomedicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Frank J. Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
7
|
Qunaj L, May MS, Neugut AI, Herzberg BO. Prognostic and therapeutic impact of the KRAS G12C mutation in colorectal cancer. Front Oncol 2023; 13:1252516. [PMID: 37790760 PMCID: PMC10543081 DOI: 10.3389/fonc.2023.1252516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
KRAS G12C mutations are critical in the pathogenesis of multiple cancer types, including non-small cell lung (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and colorectal (CRC) cancers. As such, they have increasingly become a target of novel therapies in the management of these malignancies. However, the therapeutic success of KRAS G12C inhibitors to date has been far more limited in CRC and PDAC than NSCLC. In this review, we briefly summarize the biochemistry of KRAS targeting and treatment resistance, highlight differences in the epidemiology of various G12C-mutated cancers, and provide an overview of the published data on KRAS G12C inhibitors for various indications. We conclude with a summary of ongoing clinical trials in G12C-mutant CRC and a discussion of future directions in the management of this disease. KRAS G12C mutation, targeted therapies, colorectal cancer, non-small cell lung cancer, pancreatic cancer, drug development.
Collapse
Affiliation(s)
- Lindor Qunaj
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
| | - Michael S. May
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alfred I. Neugut
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Benjamin O. Herzberg
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Li S, Zhao S, Liang N, Zhang S, Zhang L, Zhou L, Liu A, Cao X, Tian J, Yu Y, Fan Z, Xiao K, Wang M, Zhao H, Bai R, Sun J. SPRY4 inhibits and sensitizes the primary KIT mutants in gastrointestinal stromal tumors (GISTs) to imatinib. Gastric Cancer 2023; 26:677-690. [PMID: 37222910 DOI: 10.1007/s10120-023-01402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND KIT is frequently mutated in gastrointestinal stromal tumors (GISTs), and the treatment of GISTs largely relies on targeting KIT currently. In this study, we aimed to investigate the role of sprouty RTK signaling antagonist 4 (SPRY4) in GISTs and related mechanisms. METHODS Ba/F3 cells and GIST-T1 cell were used as cell models, and mice carrying germline KIT/V558A mutation were used as animal model. Gene expression was examined by qRT-PCR and western blot. Protein association was examined by immunoprecipitation. RESULTS Our study revealed that KIT increased the expression of SPRY4 in GISTs. SPRY4 was found to bind to both wild-type KIT and primary KIT mutants in GISTs, and inhibited KIT expression and activation, leading to decreased cell survival and proliferation mediated by KIT. We also observed that inhibition of SPRY4 expression in KITV558A/WT mice led to increased tumorigenesis of GISTs in vivo. Moreover, our results demonstrated that SPRY4 enhanced the inhibitory effect of imatinib on the activation of primary KIT mutants, as well as on cell proliferation and survival mediated by the primary KIT mutants. However, in contrast to this, SPRY4 did not affect the expression and activation of drug-resistant secondary KIT mutants, nor did it affect the sensitivity of secondary KIT mutants to imatinib. These findings suggested that secondary KIT mutants regulate a different downstream signaling cascade than primary KIT mutants. CONCLUSIONS Our results suggested that SPRY4 acts as negative feedback of primary KIT mutants in GISTs by inhibiting KIT expression and activation. It can increase the sensitivity of primary KIT mutants to imatinib. In contrast, secondary KIT mutants are resistant to the inhibition of SPRY4.
Collapse
Affiliation(s)
- Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Department of Pediatrics, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Nianhai Liang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaoyang Fan
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
9
|
Wang J, Liu Y, Zhang Y, Li X, Fang M, Qian D. Targeting exosomes enveloped EBV-miR-BART1-5p-antagomiRs for NPC therapy through both anti-vasculogenic mimicry and anti-angiogenesis. Cancer Med 2023. [PMID: 37097161 DOI: 10.1002/cam4.5941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer with high incidence in China. The molecular mechanisms of vasculogenic mimicry (VM) and angiogenesis are not fully elucidated in NPC. More specially, it has seldomly been reported that Epstein-Barr virus-encoded miRNA can regulate VM and angiogenesis in NPC. The aim of this study was to investigate the function and molecular mechanism of a targeting exosome system (iRGD-exo-antagomiR) against VM and angiogenesis in NPC, and to provide new approaches for improving the comprehensive treatment of NPC. METHODS Exosomes were isolated by differential ultracentrifugation. Dynamic light scattering, transmission electron microscopy and western blotting were performed to characterize the exosomes. The 3D-Culture assay, tube formation assay, chicken chorioallantoic membrane assay, Matrigel plug assay, mouse xenograft tumor modeling and immunohistochemical staining were applied to evaluate the anti-VM and anti-angiogenic effects of the targeting exosome system in vitro and in vivo. Western blot was performed to detect the changes of downstream regulated networks following interference and recovery of the target gene. RESULTS In vitro or in vivo treatment with iRGD-tagged exosome containing antagomiR-BART1-5p specifically suppressed VM and angiogenesis in NPC. EBV-miR-BART1-5p promoted VM and angiogenesis in vitro and in vivo by regulating VEGF, PI3K, Akt, mTOR and HIF1-α in a Spry2-dependent manner. CONCLUSIONS Our findings demonstrated that targeting exosomes enveloped EBV-miR-BART1-5p-antagomiRs in a Spry2-dependent manner for NPC therapy through both anti-VM and anti-angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Liu
- Health Management center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Fang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Buffered EGFR signaling regulated by spitz-to-argos expression ratio is a critical factor for patterning the Drosophila eye. PLoS Genet 2023; 19:e1010622. [PMID: 36730442 PMCID: PMC9928117 DOI: 10.1371/journal.pgen.1010622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) signaling pathway plays a critical role in regulating tissue patterning. Drosophila EGFR signaling achieves specificity through multiple ligands and feedback loops to finetune signaling outcomes spatiotemporally. The principal Drosophila EGF ligand, cleaved Spitz, and the negative feedback regulator, Argos are diffusible and can act both in a cell autonomous and non-autonomous manner. The expression dose of Spitz and Argos early in photoreceptor cell fate determination has been shown to be critical in patterning the Drosophila eye, but the exact identity of the cells expressing these genes in the larval eye disc has been elusive. Using single molecule RNA Fluorescence in situ Hybridization (smFISH), we reveal an intriguing differential expression of spitz and argos mRNA in the Drosophila third instar eye imaginal disc indicative of directional non-autonomous EGFR signaling. By genetically tuning EGFR signaling, we show that rather than absolute levels of expression, the ratio of expression of spitz-to-argos to be a critical determinant of the final adult eye phenotype. Proximate effects on EGFR signaling in terms of cell cycle and differentiation markers are affected differently in the different perturbations. Proper ommatidial patterning is robust to thresholds around a tightly maintained wildtype spitz-to-argos ratio, and breaks down beyond. This provides a powerful instance of developmental buffering against gene expression fluctuations.
Collapse
|
11
|
Li N, Chen Y, Wang H, Li J, Zhao RC. SPRY4 promotes adipogenic differentiation of human mesenchymal stem cells through the MEK-ERK1/2 signaling pathway. Adipocyte 2022; 11:588-600. [PMID: 36082406 PMCID: PMC9481072 DOI: 10.1080/21623945.2022.2123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity is a chronic metabolic disorder characterized by the accumulation of excess fat in the body. Preventing and controlling obesity by inhibiting the adipogenic differentiation of mesenchymal stem cells (MSCs) and thereby avoiding the increase of white adipose tissue is safe and effective. Recent studies have demonstrated that Sprouty proteins (SPRYs) are involved in cell differentiation and related diseases. However, the role and mechanism of SPRY4 in MSC adipogenic differentiation remain to be explored. Here, we found that SPRY4 positively correlates with the adipogenic differentiation of human adipose-derived MSCs (hAMSCs). Via gain- and loss-of-function experiments, we demonstrated that SPRY4 promotes hAMSC adipogenesis both in vitro and in vivo. Mechanistically, SPRY4 functioned by activating the MEK-ERK1/2 pathway. Our findings provide new insights into a critical role for SPRY4 as a regulator of adipogenic differentiation, which may illuminate the underlying mechanisms of obesity and suggest the potential of SPRY4 as a novel treatment option.
Collapse
Affiliation(s)
- Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yunfei Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,CONTACT Jing Li Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), P.R. China,Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, P.R. China,Robert Chunhua Zhao Department of Cell Biology, School of Life Sciences Shanghai University, P.R. ChinaShanghai
| |
Collapse
|
12
|
Raman R, Villefranc JA, Ullmann TM, Thiesmeyer J, Anelli V, Yao J, Hurley JR, Pauli C, Bareja R, Wha Eng K, Dorsaint P, Wilkes DC, Beg S, Kudman S, Shaw R, Churchill M, Ahmed A, Keefer L, Misner I, Nichol D, Gumpeni N, Scognamiglio T, Rubin MA, Grandori C, Solomon JP, Song W, Mosquera JM, Dephoure N, Sboner A, Elemento O, Houvras Y. Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer. J Exp Med 2022; 219:e20210390. [PMID: 35510953 PMCID: PMC9082625 DOI: 10.1084/jem.20210390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.
Collapse
Affiliation(s)
- Renuka Raman
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | | | | | | | - Viviana Anelli
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Jun Yao
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - James R. Hurley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Kenneth Wha Eng
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Princesca Dorsaint
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - David C. Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA
| | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | | | - Ian Misner
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Donna Nichol
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Naveen Gumpeni
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Rubin
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | | | - James Patrick Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wei Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Olivier Elemento
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medical College, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
13
|
Greenspan LJ, de Cuevas M, Le KH, Viveiros JM, Matunis EL. Activation of the EGFR/MAPK pathway drives transdifferentiation of quiescent niche cells to stem cells in the Drosophila testis niche. eLife 2022; 11:e70810. [PMID: 35468055 PMCID: PMC9038189 DOI: 10.7554/elife.70810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
Adult stem cells are maintained in niches, specialized microenvironments that regulate their self-renewal and differentiation. In the adult Drosophila testis stem cell niche, somatic hub cells produce signals that regulate adjacent germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Hub cells are normally quiescent, but after complete genetic ablation of CySCs, they can proliferate and transdifferentiate into new CySCs. Here we find that Epidermal growth factor receptor (EGFR) signaling is upregulated in hub cells after CySC ablation and that the ability of testes to recover from ablation is inhibited by reduced EGFR signaling. In addition, activation of the EGFR pathway in hub cells is sufficient to induce their proliferation and transdifferentiation into CySCs. We propose that EGFR signaling, which is normally required in adult cyst cells, is actively inhibited in adult hub cells to maintain their fate but is repurposed to drive stem cell regeneration after CySC ablation.
Collapse
Affiliation(s)
- Leah J Greenspan
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Margaret de Cuevas
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy H Le
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Graduate Program in Biophysics, Stanford UniversityStanfordUnited States
| | - Jennifer M Viveiros
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
14
|
Li-Villarreal N, Wong RLY, Garcia MD, Udan RS, Poché RA, Rasmussen TL, Rhyner AM, Wythe JD, Dickinson ME. FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development 2022; 149:274922. [PMID: 35297995 PMCID: PMC8995087 DOI: 10.1242/dev.200131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebecca Lee Yean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tara L. Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander M. Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joshua D. Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
15
|
Tang R, Langdon WY, Zhang J. Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne) 2022; 13:971162. [PMID: 35966060 PMCID: PMC9365936 DOI: 10.3389/fendo.2022.971162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that participate in a broad spectrum of cellular processes including cellular growth, motility, differentiation, proliferation, and metabolism. Hence, elucidating the regulatory mechanisms of RTKs involved in an assortment of diseases such as cancers attracts increasing interest from researchers. Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in mammals) have emerged as negative regulators of activated RTKs. Upon activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase binding (TKB) domain and targets them for ubiquitination, thus facilitating their degradation and negative regulation of RTK signaling. RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF), fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (HGFR) undergo ubiquitination upon interaction with Cbl family members. In this review, we summarize the current knowledge related to the negative regulation of RTKs by Cbl family proteins.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wallace Y. Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Jian Zhang,
| |
Collapse
|
16
|
Soler Beatty J, Molnar C, Luque CM, de Celis JF, Martín-Bermudo MD. EGFRAP encodes a new negative regulator of the EGFR acting in both normal and oncogenic EGFR/Ras-driven tissue morphogenesis. PLoS Genet 2021; 17:e1009738. [PMID: 34411095 PMCID: PMC8407591 DOI: 10.1371/journal.pgen.1009738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/31/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth. In this work, we have identified a novel EGFR inhibitor, which we have named EGFRAP, for EGFR adaptor protein. Elimination of EGFRAP potentiates activated Ras-induced overgrowth in the Drosophila wing imaginal disc. We show that EGFRAP interacts physically with the phosphorylated form of EGFR via its SH2 domain. EGFRAP is expressed at high levels in regions of maximal EGFR/Ras pathway activity, such as at the presumptive wing margin. In addition, EGFRAP expression is up-regulated in conditions of oncogenic EGFR/Ras activation. Normal and oncogenic EGFR/Ras-mediated upregulation of EGRAP levels depend on the Notch pathway. We also find that elimination of EGFRAP does not affect overall organogenesis or viability. However, simultaneous downregulation of EGFRAP and its ortholog PVRAP results in defects associated with increased EGFR function. Based on these results, we propose that EGFRAP is a new negative regulator of the EGFR/Ras pathway, which, while being required redundantly for normal morphogenesis, behaves as an important modulator of EGFR/Ras-driven tissue hyperplasia. We suggest that the ability of EGFRAP to functionally inhibit the EGFR pathway in oncogenic cells results from the activation of a feedback loop leading to increase EGFRAP expression. This could act as a surveillance mechanism to prevent excessive EGFR activity and uncontrolled cell growth. Activation of Ras signalling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, the discovery of genes cooperating with Ras in cancer is imperative to understand tumoral growth driven by Ras activating mutations. A key output of over-activated EGFR/Ras signalling is the induction of a complex and dynamic set of transcriptional networks leading to changes in gene expression. As a result of these changes, the normal function of some genes can become adjusted in a tumorigenic context. In this work, using the Drosophila wing imaginal disc as model system, we have identified a new EGFR inhibitor, EGFRAP, which function is redundant for proper morphogenesis, yet becomes an important limiter of the overgrowth driven by oncogenic EGFR/Ras activity. We show that the specificity of EGFRAP in cells with high levels of EGFR activity arises from activation of a negative feedback loop resulting in increased EGFRAP levels. This could act to prevent excessive EGFR activity and uncontrolled cell growth. We believe the identification of other factors behaving like EGFRAP, will help in our fight against cancer, as it might lead to the identification of new therapeutic drugs affecting cancer but not normal cells, a top priority in cancer research.
Collapse
Affiliation(s)
- Jennifer Soler Beatty
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Sevilla, Spain
| | - Cristina Molnar
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - Carlos M. Luque
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), Univ. Autónoma de Madrid, Madrid, Spain
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Sevilla, Spain
- * E-mail:
| |
Collapse
|
17
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
18
|
Brock EJ, Jackson RM, Boerner JL, Li Q, Tennis MA, Sloane BF, Mattingly RR. Sprouty4 negatively regulates ERK/MAPK signaling and the transition from in situ to invasive breast ductal carcinoma. PLoS One 2021; 16:e0252314. [PMID: 34048471 PMCID: PMC8162601 DOI: 10.1371/journal.pone.0252314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Breast ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC). It is still unclear which DCIS will become invasive and which will remain indolent. Patients often receive surgery and radiotherapy, but this early intervention has not produced substantial decreases in late-stage disease. Sprouty proteins are important regulators of ERK/MAPK signaling and have been studied in various cancers. We hypothesized that Sprouty4 is an endogenous inhibitor of ERK/MAPK signaling and that its loss/reduced expression is a mechanism by which DCIS lesions progress toward IDC, including triple-negative disease. Using immunohistochemistry, we found reduced Sprouty4 expression in IDC patient samples compared to DCIS, and that ERK/MAPK phosphorylation had an inverse relationship to Sprouty4 expression. These observations were reproduced using a 3D culture model of disease progression. Knockdown of Sprouty4 in MCF10.DCIS cells increased ERK/MAPK phosphorylation as well as their invasive capability, while overexpression of Sprouty4 in MCF10.CA1d IDC cells reduced ERK/MAPK phosphorylation, invasion, and the aggressive phenotype exhibited by these cells. Immunofluorescence experiments revealed reorganization of the actin cytoskeleton and relocation of E-cadherin back to the cell surface, consistent with the restoration of adherens junctions. To determine whether these effects were due to changes in ERK/MAPK signaling, MEK1/2 was pharmacologically inhibited in IDC cells. Nanomolar concentrations of MEK162/binimetinib restored an epithelial-like phenotype and reduced pericellular proteolysis, similar to Sprouty4 overexpression. From these data we conclude that Sprouty4 acts to control ERK/MAPK signaling in DCIS, thus limiting the progression of these premalignant breast lesions.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
Collapse
Affiliation(s)
- Ethan J. Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Ryan M. Jackson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Julie L. Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Quanwen Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Meredith A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United states of America
| | - Bonnie F. Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| | - Raymond R. Mattingly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United states of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United states of America
| |
Collapse
|
19
|
Andrikou C, Hejnol A. FGF signaling acts on different levels of mesoderm development within Spiralia. Development 2021; 148:264929. [PMID: 33999997 PMCID: PMC8180254 DOI: 10.1242/dev.196089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
Collapse
Affiliation(s)
- Carmen Andrikou
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
20
|
Cigliano A, Chen X, Calvisi DF. Current challenges to underpinning the genetic basis for cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:511-526. [PMID: 33888034 PMCID: PMC8173760 DOI: 10.1080/17474124.2021.1915128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
AREAS COVERED This review provides an overview regarding the current scenario and knowledge of the CCA genomic landscape and the potentially actionable molecular aberrations in each CCA subtype. EXPERT OPINION The establishment and advances of high-throughput methodologies applied to genetic and epigenetic profiling are changing many cancer types' therapeutic landscape , including CCA.The large body of data generated must be interpreted appropriately and eventually implemented in clinical practice. The following advancements toward precision medicine in CCA management will require designing better clinical trials with improved methods to stratify biliary tumor patients.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Genolet O, Monaco AA, Dunkel I, Boettcher M, Schulz EG. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 2021; 22:110. [PMID: 33863351 PMCID: PMC8051100 DOI: 10.1186/s13059-021-02321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna A Monaco
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Present address: BIMSB, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
22
|
Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Mol Biol Cell 2021; 32:974-983. [PMID: 33476180 PMCID: PMC8108529 DOI: 10.1091/mbc.e20-10-0625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Terminal regions of Drosophila embryos are patterned by signaling through ERK, which is genetically deregulated in multiple human diseases. Quantitative studies of terminal patterning have been recently used to investigate gain-of-function variants of human MEK1, encoding the MEK kinase that directly activates ERK by dual phosphorylation. Unexpectedly, several mutations reduced ERK activation by extracellular signals, possibly through a negative feedback triggered by signal-independent activity of the mutant variants. Here we present experimental evidence supporting this model. Using a MEK variant that combines a mutation within the negative regulatory region with alanine substitutions in the activation loop, we prove that pathogenic variants indeed acquire signal-independent kinase activity. We also demonstrate that signal-dependent activation of these variants is independent of kinase suppressor of Ras, a conserved adaptor that is indispensable for activation of normal MEK. Finally, we show that attenuation of ERK activation by extracellular signals stems from transcriptional induction of Mkp3, a dual specificity phosphatase that deactivates ERK by dephosphorylation. These findings in the Drosophila embryo highlight its power for investigating diverse effects of human disease mutations.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Liu Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Granton A Jindal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joshua L Wetzel
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Flatiron Institute, Simons Foundation, New York, NY 10010
| |
Collapse
|
23
|
Li D, Mao C, Zhou E, You J, Gao E, Han Z, Fan Y, He Q, Wang C. MicroRNA-21 Mediates a Positive Feedback on Angiotensin II-Induced Myofibroblast Transformation. J Inflamm Res 2020; 13:1007-1020. [PMID: 33273841 PMCID: PMC7708310 DOI: 10.2147/jir.s285714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Objective Post myocardial infarction (MI) fibrosis has been identified as an important factor in the progression of heart failure. Previous studies have revealed that microRNA-21 (miR-21) plays an important role in the pathogenesis of fibrosis. The purpose of this study was to explore the role of miR-21 in post-MI cardiac fibrosis. Material and Methods MI was established in wild-type (WT) and miR-21 knockout (KO) mice. Primary mice cardiac fibroblasts (CFs) were isolated from WT and miR-21 KO mice and were treated with angiotensin II (Ang II) or Sprouty1 (Spry1) siRNA. Histological analysis and echocardiography were used to determine the extent of fibrosis and cardiac function. Results Compared with WT mice, miR-21 KO mice displayed smaller fibrotic areas and decreased expression of fibrotic markers and inflammatory cytokines. In parallel, Ang II-induced myofibroblasts transformation was partially inhibited upon miR-21 KO in primary CFs. Mechanistically, we found that the expression of Spry1, a previously reported target of miR-21, was markedly increased in miR-21 KO mice post MI, further inhibiting ERK1/2 activation. In vitro studies showed that Ang II activated ERK1/2/TGF-β/Smad2/3 pathway. Phosphorylated Smad2/3 further enhanced the expression of α-SMA and FAP and may promote the maturation of miR-21, thereby downregulating Spry1. Additionally, these effects of miR-21 KO on fibrosis were reversed by siRNA-mediated knockdown of Spry1. Conclusion Our findings suggest that miR-21 promotes post-MI fibrosis by targeting Spry1. Furthermore, it mediates a positive feedback on Ang II, thereby inducing the ERK/TGF-β/Smad pathway. Therefore, targeting the miR-21–Spry1 axis may be a promising therapeutic option for ameliorating post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Dongjiu Li
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jiayin You
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
24
|
Abstract
The roles of SPRED proteins in signaling, development, and cancer are becoming increasingly recognized. SPRED proteins comprise an N-terminal EVH-1 domain, a central c-Kit-binding domain, and C-terminal SROUTY domain. They negatively regulate signaling from tyrosine kinases to the Ras-MAPK pathway. SPRED1 binds directly to both c-KIT and to the RasGAP, neurofibromin, whose function is completely dependent on this interaction. Loss-of-function mutations in SPRED1 occur in human cancers and cause the developmental disorder, Legius syndrome. Genetic ablation of SPRED genes in mice leads to behavioral problems, dwarfism, and multiple other phenotypes including increased risk of leukemia. In this review, we summarize and discuss biochemical, structural, and biological functions of these proteins including their roles in normal cell growth and differentiation and in human disease.
Collapse
Affiliation(s)
- Claire Lorenzo
- Helen Diller Family Comprehensive Cancer, University of California at San Francisco, San Francisco, California 94158, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
25
|
Yawut N, Kaewpiboon C, Budluang P, Cho IR, Kaowinn S, Koh SS, Chung YH. Overexpression of Cancer Upregulated Gene 2 (CUG2) Decreases Spry2 Through c-Cbl, Leading to Activation of EGFR and β-Catenin Signaling. Cancer Manag Res 2020; 12:10243-10250. [PMID: 33116878 PMCID: PMC7573319 DOI: 10.2147/cmar.s271109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. Because the increased activity and expression of epidermal growth factor receptor (EGFR) kinase have been reported in A549 cancer cells overexpressing CUG2 (A549-CUG2) compared with control cells (A549-Vec), the Sprouty2 (Spry2) protein has gained attention as the downstream molecule of EGFR signaling. Therefore, we aim to identify the role of Spry2 in CUG2-overexpressing lung cancer cells. Materials and Methods Spry2 expression levels were examined in A549-CUG2 and A549-Vec cells by Western blotting and qRT-PCR. Cell migration, invasion, and sphere formation were examined after Spry2 suppression and overexpression. EGFR-Stat1 and Akt-ERK protein phosphorylation levels were detected via immunoblotting. NEK2 kinase and β-catenin reporter assay were performed for downstream of Spry2 signaling. Results Although A549-CUG2 cells showed lower levels of the Spry2 protein than A549-Vec cells, no difference in levels of Spry2 transcript was observed between both cells via qRT-PCR. Furthermore, MG132 treatment enhanced the protein levels and ubiquitination of Spry2, suggesting that Spry2 protein expression can be regulated via the ubiquitin-proteasome pathway. The enforced expression of c-Cbl, known as the binding partner of Spry2, decreased the Spry2 protein levels, whereas its knockdown oppositely increased them. Epithelial-mesenchymal transition (EMT) and sphere formation were increased in A549-Vec cells during Spry2 siRNA treatment, confirming the role of Spry2 in CUG2-induced oncogenesis. Furthermore, EMT and sphere formation were determined by the Spry2 protein levels through the regulation of EGFR-Stat1 and β-catenin-NEK2-Yap1 signaling pathways. Conclusion CUG2 reduces Spry2 protein levels, the negative signaling molecule of cell proliferation, via c-Cbl, possibly activating the EGFR and β-catenin signaling pathways and, in turn, contributing to the induction of cancer stem cell-like phenotypes.
Collapse
Affiliation(s)
- Natpaphan Yawut
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thaksin University, Pattalung 93210, Thailand
| | - Phatcharaporn Budluang
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Il-Rae Cho
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut's Institute of Technology, Ladkrabang Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Sang Seok Koh
- Department of Biosciences, Dong-A University, Busan 49315, Republic of Korea
| | - Young-Hwa Chung
- BK21 Plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
26
|
Chen QY, Li YN, Wang XY, Zhang X, Hu Y, Li L, Suo DQ, Ni K, Li Z, Zhan JR, Zeng TT, Zhu YH, Li Y, Ma LJ, Guan XY. Tumor Fibroblast-Derived FGF2 Regulates Expression of SPRY1 in Esophageal Tumor-Infiltrating T Cells and Plays a Role in T-cell Exhaustion. Cancer Res 2020; 80:5583-5596. [PMID: 33093168 DOI: 10.1158/0008-5472.can-20-1542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.
Collapse
Affiliation(s)
- Qing-Yun Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi-Ni Li
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Xin-Yue Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Da-Qin Suo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ke Ni
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Jia-Rong Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Li-Jia Ma
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P.R. China.
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
27
|
Murcia L, Clemente-Ruiz M, Pierre-Elies P, Royou A, Milán M. Selective Killing of RAS-Malignant Tissues by Exploiting Oncogene-Induced DNA Damage. Cell Rep 2020; 28:119-131.e4. [PMID: 31269434 DOI: 10.1016/j.celrep.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Several oncogenes induce untimely entry into S phase and alter replication timing and progression, thereby generating replicative stress, a well-known source of genomic instability and a hallmark of cancer. Using an epithelial model in Drosophila, we show that the RAS oncogene, which triggers G1/S transition, induces DNA damage and, at the same time, silences the DNA damage response pathway. RAS compromises ATR-mediated phosphorylation of the histone variant H2Av and ATR-mediated cell-cycle arrest in G2 and blocks, through ERK, Dp53-dependent induction of cell death. We found that ERK is also activated in normal tissues by an exogenous source of damage and that this activation is necessary to dampen the pro-apoptotic role of Dp53. We exploit the pro-survival role of ERK activation upon endogenous and exogenous sources of DNA damage to present evidence that its genetic or chemical inhibition can be used as a therapeutic opportunity to selectively eliminate RAS-malignant tissues.
Collapse
Affiliation(s)
- Lada Murcia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | - Anne Royou
- Institut Européen de Chimie et Biologie, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
28
|
Wang J, Jiang Q, Faleti OD, Tsang CM, Zhao M, Wu G, Tsao SW, Fu M, Chen Y, Ding T, Chong T, Long Y, Yang X, Zhang Y, Cai Y, Li H, Peng M, Lyu X, Li X. Exosomal Delivery of AntagomiRs Targeting Viral and Cellular MicroRNAs Synergistically Inhibits Cancer Angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:153-165. [PMID: 32927364 PMCID: PMC7494942 DOI: 10.1016/j.omtn.2020.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer characterized by a high degree of recurrence, angiogenesis, and metastasis. The importance of alternative pro-angiogenesis pathways including viral factors has emerged after decades of directly targeting various signaling components. Using NPC as a model, we identified an essential oncogenic pathway underlying angiogenesis regulation that involves the inhibition of a tumor suppressor, Spry3, and its downstream targets by EBV-miR-BART10-5p (BART10-5p) and hsa-miR-18a (miR-18a). Overexpression of EBV-miR-BART10-5p and hsa-miR-18a strongly promotes angiogenesis in vitro and in vivo by regulating the expression of VEGF and HIF1-α in a Spry3-dependent manner. In vitro or in vivo treatment with iRGD-tagged exosomes containing antagomiR-BART10-5p and antagomiR-18a preferentially suppressed the angiogenesis and growth of NPC. Our findings first highlight the role of EBV-miR-BART10-5p and oncogenic hsa-miR-18a in NPC angiogenesis and also shed new insights into the clinical intervention and therapeutic strategies for nasopharyngeal carcinoma and other virus-associated tumors.
Collapse
Affiliation(s)
- Jianguo Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qiang Jiang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Oluwasijibomi Damola Faleti
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chi-Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, China
| | - Gongfa Wu
- Department of Pathology, Zengcheng District People's Hospital of Guangzhou City, Guangzhou, China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Minyi Fu
- Otolaryngology-Head and Neck Surgery Department, Zhongshan City People's Hospital, Zhongshan, China
| | - Yuxiang Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yunxi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hanzhao Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoming Lyu
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
29
|
Sun J, Yoon J, Lee M, Hwang YS, Daar IO. Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway. Sci Rep 2020; 10:13752. [PMID: 32792568 PMCID: PMC7426826 DOI: 10.1038/s41598-020-70670-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Sproutys are negative regulators of the Ras/Raf/MAPK signaling pathway and involved in regulation of organogenesis, differentiation, cell migration and proliferation. Although the function of Sproutys have been extensively studied during embryonic development, their role and mode of action during eye formation in vertebrate embryonic development is still unknown. Here we show that Xenopus sprouty2 is expressed in the optic vesicle at late neurula stage and knockdown of Sprouty2 prevents retinal progenitors from populating the retina, which in turn gives rise to small eyes. In the absence of Sprouty2, progenitor cell population of the retina can be restored by blocking the MAPK signaling pathway through overexpression of DN-Ras or DN-Raf. In contrast, activation of the MAPK pathway through overexpression of a constitutively active form of c-Raf (ca-Raf) inhibits progenitor population of the retina, similar to the Sprouty2 loss-of-function phenotype. Moreover, we present evidence that the retinal defect observed in Sprouty2 morphants is attributed to the failure of proper movement of retinal progenitors into the optic vesicle, rather than an effect on progenitor cell survival. These results suggest that Sprouty2 is required for the positioning of retinal progenitors within the optic vesicle through suppressing Ras/Raf/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Sun
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
30
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
31
|
Sheng Z, Du W. NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways. PLoS Genet 2020; 16:e1008863. [PMID: 32559195 PMCID: PMC7329143 DOI: 10.1371/journal.pgen.1008863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Inactivation of the Rb tumor suppressor causes context-dependent increases in cell proliferation or cell death. In a genetic screen for factors that promoted Rb mutant cell death in Drosophila, we identified Psid, a regulatory subunit of N-terminal acetyltransferase B (NatB). We showed that NatB subunits were required for elevated EGFR/MAPK signaling and Rb mutant cell survival. We showed that NatB regulates the posttranscriptional levels of the highly conserved pathway components Grb2/Drk, MAPK, and PP2AC but not that of the less conserved Sprouty. Interestingly, NatB increased the levels of positive pathway components Grb2/Drk and MAPK while decreased the levels of negative pathway component PP2AC, which were mediated by the distinct N-end rule branch E3 ubiquitin ligases Ubr4 and Cnot4, respectively. These results suggest a novel mechanism by which NatB and N-end rule pathways modulate EGFR/MAPK signaling by inversely regulating the levels of multiple conserved positive and negative pathway components. As inactivation of Psid blocked EGFR signaling-dependent tumor growth, this study raises the possibility that NatB is potentially a novel therapeutic target for cancers dependent on deregulated EGFR/Ras signaling.
Collapse
Affiliation(s)
- Zhentao Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
32
|
Qin S, Zhang Y, Zhang J, Tian F, Sun L, He X, Ma X, Zhang J, Liu XR, Zeng W, Lin Y. SPRY4 regulates trophoblast proliferation and apoptosis via regulating IFN-γ-induced STAT1 expression and activation in recurrent miscarriage. Am J Reprod Immunol 2020; 83:e13234. [PMID: 32196809 DOI: 10.1111/aji.13234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM The dysregulation of trophoblast functions is one of the leading causes of recurrent miscarriage (RM), which frustrates 1%-5% of couples of childbearing ages. Sprouty 4 (SPRY4) is considered as a tumour suppressor and exerts a negative role in cell viability. However, its role in regulating trophoblast behaviors at the maternal-fetal interface remains largely unknown. METHOD OF STUDY First-trimester villous samples were collected from RM patients and healthy controls (HCs) to determine the SPRY4 expression in human placenta during early pregnancy. The HTR8/SVneo cell line was introduced to clarify trophoblast cell functions via transfecting with specific short interfering RNA against SPRY4 or SPRY4-overexpressing lentivirus in vitro. In addition, gene expression microarray analysis was performed to explore the downstream molecules and pathways. RESULTS Our results revealed that SPRY4 expression was significantly increased in the first-trimester cytotrophoblasts of RM patients compared with HCs. Furthermore, SPRY4 overexpression inhibited trophoblast proliferation and accelerated apoptosis in vitro, while SPRY4 knockdown reversed these effects. Mechanistically, IFN-γ -induced STAT1 expression and activation were involved in the regulation of trophoblast proliferation and apoptosis by SPRY4, and IFN-γ promoted SPRY4 expression and STAT1 phosphorylation through PI3K/AKT pathway. Additionally, both STAT1 and phosphorylated STAT (p-STAT) levels were also upregulated in trophoblasts from RM patients and positively correlated with SPRY4 expression. CONCLUSION Our findings indicate that SPRY4 may act as a negative regulator of trophoblast functions through upregulating IFN-γ/PI3K/AKT-induced STAT1 activation. High levels of SPRY4 and STAT1 may contribute to RM development and progression, and blocking of either target could be a novel therapeutic strategy for RM patients.
Collapse
Affiliation(s)
- Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Sun
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying He
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Rui Liu
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, Røsland GV, Siraji MI, Hellesøy M, Rayford A, Jacobsen K, Ditzel HJ, Vintermyr OK, Bivona TG, Minna J, Brekken RA, Baguley B, Micklem D, Akslen LA, Gausdal G, Simonsen A, Thiery JP, Chouaib S, Lorens JB, Engelsen AST. AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. J Thorac Oncol 2020; 15:973-999. [PMID: 32018052 PMCID: PMC7397559 DOI: 10.1016/j.jtho.2020.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC. METHODS We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC. RESULTS We found that EGFRi resistance was mediated by up-regulation of AXL, and targeting AXL reduced reactivation of the MAPK pathway and blocked onset of acquired resistance to long-term EGFRi treatment in vivo. AXL-expressing EGFRi-resistant cells revealed phenotypic and cell signaling heterogeneity incompatible with a simple bypass signaling mechanism, and were characterized by an increased autophagic flux. AXL kinase inhibition by the small molecule inhibitor bemcentinib or siRNA mediated AXL gene silencing was reported to inhibit the autophagic flux in vitro, bemcentinib treatment blocked clonogenicity and induced immunogenic cell death in drug-resistant NSCLC in vitro, and abrogated the transcription of autophagy-associated genes in vivo. Furthermore, we found a positive correlation between AXL expression and autophagy-associated gene signatures in a large cohort of human NSCLC (n = 1018). CONCLUSION Our results indicate that AXL signaling supports a drug-resistant persister cell phenotype through a novel autophagy-dependent mechanism and reveals a unique immunogenic effect of AXL inhibition on drug-resistant NSCLC cells.
Collapse
Affiliation(s)
- Maria L Lotsberg
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Wnuk-Lipinska
- Department of Biomedicine, University of Bergen, Bergen, Norway; BerGenBio ASA, Bergen, Norway
| | - Stéphane Terry
- INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ning Lu
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Laura Trachsel-Moncho
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Austin Rayford
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kirstine Jacobsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trever G Bivona
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - John Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Surgery, Pharmacology and Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Biomedical Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, A-STAR, Singapore; Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong
| | - Salem Chouaib
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Thumbay Research Institute for Precision Medicine, GMU Ajman, United Arab Emirates
| | - James B Lorens
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Agnete Svendsen Tenfjord Engelsen
- Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; INSERM UMR 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
34
|
Wazin F, Lovicu FJ. The negative regulatory Spred1 and Spred2 proteins are required for lens and eye morphogenesis. Exp Eye Res 2020; 191:107917. [PMID: 31923414 DOI: 10.1016/j.exer.2020.107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 01/03/2020] [Indexed: 01/29/2023]
Abstract
The transparent and refractive properties of the ocular lens are dependent on its precise cellular structure, supported by the regulation of lens cellular processes of proliferation and differentiation that are essential throughout life. The ERK/MAPK-signalling pathway plays a crucial role in regulating lens cell proliferation and differentiation, and in turn is regulated by inhibitory molecules including the Spred family of proteins to modulate and attenuate the impact of growth factor stimulation. Given Spreds are strongly and distinctly expressed in lens, along with their established inhibitory role in a range of different tissues, we investigated the role these antagonists play in regulating lens cell proliferation and differentiation, and their contribution to lens structure and growth. Using established mice lines deficient for either or both Spred 1 and Spred 2, we demonstrate their role in regulating lens development by negatively regulating ERK1/2 activity. Mice deficient for both Spred 1 and Spred 2 have impaired lens and eye development, displaying irregular lens epithelial and fibre cell activity as a result of increased levels of phosphorylated ERK1/2. While Spred 1 and Spred 2 do not appear to be necessary for induction and early stages of lens morphogenesis (prior to E11.5), nor for the formation of the primary fibre cells, they are required for the continuous embryonic growth and differentiation of the lens.
Collapse
Affiliation(s)
- Fatima Wazin
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney, NSW, Australia and Save Sight Institute, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney, NSW, Australia and Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
35
|
Glia modulate growth of the fly neurovascular unit. Proc Natl Acad Sci U S A 2019; 116:24388-24389. [PMID: 31740612 DOI: 10.1073/pnas.1918086116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Park JW, Wollmann G, Urbiola C, Fogli B, Florio T, Geley S, Klimaschewski L. Sprouty2 enhances the tumorigenic potential of glioblastoma cells. Neuro Oncol 2019; 20:1044-1054. [PMID: 29635363 PMCID: PMC6280149 DOI: 10.1093/neuonc/noy028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Sprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined. Methods SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts. Results SPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells. Conclusions The present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.
Collapse
Affiliation(s)
- Jong-Whi Park
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carles Urbiola
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Fogli
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Ji T, Zhang L, Deng M, Huang S, Wang Y, Pham TT, Smith AA, Sridhar V, Cabernard C, Wang J, Yan Y. Dynamic MAPK signaling activity underlies a transition from growth arrest to proliferation in Drosophila scribble mutant tumors. Dis Model Mech 2019; 12:dmm.040147. [PMID: 31371383 PMCID: PMC6737955 DOI: 10.1242/dmm.040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Human tumors exhibit plasticity and evolving capacity over time. It is difficult to study the mechanisms of how tumors change over time in human patients, in particular during the early stages when a few oncogenic cells are barely detectable. Here, we used a Drosophila tumor model caused by loss of scribble (scrib), a highly conserved apicobasal cell polarity gene, to investigate the spatial-temporal dynamics of early tumorigenesis events. The fly scrib mutant tumors have been successfully used to model many aspects of tumorigenesis processes. However, it is still unknown whether Drosophila scrib mutant tumors exhibit plasticity and evolvability along the temporal axis. We found that scrib mutant tumors displayed different growth rates and cell cycle profiles over time, indicative of a growth arrest-to-proliferation transition as the scrib mutant tumors progress. Longitudinal bulk and single-cell transcriptomic analysis of scrib mutant tumors revealed that the MAPK pathway, including JNK and ERK signaling activities, showed quantitative changes over time. We found that high JNK signaling activity caused G2/M cell cycle arrest in early scrib mutant tumors. In addition, JNK signaling activity displayed a radial polarity with the JNKhigh cells located at the periphery of scrib mutant tumors, providing an inherent mechanism that leads to an overall decrease in JNK signaling activity over time. We also found that ERK signaling activity, in contrast to JNK activity, increased over time and promoted growth in late-stage scrib mutant tumors. Furthermore, high JNK signaling activity repressed ERK signaling activity in early scrib mutant tumors. Together, these data demonstrate that dynamic MAPK signaling activity, fueled by intratumor heterogeneity derived from tissue topological differences, drives a growth arrest-to-proliferation transition in scrib mutant tumors. This article has an associated First Person interview with the joint first authors of the paper. Summary: The authors provide evidence to show that a well-established Drosophila tumor model, caused by loss of apicobasal cell polarity, harbors a surprising degree of plasticity and evolvability along the temporal axis.
Collapse
Affiliation(s)
- Tiantian Ji
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lina Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxi Deng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengshuo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tri Thanh Pham
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Andrew Alan Smith
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Varun Sridhar
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Jiguang Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China .,Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Heigwer F, Scheeder C, Miersch T, Schmitt B, Blass C, Pour Jamnani MV, Boutros M. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. eLife 2018; 7:40174. [PMID: 30592458 PMCID: PMC6319608 DOI: 10.7554/elife.40174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Context-dependent changes in genetic interactions are an important feature of cellular pathways and their varying responses under different environmental conditions. However, methodological frameworks to investigate the plasticity of genetic interaction networks over time or in response to external stresses are largely lacking. To analyze the plasticity of genetic interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We found that genetic interactions form in different trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions rewire over time. Using this framework, we identified more statistically significant interactions compared to end-point assays and further observed several examples of context-dependent crosstalk between signaling pathways such as an interaction between Ras and Rel which is dependent on MEK activity. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Scheeder
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Mischan Vali Pour Jamnani
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Oncogenic microRNA-411 promotes lung carcinogenesis by directly targeting suppressor genes SPRY4 and TXNIP. Oncogene 2018; 38:1892-1904. [PMID: 30390072 PMCID: PMC6475890 DOI: 10.1038/s41388-018-0534-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/03/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
Abstract
Lung cancer is one of the most common malignant diseases globally, composed of non-small cell lung cancer (NSCLC, 85%) and small cell lung cancer (SCLC, 15%). MicroRNAs (miRNAs) are single-stranded noncoding RNAs having important roles in lung cancer development. miR-411-5p/3p were reported to be increased significantly in human NSCLC tissues and cell lines. Moreover, miR-411-5p/3p overexpression could accelerate cell proliferation and migration, and impede cell apoptosis in NSCLC cell lines. Mechanically, SPRY4 is confirmed a direct target of miR-411-5p/3p. Furthermore, our findings showed that miR-411-5p/3p promoted lung tumor growth in vivo, decreased SPRY4 expression dramatically, and induced EGFR, AKT signaling activation, as well as epithelial–mesenchymal transition (EMT) simultaneously in tumor tissues. In addition, we showed that miR-411-5p also targeted tumor suppressor TXNIP, involved in regulating positively cell cycle progress in SPC-A1 cells rather than in H1299. Whether cell specificity of low TXNIP mRNA level in H1299 is responsible for the different response to cell cycle between H1299 and SPC-A1 would need further explorations. Collectively, these results suggest that miR-411-5p/3p are required for NSCLC development by suppressing SPRY4 and TXNIP; thus, the miR-411-SPRY4-AKT axis might act as a promising target for lung cancer therapy clinically.
Collapse
|
40
|
Spred negatively regulates lens growth by modulating epithelial cell proliferation and fiber differentiation. Exp Eye Res 2018; 178:160-175. [PMID: 30290165 DOI: 10.1016/j.exer.2018.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Spred, like Sprouty (Spry) and also Sef proteins, have been identified as important regulators of receptor tyrosine kinase (RTK)-mediated MAPK/ERK-signaling in various developmental systems, controlling cellular processes such as proliferation, migration and differentiation. Spreds are widely expressed during early embryogenesis, and in the eye lens, become more localised in the lens epithelium with later development, overlapping with other antagonists including Spry. Given the synexpression of Spreds and Spry in lens, in order to gain a better understanding of their specific roles in regulating growth factor mediated-signaling and cell behavior, we established and characterised lines of transgenic mice overexpressing Spred1 or Spred2, specifically in the lens. This overexpression of Spreds resulted in a small lens phenotype during ocular morphogenesis, retarding its growth by compromising epithelial cell proliferation and fiber differentiation. These in situ findings were shown to be dependent on the ability of Spreds to suppress MAPK-signaling, in particular FGF-induced ERK1/2-signaling in lens cells. This was validated in vitro using lens epithelial explants, that highlighted the overlapping role of Spreds with Spry2, but not Spry1. This study provides insights into the putative function of Spreds and Spry in situ, some overlapping and some distinct, and their importance in regulating lens cell proliferation and fiber differentiation contributing to lens and eye growth.
Collapse
|
41
|
Hausott B, Klimaschewski L. Sprouty2-a Novel Therapeutic Target in the Nervous System? Mol Neurobiol 2018; 56:3897-3903. [PMID: 30225774 PMCID: PMC6505497 DOI: 10.1007/s12035-018-1338-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
Abstract
Clinical trials applying growth factors to alleviate symptoms of patients with neurological disorders have largely been unsuccessful in the past. As an alternative approach, growth factor receptors or components of their signal transduction machinery may be targeted directly. In recent years, the search for intracellular signaling integrator downstream of receptor tyrosine kinases provided valuable novel substrates. Among them are the Sprouty proteins which mainly act as inhibitors of growth factor-dependent neuronal and glial signaling pathways. In this review, we summarize the role of Sprouties in the lesioned central and peripheral nervous system with particular reference to Sprouty2 that is upregulated in various experimental models of neuronal degeneration and regeneration. Increased synthesis under pathological conditions makes Sprouty2 an attractive pharmacological target to enhance intracellular signaling activities, notably the ERK pathway, in affected neurons or activated astrocytes. Interestingly, high Sprouty2 levels are also found in malignant glioma cells. We recently demonstrated that abrogating Sprouty2 function strongly inhibits intracranial tumor growth and leads to significantly prolonged survival of glioblastoma bearing mice by induction of ERK-dependent DNA replication stress. On the contrary, knockdown of Sprouty proteins increases proliferation of activated astrocytes and, consequently, reduces secondary brain damage in neuronal lesion models such as kainic acid-induced epilepsy or endothelin-induced ischemia. Furthermore, downregulation of Sprouty2 improves nerve regeneration in the lesioned peripheral nervous system. Taken together, targeting Sprouties as intracellular inhibitors of the ERK pathway holds great promise for the treatment of various neurological disorders including gliomas. Since the protein lacks enzymatic activities, it will be difficult to develop chemical compounds capable to directly and specifically modulate Sprouty functions. However, interfering with Sprouty expression by gene therapy or siRNA treatment provides a realistic approach to evaluate the therapeutic potential of indirectly stimulating ERK activities in neurological disease.
Collapse
Affiliation(s)
- Barbara Hausott
- Department of Anatomy, Histology and Embyrology, Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embyrology, Division of Neuroanatomy, Medical University Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria. .,Division for Neuroanatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
42
|
Wang W, Zhang K, Li X, Ma Z, Zhang Y, Yuan M, Suo Y, Liang X, Tse G, Goudis CA, Liu T, Li G. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats. Cardiovasc Ther 2018; 36:e12321. [PMID: 29380561 DOI: 10.1111/1755-5922.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Atrial structural remodeling in the form of fibrosis contributes to the arrhythmic substrate in atrial fibrillation (AF). The aim of this study was to investigate the effects of doxycycline on chronic intermittent hypoxia (CIH)-induced atrial fibrosis and the pathophysiological mechanisms underlying such changes. METHODS A total of 30 Sprague Dawley rats were randomized into three groups: control group, CIH group, and CIH with doxycycline treatment (CIH-D) group. CIH lasted 5 hours per day for 4 weeks. CIH-D rats were administrated doxycycline for 4 weeks, while they received CIH. Masson's trichrome staining was used to determine collagen deposit in the atrial myocardium. Protein and mRNA levels of Matrix Metalloproteinase-2 (MMP-2) and -9 (MMP-9), microRNA-21 (miR-21) and its downstream target Sprouty1 (Spry1), and extracellular signal-regulated kinases 1/2 (ERK1/2) were measured using Western blotting or real-time qRT-PCR, respectively. RESULTS Compared to the control group, the CIH group showed higher interstitial collagen fraction, increased MMP-9, miR-21, and p-ERK1/2 levels, and decreased MMP-2 and Spry1 levels. Doxycycline treatment attenuated CIH-induced atrial fibrosis, reduced MMP-2, MMP-9, miR-21, and p-ERK1/2, and increased Spry1. CONCLUSIONS CIH treatment induced significant atrial fibrosis in our rat model, which was attenuated by doxycycline. These changes can be explained by alterations in the MMP and miR-21/ERK signaling pathways.
Collapse
Affiliation(s)
- Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiongfeng Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zuowang Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Zhao G, Bailey CG, Feng Y, Rasko J, Lovicu FJ. Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Exp Eye Res 2018; 170:148-159. [PMID: 29501879 PMCID: PMC5924633 DOI: 10.1016/j.exer.2018.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
Sprouty (Spry) and Spred proteins have been identified as closely related negative regulators of the receptor tyrosine kinase (RTK)-mediated MAPK pathway, inhibiting cellular proliferation, migration and differentiation in many systems. As the different members of this antagonist family are strongly expressed in the lens epithelium in overlapping patterns, in this study we used lens epithelial explants to examine the impact of these different antagonists on the morphologic and molecular changes associated with fibroblast growth factor (FGF)-induced lens fiber differentiation. Cells in lens epithelial explants were transfected using different approaches to overexpress the different Spry (Spry1, Spry2) and Spred (Spred1, Spred2, Spred3) members, and we compared their ability to undergo FGF-induced fiber differentiation. In cells overexpressing any of the antagonists, the propensity for FGF-induced cell elongation was significantly reduced, indicative of a block to lens fiber differentiation. Of these antagonists, Spry1 and Spred2 appeared to be the most potent among their respective family members, demonstrating the greatest block in FGF-induced fiber differentiation based on the percentage of cells that failed to elongate. Consistent with the reported activity of Spry and Spred, we show that overexpression of Spry2 was able to suppress FGF-induced ERK1/2 phosphorylation in lens cells, as well as the ERK1/2-dependent fiber-specific marker Prox1, but not the accumulation of β-crystallins. Taken together, Spry and Spred proteins that are predominantly expressed in the lens epithelium in situ, appear to have overlapping effects on negatively regulating ERK1/2-signaling associated with FGF-induced lens epithelial cell elongation leading to fiber differentiation. This highlights the important regulatory role for these RTK antagonists in establishing and maintaining the distinct architecture and polarity of the lens.
Collapse
Affiliation(s)
- Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - John Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia; Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
44
|
Genome-Wide Screen for New Components of the Drosophila melanogaster Torso Receptor Tyrosine Kinase Pathway. G3-GENES GENOMES GENETICS 2018; 8:761-769. [PMID: 29363515 PMCID: PMC5844297 DOI: 10.1534/g3.117.300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patterning of the Drosophila embryonic termini by the Torso (Tor) receptor pathway has long served as a valuable paradigm for understanding how receptor tyrosine kinase signaling is controlled. However, the mechanisms that underpin the control of Tor signaling remain to be fully understood. In particular, it is unclear how the Perforin-like protein Torso-like (Tsl) localizes Tor activity to the embryonic termini. To shed light on this, together with other aspects of Tor pathway function, we conducted a genome-wide screen to identify new pathway components that operate downstream of Tsl. Using a set of molecularly defined chromosomal deficiencies, we screened for suppressors of ligand-dependent Tor signaling induced by unrestricted Tsl expression. This approach yielded 59 genomic suppressor regions, 11 of which we mapped to the causative gene, and a further 29 that were mapped to <15 genes. Of the identified genes, six represent previously unknown regulators of embryonic Tor signaling. These include twins (tws), which encodes an integral subunit of the protein phosphatase 2A complex, and α-tubulin at 84B (αTub84B), a major constituent of the microtubule network, suggesting that these may play an important part in terminal patterning. Together, these data comprise a valuable resource for the discovery of new Tor pathway components. Many of these may also be required for other roles of Tor in development, such as in the larval prothoracic gland where Tor signaling controls the initiation of metamorphosis.
Collapse
|
45
|
Selland LG, Koch S, Laraque M, Waskiewicz AJ. Coordinate regulation of retinoic acid synthesis by pbx genes and fibroblast growth factor signaling by hoxb1b is required for hindbrain patterning and development. Mech Dev 2018; 150:28-41. [PMID: 29496480 DOI: 10.1016/j.mod.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.
Collapse
Affiliation(s)
- Lyndsay G Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malcolm Laraque
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
46
|
Arafeh R, Flores K, Keren-Paz A, Maik-Rachline G, Gutkind N, Rosenberg S, Seger R, Samuels Y. Combined inhibition of MEK and nuclear ERK translocation has synergistic antitumor activity in melanoma cells. Sci Rep 2017; 7:16345. [PMID: 29180761 PMCID: PMC5704016 DOI: 10.1038/s41598-017-16558-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic alterations in BRAF, NRAS and NF1 that activate the ERK cascade, account for over 80% of metastatic melanomas. However, ERK cascade inhibitors have been proven beneficial almost exclusively for BRAF mutant melanomas. One of the hallmarks of the ERK cascade is the nuclear translocation of ERK1/2, which is important mainly for the induction of proliferation. This translocation can be inhibited by the NTS-derived peptide (EPE) that blocks the ERK1/2-importin7 interaction, inhibits the nuclear translocation of ERK1/2, and arrests active ERK1/2 in the cytoplasm. In this study, we found that the EPE peptide significantly reduced the viability of not only BRAF, but also several NRAS and NF1 mutant melanomas. Importantly, combination of the EPE peptide and trametinib showed synergy in reducing the viability of some NRAS mutant melanomas, an effect driven by the partial preservation of negative feedback loops. The same combination significantly reduced the viability of other melanoma cells, including those resistant to mono-treatment with EPE peptide and ERK cascade inhibitors. Our study indicates that targeting the nuclear translocation of ERK1/2, in combination with MEK inhibitors can be used for the treatment of different mutant melanomas.
Collapse
Affiliation(s)
- Rand Arafeh
- Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | - Rony Seger
- Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
47
|
|
48
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
49
|
Taketomi T, Onimura T, Yoshiga D, Muratsu D, Sanui T, Fukuda T, Kusukawa J, Nakamura S. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways. Cell Biol Int 2017; 42:1106-1114. [PMID: 28921936 DOI: 10.1002/cbin.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3-E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3-E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF-ERK1/2 and BMP-Smad pathways, and suppresses the induction of markers of osteoblast differentiation.
Collapse
Affiliation(s)
- Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomohiro Onimura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshiga
- Division of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental College, Kitakyushu, Fukuoka, Japan
| | - Daichi Muratsu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor. Oncotarget 2017; 8:17795-17809. [PMID: 28147313 PMCID: PMC5392287 DOI: 10.18632/oncotarget.14855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy.
Collapse
|