1
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
2
|
Antunes ASLM, Reis-de-Oliveira G, Martins-de-Souza D. Molecular overlaps of neurological manifestations of COVID-19 and schizophrenia from a proteomic perspective. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01842-8. [PMID: 39028452 DOI: 10.1007/s00406-024-01842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.
Collapse
Affiliation(s)
- André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | | | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, University of Campinas, Campinas, Brazil.
- D'or Institute for Research and Education, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Estate University of Campinas, Campinas, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| |
Collapse
|
3
|
Bhaskar BR, Yadav L, Sriram M, Sanghrajka K, Gupta M, V BK, Nellikka RK, Das D. Differential SNARE chaperoning by Munc13-1 and Munc18-1 dictates fusion pore fate at the release site. Nat Commun 2024; 15:4132. [PMID: 38755165 PMCID: PMC11099066 DOI: 10.1038/s41467-024-46965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.
Collapse
Affiliation(s)
- Bhavya R Bhaskar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Laxmi Yadav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Malavika Sriram
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Kinjal Sanghrajka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Mayank Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Boby K V
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Rohith K Nellikka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Debasis Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
4
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
5
|
Patil SS, Sanghrajka K, Sriram M, Chakraborty A, Majumdar S, Bhaskar BR, Das D. Synaptobrevin2 monomers and dimers differentially engage to regulate the functional trans-SNARE assembly. Life Sci Alliance 2024; 7:e202402568. [PMID: 38238088 PMCID: PMC10796598 DOI: 10.26508/lsa.202402568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The precise cell-to-cell communication relies on SNARE-catalyzed membrane fusion. Among ∼70 copies of synaptobrevin2 (syb2) in synaptic vesicles, only ∼3 copies are sufficient to facilitate the fusion process at the presynaptic terminal. It is unclear what dictates the number of SNARE complexes that constitute the fusion pore assembly. The structure-function relation of these dynamic pores is also unknown. Here, we demonstrate that syb2 monomers and dimers differentially engage in regulating the trans-SNARE assembly during membrane fusion. The differential recruitment of two syb2 structures at the membrane fusion site has consequences in regulating individual nascent fusion pore properties. We have identified a few syb2 transmembrane domain residues that control monomer/dimer conversion. Overall, our study indicates that syb2 monomers and dimers are differentially recruited at the release sites for regulating membrane fusion events.
Collapse
Affiliation(s)
- Swapnali S Patil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kinjal Sanghrajka
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Malavika Sriram
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Aritra Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sougata Majumdar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Bhavya R Bhaskar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debasis Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
Weisgerber AW, Otruba Z, Knowles MK. Syntaxin clusters and cholesterol affect the mobility of Syntaxin1a. Biophys J 2024:S0006-3495(24)00028-6. [PMID: 38221759 DOI: 10.1016/j.bpj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Syntaxin1a (Syx1a) is essential for stimulated exocytosis in neuroendocrine cells. The vesicle docking process involves the formation of nanoscale Syx1a domains on the plasma membrane and the Syx1a clusters disintegrate during the fusion process. Syx1a nanodomains are static yet Syx1a molecules dynamically enter and leave the domains; the process by which these clusters maintain this balance is unclear. In this work, the dynamics of the Syx1a molecules is elucidated relative to the cluster position through a labeling strategy that allows both the bulk position of the Syx clusters to be visualized concurrent with the trajectories of single Syx1a molecules on the surface of PC12 cells. Single Syx1a molecules were tracked in time relative to cluster positions to decipher how Syx1a moves within a cluster and when clusters are not present. Syx1a is mobile on the plasma membrane, more mobile at the center of clusters, and less mobile near the edges of clusters; this depends on the presence of the N-terminal Habc domain and cholesterol, which are essential for proper exocytosis. Simulations of the dynamics observed at clusters support a model where clusters are maintained by a large cage (r = 100 nm) within which Syx1a remains highly mobile within the cluster (r = 50 nm). The depletion of cholesterol dramatically reduces the mobility of Syx1a within clusters and less so over the rest of the plasma membrane. This suggests that fluidity of Syx1a supramolecular clusters is needed for function.
Collapse
Affiliation(s)
- Alan W Weisgerber
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Zdeněk Otruba
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
7
|
Kim SR, Eom Y, Lee SH. Comprehensive analysis of sex differences in the function and ultrastructure of hippocampal presynaptic terminals. Neurochem Int 2023; 169:105570. [PMID: 37451344 DOI: 10.1016/j.neuint.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.
Collapse
Affiliation(s)
- Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
8
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
van Tilburg M, Hilbers PAJ, Markvoort AJ. On the role of membrane embedding, protein rigidity and transmembrane length in lipid membrane fusion. SOFT MATTER 2023; 19:1791-1802. [PMID: 36786821 DOI: 10.1039/d2sm01582j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fusion of biological membranes is ubiquitous in natural processes like exo- and endocytosis, intracellular trafficking and viral entry. Membrane fusion is also utilized in artificial biomimetic fusion systems, e.g. for drug delivery. Both the natural and the biomimetic fusion systems rely on a wide range of (artificial) proteins mediating the fusion process. Although the exact mechanisms of these proteins differ, clear analogies in their general behavior can be observed in bringing the membranes in close proximity and mediating the fusion reaction. In our study, we use molecular dynamics simulations with coarse grained models, mimicking the general behavior of fusion proteins (spikes), to systematically examine the effects of specific characteristics of these proteins on the fusion process. The protein characteristics considered are (i) the type of membrane embedding, i.e., either transmembrane or not, (ii) the rigidity, and (iii) the transmembrane domain (TMD) length. The results show essential differences in fusion pathway between monotopic and transmembrane spikes, in which transmembrane spikes seem to inhibit the formation of hemifusion diaphragms, leading to a faster fusion development. Furthermore, we observed that an increased rigidity and a decreased TMD length both proved to contribute to a faster fusion development. Finally, we show that a single spike may suffice to successfully induce a fusion reaction, provided that the spike is sufficiently rigid and attractive. Not only does this shed light on biological fusion of membranes, it also provides clear design rules for artificial membrane fusion systems.
Collapse
Affiliation(s)
- Marco van Tilburg
- Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, The Netherlands.
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, The Netherlands.
- Institute of Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | - Albert J Markvoort
- Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, The Netherlands.
- Institute of Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
10
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
12
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
13
|
Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Nat Commun 2022; 13:2928. [PMID: 35624091 PMCID: PMC9142520 DOI: 10.1038/s41467-022-30279-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Animals navigate toward favorable locations using various environmental cues. However, the mechanism of how the goal information is encoded and decoded to generate migration toward the appropriate direction has not been clarified. Here, we describe the mechanism of migration towards a learned concentration of NaCl in Caenorhabditis elegans. In the salt-sensing neuron ASER, the difference between the experienced and currently perceived NaCl concentration is encoded as phosphorylation at Ser65 of UNC-64/Syntaxin 1 A through the protein kinase C(PKC-1) signaling pathway. The phosphorylation affects basal glutamate transmission from ASER, inducing the reversal of the postsynaptic response of reorientation-initiating neurons (i.e., from inhibitory to excitatory), guiding the animals toward the experienced concentration. This process, the decoding of the context, is achieved through the differential sensitivity of postsynaptic excitatory and inhibitory receptors. Our results reveal the mechanism of migration based on the synaptic plasticity that conceptually differs from the classical ones. The nematode C. elegans moves around to find an optimal environment. This work demonstrates how it can detect and move towards a previously learned salinity using the salt-sensing neuron ASER.
Collapse
|
14
|
Everett AC, Graul BE, Ronström JW, Robinson JK, Watts DB, España RA, Siciliano CA, Yorgason JT. Effectiveness and Relationship between Biased and Unbiased Measures of Dopamine Release and Clearance. ACS Chem Neurosci 2022; 13:1534-1548. [PMID: 35482592 PMCID: PMC10763521 DOI: 10.1021/acschemneuro.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.
Collapse
Affiliation(s)
- Anna C. Everett
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Ben E. Graul
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Joakim W. Ronström
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - J. Kayden Robinson
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Daniel B. Watts
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Rodrigo A. España
- Drexel University, Department of Neurobiology & Anatomy, Philadelphia, PA 28619, USA
| | - Cody A. Siciliano
- Vanderbilt University, Center for Addiction Research, Nashville, TN 37203, USA
| | - Jordan T. Yorgason
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| |
Collapse
|
15
|
Allolio C, Harries D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS NANO 2021; 15:12880-12887. [PMID: 34338519 DOI: 10.1021/acsnano.0c08614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicles enriched in certain negatively charged lipids, such as phosphatidylserine and PIP2, are known to undergo fusion in the presence of calcium ions without assistance from protein assemblies. Other lipids do not exhibit this propensity, even if they are negatively charged. Using our recently developed methodology, we extract elastic properties of a representative set of lipids. This allows us to trace the origin of lipid-calcium selectivity in membrane fusion to the formation of lipid clusters with long-range correlations that induce negative curvature on the membrane surface. Furthermore, the clusters generate lateral tension in the headgroup region at the membrane surface, concomitantly also stabilizing negative Gaussian curvature. Finally, calcium binding also reduces the orientational polarization of water around the membrane head groups, potentially reducing the hydration force acting between membranes. Binding calcium only weakly increases membrane bending rigidity and tilt moduli, in agreement with experiments. We show how the combined effects of calcium binding to membranes lower the barriers along the fusion pathway that lead to the formation of the fusion stalk as well as the fusion pore.
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague 8, Czech Republic
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
16
|
So WY, Liu WN, Teo AKK, Rutter GA, Han W. Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Sci Transl Med 2021; 13:13/600/eabb1038. [PMID: 34193609 DOI: 10.1126/scitranslmed.abb1038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/25/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023]
Abstract
The paired box 6 (PAX6) transcription factor is crucial for normal pancreatic islet development and function. Heterozygous mutations of PAX6 are associated with impaired insulin secretion and early-onset diabetes mellitus in humans. However, the molecular mechanism of PAX6 in controlling insulin secretion in human beta cells and its pathophysiological role in type 2 diabetes (T2D) remain ambiguous. We investigated the molecular pathway of PAX6 in the regulation of insulin secretion and the potential therapeutic value of PAX6 in T2D by using human pancreatic beta cell line EndoC-βH1, the db/db mouse model, and primary human pancreatic islets. Through loss- and gain-of-function approaches, we uncovered a mechanism by which PAX6 modulates glucose-stimulated insulin secretion (GSIS) through a cAMP response element-binding protein (CREB)/Munc18-1/2 pathway. Moreover, under diabetic conditions, beta cells and pancreatic islets displayed dampened PAX6/CREB/Munc18-1/2 pathway activity and impaired GSIS, which were reversed by PAX6 replenishment. Adeno-associated virus-mediated PAX6 overexpression in db/db mouse pancreatic beta cells led to a sustained amelioration of glycemic perturbation in vivo but did not affect insulin resistance. Our study highlights the pathophysiological role of PAX6 in T2D-associated beta cell dysfunction in humans and suggests the potential of PAX6 gene transfer in preserving and restoring beta cell function.
Collapse
Affiliation(s)
- Wing Yan So
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Adrian Kee Keong Teo
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore.,Departments of Biochemistry and Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics and Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London W12 0NN, UK
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore. .,Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510700, China
| |
Collapse
|
17
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
18
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
19
|
Acuña-Hinrichsen F, Covarrubias-Pinto A, Ishizuka Y, Stolzenbach MF, Martin C, Salazar P, Castro MA, Bramham CR, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Triggers the Disassembly of Key Structural Components of Dendritic Spines. Front Cell Neurosci 2021; 15:580717. [PMID: 33708072 PMCID: PMC7940845 DOI: 10.3389/fncel.2021.580717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection. During the late stages of neuronal infection, axonal damage can occur, however, the impact of HSV-1 infection on the morphology and functional integrity of neuronal dendrites during the early stages of infection is unknown. We previously demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances Arc protein expression - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc expression may alter the functionality of infected neurons and negatively impact dendritic spine dynamics. In this study we demonstrated that HSV-1 infection induces structural disassembly and functional deregulation in cultured cortical neurons, an altered glutamate response, Arc accumulation within the somata, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIβ. However, whether these alterations are specific to the HSV-1 infection mechanism or reflect a secondary neurodegenerative process remains to be determined.
Collapse
Affiliation(s)
- Francisca Acuña-Hinrichsen
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Adriana Covarrubias-Pinto
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Carolina Martin
- School of Medical Technology, Austral University of Chile, Puerto Montt, Chile
| | - Paula Salazar
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maite A. Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
- Janelia Research Campus, HHMI, VA, United States
| | | | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
20
|
Banne E, Falik-Zaccai T, Brielle E, Kalfon L, Ladany H, Klinger D, Schneidman-Duhovny D, Linial M. De novo STXBP1 mutation in a child with developmental delay and spasticity reveals a major structural alteration in the interface with syntaxin 1A. Am J Med Genet B Neuropsychiatr Genet 2020; 183:412-422. [PMID: 32815282 DOI: 10.1002/ajmg.b.32816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 01/19/2023]
Abstract
STXBP1, also known as Munc-18, is a master regulator of neurotransmitter release and synaptic function in the human brain through its direct interaction with syntaxin 1A. STXBP1 binds syntaxin 1A is an inactive conformational state. STXBP1 decreases its binding affinity to syntaxin upon phosphorylation, enabling syntaxin 1A to engage in the SNARE complex, leading to neurotransmitter release. STXBP1-related disorders are well characterized by encephalopathy with epilepsy, and a diverse range of neurological and neurodevelopmental conditions. Through exome sequencing of a child with developmental delay, hypotonia, and spasticity, we found a novel de novo insertion mutation of three nucleotides in the STXBP1 coding region, resulting in an additional arginine after position 39 (R39dup). Inconclusive results from state-of-the-art variant prediction tools mandated a structure-based approach using molecular dynamics (MD) simulations of the STXBP1-syntaxin 1A complex. Comparison of the interaction interfaces of the wild-type and the R39dup complexes revealed a reduced interaction surface area in the mutant, leading to destabilization of the protein complex. Moreover, the decrease in affinity toward syntaxin 1A is similar for the phosphorylated STXBP1 and the R39dup. We applied the same MD methodology to seven additional previously reported STXBP1 mutations and reveal that the stability of the STXBP1-syntaxin 1A interface correlates with the reported clinical phenotypes. This study provides a direct link between the outcome of a novel variant in STXBP1 and protein structure and dynamics. The structural change upon mutation drives an alteration in synaptic function.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetics Institute, Kaplan Medical Center - Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Tzipora Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel.,Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Esther Brielle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Hagay Ladany
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Holz RW, Bittner MA. Roles for the SNAP25 linker domain in the fusion pore and a dynamic plasma membrane SNARE "acceptor" complex. J Gen Physiol 2020; 152:151980. [PMID: 32722752 PMCID: PMC7478873 DOI: 10.1085/jgp.202012619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Central to the exocytotic release of hormones and neurotransmitters is the interaction of four SNARE motifs in proteins on the secretory granule/synaptic vesicle membrane (synaptobrevin/VAMP, v-SNARE) and on the plasma membrane (syntaxin and SNAP25, t-SNAREs). The interaction is thought to bring the opposing membranes together to enable fusion. An underlying motivation for this Viewpoint is to synthesize from recent diverse studies possible new insights about these events. We focus on a recent paper that demonstrates the importance of the linker region joining the two SNARE motifs of the neuronal t-SNARE SNAP25 for maintaining rates of secretion with roles for distinct segments in speeding fusion pore expansion. Remarkably, lipid-perturbing agents rescue a palmitoylation-deficient mutant whose phenotype includes slow fusion pore expansion, suggesting that protein–protein interactions have a role not only in bringing together the granule or vesicle membrane with the plasma membrane but also in orchestrating protein–lipid interactions leading to the fusion reaction. Unexpectedly, biochemical investigations demonstrate the importance of the C-terminal domain of the linker in the formation of the plasma membrane t-SNARE “acceptor” complex for synaptobrevin2. This insight, together with biophysical and optical studies from other laboratories, suggests that the plasma membrane SNARE acceptor complex between SNAP25 and syntaxin and the subsequent trans-SNARE complex with the v-SNARE synaptobrevin form within 100 ms before fusion.
Collapse
Affiliation(s)
- Ronald W Holz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Mary A Bittner
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Wu HK, Zhang Y, Cao CM, Hu X, Fang M, Yao Y, Jin L, Chen G, Jiang P, Zhang S, Song R, Peng W, Liu F, Guo J, Tang L, He Y, Shan D, Huang J, Zhou Z, Wang DW, Lv F, Xiao RP. Glucose-Sensitive Myokine/Cardiokine MG53 Regulates Systemic Insulin Response and Metabolic Homeostasis. Circulation 2019; 139:901-914. [PMID: 30586741 DOI: 10.1161/circulationaha.118.037216] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Mitsugumin 53 (MG53 or TRIM72), a striated muscle-specific E3 ligase, promotes ubiquitin-dependent degradation of the insulin receptor and insulin receptor substrate-1 and subsequently induces insulin resistance, resulting in metabolic syndrome and type 2 diabetes mellitus (T2DM). However, it is unknown how MG53 from muscle regulates systemic insulin response and energy metabolism. Increasing evidence demonstrates that muscle secretes proteins as myokines or cardiokines that regulate systemic metabolic processes. We hypothesize that MG53 may act as a myokine/cardiokine, contributing to interorgan regulation of insulin sensitivity and metabolic homeostasis. METHODS Using perfused rodent hearts or skeletal muscle, we investigated whether high glucose, high insulin, or their combination (conditions mimicking metabolic syndrome or T2DM) alters MG53 protein concentration in the perfusate. We also measured serum MG53 levels in rodents and humans in the presence or absence of metabolic diseases, particularly T2DM. The effects of circulating MG53 on multiorgan insulin response were evaluated by systemic delivery of recombinant MG53 protein to mice. Furthermore, the potential involvement of circulating MG53 in the pathogenesis of T2DM was assessed by neutralizing blood MG53 with monoclonal antibodies in diabetic db/db mice. Finally, to delineate the mechanism underlying the action of extracellular MG53 on insulin signaling, we analyzed the potential interaction of MG53 with extracellular domain of insulin receptor using coimmunoprecipitation and surface plasmon resonance assays. RESULTS Here, we demonstrate that MG53 is a glucose-sensitive myokine/cardiokine that governs the interorgan regulation of insulin sensitivity. First, high glucose or high insulin induces MG53 secretion from isolated rodent hearts and skeletal muscle. Second, hyperglycemia is accompanied by increased circulating MG53 in humans and rodents with diabetes mellitus. Third, systemic delivery of recombinant MG53 or cardiac-specific overexpression of MG53 causes systemic insulin resistance and metabolic syndrome in mice, whereas neutralizing circulating MG53 with monoclonal antibodies has therapeutic effects in T2DM db/db mice. Mechanistically, MG53 binds to the extracellular domain of the insulin receptor and acts as an allosteric blocker. CONCLUSIONS Thus, MG53 has dual actions as a myokine/cardiokine and an E3 ligase, synergistically inhibiting the insulin signaling pathway. Targeting circulating MG53 opens a new therapeutic avenue for T2DM and its complications.
Collapse
Affiliation(s)
- Hong-Kun Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Chun-Mei Cao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Yuan Yao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Shuo Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Ruisheng Song
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Wei Peng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Fenghua Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Jiaojiao Guo
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Lifei Tang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Jin Huang
- Department of Internal Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (J.H., D.W.)
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.).,Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (Z.Z., R.-P.X.).,Peking University, China. Peking-Tsinghua Center for Life Sciences, Beijing, China (Z.Z., R.-P.X.)
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (J.H., D.W.)
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.)
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (H.-K.W., Y.Z., C.-M.C., X.H., M.F., Y.Y., L.J., G.C., P.J., S.Z., R.S., W.P., F.L., J.G., L.T., Y.H., D.S., Z.Z., F.L., R.-P.X.).,Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (Z.Z., R.-P.X.).,Peking University, China. Peking-Tsinghua Center for Life Sciences, Beijing, China (Z.Z., R.-P.X.)
| |
Collapse
|
23
|
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. Am J Hum Genet 2019; 104:721-730. [PMID: 30929742 PMCID: PMC6451933 DOI: 10.1016/j.ajhg.2019.02.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function.
Collapse
|
24
|
Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R. The SNAP-25 linker supports fusion intermediates by local lipid interactions. eLife 2019; 8:41720. [PMID: 30883328 PMCID: PMC6422494 DOI: 10.7554/elife.41720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated “linker” domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.
Collapse
Affiliation(s)
- Ahmed Shaaban
- ZHMB, Saarland University, Homburg, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Madhurima Dhara
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Walentina Frisch
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ali Harb
- ZHMB, Saarland University, Homburg, Germany
| | - Ali H Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ute Becherer
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Center of Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ralf Mohrmann
- ZHMB, Saarland University, Homburg, Germany.,Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Science, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2018; 122:196-207. [PMID: 30517887 DOI: 10.1016/j.neuint.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 12/26/2022]
Abstract
SNARE (Soluble NSF(N-ethylmaleimide-sensitive factor) Attachment Receptor) complex is a trimeric supramolecular organization of SNAP25, syntaxin, and VAMP which mediates fusion of synaptic vesicles with the presynaptic plasma membrane. The functioning of this entire protein assembly is dependent on its tetrahelical coiled coil structure alongside its interaction with a large spectrum of regulatory proteins like synaptotagmin, complexin, intersectin, etc. Defects arising in SNARE complex assembly due to mutations or faulty post-translational modifications are associated to severe synaptopathies like Schizophrenia and also proteopathies like Alzheimer's disease. The review primarily focuses on SNAP25, which is the prime contributor in the complex assembly. It is conceptualized that the network of protein interactions of this helical protein assists as a chaperoning system for attaining functional structure. Additionally, the innate disordered nature of SNAP25 and its amyloidogenic propensities have been highlighted employing computational methods. The intrinsic nature of SNAP25 is anticipated to form higher-order aggregates due to its cysteine rich domain, which is also a target for several post-translational modifications. Furthermore, the aberrations in the structure and expression profile of the protein display common patterns in the pathogenesis of a diverse synaptopathies and proteopathies. This work of SNARE literature aims to provide a new comprehensive outlook and research directions towards SNARE complex and presents SNAP25 as a common neuropathological hallmark which can be a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Laipubam Gayatri Sharma
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Anjali Patel
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
26
|
Allolio C, Magarkar A, Jurkiewicz P, Baxová K, Javanainen M, Mason PE, Šachl R, Cebecauer M, Hof M, Horinek D, Heinz V, Rachel R, Ziegler CM, Schröfel A, Jungwirth P. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc Natl Acad Sci U S A 2018; 115:11923-11928. [PMID: 30397112 PMCID: PMC6255155 DOI: 10.1073/pnas.1811520115] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.
Collapse
Affiliation(s)
- Christoph Allolio
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
- Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Aniket Magarkar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Katarína Baxová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Veronika Heinz
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Reinhard Rachel
- Microbiology and Archaea Centre, University of Regensburg, D-93040 Regensburg, Germany
| | - Christine M Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Adam Schröfel
- Imaging Methods Core Facility at Biocev, Faculty of Sciences, Charles University, 242 50 Vestec, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic;
| |
Collapse
|
27
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
28
|
Dhara M, Mohrmann R, Bruns D. v-SNARE function in chromaffin cells. Pflugers Arch 2017; 470:169-180. [PMID: 28887593 PMCID: PMC5748422 DOI: 10.1007/s00424-017-2066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.
Collapse
Affiliation(s)
- Madhurima Dhara
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
29
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
30
|
Yang K, Jiang X, Su Q, Wang J, Li C, Xia Y, Cheng S, Qin Q, Cao X, Chen C, Tu B. Disruption of glutamate neurotransmitter transmission is modulated by SNAP-25 in benzo[a]pyrene-induced neurotoxic effects. Toxicology 2017; 384:11-22. [DOI: 10.1016/j.tox.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
|
31
|
D'Agostino M, Risselada HJ, Mayer A. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 2016; 17:1590-1608. [PMID: 27644261 DOI: 10.15252/embr.201642209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022] Open
Abstract
SNAREs fuse membranes in several steps. Trans-SNARE complexes juxtapose membranes, induce hemifused stalk structures, and open the fusion pore. A recent penetration model of fusion proposed that SNAREs force the hydrophilic C-termini of their transmembrane domains through the hydrophobic core of the membrane(s). In contrast, the indentation model suggests that the C-termini open the pore by locally compressing and deforming the stalk. Here we test these models in the context of yeast vacuole fusion. Addition of small hydrophilic tags renders bilayer penetration by the C-termini energetically unlikely. It preserves fusion activity, however, arguing against the penetration model. Addition of large protein tags to the C-termini permits SNARE activation, trans-SNARE pairing, and hemifusion but abolishes pore opening. Fusion proceeds if the tags are detached from the membrane by a hydrophilic spacer or if only one side of the trans-SNARE complex carries a protein tag. Thus, both sides of a trans-SNARE complex can drive pore opening. Our results are consistent with an indentation model in which multiple SNARE C-termini cooperate in opening the fusion pore by locally deforming the inner leaflets.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Goettingen, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
32
|
Quevedo MF, Lucchesi O, Bustos MA, Pocognoni CA, De la Iglesia PX, Tomes CN. The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores. J Biol Chem 2016; 291:23101-23111. [PMID: 27613869 DOI: 10.1074/jbc.m116.729954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction.
Collapse
Affiliation(s)
- María F Quevedo
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Matías A Bustos
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Cristian A Pocognoni
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Paola X De la Iglesia
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Claudia N Tomes
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| |
Collapse
|
33
|
Belmonte SA, Mayorga LS, Tomes CN. The Molecules of Sperm Exocytosis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:71-92. [PMID: 27194350 DOI: 10.1007/978-3-319-30567-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.
Collapse
Affiliation(s)
- Silvia A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Luis S Mayorga
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina
| | - Claudia N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Mendoza, Argentina.
| |
Collapse
|
34
|
Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 2015; 4. [PMID: 26701912 PMCID: PMC4744192 DOI: 10.7554/elife.09580] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1. DOI:http://dx.doi.org/10.7554/eLife.09580.001 Plants, animals and other eukaryotes transport many large molecules within their cells inside membrane-bound packages called vesicles. These vesicles can fuse with the membrane of a target compartment in the cell to deliver their contents inside, or fuse with the cell’s membrane to release the contents outside of the cell. Membrane fusion is carried out by a group of proteins called SNAREs. These proteins are embedded on the membranes of both the vesicle and its target, and they bind to each other to form a tight complex. This complex docks the vesicle to the target and then acts like a “zipper” to pull the two membranes close enough to fuse. The best-studied SNARE proteins act in nerve cells and fuse vesicles to the cell’s membrane in order to release molecules called neurotransmitters. This process is essential for communication between nerve cells, and relies on a protein called Munc18-1. However, it is not well understood how SNARE proteins assemble into the complex and how Munc18-1 regulates this process. Ma et al. have now used a tool called “optical tweezers” to pull an assembled SNARE complex apart in the laboratory and then observe how it folds and assembles in a step-by-step process. These experiments showed that the complex assembled in four stages and not three as has been reported in previous work. SNARE proteins are made up of four parts called domains, and Ma et al. observed that the N-terminal domains were the first to bind to each other. Next, the binding progressed to the middle domain, then to the C-terminal domain and finally to the linker domain. An intermediate, half-zippered form was also observed. Ma et al. next analysed each domain in more detail and found that the N-terminal and C-terminal domains drive the docking of vesicles to the target membrane, the middle domain is crucial for assembling the SNARE complex correctly, and all three domains regulate the fusing of the membranes. Further experiments showed that Munc18-1 promoted the assembly of new SNARE complexes and stabilized the half-zippered form, rather than stabilizing the complex after it had fully assembled. This study will provide a new tool to examine many other proteins that regulate SNARE assembly, and a basis to understand the role of SNARE proteins in brain activity. DOI:http://dx.doi.org/10.7554/eLife.09580.002
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Guangcan Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Department of Physics, Wenzhou University, Wenzhou, China
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yuhao Kang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ying Gao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
35
|
Lundwall RA, Dannemiller JL, Goldsmith HH. Genetic associations with reflexive visual attention in infancy and childhood. Dev Sci 2015; 20. [PMID: 26613685 DOI: 10.1111/desc.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
This study elucidates genetic influences on reflexive (as opposed to sustained) attention in children (aged 9-16 years; N = 332) who previously participated as infants in visual attention studies using orienting to a moving bar (Dannemiller, 2004). We investigated genetic associations with reflexive attention measures in infancy and childhood in the same group of children. The genetic markers (single nucleotide polymorphisms and variable number tandem repeats on the genes APOE, BDNF, CHRNA4, COMT, DRD4, HTR4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25) are related to brain development and/or to the availability of neurotransmitters such as acetylcholine, dopamine, or serotonin. This study shows that typically developing children have differences in reflexive attention associated with their genes, as we found in adults (Lundwall, Guo & Dannemiller, 2012). This effort to extend our previous findings to outcomes in infancy and childhood was necessary because genetic influence may differ over the course of development. Although two of the genes that were tested in our adult study (Lundwall et al., 2012) were significant in either our infant study (SLC6A3) or child study (DRD4), the specific markers tested differed. Performance on the infant task was associated with SLC6A3. In addition, several genetic associations with an analogous child task occurred with markers on CHRNA4, COMT, and DRD4. Interestingly, the child version of the task involved an interaction such that which genotype group performed poorer on the child task depended on whether we were examining the higher or lower infant scoring group. These findings are discussed in terms of genetic influences on reflexive attention in infancy and childhood.
Collapse
|
36
|
Takahashi N, Sawada W, Noguchi J, Watanabe S, Ucar H, Hayashi-Takagi A, Yagishita S, Ohno M, Tokumaru H, Kasai H. Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells. Nat Commun 2015; 6:8531. [PMID: 26439845 PMCID: PMC4600761 DOI: 10.1038/ncomms9531] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/30/2015] [Indexed: 12/30/2022] Open
Abstract
It remains unclear how readiness for Ca(2+)-dependent exocytosis depends on varying degrees of SNARE complex assembly. Here we directly investigate the SNARE assembly using two-photon fluorescence lifetime imaging (FLIM) of Förster resonance energy transfer (FRET) between three pairs of neuronal SNAREs in presynaptic boutons and pancreatic β cells in the islets of Langerhans. These FRET probes functionally rescue their endogenous counterparts, supporting ultrafast exocytosis. We show that trans-SNARE complexes accumulated in the active zone, and estimate the number of complexes associated with each docked vesicle. In contrast, SNAREs were unassembled in resting state, and assembled only shortly prior to insulin exocytosis, which proceeds slowly. We thus demonstrate that distinct states of fusion readiness are associated with SNARE complex formation. Our FRET/FLIM approaches enable optical imaging of fusion readiness in both live and chemically fixed tissues.
Collapse
Affiliation(s)
- Noriko Takahashi
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wakako Sawada
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun Noguchi
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Watanabe
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hasan Ucar
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akiko Hayashi-Takagi
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sho Yagishita
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mitsuyo Ohno
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Tokumaru
- Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Haruo Kasai
- Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
38
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
39
|
Bielopolski N, Lam AD, Bar-On D, Sauer M, Stuenkel EL, Ashery U. Differential interaction of tomosyn with syntaxin and SNAP25 depends on domains in the WD40 β-propeller core and determines its inhibitory activity. J Biol Chem 2014; 289:17087-99. [PMID: 24782308 DOI: 10.1074/jbc.m113.515296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal exocytosis depends on efficient formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and is regulated by tomosyn, a SNARE-binding protein. To gain new information about tomosyn's activity, we characterized its mobility and organization on the plasma membrane (PM) in relation to other SNARE proteins and inhibition of exocytosis. By using direct stochastic optical reconstruction microscopy (dSTORM), we found tomosyn to be organized in small clusters adjacent to syntaxin clusters. In addition, we show that tomosyn is present in both syntaxin-tomosyn complexes and syntaxin-SNAP25-tomosyn complexes. Tomosyn mutants that lack residues 537-578 or 897-917 from its β-propeller core diffused faster on the PM and exhibited reduced binding to SNAP25, suggesting that these mutants shift the equilibrium between tomosyn-syntaxin-SNAP25 complexes on the PM to tomosyn-syntaxin complexes. As these deletion mutants impose less inhibition on exocytosis, we suggest that tomosyn inhibition is mediated via tomosyn-syntaxin-SNAP25 complexes and not tomosyn-syntaxin complexes. These findings characterize, for the first time, tomosyn's dynamics at the PM and its relation to its inhibition of exocytosis.
Collapse
Affiliation(s)
- Noa Bielopolski
- From the Department of Neurobiology, Life Sciences Faculty, and
| | - Alice D Lam
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Dana Bar-On
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Markus Sauer
- the Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Edward L Stuenkel
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Uri Ashery
- From the Department of Neurobiology, Life Sciences Faculty, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel,
| |
Collapse
|
40
|
Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 2014; 5:3665. [DOI: 10.1038/ncomms4665] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 03/14/2014] [Indexed: 12/30/2022] Open
|
41
|
Synaptotagmin 1 and Ca2+ drive trans SNARE zippering. Sci Rep 2014; 4:4575. [PMID: 24694579 PMCID: PMC3974132 DOI: 10.1038/srep04575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is a major Ca2+-sensor that evokes neurotransmitter release. Here we used site-specific fluorescence resonance energy transfer (FRET) assay to investigate the effects of Syt1 on SNAREpin assembly. C2AB, a soluble version of Syt1, had virtually no stimulatory effect on the rate of the FRET at N-terminus of SNARE complex both with and without Ca2+, indicating C2AB does not interfere with the initial nucleation of SNARE assembly. However, C2AB-Ca2+ accelerated the FRET rate significantly at membrane proximal region, indicating C2AB-Ca2+ promotes the transition from a partially assembled SNARE complex to the fusion-competent SNAREpin. Similar enhancement was also observed at the end of the transmembrane domain of SNARE proteins. The stimulatory effect disappeared if there was no membrane or only neutral membrane present.
Collapse
|
42
|
Xu H, Mohtashami M, Stewart B, Boulianne G, Trimble WS. Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS One 2014; 9:e91471. [PMID: 24626111 PMCID: PMC3953403 DOI: 10.1371/journal.pone.0091471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Each membrane fusion event along the secretory and endocytic pathways requires a specific set of SNAREs to assemble into a 4-helical coiled-coil, the so-called trans-SNARE complex. Although most SNAREs contribute one helix to the trans-SNARE complex, members of the SNAP-25 family contribute two helixes. We report the characterization of the Drosophila homologue of SNAP-29 (dSNAP-29), which is expressed throughout development. Unlike the other SNAP-25 like proteins in fruit fly (i.e., dSNAP-25 and dSNAP-24), which form SDS-resistant SNARE complexes with their cognate SNAREs, dSNAP-29 does not participate in any SDS-resistant complexes, despite its interaction with dsyntaxin1 and dsyntaxin16 in vitro. Immunofluorescence studies indicated that dSNAP-29 is distributed in various tissues, locating in small intracellular puncta and on the plasma membrane, where it associates with EH domain-containing proteins implicated in the endocytic pathway. Overexpression and RNAi studies suggested that dSNAP-29 mediates an essential process in Drosophila development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| | - Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gabrielle Boulianne
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William S. Trimble
- Cell Biology Program, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling. PLoS One 2014; 9:e89975. [PMID: 24594979 PMCID: PMC3940720 DOI: 10.1371/journal.pone.0089975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC) channel, intermediate K+ (IK) channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.
Collapse
|
44
|
Scheller RH. In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release. Nat Med 2013; 19:1232-5. [PMID: 24100993 DOI: 10.1038/nm.3339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard H Scheller
- Genentech Research and Early Development, 1 DNA Way, San Francisco, California, USA
| |
Collapse
|
45
|
Boddul SV, Meng J, Dolly JO, Wang J. SNAP-23 and VAMP-3 contribute to the release of IL-6 and TNFα from a human synovial sarcoma cell line. FEBS J 2013; 281:750-65. [DOI: 10.1111/febs.12620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjay V. Boddul
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - Jianghui Meng
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - James Oliver Dolly
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| | - Jiafu Wang
- International Centre for Neurotherapeutics; Dublin City University; Ireland
| |
Collapse
|
46
|
Hurst JH. Richard Scheller and Thomas Südhof receive the 2013 Albert Lasker Basic Medical Research Award. J Clin Invest 2013; 123:4095-101. [PMID: 24091319 DOI: 10.1172/jci72681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Milanese M, Tardito D, Musazzi L, Treccani G, Mallei A, Bonifacino T, Gabriel C, Mocaer E, Racagni G, Popoli M, Bonanno G. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes. BMC Neurosci 2013; 14:75. [PMID: 23895555 PMCID: PMC3734058 DOI: 10.1186/1471-2202-14-75] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. RESULTS Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. CONCLUSIONS Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sai Y, Chen J, Ye F, Zhao Y, Zou Z, Cao J, Dong Z. Dopamine Release Suppression Dependent on an Increase of Intracellular Ca(2+) Contributed to Rotenone-induced Neurotoxicity in PC12 Cells. J Toxicol Pathol 2013; 26:149-57. [PMID: 23914057 PMCID: PMC3695337 DOI: 10.1293/tox.26.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/21/2013] [Indexed: 12/21/2022] Open
Abstract
Rotenone is an inhibitor of mitochondrial complex I that produces a model of Parkinson's disease (PD), in which neurons undergo dopamine release dysfunction and other features. In neurons, exocytosis is one of the processes associated with dopamine release and is dependent on Ca(2+) dynamic changes of the cell. In the present study, we have investigated the exocytosis of dopamine and the involvement of Ca(2+) in dopamine release in PC12 cells administrated with rotenone. Results demonstrated that rotenone led to an elevation of intracellular Ca(2+) through Ca(2+) influx by opening of the voltage-gated Ca(2+) channel and influenced the soluble N-ethylmaleimide attachment protein receptor (SNARE) proteins expression (including syntaxin, vesicle-associated membrane protein 2 (VAMP2) and synaptosome-associated protein 25 (SNAP-25)); pretreatment with a blocker of L-type voltage-activated Ca(2+) channels (nifedipine) decreased the intracellular dopamine levels and ROS formation, increased the cell viability and enhanced the neurite outgrowth and exocytosis of synaptic vesicles. These results indicated that the involvement of intracellular Ca(2+) was one of the factors resulting in suppression of dopamine release suppression in PC12 cells intoxicated with rotenone, which was associated with the rotenone-induced dopamine neurotoxicity.
Collapse
Affiliation(s)
- Yan Sai
- Institute of Toxicology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Profiling and semiquantitative analysis of the cell surface proteome in human mesenchymal stem cells. Anal Bioanal Chem 2013; 405:5501-17. [DOI: 10.1007/s00216-013-6969-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
|
50
|
Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci 2013; 32:18234-45. [PMID: 23238737 DOI: 10.1523/jneurosci.3212-12.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurotransmitter release following synaptic vesicle (SV) fusion is the fundamental mechanism for neuronal communication. Synaptic exocytosis is a specialized form of intercellular communication that shares a common SNARE-mediated fusion mechanism with other membrane trafficking pathways. The regulation of synaptic vesicle fusion kinetics and short-term plasticity is critical for rapid encoding and transmission of signals across synapses. Several families of SNARE-binding proteins have evolved to regulate synaptic exocytosis, including Synaptotagmin (SYT) and Complexin (CPX). Here, we demonstrate that Drosophila CPX controls evoked fusion occurring via the synchronous and asynchronous pathways. cpx(-/-) mutants show increased asynchronous release, while CPX overexpression largely eliminates the asynchronous component of fusion. We also find that SYT and CPX coregulate the kinetics and Ca(2+) co-operativity of neurotransmitter release. CPX functions as a positive regulator of release in part by coupling the Ca(2+) sensor SYT to the fusion machinery and synchronizing its activity to speed fusion. In contrast, syt(-/-); cpx(-/-) double mutants completely abolish the enhanced spontaneous release observe in cpx(-/-) mutants alone, indicating CPX acts as a fusion clamp to block premature exocytosis in part by preventing inappropriate activation of the SNARE machinery by SYT. CPX levels also control the size of synaptic vesicle pools, including the immediate releasable pool and the ready releasable pool-key elements of short-term plasticity that define the ability of synapses to sustain responses during burst firing. These observations indicate CPX regulates both spontaneous and evoked fusion by modulating the timing and properties of SYT activation during the synaptic vesicle cycle.
Collapse
|