1
|
Mishra S, Morshed N, Sidhu SB, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025; 73:1329-1348. [PMID: 40183375 PMCID: PMC12121473 DOI: 10.1002/glia.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The SORL1 gene encodes the sortilin-related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue-resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia-like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA-deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1-deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in the proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to the development of AD. Additionally, our findings may inform the development of novel lysosome and microglia-associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Nader Morshed
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Sonia Beant Sidhu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteBostonMassachusettsUSA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
Mishra S, Morshed N, Sindhu S, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1 deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Nader Morshed
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Sindhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Beth Stevens
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
5
|
Gautam A, Lalande A, Ritter M, Freitas N, Lerolle S, Canus L, Amirache F, Lotteau V, Legros V, Cosset FL, Mathieu C, Boson B. The PACS-2 protein and trafficking motifs in CCHFV Gn and Gc cytoplasmic domains govern CCHFV assembly. Emerg Microbes Infect 2024; 13:2348508. [PMID: 38661085 PMCID: PMC11159592 DOI: 10.1080/22221751.2024.2348508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.
Collapse
Affiliation(s)
- Anupriya Gautam
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Lalande
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Solène Lerolle
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lola Canus
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fouzia Amirache
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Marcy-l’Etoile, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyrille Mathieu
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in Caenorhabditis elegans model of PACS1/PACS2 syndromes. Genetics 2024; 228:iyae118. [PMID: 39031646 PMCID: PMC11457933 DOI: 10.1093/genetics/iyae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024] Open
Abstract
PACS (phosphofurin acidic cluster sorting) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of Caenorhabditis elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 colocalize to somatic cytoplasm of many types of cells and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T Byrd
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Piggott
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Nishida S, Matovelo SA, Kajimoto T, Nakamura SI, Okada T. Involvement of sphingosine 1-phosphate signaling in insulin-like growth factor-II/mannose 6-phosphate receptor trafficking from endosome to the trans-Golgi network. Commun Biol 2024; 7:1182. [PMID: 39300315 DOI: 10.1038/s42003-024-06828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional glycoprotein not only play roles in IGF-II degradation and pro-TGFβ activation but binding to and transport M6P-bearing lysosomal enzymes from the trans-Golgi network (TGN) or the cell surface to lysosomes. At present, information regarding a retrograde transport of IGF-II/M6P receptor from endosomes to the TGN is still limited. We show here that a continuous ligand-dependent activation of sphingosine 1-phosphate receptor type 3 (S1P3R) on the endosomal membranes is required for subsequent recycling back of cargo-unloaded IGF-II/M6P receptors to the TGN. We have further clarified that Gq coupled with S1P3R plays a critical role in the activation of casein kinase 2, which phosphorylates and keeps PACS1 connector protein active for the association with IGF-II/M6P receptors, which enables transport carrier formation with the aid of other adaptor proteins toward the TGN. These findings shed light on the molecular mechanism underlying how continuous activation of the S1P receptor and subsequent downstream Gq signaling regulates the retrograde transport of the empty IGF-II/M6P receptors back to the TGN.
Collapse
Affiliation(s)
- Susumu Nishida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Medical Biochemistry, School of Medicine and Dentistry, The University of Dodoma, Dodoma, Tanzania
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
8
|
Su W, Ahmad I, Wu Y, Tang L, Khan I, Ye B, Liang J, Li S, Zheng YH. Furin Egress from the TGN is Regulated by Membrane-Associated RING-CH Finger (MARCHF) Proteins and Ubiquitin-Specific Protease 32 (USP32) via Nondegradable K33-Polyubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403732. [PMID: 39031635 PMCID: PMC11425283 DOI: 10.1002/advs.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.
Collapse
Affiliation(s)
- Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
9
|
Thakur S, Paliwal P, Farmania R, Khandelwal V, Garg V. Phosphofurin Acidic Cluster Sorting Protein 1 Syndrome: Insights Gained on the Multisystem Involvement Reviewing Encoded Protein Interactions? J Pediatr Genet 2024; 13:245-249. [PMID: 39086439 PMCID: PMC11288717 DOI: 10.1055/s-0042-1756310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Mutations in PACS1 cause moderate-to-severe intellectual disability. Very few cases of PACS1 neurodevelopment disorder have been described in the literature that were identified using whole exome sequencing (WES). We report a case of de novo PACS1 mutation identified through WES after an initial workup for mucopolysaccharidosis. Through this case, we wish to emphasize that most important clinical clue in the facial gestalt is a downturned angle of mouth, thin lips, and wide mouth, giving characteristic wavy appearance of face that can distinguish these cases and can prevent unnecessary workup for the patients.
Collapse
Affiliation(s)
- Seema Thakur
- Department of Genetics and Fetal Diagnosis, Fortis Hospital, New Delhi, India
| | - Preeti Paliwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Rajni Farmania
- Department of Pediatric Neurology, BLK-MAX Super Speciality Hospital, New Delhi, India
| | - Vipin Khandelwal
- Department of Hemato-oncology, BLK Max Super Specialty Hospital, New Delhi, India
| | - Vivek Garg
- Department of Ophthalmology, BLK Max Super Specialty Hospital, New Delhi, India
| |
Collapse
|
10
|
Trothen S, Teplitsky JE, Armstong RE, Zang RX, Lurie A, Mumby MJ, Edgar CR, Grol MW, Dikeakos JD. PACS-1 Interacts with TRPC3 and ESyt1 to Mediate Protein Trafficking while Promoting SOCE and Cooperatively Regulating Hormone Secretion. ACS OMEGA 2024; 9:35014-35027. [PMID: 39157130 PMCID: PMC11325417 DOI: 10.1021/acsomega.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Corticotropic cells of the anterior pituitary gland release adrenocorticotropic hormone (ACTH) in a regulated manner to promote the production of cortisol and androgens. The process of ACTH secretion is partly mediated by the phosphofurin acidic cluster sorting protein 1 (PACS-1); however, the underlying mechanisms behind this regulation remain unclear. Herein, we demonstrated PACS-1 interactions with the short transient receptor potential channel 3 (TRPC3) calcium transporter and the extended synaptotagmin-1 (ESyt1) endoplasmic reticulum-plasma membrane tethering protein. Importantly, PACS-1 promoted interactions between TRPC3 and ESyt1 and regulated their plasma membrane localization. Lastly, we demonstrated that PACS-1 is required for a proper store-operated calcium entry (SOCE) response and that ESyt1 regulates ACTH secretion through an unknown mechanism regulated by PACS-1. Overall, our study provides new insights into the physiological role PACS-1 plays in modulating intracellular calcium levels and regulating ACTH secretion in corticotropic cells.
Collapse
Affiliation(s)
- Steven
M. Trothen
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jack E. Teplitsky
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ryan E. Armstong
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rong Xuan Zang
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Antony Lurie
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell J. Mumby
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Cassandra R. Edgar
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew W. Grol
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
11
|
Ferrié M, Alexandre V, Montpellier C, Bouquet P, Tubiana T, Mézière L, Ankavay M, Bentaleb C, Dubuisson J, Bressanelli S, Aliouat-Denis CM, Rouillé Y, Cocquerel L. The AP-1 adaptor complex is essential for intracellular trafficking of the ORF2 capsid protein and assembly of Hepatitis E virus. Cell Mol Life Sci 2024; 81:335. [PMID: 39117755 PMCID: PMC11335258 DOI: 10.1007/s00018-024-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.
Collapse
Affiliation(s)
- Martin Ferrié
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Virginie Alexandre
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Claire Montpellier
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Peggy Bouquet
- Unit of Clinical Microbiology, Institut Pasteur de Lille, Lille, F-59000, France
| | - Thibault Tubiana
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Léa Mézière
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Maliki Ankavay
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
- Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Cyrine Bentaleb
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Cécile-Marie Aliouat-Denis
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL- Center for Infection and Immunity of Lille, Lille, F-59000, France.
| |
Collapse
|
12
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in C. elegans model of PACS1/PACS2 syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590644. [PMID: 38712144 PMCID: PMC11071410 DOI: 10.1101/2024.04.22.590644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T. Byrd
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Christopher A. Piggott
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| |
Collapse
|
13
|
Stoian A, Bajko Z, Bălașa R, Andone S, Stoian M, Ormenișan I, Muntean C, Bănescu C. Characteristics of Developmental and Epileptic Encephalopathy Associated with PACS2 p.Glu209Lys Pathogenic Variant-Our Experience and Systematic Review of the Literature. Biomolecules 2024; 14:270. [PMID: 38540691 PMCID: PMC10968252 DOI: 10.3390/biom14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Zoltan Bajko
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Rodica Bălașa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Sebastian Andone
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Mircea Stoian
- Department of Anesthesia and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Ioana Ormenișan
- 1st Neurology Clinic, Mures County Emergency Hospital, 540142 Targu Mures, Romania;
| | - Carmen Muntean
- Department of Pediatrics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Claudia Bănescu
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
14
|
Rylaarsdam L, Rakotomamonjy J, Pope E, Guemez-Gamboa A. iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity. Nat Commun 2024; 15:827. [PMID: 38280846 PMCID: PMC10821916 DOI: 10.1038/s41467-024-44989-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor Pope
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Zhang H, Gao K, Wang S, Zhang YH, Yang ZX, Wu Y, Jiang YW. PACS gene family-related neurological diseases: limited genotypes and diverse phenotypes. World J Pediatr 2024; 20:82-91. [PMID: 36645641 DOI: 10.1007/s12519-022-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND The PACS gene family has been demonstrated to be related to intracellular vesicular trafficking. The phenotypic manifestations caused by the pathogenic variants of PACS include epilepsy, intellectual disability/developmental delay, and malformations, such as facial abnormalities. METHODS We identified seven new cases with pathogenic or likely pathogenic PACS variants using next-generation sequencing. Detailed information obtained from these patients was analyzed along with that obtained from previously reported patients. RESULTS With the inclusion of the newly diagnosed cases in this study, 103 cases with PACS gene family-related neurological diseases were reported, of which 43 were PACS2-related cases and the remaining were PACS1-related cases. Most patients had seizures, which have been reported to be effectively controlled by several types of anti-seizure medications (ASMs). The most efficacious and frequently prescribed ASMs included sodium valproate (43.3%, 13/30), oxcarbazepine/carbamazepine (26.7%, 8/30), and levetiracetam (20%, 6/30). Almost all patients had intellectual disability/developmental delay. The most common pathogenic missense variants were PACS1 p. Arg203Trp and PACS2 p.Glu209Lys. In addition, we report a patient carrying a likely pathogenic copy number variation (CNV) (de novo heterozygous deletion of chr14:105821380-106107443, 286 kilobase, destroyed part of the furin-binding region domain and the protein structure after it) with more severe and refractory late-onset epilepsy. CONCLUSIONS The clinical phenotypes of the different PACS heterozygous missense variants were similar. The pathogenic variant sites of PACS1 and PACS2 were quite limited but located in different regions. A CNV destroying part of the PACS2 gene might also be pathogenic. These findings may provide an important clue for further functional studies on the pathogenic mechanism of neurological disorders related to the PACS gene family. Video Abstract (MP4 65767 kb).
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yue-Hua Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Zhi-Xian Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing, 100034, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
16
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy. Nat Commun 2023; 14:6547. [PMID: 37848409 PMCID: PMC10582149 DOI: 10.1038/s41467-023-42176-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jenea B Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Bradley J Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Melanie J Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
17
|
Zhu H, Su Y, Wang J, Wu JY. The role of vesicle trafficking genes in osteoblast differentiation and function. Sci Rep 2023; 13:16079. [PMID: 37752218 PMCID: PMC10522589 DOI: 10.1038/s41598-023-43116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Using Col2.3GFP transgenic mice expressing GFP in maturing osteoblasts, we isolated Col2.3GFP+ enriched osteoblasts from 3 sources. We performed RNA-sequencing, identified 593 overlapping genes and confirmed these genes are highly enriched in osteoblast differentiation and bone mineralization annotation categories. The top 3 annotations are all associated with endoplasmic reticulum and Golgi vesicle transport. We selected 22 trafficking genes that have not been well characterized in bone for functional validation in MC3T3-E1 pre-osteoblasts. Transient siRNA knockdown of trafficking genes including Sec24d, Gosr2, Rab2a, Stx5a, Bet1, Preb, Arf4, Ramp1, Cog6 and Pacs1 significantly increased mineralized nodule formation and expression of osteoblast markers. Increased mineralized nodule formation was suppressed by concurrent knockdown of P4ha1 and/or P4ha2, encoding collagen prolyl 4-hydroxylase isoenzymes. MC3T3-E1 pre-osteoblasts with knockdown of Cog6, Gosr2, Pacs1 or Arf4 formed more and larger ectopic mineralized bone nodules in vivo, which was attenuated by concurrent knockdown P4ha2. Permanent knockdown of Cog6 and Pacs1 by CRISPR/Cas9 gene editing in MC3T3-E1 pre-osteoblasts recapitulated increased mineralized nodule formation and osteoblast differentiation. In summary, we have identified several vesicle trafficking genes with roles in osteoblast function. Our findings provide potential targets for regulating bone formation.
Collapse
Affiliation(s)
- Hui Zhu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yingying Su
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie Wang
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Jin N, Kan CM, Pei XM, Cheung WL, Ng SSM, Wong HT, Cheng HYL, Leung WW, Wong YN, Tsang HF, Chan AKC, Wong YKE, Cho WCS, Chan JKC, Tai WCS, Chan TF, Wong SCC, Yim AKY, Yu ACS. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer. Front Oncol 2023; 13:1134445. [PMID: 37091184 PMCID: PMC10115432 DOI: 10.3389/fonc.2023.1134445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Cell free RNA (cfRNA) contains transcript fragments from multiple cell types, making it useful for cancer detection in clinical settings. However, the pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC) patients remain unclear. METHODS To identify the tissue-specific contributions of cfRNAs transcriptomic profile, we used a published single-cell transcriptomics profile to deconvolute cell type abundance among paired plasma samples from CRC patients who underwent tumor-ablative surgery. We further validated the differentially expressed cfRNAs in 5 pairs of CRC tumor samples and adjacent tissue samples as well as 3 additional CRC tumor samples using RNA-sequencing. RESULTS The transcriptomic component from intestinal secretory cells was significantly decreased in the in-house post-surgical cfRNA. The HPGD, PACS1, and TDP2 expression was consistent across cfRNA and tissue samples. Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify the patients into two groups with significantly different survival outcomes. CONCLUSIONS The three-gene signature holds promise in applying minimal residual disease (MRD) testing, which involves profiling remnants of cancer cells after or during treatment. Biomarkers identified in the present study need to be validated in a larger cohort of samples in order to ascertain their possible use in early diagnosis of CRC.
Collapse
Affiliation(s)
- Nana Jin
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
| | - Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Lam Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR, China
| | - Hennie Yuk-Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Wa Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yee Ni Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | | | - William Chi Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
19
|
Impact of Hypermannosylation on the Structure and Functionality of the ER and the Golgi Complex. Biomedicines 2023; 11:biomedicines11010146. [PMID: 36672654 PMCID: PMC9856158 DOI: 10.3390/biomedicines11010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Proteins of the secretory pathway undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered protein glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in GDP-mannose pyrophosphorylase A (GMPPA) can cause a syndrome characterized by alacrima, achalasia, mental retardation, and myopathic alterations (AAMR syndrome). GMPPA acts as a feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA thus enhances the incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we further characterized the consequences of loss of GMPPA for the secretory pathway. This includes a fragmentation of the Golgi apparatus, which comes along with a regulation of the abundance of several ER- and Golgi-resident proteins. We further show that the activity of the Golgi-associated endoprotease furin is reduced. Moreover, the fraction of α-DG, which is retained in the ER, is increased. Notably, WT cells cultured at a high mannose concentration display similar changes with increased retention of α-DG, altered structure of the Golgi apparatus, and a decrease in furin activity. In summary, our data underline the importance of a balanced mannose homeostasis for the secretory pathway.
Collapse
|
20
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
21
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
22
|
Chen R, Yang Z, Liu J, Cai X, Huo Y, Zhang Z, Li M, Chang H, Luo XJ. Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome Med 2022; 14:53. [PMID: 35590387 PMCID: PMC9121601 DOI: 10.1186/s13073-022-01057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mechanisms remain challenging. METHODS We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues (or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms (SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding-disrupting SNPs (hereafter referred to as "functional SNPs") through a series of experiments, including reporter gene assays, allele-specific expression (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identified functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects dendritic spine density. RESULTS We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed dysregulation of some target genes of the identified TF binding-disrupting SNPs in BD patients compared with controls, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mechanisms of these functional SNPs in BD. CONCLUSIONS Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Zhihui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China
- Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China.
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
23
|
Thomas G, Couture F, Kwiatkowska A. The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. Int J Mol Sci 2022; 23:3435. [PMID: 35408793 PMCID: PMC8999023 DOI: 10.3390/ijms23073435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The spurious acquisition and optimization of a furin cleavage site in the SARS-CoV-2 spike protein is associated with increased viral transmission and disease, and has generated intense interest in the development and application of therapeutic furin inhibitors to thwart the COVID-19 pandemic. This review summarizes the seminal studies that informed current efforts to inhibit furin. These include the convergent efforts of endocrinologists, virologists, and yeast geneticists that, together, culminated in the discovery of furin. We describe the pioneering biochemical studies which led to the first furin inhibitors that were able to block the disease pathways which are broadly critical for pathogen virulence, tumor invasiveness, and atherosclerosis. We then summarize how these studies subsequently informed current strategies leading to the development of small-molecule furin inhibitors as potential therapies to combat SARS-CoV-2 and other diseases that rely on furin for their pathogenicity and progression.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Frédéric Couture
- TransBIOTech, Lévis, QC G6V 6Z3, Canada;
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Intégré de Santé et de Services Sociaux de Chaudière-Appalaches, Lévis, QC G6V 3Z1, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
24
|
Xu J, Yu X, Ye H, Gao S, Deng N, Lu Y, Lin H, Zhang Y, Lu D. Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Front Immunol 2022; 12:825358. [PMID: 35095928 PMCID: PMC8793131 DOI: 10.3389/fimmu.2021.825358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) raises the issue of how hypoxia destroys normal physiological function and host immunity against pathogens. However, there are few or no comprehensive omics studies on this effect. From an evolutionary perspective, animals living in complex and changeable marine environments might develop signaling pathways to address bacterial threats under hypoxia. In this study, the ancient genomic model animal Takifugu obscurus and widespread Vibrio parahaemolyticus were utilized to study the effect. T. obscurus was challenged by V. parahaemolyticus or (and) exposed to hypoxia. The effects of hypoxia and infection were identified, and a theoretical model of the host critical signaling pathway in response to hypoxia and infection was defined by methods of comparative metabolomics and proteomics on the entire liver. The changing trends of some differential metabolites and proteins under hypoxia, infection or double stressors were consistent. The model includes transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor-1α (HIF-1α), and epidermal growth factor (EGF) signaling pathways, and the consistent changing trends indicated that the host liver tended toward cell proliferation. Hypoxia and infection caused tissue damage and fibrosis in the portal area of the liver, which may be related to TGF-β1 signal transduction. We propose that LRG (leucine-rich alpha-2-glycoprotein) is widely involved in the transition of the TGF-β1/Smad signaling pathway in response to hypoxia and pathogenic infection in vertebrates as a conserved molecule.
Collapse
Affiliation(s)
- Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Hangyu Ye
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Songze Gao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Ocean, Hainan University, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Trothen SM, Zang RX, Lurie A, Dikeakos JD. PACS-1 contains distinct motifs for nuclear-cytoplasmic transport and interacts with the RNA-binding protein PTBP1 in the nucleus and cytosol. FEBS Lett 2022; 596:232-248. [PMID: 34822171 DOI: 10.1002/1873-3468.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Phosphofurin acidic cluster sorting protein 1 (PACS-1) is canonically a cytosolic trafficking protein, yet recent reports have described nuclear roles for PACS-1. Herein, we sought to define the nuclear transport mechanism of PACS-1. We demonstrate that PACS-1 nucleocytoplasmic trafficking is dependent on its interaction with the nuclear transport receptors importin alpha 5 and exportin 1. PACS-1 nuclear entry and exit are defined by a nuclear localization signal (NLS, residues 311-318) and nuclear export signal (NES3, residues 366-375). Mutation of the PACS-1 NLS and NES3 altered the localization of a complex formed between PACS-1 and an RNA-binding protein, polypyrimidine tract-binding protein 1. Overall, we identify the nuclear localization mechanism of PACS-1 and highlight a potential role for PACS-1 in RNA-binding protein trafficking.
Collapse
Affiliation(s)
- Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rong Xuan Zang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Sorokina EA, Reis LM, Thompson S, Agre K, Babovic-Vuksanovic D, Ellingson MS, Hasadsri L, van Bever Y, Semina EV. WDR37 syndrome: identification of a distinct new cluster of disease-associated variants and functional analyses of mutant proteins. Hum Genet 2021; 140:1775-1789. [PMID: 34642815 PMCID: PMC9241141 DOI: 10.1007/s00439-021-02384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Missense variants located in the N-terminal region of WDR37 were recently identified to cause a multisystemic syndrome affecting neurological, ocular, gastrointestinal, genitourinary, and cardiac development. WDR37 encodes a WD40 repeat-containing protein of unknown function. We identified three novel WDR37 variants, two likely pathogenic de novo alleles and one inherited variant of uncertain significance, in individuals with phenotypes overlapping those previously reported but clustering in a different region of the protein. The novel alleles are C-terminal to the prior variants and located either within the second WD40 motif (c.659A>G p.(Asp220Gly)) or in a disordered protein region connecting the second and third WD40 motifs (c.778G>A p.(Asp260Asn) and c.770C>A p.(Pro257His)). The three novel mutants showed normal cellular localization but lower expression levels in comparison to wild-type WDR37. To investigate the normal interactions of WDR37, we performed co-immunoprecipitation and yeast two-hybrid assays. This revealed the ability of WDR37 to form homodimers and to strongly bind PACS1 and PACS2 phosphofurin acidic cluster sorting proteins; immunocytochemistry confirmed colocalization of WDR37 with PACS1 and PACS2 in human cells. Next, we analyzed previously reported and novel mutants for their ability to dimerize with wild-type WDR37 and bind PACS proteins. Interaction with wild-type WDR37 was not affected for any variant; however, one novel mutant, p.(Asp220Gly), lost its ability to bind PACS1 and PACS2. In summary, this study presents a novel region of WDR37 involved in human disease, identifies PACS1 and PACS2 as major binding partners of WDR37 and provides insight into the functional effects of various WDR37 variants.
Collapse
Affiliation(s)
- Elena A Sorokina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Katherine Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marissa S Ellingson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA.
- Departments of Ophthalmology and Visual Sciences and Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
27
|
Rylaarsdam L, Reddy T, Guemez-Gamboa A. In search of a cure: PACS1 Research Foundation as a model of rare disease therapy development. Trends Genet 2021; 38:109-112. [PMID: 34836651 DOI: 10.1016/j.tig.2021.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Rare diseases affect nearly 400 million people worldwide and have a devastating impact on patients and families. Although these diseases are collectively common, they are often overlooked by the research community. We present the ongoing work of the PACS1 Syndrome Research Foundation as a paradigm for approaching rare disease research.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, IL, USA
| | - Taruna Reddy
- PACS1 Syndrome Research Foundation, Old Greenwich, CT, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
28
|
Ohkawa T, Nishimura A, Kosaki K, Aoki-Nogami Y, Tomizawa D, Kashimada K, Morio T, Kato M, Mizutani S, Takagi M. PAX3/7-FOXO1 fusion-negative alveolar rhabdomyosarcoma in Schuurs-Hoeijmakers syndrome. J Hum Genet 2021; 67:51-54. [PMID: 34341476 DOI: 10.1038/s10038-021-00965-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
PAX3/7-FOXO1 fusion-negative alveolar rhabdomyosarcoma (ARMS) developed in a patient presenting with intellectual disability and dysmorphic facial features. Whole exome sequencing analysis of a germline sample identified a PACS1 c.607 C>T de novo variant and the patient was diagnosed with Schuurs-Hoeijmakers syndrome (SHS). SHS is a rare disease characterized by intellectual disability and dysmorphic facial features, among various physical abnormalities, due to PACS1 c.607 C>T de novo variant. Due to the rarity of the SHS, diagnosis based on phenotypic information is difficult. To date, there have been no previous reports describing malignancy associated with SHS. Comprehensive somatic mutation analysis revealed a unique pattern of genetic alterations in the PAX3/7-FOXO1 fusion-negative ARMS tumor, including mutations in the oncogene, HRAS; MYOD1, a molecule essential for muscle differentiation; and KMT2C and TET1, genes encoding factors involved in epigenetic regulation. Although the role of PACS1 in tumorigenesis is unclear, it is reported to function in apoptosis regulation. Our case suggests that PACS1 could have a novel role in oncogenesis.
Collapse
Affiliation(s)
- Teppei Ohkawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics, Chiba Kaihinn Municipal Hospital, Chiba, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Aoki-Nogami
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatric Oncology, National Cancer Center, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
29
|
Liu Y, Ding H, Yan T, Liu L, Yu L, Huang Y, Li F, Zeng Y, Huang W, Zhang Y, Yin A. A Novel Multi-Exon Deletion of PACS1 in a Three-Generation Pedigree: Supplements to PACS1 Neurodevelopmental Disorder Spectrum. Front Genet 2021; 12:690216. [PMID: 34373684 PMCID: PMC8346485 DOI: 10.3389/fgene.2021.690216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023] Open
Abstract
PACS1 neurodevelopmental disorder (PACS1-NDD) is a category of rare disorder characterized by intellectual disability, speech delay, dysmorphic facial features, and developmental delay. Other various physical abnormalities of PACS1-NDD might involve all organs and systems. Notably, there were only two unique missense mutations [c.607C > T (p.Arg203Trp) and c.608G > A (p.Arg203Gln)] in PACS1 that had been identified as pathogenic variants for PACS1-NDD or Schuurs-Hoeijmakers syndrome (SHMS). Previous reports suggested that these common missense variants were likely to act through dominant-negative or gain-of-function effects manner. It is still uncertain whether the intragenic deletion or duplication in PACS1 will be disease-causing. By using whole-exome sequencing, we first identified a novel heterozygous multi-exon deletion covering exons 12-24 in PACS1 (NM_018026) in four individuals (two brothers and their father and grandfather) in a three-generation family. The younger brother was referred to our center prenatally and was evaluated before and after the birth. Unlike SHMS, no typical dysmorphic facial features, intellectual problems, and structural brain anomalies were observed among these four individuals. The brothers showed a mild hypermyotonia of their extremities at the age of 3 months old and recovered over time. Mild speech and cognitive delay were also noticed in the two brothers at the age of 13 and 27 months old, respectively. However, their father and grandfather showed normal language and cognitive competence. This study might supplement the spectrum of PACS1-NDD and demonstrates that the loss of function variation in PACS1 displays no contributions to the typical SHMS which is caused by the recurrent c.607C > T (p.Arg203Trp) variant.
Collapse
Affiliation(s)
- Yuan Liu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Ling Liu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yanlin Huang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fake Li
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yukun Zeng
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weiwei Huang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Aihua Yin
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
30
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
31
|
Lu CL, Kim J. Craniofacial Diseases Caused by Defects in Intracellular Trafficking. Genes (Basel) 2021; 12:726. [PMID: 34068038 PMCID: PMC8152478 DOI: 10.3390/genes12050726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogenesis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases.
Collapse
Affiliation(s)
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
32
|
Nair-Gill E, Bonora M, Zhong X, Liu A, Miranda A, Stewart N, Ludwig S, Russell J, Gallagher T, Pinton P, Beutler B. Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO J 2021; 40:e104888. [PMID: 33630350 DOI: 10.15252/embj.2020104888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.
Collapse
Affiliation(s)
- Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Miranda
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan Stewart
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
He C, Su C, Zhang W, Wan Q. miR-485-5p alleviates Alzheimer's disease progression by targeting PACS1. Transl Neurosci 2021; 12:335-345. [PMID: 34594577 PMCID: PMC8442568 DOI: 10.1515/tnsci-2020-0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a common dementia and a heterogeneous disease. Previous research has validated that microRNAs (miRNAs) are pivotal regulators in the initiation and development of tremendous diseases including AD. MicroRNA-485-5p (miR-485-5p) was reported to be an important participant implicated in several neurological diseases, but its role in AD still needs to be further investigated. In this research, we explored the biological function of miR-485-5p in AD. RT-qPCR revealed that miR-485-5p expression was downregulated in the hippocampus of APP/PS1 mice. Additionally, miR-485-5p overexpression facilitated the learning and memory capabilities of APP/PS1 mice according to Morris water maze test, fear conditioning test, and immunofluorescent staining. Moreover, CCK-8 assay, flow cytometric analysis, and western blot analysis suggested that miR-485-5p overexpression promoted pericyte viability and prohibited pericyte apoptosis in APP/PS1 mice. Mechanistically, miR-485-5p directly targeted PACS1 in pericytes, as shown in a luciferase reporter assay. In rescue assays, PACS1 overexpression countervailed the effect of miR-485-5p overexpression on pericyte viability and apoptosis. In conclusion, miR-485-5p ameliorates AD progression by targeting PACS1.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Caixia Su
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Qi Wan
- Department of Neurological Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 21000, Jiangsu, China
| |
Collapse
|
34
|
Veena MS, Raychaudhuri S, Basak SK, Venkatesan N, Kumar P, Biswas R, Chakrabarti R, Lu J, Su T, Gallagher-Jones M, Morselli M, Fu H, Pellegrini M, Goldstein T, Aladjem MI, Rettig MB, Wilczynski SP, Shin DS, Srivatsan ES. Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. J Biol Chem 2020; 295:17169-17186. [PMID: 33028635 PMCID: PMC7863911 DOI: 10.1074/jbc.ra120.014048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.
Collapse
Affiliation(s)
- Mysore S Veena
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Santanu Raychaudhuri
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Saroj K Basak
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Natarajan Venkatesan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rita Chakrabarti
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, UCLA, Los Angeles, California, USA
| | | | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Theodore Goldstein
- Institute of Computational Sciences, University of California San Francisco, San Francisco, California, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew B Rettig
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sharon P Wilczynski
- Department of Pathology, City of Hope Medical Center, Duarte, California, USA
| | - Daniel Sanghoon Shin
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eri S Srivatsan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
35
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
36
|
Gregory DJ, DeLoid GM, Salmon SL, Metzger DW, Kramnik I, Kobzik L. SON DNA-binding protein mediates macrophage autophagy and responses to intracellular infection. FEBS Lett 2020; 594:2782-2799. [PMID: 32484234 DOI: 10.1002/1873-3468.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/09/2022]
Abstract
Intracellular pathogens affect diverse host cellular defence and metabolic pathways. Here, we used infection with Francisella tularensis to identify SON DNA-binding protein as a central determinant of macrophage activities. RNAi knockdown of SON increases survival of human macrophages following F. tularensis infection or inflammasome stimulation. SON is required for macrophage autophagy, interferon response factor 3 expression, type I interferon response and inflammasome-associated readouts. SON knockdown has gene- and stimulus-specific effects on inflammatory gene expression. SON is required for accurate splicing and expression of GBF1, a key mediator of cis-Golgi structure and function. Chemical GBF1 inhibition has similar effects to SON knockdown, suggesting that SON controls macrophage functions at least in part by controlling Golgi-associated processes.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Glen M DeLoid
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon L Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
37
|
Barthelson K, Newman M, Lardelli M. Sorting Out the Role of the Sortilin-Related Receptor 1 in Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:123-140. [PMID: 32587946 PMCID: PMC7306921 DOI: 10.3233/adr-200177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Sortilin-related receptor 1 (SORL1) encodes a large, multi-domain containing, membrane-bound receptor involved in endosomal sorting of proteins between the trans-Golgi network, endosomes and the plasma membrane. It is genetically associated with Alzheimer's disease (AD), the most common form of dementia. SORL1 is a unique gene in AD, as it appears to show strong associations with the common, late-onset, sporadic form of AD and the rare, early-onset familial form of AD. Here, we review the genetics of SORL1 in AD and discuss potential roles it could play in AD pathogenesis.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
38
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Mani C, Tripathi K, Luan S, Clark DW, Andrews JF, Vindigni A, Thomas G, Palle K. The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability. Oncogene 2020; 39:2583-2596. [PMID: 31988453 PMCID: PMC7085454 DOI: 10.1038/s41388-020-1167-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Abstract
Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Joel F Andrews
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Surgery, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
40
|
Liu H, Hu PW, Budhiraja S, Misra A, Couturier J, Lloyd RE, Lewis DE, Kimata JT, Rice AP. PACS1 is an HIV-1 cofactor that functions in Rev-mediated nuclear export of viral RNA. Virology 2020; 540:88-96. [PMID: 31759187 PMCID: PMC7335006 DOI: 10.1016/j.virol.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
HIV-1 is dependent upon cellular proteins to mediate the many processes required for viral replication. One such protein, PACS1, functions to localize Furin to the trans-Golgi network where Furin cleaves HIV-1 gp160 Envelope into gp41 and gp120. We show here that PACS1 also shuttles between the nucleus and cytoplasm, associates with the viral Rev protein and its cofactor CRM1, and contributes to nuclear export of viral transcripts. PACS1 appears specific to the Rev-CRM1 pathway and not other retroviral RNA export pathways. Over-expression of PACS1 increases nuclear export of unspliced viral RNA and significantly increases p24 expression in HIV-1-infected Jurkat CD4+ T cells. SiRNA depletion and over-expression experiments suggest that PACS1 may promote trafficking of HIV-1 GagPol RNA to a pathway distinct from that of translation on polyribosomes.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Molecular Virology and Microbiology, USA
| | - Pei-Wen Hu
- Department of Molecular Virology and Microbiology, USA
| | | | - Anisha Misra
- Department of Molecular Virology and Microbiology, USA
| | - Jacob Couturier
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Dorothy E Lewis
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Andrew P Rice
- Department of Molecular Virology and Microbiology, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol 2019; 21:1219-1233. [PMID: 31576058 PMCID: PMC6778059 DOI: 10.1038/s41556-019-0393-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargos with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargos including the cation-independent mannose-6-phosphate receptor and semaphorin 4C by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a β-hairpin that binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargos share this motif and require SNX5/SNX6 for their recycling. These include cargos involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the ‘Endosomal SNX-BAR sorting complex for promoting exit 1’ (ESCPE-1), which couples sorting motif recognition to BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.
Collapse
|
42
|
Löw K, Hardes K, Fedeli C, Seidah NG, Constam DB, Pasquato A, Steinmetzer T, Roulin A, Kunz S. A novel cell-based sensor detecting the activity of individual basic proprotein convertases. FEBS J 2019; 286:4597-4620. [PMID: 31276291 DOI: 10.1111/febs.14979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction. Herein we report basic PC sensor (BPCS), a novel cell-based molecular sensor that allows rapid screening of candidate inhibitors and their selectivity toward individual basic PCs within mammalian cells. BPCS consists of Gaussia luciferase linked to a sortilin-1 membrane anchor via a cleavage motif that allows efficient release of luciferase specifically if individual basic PCs are provided in the same membrane. Screening of selected candidate peptidomimetic inhibitors revealed that BPCS can readily distinguish between general and selective PC inhibitors in a high-throughput screening format. The robust and cost-effective assay format of BPCS makes it suitable to identify novel specific small-molecule inhibitors against basic PCs for therapeutic application. Its cell-based nature will allow screening for drug targets in addition to the catalytically active mature enzyme, including maturation, transport, and cellular factors that modulate the enzyme's activity. This broadened 'target range' will enhance the likelihood to identify novel small-molecule compounds that inhibit basic PCs in a direct or indirect manner and represents a conceptual advantage.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Kornelia Hardes
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Chiara Fedeli
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, (Affiliated to the University of Montreal), Canada
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Switzerland
| | - Antonella Pasquato
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| |
Collapse
|
43
|
Kumari S, Kumar M, Verma R, Ghosh JK, Tripathi RK. HIV-1 Nef-GCC185 interaction regulates assembly of cellular protein complexes at TGN targeting MHC-I downregulation. Life Sci 2019; 229:13-20. [PMID: 30953643 DOI: 10.1016/j.lfs.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
AIM HIV-1 Nef downregulates surface MHC-I to protect the infected cells from CTLs-mediated killing. Although MHC-I downregulation has been extensively studied, the Nef-dependent assembly of the multi-protein complex and subsequent pathways activation has not yet been well explored. The present study is aimed for the identification of Nef-mediated sequential recruitment of cellular proteins that constitute the functional multi-protein complex, required for the downregulation of MHC-I. MAIN METHODS Different Cellular protein complexes were identified by co-immunoprecipitation in Nef or NefE4A mutant-expressing Jurkat T, and THP-1 cells followed by exposure to Nef-specific peptides 24 h post infection. The MHC-I downregulation was analyzed by confocal microscopy and flow cytometry. KEY FINDINGS We found the association of Nef with PACS-2, GCC185, PI3K, AP-1, SFK, and MHC-I proteins that probably constitute a functional multi-protein complex. Furthermore, the immunoprecipitations with PACS-2 and GCC185 in the presence or absence of Nef, Nef E4A mutant and Nef with CP-inhibitor divide the functional complex of Nef into Nef-dependent (AP-1 and PI3K) and GCC185-dependent complex (MHC-I and SFK). The molecular mechanisms for activation of cellular pathways have been deciphered on the basis of these interactions that are brought in close proximity through Nef-GCC185 interaction. Knockdown of GCC185 using siRNA in Jurkat T cells showed a direct relationship between the assembly of functional multi-protein complex and MHC-I accumulation at GCC185. SIGNIFICANCE Overall, our study elucidates that GCC185 is a focal point for the assembly of the Nef-mediated multi-protein complex at TGN.
Collapse
Affiliation(s)
- Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Manjeet Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Richa Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
44
|
Ginefra P, Filippi BGH, Donovan P, Bessonnard S, Constam DB. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7. Cell Rep 2019; 22:2176-2189. [PMID: 29466742 DOI: 10.1016/j.celrep.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Bruno G H Filippi
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Prudence Donovan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Sylvain Bessonnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Sachan V, Lodge R, Mihara K, Hamelin J, Power C, Gelman BB, Hollenberg MD, Cohen ÉA, Seidah NG. HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death Differ 2019; 26:1942-1954. [PMID: 30683917 DOI: 10.1038/s41418-018-0264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.
Collapse
Affiliation(s)
- Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Robert Lodge
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Josée Hamelin
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB, T6G2S2, Canada
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch Houston, Galveston, 77555, TX, USA
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada.
| |
Collapse
|
46
|
Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y, Luan S, Krasnow SM, Thomas LL, Koharudin LMI, Benos PV, Marks DL, Gronenborn AM, Thomas G. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell 2018; 72:985-998.e7. [PMID: 30415949 PMCID: PMC6309500 DOI: 10.1016/j.molcel.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - You-Jin Choi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yiqi Qian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephanie M Krasnow
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laura L Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
47
|
Dirk BS, End C, Pawlak EN, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD. PACS-1 and adaptor protein-1 mediate ACTH trafficking to the regulated secretory pathway. Biochem Biophys Res Commun 2018; 507:519-525. [PMID: 30458990 DOI: 10.1016/j.bbrc.2018.11.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein - 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher End
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
48
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
49
|
Identification of Novel Subcellular Localization and Trafficking of HIV-1 Nef Variants from Reference Strains G (F1.93.HH8793) and H (BE.93.VI997). Viruses 2018; 10:v10090493. [PMID: 30217018 PMCID: PMC6164931 DOI: 10.3390/v10090493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef, plays an essential role in disease progression and pathogenesis via hijacking the host cellular membrane-trafficking machinery. Interestingly, HIV-1 group-M subtypes display differences in the rate of disease progression. However, few reports investigated how the cellular behaviors and activities of Nef isolates from reference strains may differ between HIV-1 group-M subtypes. Here, we characterize how differing cellular distributions of Nef proteins across group-M subtypes may impact protein function using immunofluorescence microscopy and flow cytometric analysis. We demonstrate that Nef variants isolated from HIV-1 group-M subtypes display differences in expression, with low expressing Nef proteins from reference strains of subtypes G (F1.93.HH8793) and H (BE.93.VI997) also displaying decreased functionality. Additionally, we demonstrate variations in the subcellular distribution and localization of these Nef proteins. Nef from subtype G (F1.93.HH8793) and H (BE.93.VI997) reference strains also failed to colocalize with the trans-Golgi network, and were not differentially localized to cellular markers of multivesicular bodies or lysosomes. Strikingly, our results demonstrate that HIV-1 Nef proteins from reference strains G (F1.93.HH8793) and H (BE.93.VI997) highly colocalize with labeled mitochondrial compartments.
Collapse
|
50
|
Rosas NM, Alvarez Juliá A, Alzuri SE, Frasch AC, Fuchsova B. Alanine Scanning Mutagenesis of the C-Terminal Cytosolic End of Gpm6a Identifies Key Residues Essential for the Formation of Filopodia. Front Mol Neurosci 2018; 11:314. [PMID: 30233315 PMCID: PMC6131581 DOI: 10.3389/fnmol.2018.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal membrane glycoprotein M6a (Gpm6a) is a protein with four transmembrane regions and the N- and the C-ends facing the cytosol. It functions in processes of neuronal development, outgrowth of neurites, and formation of filopodia, spines, and synapsis. Molecular mechanisms by which Gpm6a acts in these processes are not fully comprehended. Structural similarities of Gpm6a with tetraspanins led us to hypothesize that, similarly to tetraspanins, the cytoplasmic tails function as connections with cytoskeletal and/or signaling proteins. Here, we demonstrate that the C- but not the N-terminal cytosolic end of Gpm6a is required for the formation of filopodia by Gpm6a in cultured neurons from rat hippocampus and in neuroblastoma cells N2a. Further immunofluorescence microcopy and flow cytometry analysis show that deletion of neither the N- nor the C-terminal intracellular domains interferes with the recognition of Gpm6a by the function-blocking antibody directed against the extracellular part of Gpm6a. Expression levels of both truncation mutants were not affected but we observed decrease in the amount of both truncated proteins on cell surface suggesting that the incapacity of the Gpm6a lacking C-terminus to induce filopodium formation is not due to the lower amount of Gpm6a on cell surface. Following colocalization assays shows that deletion of the C- but not the N-terminus diminishes the association of Gpm6a with clathrin implying involvement of clathrin-mediated trafficking events. Next, using comprehensive alanine scanning mutagenesis of the C-terminus we identify K250, K255, and E258 as the key residues for the formation of filopodia by Gpm6a. Substitution of these charged residues with alanine also diminishes the amount of Gpm6a on cell surface and in case of K255 and E258 leads to the lower amount of total expressed protein. Subsequent bioinformatic analysis of Gpm6a amino acid sequence reveals that highly conserved and functional residues cluster preferentially within the C- and not within the N-terminus and that K250, K255, and E258 are predicted as part of sorting signals of transmembrane proteins. Altogether, our results provide evidence that filopodium outgrowth induced by Gpm6a requires functionally critical residues within the C-terminal cytoplasmic tail.
Collapse
Affiliation(s)
- Nicolás M Rosas
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Sofia E Alzuri
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|