1
|
Niland S, Eble JA. Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape. Matrix Biol 2025:S0945-053X(25)00010-1. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
3
|
Yrigoin K, Bernard KN, Castaño MA, Cleaver O, Sumanas S, Davis GE. Enhancing human capillary tube network assembly and maturation through upregulated expression of pericyte-derived TIMP-3. Front Cell Dev Biol 2024; 12:1465806. [PMID: 39544367 PMCID: PMC11560913 DOI: 10.3389/fcell.2024.1465806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
In this study, we identify and characterize new molecular determinants that optimize human capillary tube network assembly. Our lab has previously reported a novel, serum free-defined 3D co-culture model using human endothelial cells (ECs) and human pericytes whereby EC-lined tubes form and co-assemble with pericytes, but when these cultures are maintained at or beyond 5 days, tubes become progressively wider and unstable. To address this issue, we generated novel human pericytes that carry a tissue inhibitor of metalloproteinase (TIMP)-3 transgene which can be upregulated following doxycycline addition. EC-pericyte co-cultures established in the presence of doxycycline demonstrated marked enhancement of capillary network assembly including dramatic narrowing of capillary tube widths to an average of 8 µm (physiologic capillary tube width), increased tube lengths, increased tube branching, and robust stimulation of basement membrane matrix assembly, particularly with collagen type IV and fibronectin deposition compared to controls. These substantial changes depend not only on induction of pericyte TIMP-3, but also on recruitment of pericytes to EC tubes. Blockade of pericyte recruitment prevents these dramatic capillary network alterations suggesting that EC-pericyte interactions and induction of pericyte TIMP-3 are necessary together to coordinate and facilitate capillary assembly and maturation. Overall, this work is critical for our basic understanding of capillary formation, but also for the ability to reproducibly generate stabilized networks of capillary tubes.
Collapse
Affiliation(s)
- Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kaitlyn N. Bernard
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maria A. Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern School of Medicine, Dallas, TX, United States
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Brito-Robinson T, Ayinuola YA, Ploplis VA, Castellino FJ. Plasminogen missense variants and their involvement in cardiovascular and inflammatory disease. Front Cardiovasc Med 2024; 11:1406953. [PMID: 38984351 PMCID: PMC11231438 DOI: 10.3389/fcvm.2024.1406953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
Collapse
Affiliation(s)
| | | | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
Mazari‐Arrighi E, Lépine M, Ayollo D, Faivre L, Larghero J, Chatelain F, Fuchs A. Self-Organization of Long-Lasting Human Endothelial Capillary-Like Networks Guided by DLP Bioprinting. Adv Healthc Mater 2024; 13:e2302830. [PMID: 38366136 PMCID: PMC11468676 DOI: 10.1002/adhm.202302830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Tissue engineering holds great promise for regenerative medicine, drug discovery, and as an alternative to animal models. However, as soon as the dimensions of engineered tissue exceed the diffusion limit of oxygen and nutriments, a necrotic core forms leading to irreversible damage. To overcome this constraint, the establishment of a functional perfusion network is essential. In this work, digital light processing bioprinting is used to encapsulate endothelial progenitor cells (EPCs) in 3D light-cured hydrogel scaffolds to guide them toward vascular network formation. In these scaffolds, EPCs proliferate and self-organize within a few days into branched tubular structures with predefined geometry, forming capillary-like vascular tubes or trees of diameters in the range of 10 to 100 µm. Presenting a confluent monolayer wall of cells strongly connect by tight junctions around a central lumen-like space, these structures can be microinjected with a fluorescent dye and are stable for several weeks in vitro. These endothelial structures can be recovered and manipulated in an alginate patch without altering their shape or viability. This approach opens new opportunities for future applications, such as stacking with other cell sheets or multicellular constructs to yield bioengineered tissue with higher complexity and functionality.
Collapse
Affiliation(s)
- Elsa Mazari‐Arrighi
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Matthieu Lépine
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Dmitry Ayollo
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Lionel Faivre
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Jérôme Larghero
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - François Chatelain
- Université de ParisU976 HIPI, InsermParisF‐75006France
- CEAIRIGGrenobleF‐38000France
| | - Alexandra Fuchs
- Université de ParisU976 HIPI, InsermParisF‐75006France
- CEAIRIGGrenobleF‐38000France
| |
Collapse
|
6
|
Amran A, Pigatto L, Farley J, Godini R, Pocock R, Gopal S. The matrisome landscape controlling in vivo germ cell fates. Nat Commun 2024; 15:4200. [PMID: 38760342 PMCID: PMC11101451 DOI: 10.1038/s41467-024-48283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.
Collapse
Affiliation(s)
- Aqilah Amran
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Lara Pigatto
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Johanna Farley
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Lund Cancer Center, Lund University, Lund, Sweden
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| | - Sandeep Gopal
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Lund Cancer Center, Lund University, Lund, Sweden.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages contribute to remodeling of the extracellular matrix to promote cardiomyocyte invasion during zebrafish cardiac regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584570. [PMID: 38559277 PMCID: PMC10980021 DOI: 10.1101/2024.03.12.584570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade, and eventually replace, the collagen-containing fibrotic tissue following injury. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion using live-imaging and histological approaches. We observed close interactions between protruding cardiomyocytes and macrophages at the wound border zone, and macrophage-deficient irf8 mutant zebrafish exhibited defects in extracellular matrix (ECM) remodeling and cardiomyocyte protrusion into the injured area. Using a resident macrophage ablation model, we show that defects in ECM remodeling at the border zone and subsequent cardiomyocyte protrusion can be partly attributed to a population of resident macrophages. Single-cell RNA-sequencing analysis of cells at the wound border revealed a population of cardiomyocytes and macrophages with fibroblast-like gene expression signatures, including the expression of genes encoding ECM structural proteins and ECM-remodeling proteins. The expression of mmp14b , which encodes a membrane-anchored matrix metalloproteinase, was restricted to cells in the border zone, including cardiomyocytes, macrophages, fibroblasts, and endocardial/endothelial cells. Genetic deletion of mmp14b led to a decrease in 1) macrophage recruitment to the border zone, 2) collagen degradation at the border zone, and 3) subsequent cardiomyocyte invasion. Furthermore, cardiomyocyte-specific overexpression of mmp14b was sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data shed important insights into the process of cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration. They further suggest that cardiomyocytes and resident macrophages contribute to ECM remodeling at the border zone to promote cardiomyocyte replenishment of the fibrotic injured tissue.
Collapse
|
8
|
Margolis EA, Choi LS, Friend NE, Putnam AJ. Engineering primitive multiscale chimeric vasculature by combining human microvessels with explanted murine vessels. Sci Rep 2024; 14:4036. [PMID: 38369633 PMCID: PMC10874928 DOI: 10.1038/s41598-024-54880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/17/2024] [Indexed: 02/20/2024] Open
Abstract
Strategies to separately manufacture arterial-scale tissue engineered vascular grafts and microvascular networks have been well-established, but efforts to bridge these two length scales to create hierarchical vasculature capable of supporting parenchymal cell functions or restoring perfusion to ischemic tissues have been limited. This work aimed to create multiscale vascular constructs by assessing the capability of macroscopic vessels isolated from mice to form functional connections to engineered capillary networks ex vivo. Vessels of venous and arterial origins from both thoracic and femoral locations were isolated from mice, and then evaluated for their abilities to sprout endothelial cells (EC) capable of inosculating with surrounding human cell-derived microvasculature within bulk fibrin hydrogels. Comparing aortae, vena cavae, and femoral vessel bundles, we identified the thoracic aorta as the rodent macrovessel that yielded the greatest degree of sprouting and interconnection to surrounding capillaries. The presence of cells undergoing vascular morphogenesis in the surrounding hydrogel attenuated EC sprouting from the macrovessel compared to sprouting into acellular hydrogels, but ultimately sprouted mouse EC interacted with human cell-derived capillary networks in the bulk, yielding chimeric vessels. We then integrated micromolded mesovessels into the constructs to engineer a primitive 3-scale vascular hierarchy comprising capillaries, mesovessels, and macrovessels. Overall, this study yielded a primitive hierarchical vasculature suitable as proof-of-concept for regenerative medicine applications and as an experimental model to better understand the spontaneous formation of host-graft vessel anastomoses.
Collapse
Affiliation(s)
- Emily A Margolis
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Lucia S Choi
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, 2204 Lurie Biomedical Eng. Bldg., 1101 Beal Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Yeung CYC, Garva R, Pickard A, Lu Y, Mallikarjun V, Swift J, Taylor SH, Rai J, Eyre DR, Chaturvedi M, Itoh Y, Meng QJ, Mauch C, Zigrino P, Kadler KE. Mmp14 is required for matrisome homeostasis and circadian rhythm in fibroblasts. Matrix Biol 2023; 124:8-22. [PMID: 37913834 DOI: 10.1016/j.matbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| | - Richa Garva
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Adam Pickard
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan H Taylor
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jyoti Rai
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Cornelia Mauch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
10
|
Shang Y, Zeng J, Matsusaki M. Construction of enzyme digested holes on hydrogel surface inspired by cell migration processes. Biochem Biophys Res Commun 2023; 674:69-74. [PMID: 37413707 DOI: 10.1016/j.bbrc.2023.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
The construction of in vitro capillary network models for drug testing and toxicity evaluation has become a major challenge in the field of tissue engineering. Previously, we discovered a novel phenomenon of hole formation by endothelial cell migration on the surface of fibrin gels. Interestingly, the hole characteristics, such as depth and number, were strongly influenced by the gel stiffness, but the details of hole formation are not to be clarified. In this study, we tried to understand the effect of hydrogel stiffness on the hole formation by dropping collagenase solution onto the surface of the hydrogels because the endothelial cell migration was made possible by the metalloproteinases' digestion. We found that smaller hole structures were formed on stiffer fibrin gels, but larger ones were formed on softer fibrin gels after the hydrogel digestion of the collagenase. This is consistent with our previous results in experiments on hole structures formed by endothelial cells. Furthermore, deep and small hole structures were successfully obtained by optimizing the volume of collagenase solution and incubation time. This unique approach inspired by endothelial cell hole formation may provide new methods of fabricating hydrogels with opening hole structures.
Collapse
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
11
|
Hu Z, Xu W, Yang X, Li Y, Ma R, Hei Y, Hu J, Zhang Z, Wang L, Wang Y. SIRT2 inhibition attenuates the vasculopathy and vision impairment via Akt signaling in retinopathy of prematurity. Exp Eye Res 2023:109547. [PMID: 37348672 DOI: 10.1016/j.exer.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Despite decades of research, the underlying mechanism of retinopathy of prematurity (ROP) remains unclear. The role of Sirt2, which is involved in both angiogenesis and inflammation, both pivotal in ROP, was investigated in an animal model of ROP known as oxygen-induced retinopathy (OIR). Our study found that Sirt2 was overexpressed and colocalized with microglia in OIR. Furthermore, it demonstrated that the level of Sirt2 was upregulated in hypoxia microglia BV-2 in vitro. Subsequently, our results elucidated that administration of the Sirt2 antagonist AGK2 attenuated the avascular and neovascular area and downregulated the expression of IGF-1. The phosphorylation of Akt and the expression of IGF-1 were upregulated in hypoxia BV-2 and conditional media collected from BV-2 under hypoxia promoted the migration and tube formation of retinal capillary endothelial cells, which were suppressed with AGK2. Notably, our findings are the first to demonstrate the deleterious role of Sirt2 in ROP, as Sirt2 inhibition led to the downregulation of Akt/IGF-1 and ameliorated vasculopathy, ultimately improving visual function. These results suggest that Sirt2 may be a promising therapeutic target for ROP.
Collapse
Affiliation(s)
- Zhicha Hu
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Wenqi Xu
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Xinji Yang
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Yueyue Li
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Rui Ma
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Yan Hei
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Jian Hu
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China
| | - Zifeng Zhang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, PR China.
| | - Liqiang Wang
- Department of Ophthalmology of the Third Medical Center of PLA General Hospital, PR China.
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, the Fourth Military Medical University, PR China.
| |
Collapse
|
12
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
13
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
14
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
15
|
Zhang S, Wan Z, Pavlou G, Zhong AX, Xu L, Kamm RD. Interstitial flow promotes the formation of functional microvascular networks in vitro through upregulation of matrix metalloproteinase-2. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2206767. [PMID: 36569597 PMCID: PMC9783342 DOI: 10.1002/adfm.202206767] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 05/02/2023]
Abstract
Self-organized microvascular networks (MVNs) have become key to the development of many microphysiological models. However, the self-organizing nature of this process combined with variations between types or batches of endothelial cells (ECs) often lead to inconsistency or failure to form functional MVNs. Since interstitial flow (IF) has been reported to play a beneficial role in angiogenesis, vasculogenesis, and 3D capillary morphogenesis, we systematically investigated the role IF plays during neovessel formation in a customized single channel microfluidic chip for which IF has been fully characterized. Compared to static conditions, MVNs formed under IF have higher vessel density and diameters and greater network perfusability. Through a series of inhibitory experiments, we demonstrated that IF treatment improves vasculogenesis by ECs through upregulation of matrix metalloproteinase-2 (MMP-2). We then successfully implemented a novel strategy involving the interplay between IF and MMP-2 inhibitor to regulate morphological parameters of the self-organized MVNs, with vascular permeability and perfusability well maintained. The revealed mechanism and proposed methodology were further validated with a brain MVN model. Our findings and methods have the potential to be widely utilized to boost the development of various organotypic MVNs and could be incorporated into related bioengineering applications where perfusable vasculature is desired.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amy X Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liling Xu
- Ragon institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Kümper M, Zamek J, Steinkamp J, Pach E, Mauch C, Zigrino P. Role of MMP3 and fibroblast-MMP14 in skin homeostasis and repair. Eur J Cell Biol 2022; 101:151276. [PMID: 36162272 DOI: 10.1016/j.ejcb.2022.151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Early lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases' pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14Sf-/-) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts. These double deficient mice displayed a fibrotic phenotype in skin and tendons as detected in MMP14Sf-/- mice, but no additional obvious defects were detected. However, challenging the mice with full thickness excision wounds resulted in delayed closure of early wounds in the double deficient mice compared to wildtype and MMP14 single knockout controls. Over time wounds closed and epidermal integrity was restored. Interestingly, on day seven, post-wounding myofibroblast density was lower in the wounds of all knockout than in controls, they were higher on day 14. The delayed resolution of myofibroblasts from the granulation tissue is paralleled by reduced apoptosis of these cells, although proliferation of myofibroblasts is induced in the double deficient mice. Further analysis showed comparable TGFβ1 and TGFβR1 expression among all genotypes. In addition, in vitro, fibroblasts lacking MMP3 and MMP14 retained their ability to differentiate into myofibroblasts in response to TGFβ1 treatment and mechanical stress. However, in vivo, p-Smad2 was reduced in myofibroblasts at day 5 post-wounding, in double, but most significant in single knockout, indicating their involvement in TGFβ1 activation. Thus, although MMP3 does not compensate for the lack of fibroblast-MMP14 in tissue homeostasis, simultaneous deletion of both proteases in fibroblasts delays wound closure during skin repair. Notably, single and double deficiency of these proteases modulates myofibroblast formation and resolution in wounds.
Collapse
Affiliation(s)
- Maike Kümper
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Jan Zamek
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Joy Steinkamp
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Elke Pach
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Cornelia Mauch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
18
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
19
|
Minaei E, Mueller SA, Ashford B, Thind AS, Mitchell J, Perry JR, Genenger B, Clark JR, Gupta R, Ranson M. Cancer Progression Gene Expression Profiling Identifies the Urokinase Plasminogen Activator Receptor as a Biomarker of Metastasis in Cutaneous Squamous Cell Carcinoma. Front Oncol 2022; 12:835929. [PMID: 35480116 PMCID: PMC9035872 DOI: 10.3389/fonc.2022.835929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/16/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) of the head and neck region is the second most prevalent skin cancer, with metastases to regional lymph nodes occurring in 2%–5% of cases. To further our understanding of the molecular events characterizing cSCC invasion and metastasis, we conducted targeted cancer progression gene expression and pathway analysis in non-metastasizing (PRI-) and metastasizing primary (PRI+) cSCC tumors of the head and neck region, cognate lymph node metastases (MET), and matched sun-exposed skin (SES). The highest differentially expressed genes in metastatic (MET and PRI+) versus non-metastatic tumors (PRI-) and SES included PLAU, PLAUR, MMP1, MMP10, MMP13, ITGA5, VEGFA, and various inflammatory cytokine genes. Pathway enrichment analyses implicated these genes in cellular pathways and functions promoting matrix remodeling, cell survival and migration, and epithelial to mesenchymal transition, which were all significantly activated in metastatic compared to non-metastatic tumors (PRI-) and SES. We validated the overexpression of urokinase plasminogen activator receptor (uPAR, encoded by PLAUR) in an extended patient cohort by demonstrating higher uPAR staining intensity in metastasizing tumors. As pathway analyses identified epidermal growth factor (EGF) as a potential upstream regulator of PLAUR, the effect of EGF on uPAR expression levels and cell motility was functionally validated in human metastatic cSCC cells. In conclusion, we propose that uPAR is an important driver of metastasis in cSCC and represents a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Elahe Minaei
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Simon A. Mueller
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Department for Otorhinolaryngology, Head and Neck Surgery, Zurich University Hospital University of Zurich, Zurich, Switzerland
| | - Bruce Ashford
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Amarinder Singh Thind
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jenny Mitchell
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia
| | - Jay R. Perry
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Benjamin Genenger
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan R. Clark
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology, Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Marie Ranson,
| |
Collapse
|
20
|
Trujillo-Rojas L, Fernández-Novell J, Blanco-Prieto O, Rigau T, Rivera del Álamo M, Rodríguez-Gil J. The onset of age-related benign prostatic hyperplasia is concomitant with increased serum and prostatic expression of VEGF in rats: Potential role of VEGF as a marker for early prostatic alterations. Theriogenology 2022; 183:69-78. [DOI: 10.1016/j.theriogenology.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
|
21
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
22
|
Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021; 13:cancers13194987. [PMID: 34638470 PMCID: PMC8508205 DOI: 10.3390/cancers13194987] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of new blood vessels from already existing ones is a process of high clinical relevance, since it is of great importance for both physiological and pathological processes. In regard to tumors, the process is crucial, since it ensures the supply with nutrients and the growth of the tumor. The influence of mechanical factors on this biological process is an emerging field. Until now, the shear force of the blood flow has been considered the main mechanical parameter during angiogenesis. This review article provides an overview of further mechanical cues, with particular focus on the surrounding extracellular matrix impacting the cell behavior and, thus, regulating angiogenesis. This underlines the enormous importance of the mechanical properties of the extracellular matrix on cell biological processes and shows how changing the mechanics of the extracellular matrix could be used as a possible therapeutic approach in cancer therapy. Abstract Angiogenesis is of high clinical relevance as it plays a crucial role in physiological (e.g., tissue regeneration) and pathological processes (e.g., tumor growth). Besides chemical signals, such as VEGF, the relationship between cells and the extracellular matrix (ECM) can influence endothelial cell behavior during angiogenesis. Previously, in terms of the connection between angiogenesis and mechanical factors, researchers have focused on shear forces due to blood flow. However, it is becoming increasingly important to include the direct influence of the ECM on biological processes, such as angiogenesis. In this context, we focus on the stiffness of the surrounding ECM and the adhesion of cells to the ECM. Furthermore, we highlight the mechanical cues during the main stages of angiogenesis: cell migration, tip and stalk cells, and vessel stabilization. It becomes clear that the different stages of angiogenesis require various chemical and mechanical cues to be modulated by/modulate the stiffness of the ECM. Thus, changes of the ECM during tumor growth represent additional potential dysregulations of angiogenesis in addition to erroneous biochemical signals. This awareness could be the basis of therapeutic approaches to counteract specific processes in tumor angiogenesis.
Collapse
|
23
|
Yousefi H, Komaki A, Shahidi S, Habibi P, Sadeghian R, Ahmadiasl N, Daghigh F. Diabetic neovascularization defects in the retina are improved by genistein supplementation in the ovariectomized rat. Inflammopharmacology 2021; 29:1579-1586. [PMID: 34581950 DOI: 10.1007/s10787-021-00852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/18/2021] [Indexed: 11/28/2022]
Abstract
Genistein seems to have a protective and therapeutic effect on conditions associated with neovascular growth in the retina. This study investigated the angiogenesis, antioxidant, and anti-inflammatory effect of genistein on the retinas in ovariectomized diabetic rats. In this study, 40 female albino Wistar rats were divided into four groups (n = 8 per group): sham, ovariectomized group (OVX), OVX + diabetes (OVX.D), and OVX.D + genistein (OVX.D.G). OVX induced by removal of bilateral ovaries and then high-fat diet (HFD) and a low dose of streptozotocin (STZ) (1 mg/kg; intraperitoneal (IP) injection) was used for diabetes induction (OVX.D) with 8 weeks of genistein treatment (OVX.D.G). At the end of 8 weeks, the retina was removed under anesthesia. The samples were used to measure extracellular signal-regulated kinase (ERK), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF), and nuclear factor NF-kappa-B (NF-κB) by western blotting and inflammatory factors ELISA and oxidative stress. Measurements of glutathione (GSH) and malondialdehyde (MDA) showed that OVX and especially OVX.D significantly decreased GSH and increased MDA level in the retina, but genistein reversed these effects in OVX.D.G groups. Also, OVX and OVX.D significantly increased VEGF, MMP-2, p-ERK, NF-κB, interleukin-1beta (IL-1β), and tumor necrosis factor alpha (TNFα) expression in the retina of OVX and OVX.D groups in comparison to the sham group (p < 0.05). However, a significant reduction of these proteins was observed in the genistein-treated group (p < 0.05). In conclusion, bilateral ovariectomy and subsequently estrogen deficiency caused the development of inflammation, neovascularization, and then retinopathy in STZ-induced diabetic ovariectomized rats. On the basis of the results, genistein administration may be a practical approach for improving symptoms and complications of ovariectomized diabetic retinopathy.
Collapse
Affiliation(s)
- Hadi Yousefi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
24
|
Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo. Cells 2021; 10:cells10092448. [PMID: 34572097 PMCID: PMC8465375 DOI: 10.3390/cells10092448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023] Open
Abstract
MT1-MMP/MMP14 belongs to a subgroup of the matrix metalloproteinases family that presents a transmembrane domain, with a cytosolic tail and the catalytic site exposed to the extracellular space. Deficient mice for this enzyme result in early postnatal death and display severe defects in skeletal, muscle and lung development. By using a transgenic line expressing the LacZ reporter under the control of the endogenous Mt1-mmp promoter, we reported a dynamic spatiotemporal expression pattern for Mt1-mmp from early embryonic to perinatal stages during cardiovascular development and brain formation. Thus, Mt1-mmp shows expression in the endocardium of the heart and the truncus arteriosus by E8.5, and is also strongly detected during vascular system development as well as in endothelial cells. In the brain, LacZ reporter expression was detected in the olfactory bulb, the rostral cerebral cortex and the caudal mesencephalic tectum. LacZ-positive cells were observed in neural progenitors of the spinal cord, neural crest cells and the intersomitic region. In the limb, Mt1-mmp expression was restricted to blood vessels, cartilage primordium and muscles. Detection of the enzyme was confirmed by Western blot and immunohistochemical analysis. We suggest novel functions for this metalloproteinase in angiogenesis, endocardial formation and vascularization during organogenesis. Moreover, Mt1-mmp expression revealed that the enzyme may contribute to heart, muscle and brain throughout development.
Collapse
|
25
|
Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, Vyas N, Somasundaram I. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochem Funct 2021; 39:860-873. [PMID: 34505714 DOI: 10.1002/cbf.3663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women globally. Angiogenesis contributes significantly to breast cancer progression and dissemination. Neovascularization is concurrent with the progression and growth of breast cancer. Breast cancer cells control angiogenesis by secreting pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor, interleukin, transforming growth factor-β, platelet-derived growth factor and several others. These pro-angiogenic factors trigger neovascularization, and thereby lead to breast cancer development and metastasis. The hypoxia-inducible factor (HIF)-regulated angiogenesis cascade is a crucial underlying factor in breast cancer growth and metastasis. To that end, several efforts have been made to identify druggable targets within the HIF-angiogenesis components. However, escape pathways are a major hindrance for targeted therapies against angiogenesis. Thus, understanding the key factors that trigger breast cancer angiogenesis is critical in elucidating ways to inhibit breast cancer. The current review provides an overview of the key growth factors that trigger breast cancer angiogenesis.
Collapse
Affiliation(s)
| | - Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | | | | | - Rakesh Sharma
- Department of Obstetrics and Gynaecology, D. Y. Patil Medical College, Kolhapur, India
| | - Shankargouda Patil
- Department of Maxilofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| |
Collapse
|
26
|
Mandragos E, Myrgiotis D, Strongylos S, Papamerkouriou YM, Michelarakis J. Clinical Radiological and Molecular Profile of a Patient Affected With Multicentric Osteolysis Nodulosis and Arthropathy. Cureus 2021; 13:e16615. [PMID: 34466312 PMCID: PMC8396420 DOI: 10.7759/cureus.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/05/2022] Open
Abstract
Multicentric Osteolysis Nodulosis and Arthropathy (MONA) is an ultra-rare multisystem autosomal recessive disorder characterized by progressive osteolysis, subcutaneous nodules and developing arthropathy. The characteristic radiological signs combined with symptoms resembling juvenile idiopathic arthritis (JIA) set the diagnosis, which is established either by measuring matrix metalloproteinase-2 (MMP-2) enzyme activity through electrophoresis (zymography) or genomic testing. We report the clinical and radiographic findings of a 14-year-old girl with molecularly proven MONA, who presented with painless osteolytic changes of the feet and upper extremities and developed hip arthritis. To this day, no specific therapy has been identified with proven long term relief and control of the disease progression.
Collapse
Affiliation(s)
- Eleftherios Mandragos
- 2nd Orthopaedic Department, General Children's Hospital "Panagiotis & Aglaia Kyriakou", Athens, GRC
| | - Dimitris Myrgiotis
- 2nd Orthopaedic Department, General Children's Hospital "Panagiotis & Aglaia Kyriakou", Athens, GRC
| | - Spyridon Strongylos
- 2nd Orthopaedic Department, General Children's Hospital "Panagiotis & Aglaia Kyriakou", Athens, GRC
| | | | - John Michelarakis
- 2nd Orthopaedic Department, General Children's Hospital "Panagiotis & Aglaia Kyriakou", Athens, GRC
| |
Collapse
|
27
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
28
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
29
|
Hou Y, Li J, Guan S, Witte F. The therapeutic potential of MSC-EVs as a bioactive material for wound healing. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Abd-Elaziz K, Jesenak M, Vasakova M, Diamant Z. Revisiting matrix metalloproteinase 12: its role in pathophysiology of asthma and related pulmonary diseases. Curr Opin Pulm Med 2021; 27:54-60. [PMID: 33065600 DOI: 10.1097/mcp.0000000000000743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Matrix metalloproteinases (MMPs) are a family of over 20 zinc-dependent proteases with different biological and pathological activities, and many have been implicated in several diseases. Although nonselective MMP inhibitors are known to induce serious side-effects, targeting individual MMPs may offer a safer therapeutic potential for several diseases. Hence, we provide a concise overview on MMP-12, given its association with pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis, and other progressive pulmonary fibrosis (PPF), which may also occur in coronavirus disease 2019. RECENT FINDINGS In asthma, COPD, and PPF, increased MMP-12 levels have been associated with inflammation and/or structural changes within the lungs and negatively correlated with functional parameters. Increased pulmonary MMP-12 levels and MMP-12 gene expression have been related to disease severity in asthma and COPD. Targeting MMP-12 showed potential in animal models of pulmonary diseases but human data are still very scarce. SUMMARY Although there may be a potential role of MMP-12 in asthma, COPD and PPF, several pathophysiological aspects await elucidation. Targeting MMP-12 may provide further insights into MMP-12 related mechanisms and how this translates into clinical outcomes; this warrants further research.
Collapse
Affiliation(s)
- Khalid Abd-Elaziz
- Department of Clinical Pharmacology, QPS-Netherlands, Groningen, The Netherlands
| | - Milos Jesenak
- Department of Pediatrics
- Department of Pulmonology and Physiology
- Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia
| | - Martina Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Zuzana Diamant
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Dept of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Abd-Elaziz K, Voors-Pette C, Wang KL, Pan S, Lee Y, Mao J, Li Y, Chien B, Lau D, Diamant Z. First-in-Man Safety, Tolerability, and Pharmacokinetics of a Novel and Highly Selective Inhibitor of Matrix Metalloproteinase-12, FP-025: Results from Two Randomized Studies in Healthy Subjects. Clin Drug Investig 2020; 41:65-76. [PMID: 33331980 DOI: 10.1007/s40261-020-00981-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Matrix metalloproteinases (MMPs) are proteases with different biological and pathological activities, and many have been linked to several diseases. Targeting individual MMPs may offer a safer therapeutic potential for several diseases. We assessed the safety, tolerability, and pharmacokinetics of FP-025, a novel, highly selective oral matrix metalloproteinase-12 inhibitor, in healthy subjects. METHODS Two randomized, double-blind, placebo-controlled studies were conducted. Study I was a first-in-man study, evaluating eight single ascending doses (SADs) (50-800 mg) in two formulations: i.e., neat FP-025 in capsule (API-in-Capsule) and in an amorphous solid dispersion (ASD-in-Capsule) formulation. In Study II, three multiple ascending doses (MADs) (100, 200, and 400 mg, twice daily) of FP-025 (ASD-in-Capsule) were administered for 8 days, including a food-effect evaluation. RESULTS Ninety-six subjects were dosed. Both formulations were well tolerated with one adverse event (AE) reported in the 800 mg API-in-Capsule SAD group and seven AEs throughout the MAD groups. The exposure to FP-025 was low with the API-in-Capsule formulation; it increased dose-dependently with the ASD-in-Capsule formulation, with which exposure to FP-025 increased in a greater-than-dose-proportional manner at lower doses (≤ 100 mg) but less proportionally at higher doses. The elimination half-life (t1/2) was between 6 (Study I) and 8 h (Study II). Accumulation of FP-025 was approximately 1.7-fold in the MAD study. Food intake delayed the rate of absorption, but without effect in the extent of absorption or bioavailability. CONCLUSION FP-025 was well tolerated and showed a favorable pharmacokinetic profile following ASD-in-Capsule dosing. Efficacy studies in target patient populations, including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis, are warranted. TRIAL REGISTRATION NUMBER www.clinicaltrials.gov : NCT02238834 (Study I); NCT03304964 (Study II). Trial registration date: Study I was registered on 12 September 2014 while study II was registered on 9 October 2017.
Collapse
Affiliation(s)
- Khalid Abd-Elaziz
- Department of Clinical Pharmacology, QPS-Netherlands, Groningen, The Netherlands.
| | | | - Kang-Ling Wang
- General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sandy Pan
- QPS Taiwan, Taipei City, 115, Taiwan
| | - Yisheng Lee
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - John Mao
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Yuhua Li
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Benjamin Chien
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - David Lau
- Foresee Pharmaceuticals Co. Ltd, Taipei City, 115, Taiwan
| | - Zuzana Diamant
- Department of Clinical Pharmacology, QPS-Netherlands, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands.,Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
van der Wijk AE, Georgakopoulou T, Majolée J, van Bezu JSM, van der Stoel MM, van het Hof BJ, de Vries HE, Huveneers S, Hordijk PL, Bakker ENTP, van Bavel E. Microembolus clearance through angiophagy is an auxiliary mechanism preserving tissue perfusion in the rat brain. Acta Neuropathol Commun 2020; 8:195. [PMID: 33203478 PMCID: PMC7671188 DOI: 10.1186/s40478-020-01071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Considering its intolerance to ischemia, it is of critical importance for the brain to efficiently process microvascular occlusions and maintain tissue perfusion. In addition to collateral microvascular flow and enzymatic degradation of emboli, the endothelium has the potential to engulf microparticles and thereby recanalize the vessel, through a process called angiophagy. Here, we set out to study the dynamics of angiophagy in relation to cytoskeletal remodeling in vitro and reperfusion in vivo. We show that polystyrene microspheres and fibrin clots are actively taken up by (brain) endothelial cells in vitro, and chart the dynamics of the actin cytoskeleton during this process using live cell imaging. Whereas microspheres were taken up through the formation of a cup structure by the apical endothelial membrane, fibrin clots were completely engulfed by the cells, marked by dense F-actin accumulation surrounding the clot. Both microspheres and fibrin clots were retained in the endothelial cells. Notably, fibrin clots were not degraded intracellularly. Using an in vivo microembolization rat model, in which microparticles are injected into the common carotid artery, we found that microspheres are transported by the endothelium from the microvasculature into the brain parenchyma. Microembolization with microspheres caused temporal opening of the blood–brain barrier and vascular nonperfusion, followed by microsphere extravasation and restoration of vessel perfusion over time. Taken together, angiophagy is accompanied by active cytoskeletal remodeling of the endothelium, and is an effective mechanism to restore perfusion of the occluded microvasculature in vivo.
Collapse
|
33
|
Damjanović A, Kolundžija B, Matić IZ, Krivokuća A, Zdunić G, Šavikin K, Janković R, Stanković JA, Stanojković TP. Mahonia aquifolium Extracts Promote Doxorubicin Effects against Lung Adenocarcinoma Cells In Vitro. Molecules 2020; 25:E5233. [PMID: 33182665 PMCID: PMC7697947 DOI: 10.3390/molecules25225233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Mahonia aquifolium and its secondary metabolites have been shown to have anticancer potential. We performed MTT, scratch, and colony formation assays; analyzed cell cycle phase distribution and doxorubicin uptake and retention with flow cytometry; and detected alterations in the expression of genes involved in the formation of cell-cell interactions and migration using quantitative real-time PCR following treatment of lung adenocarcinoma cells with doxorubicin, M. aquifolium extracts, or their combination. MTT assay results suggested strong synergistic effects of the combined treatments, and their application led to an increase in cell numbers in the subG1 phase of the cell cycle. Both extracts were shown to prolong doxorubicin retention time in cancer cells, while the application of doxorubicin/extract combination led to a decrease in MMP9 expression. Furthermore, cells treated with doxorubicin/extract combinations were shown to have lower migratory and colony formation potentials than untreated cells or cells treated with doxorubicin alone. The obtained results suggest that nontoxic M. aquifolium extracts can enhance the activity of doxorubicin, thus potentially allowing the application of lower doxorubicin doses in vivo, which may decrease its toxic effects in normal tissues.
Collapse
Affiliation(s)
- Ana Damjanović
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Branka Kolundžija
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ivana Z. Matić
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Ana Krivokuća
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Gordana Zdunić
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Katarina Šavikin
- Department for Pharmaceutical Investigations and Development, Institute for Medicinal Plant Research, Dr. Josif Pančić, 11 070 Belgrade, Serbia; (G.Z.); (K.Š.)
| | - Radmila Janković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| | - Jelena Antić Stanković
- Department for Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11 221 Belgrade, Serbia
| | - Tatjana P. Stanojković
- Department for Experimental Oncology, Institute of Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; (A.D.); (B.K.); (I.Z.M.); (A.K.); (R.J.); (T.P.S.)
| |
Collapse
|
34
|
Douglas SA, Haase K, Kamm RD, Platt MO. Cysteine cathepsins are altered by flow within an engineered in vitro microvascular niche. APL Bioeng 2020; 4:046102. [PMID: 33195960 PMCID: PMC7644274 DOI: 10.1063/5.0023342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity—regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
35
|
Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol Int 2020; 71:1-14. [PMID: 33074556 DOI: 10.1111/pin.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteolytic balance is crucial for the maintenance of tissue homeostasis. In cancer, dysregulated proteolysis is involved in unregulated tissue remodeling and inflammation, leading to the promotion of tumor growth, local invasion, and metastasis. Metalloproteinases, which were first identified as collagen cleaving enzymes, have been shown to extensively degrade extracellular matrix proteins or selectively release cell surface-bound cytokines, growth factors, or their receptors, thereby impacting extracellular matrix integrity, immune cell recruitment and tissue turnover. Although tumor cells produce various metalloproteinases, the major source is thought to be stromal cells infiltrating the tumor. Different types of stromal cells express specific sets of metalloproteinases and their inhibitors, which specifically alter the milieu within the tumor. In this review, recent findings and knowledge regarding metalloproteinases derived from stromal cells during the creation of the tumor microenvironment are described and their contribution to the tumor progression and metastasis discussed.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
37
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
38
|
Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Kumar VBS. Role of Sirtuins in Tumor Angiogenesis. Front Oncol 2020; 9:1516. [PMID: 32010617 PMCID: PMC6978795 DOI: 10.3389/fonc.2019.01516] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Generally, changes in the metabolic status of cells under conditions like hypoxia and accumulation of lactate can be sensed by various sensing mechanisms, leading to modulation of a number of signal transduction pathways and transcription factors. Several of the proangiogenic cytokines like VEGF, FGF, PDGF, TGF-β, Ang-2, ILs, etc. are secreted by cancer cells, under hypoxic microenvironment. These cytokines bind to their receptors on the endothelial cells and activates a number of signaling pathways including Akt/PIP3, Src, p38/MAPK, Smad2/3, etc., which ultimately results in the proliferation and migration of endothelial cells. Transcription factors that are activated in response to the metabolic status of tumors include HIFs, NF-κb, p53, El-2, and FOXO. Many of these transcription factors has been reported to be regulated by a class of histone deacetylase called sirtuins. Sirtuins are NAD+ dependent histone deacetylases that play pivotal role in the regulation of tumor cell metabolism, proliferation, migration and angiogenesis. The major function of sirtuins include, deacetylation of histones as well as some non-histone proteins like NF-κB, FOXOs, PPAR⋎, PGC1-α, enzymes like acetyl coenzymeA and structural proteins like α tubulin. In the cell, sirtuins are generally considered as the redox sensors and their activities are dependent on the metabolic status of the cell. Understanding the intricate regulatory mechanisms adopted by sirtuins, is crucial in devising effective therapeutic strategies against angiogenesis, metastasis and tumor progression. Keeping this in mind, the present review focuses on the role of sirtuins in the process of tumor angiogenesis and the regulatory mechanisms employed by them.
Collapse
Affiliation(s)
| | | | | | | | | | - V. B. Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India
| |
Collapse
|
39
|
Qi JH, Bell B, Singh R, Batoki J, Wolk A, Cutler A, Prayson N, Ali M, Stoehr H, Anand-Apte B. Sorsby Fundus Dystrophy Mutation in Tissue Inhibitor of Metalloproteinase 3 (TIMP3) promotes Choroidal Neovascularization via a Fibroblast Growth Factor-dependent Mechanism. Sci Rep 2019; 9:17429. [PMID: 31757977 PMCID: PMC6874529 DOI: 10.1038/s41598-019-53433-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) leads to loss of vision in patients with Sorsby Fundus Dystrophy (SFD), an inherited, macular degenerative disorder, caused by mutations in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. SFD closely resembles age-related macular degeneration (AMD), which is the leading cause of blindness in the elderly population of the Western hemisphere. Variants in TIMP3 gene have recently been identified in patients with AMD. A majority of patients with AMD also lose vision as a consequence of choroidal neovascularization (CNV). Thus, understanding the molecular mechanisms that contribute to CNV as a consequence of TIMP-3 mutations will provide insight into the pathophysiology in SFD and likely the neovascular component of the more commonly seen AMD. While the role of VEGF in CNV has been studied extensively, it is becoming increasingly clear that other factors likely play a significant role. The objective of this study was to test the hypothesis that basic Fibroblast Growth Factor (bFGF) regulates SFD-related CNV. In this study we demonstrate that mice expressing mutant TIMP3 (Timp3S179C/S179C) showed reduced MMP inhibitory activity with an increase in MMP2 activity and bFGF levels, as well as accentuated CNV leakage when subjected to laser injury. S179C mutant-TIMP3 in retinal pigment epithelial (RPE) cells showed increased secretion of bFGF and conditioned medium from these cells induced increased angiogenesis in endothelial cells. These studies suggest that S179C-TIMP3 may promote angiogenesis and CNV via a FGFR-1-dependent pathway by increasing bFGF release and activity.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Brent Bell
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Julia Batoki
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia Cutler
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Prayson
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mariya Ali
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
40
|
Juliar BA, Beamish JA, Busch ME, Cleveland DS, Nimmagadda L, Putnam AJ. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels. Biomaterials 2019; 230:119634. [PMID: 31776019 DOI: 10.1016/j.biomaterials.2019.119634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
There is a critical need for biomaterials that support robust neovascularization for a wide-range of clinical applications. Here we report how cells alter tissue-level mechanical properties during capillary morphogenesis using a model of endothelial-stromal cell co-culture within poly(ethylene glycol) (PEG) based hydrogels. After a week of culture, we observed substantial stiffening in hydrogels with very soft initial properties. Endothelial cells or stromal cells alone, however, failed to induce hydrogel stiffening. This stiffening tightly correlated with degree of vessel formation but not with hydrogel compaction or cellular proliferation. Despite a lack of fibrillar architecture within the PEG hydrogels, cell-generated contractile forces were essential for hydrogel stiffening. Upregulation of alpha smooth muscle actin and collagen-1 was also correlated with enhanced vessel formation and hydrogel stiffening. Blocking cell-mediated hydrogel degradation abolished stiffening, demonstrating that matrix metalloproteinase (MMP)-mediated remodeling is required for stiffening to occur. These results highlight the dynamic reciprocity between cells and their mechanical microenvironment during capillary morphogenesis and provide important insights for the rational design of materials for vasculogenic applications.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Megan E Busch
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David S Cleveland
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Beamish JA, Juliar BA, Cleveland DS, Busch ME, Nimmagadda L, Putnam AJ. Deciphering the relative roles of matrix metalloproteinase- and plasmin-mediated matrix degradation during capillary morphogenesis using engineered hydrogels. J Biomed Mater Res B Appl Biomater 2019; 107:2507-2516. [PMID: 30784190 PMCID: PMC6699943 DOI: 10.1002/jbm.b.34341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/26/2019] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the relative contributions of MMP- and plasmin-mediated ECM remodeling to vessel formation in a 3D-model of capillary self-assembly analogous to vasculogenesis. We first demonstrated a role for both MMP- and plasmin-mediated mechanisms of ECM remodeling in an endothelial-fibroblast co-culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and plasmin. When this co-culture model was employed in engineered PEG hydrogels with selective protease sensitivity, we observed robust capillary morphogenesis only in MMP-sensitive matrices. Fibroblast spreading in plasmin-selective hydrogels confirmed this difference was due to protease preference by endothelial cells, not due to limitations of the matrix itself. In hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, capillary morphogenesis was unchanged. These findings highlight the critical importance of MMP-mediated degradation during vasculogenesis and provide strong evidence to justify the preferential selection of MMP-degradable peptide crosslinkers in synthetic hydrogels used to study vascular morphogenesis and promote vascularization. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2507-2516, 2019.
Collapse
Affiliation(s)
- Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Benjamin A. Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - David S. Cleveland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Megan E. Busch
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
42
|
Metalloproteases: On the Watch in the Hematopoietic Niche. Trends Immunol 2019; 40:1053-1070. [DOI: 10.1016/j.it.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
|
43
|
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2019; 74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Extracellular matrices (ECMs) are maintained by tightly coupled processes of continuous synthesis and degradation. The degradative arm is mediated by a family of proteolytic enzymes called the matrix metalloproteinases (MMPs). These enzymes are released as latent proteins (pro-MMPs) and on activation are capable of degrading most components of an ECM. Activity of these enzymes is checked by the presence of tissue inhibitors of MMPs (TIMPs) and current opinion holds that the ratio of TIMPs/MMPs determines the relative rate of degradation. Thus, elevated ratios are thought to compromise degradation leading to the accumulation of abnormal ECM material, whilst diminished ratios are thought to lead to excessive ECM degradation (facilitating angiogenesis and the spread of cancer cells). Our recent work has shown this system to be far more complex. MMP species tend to undergo covalent modification leading to homo- and hetero-dimerization and aggregation resulting in the formation of very large macromolecular weight MMP complexes (LMMCs). In addition, the various MMP species also show a bound-free compartmentalisation. The net result of these changes is to reduce the availability of the latent forms of MMPs for the activation process. An assessment of the degradation potential of the MMP system in any tissue must therefore take into account the degree of sequestration of the latent MMP species, a protocol that has not previously been addressed. Taking into consideration the complexities already described, we will present an analysis of the MMP system in two common neurodegenerative disorders, namely age-related macular degeneration (AMD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ali A Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| | - Yunhee Lee
- Alt-Regen Co., Ltd, Heungdeok IT Valley, Yongin, Republic of Korea.
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
44
|
Wei S, Wu Q, Gao H, Pei C. Correlations of MMP-3 and MMP-9 gene polymorphisms with diabetic retinopathy. Panminerva Med 2019; 63:239-240. [PMID: 31355596 DOI: 10.23736/s0031-0808.19.03686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shufang Wei
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China
| | - Qizheng Wu
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China
| | - Hongxia Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, China -
| | - Caiying Pei
- Department of Ultrasonography, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
45
|
de Vos IJHM, Wong ASW, Welting TJM, Coull BJ, van Steensel MAM. Multicentric osteolytic syndromes represent a phenotypic spectrum defined by defective collagen remodeling. Am J Med Genet A 2019; 179:1652-1664. [PMID: 31218820 DOI: 10.1002/ajmg.a.61264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Frank-Ter Haar syndrome (FTHS), Winchester syndrome (WS), and multicentric osteolysis, nodulosis, and arthropathy (MONA) are ultra-rare multisystem disorders characterized by craniofacial malformations, reduced bone density, skeletal and cardiac anomalies, and dermal fibrosis. These autosomal recessive syndromes are caused by homozygous mutation or deletion of respectively SH3PXD2B (SH3 and PX Domains 2B), MMP14 (matrix metalloproteinase 14), or MMP2. Here, we give an overview of the clinical features of 63 previously reported patients with an SH3PXD2B, MMP14, or MMP2 mutation, demonstrating considerable clinical overlap between FTHS, WS, and MONA. Interestingly, the protein products of SH3PXD2B, MMP14, and MMP2 directly cooperate in collagen remodeling. We review animal models for these three disorders that accurately reflect the major clinical features and likewise show significant phenotypical similarity with each other. Furthermore, they demonstrate that defective collagen remodeling is central in the underlying pathology. As such, we propose a nosological revision, placing these SH3PXD2B, MMP14, and MMP2 related syndromes in a novel "defective collagen-remodelling spectrum (DECORS)". In our opinion, this revised nosology better reflects the central role for impaired collagen remodeling, a potential target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arnette Shi Wei Wong
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tim J M Welting
- Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Barry J Coull
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
46
|
Lin Y, Li L, Liu J, Zhao X, Ye J, Reinach PS, Qu J, Yan D. SIRT1 Deletion Impairs Retinal Endothelial Cell Migration Through Downregulation of VEGF-A/VEGFR-2 and MMP14. Invest Ophthalmol Vis Sci 2019; 59:5431-5440. [PMID: 30452596 DOI: 10.1167/iovs.17-23558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Silent information regulator protein 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that is abundantly expressed in vascular endothelial cells (VECs), and it has an essential role in angiogenesis. However, its contribution to retinal vascular development remains unclear. Here we characterize its involvement in regulating this process under both physiological and pathologic conditions. Methods Endothelium-specific Sirt1 knockout mice were established using the Cre-lox system. VECs were isolated using magnetic beads and identified by immunostaining. Retinal whole-mount staining analyzed the retinal vascular patterns. SIRT1 was knocked down or overexpressed in human retinal microvascular endothelial cells (HRMECs) using small interfering RNA (siRNA) or lentivirus infection, respectively. Scratch assay, Transwell, and Matrigel angiogenesis assay evaluated cell migration and tube formation, respectively. Quantitative RT-PCR analyzed genes regulating VEC migration. Western blotting determined protein expression. Coimmunoprecipitation detected the interaction of hypoxia-inducible factor 1α (HIF-1α) and SIRT1 as well as acetylation status of HIF-1α. Results Specific deletion of Sirt1 in VECs dramatically delayed retinal vessel expansion and reduced vessel density. In the oxygen-induced retinopathy (OIR) mouse model, Sirt1 ablation markedly suppressed retinal revascularization and consequently increased retinal avascularity. SIRT1 downregulation in HRMECs inhibited cell migration and tube formation, while overexpression of SIRT1 had the opposite effects. Vascular endothelial growth factor-A (VEGF-A)/VEGF receptor-2 (VEGFR-2), and matrix metalloproteinases 14 (MMP14) expression significantly declined in Sirt1-null VECs, as well as SIRT1 siRNA-transfected HRMECs. SIRT1 downregulation upregulated the HIF-1α acetylation status. Conversely, SIRT1 overexpression decreased this response. Conclusions SIRT1 contributes to both physiological and pathologic retinal angiogenesis through promoting retinal VEC migration. Its underlying molecular mechanism involves SIRT1-mediated deacetylation of HIF-1α and subsequent upregulation of VEGF-A/VEGFR-2 and MMP14 expression.
Collapse
Affiliation(s)
- Yong Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Li Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Junjie Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoting Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Juxiu Ye
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
47
|
Javadian M, Gharibi T, Shekari N, Abdollahpour‐Alitappeh M, Mohammadi A, Hossieni A, Mohammadi H, Kazemi T. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol 2018; 234:5399-5412. [DOI: 10.1002/jcp.27445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Arezoo Hossieni
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
48
|
Boas SEM, Carvalho J, van den Broek M, Weijers EM, Goumans MJ, Koolwijk P, Merks RMH. A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants. PLoS Comput Biol 2018; 14:e1006239. [PMID: 29979675 PMCID: PMC6072121 DOI: 10.1371/journal.pcbi.1006239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/02/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022] Open
Abstract
In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor β1 (TGFβ1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFβ1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFβ1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFβ1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFβ1. Therapies for a range of medical conditions, including cancer, wound healing and diabetic retinopathy can benefit from a better control over the growth of blood vessels. The chemical properties of fibrin, the material that forms scabs in wounds and can also occur in large concentrations in tumors, can regulate the degree of blood vessel growth (angiogenesis). Angiogenesis can be mimicked in cell cultures. These allow us to modulate the chemical properties of fibrin and study the effect on angiogenesis. Fibrin occurs in high molecular weight (HMW) and in low molecular weight (LMW) forms. Interestingly, there is more ingrowth of angiogenic-like structures into HMW than in LMW fibrin, but the mechanisms are poorly understood. To get more insight into these, we constructed a computational model. Using the model, we propose and analyse a hypothetical mechanism for sprouting that could explain the differences in endothelial cell sprouting in LMW and HMW fibrin matrices. Our model suggests that cells digest fibrin, thus creating space for ingrowth. At the same time, digestion frees growth factors bound to fibrin, that activates further secretion of digestive enzymes by the cells. We propose that the resulting positive feedback loop spontaneously selects cells in the endothelial monolayer for ingrowth and helps the blood vessel sprout move deeper into the fibrin. This could be a complementary mechanism to lateral-inhibition by Delta-Notch for the selection of leader cells, also called ‘tip cells’. Our model predicts that endothelial cells in LMW fibrin compared to HMW fibrin show reduced sprouting due to a lower bio-availability of TGFβ1.
Collapse
Affiliation(s)
- Sonja E. M. Boas
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Joao Carvalho
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Marloes van den Broek
- Amsterdam Cardiovascular Sciences, VU University medical Center, Dept. of Physiology, Amsterdam, The Netherlands
| | - Ester M. Weijers
- Amsterdam Cardiovascular Sciences, VU University medical Center, Dept. of Physiology, Amsterdam, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter Koolwijk
- Amsterdam Cardiovascular Sciences, VU University medical Center, Dept. of Physiology, Amsterdam, The Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Abstract
The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
Collapse
|
50
|
Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:89-100. [PMID: 29928143 PMCID: PMC6003288 DOI: 10.2147/bctt.s144202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastatic breast cancer is typically an extremely aggressive cancer with poor prognosis. Metastasis requires the orchestration of homeostatic factors and cellular programs, many of which are potential therapeutic targets. Luteolin (2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-4-chromenone), is a naturally occurring flavonoid found in fruits and vegetables that exhibits many anticancer properties. Luteolin obstructs metastasis through both direct and indirect mechanisms. For instance, luteolin may suppress breast cancer invasion by acting as an antiangiogenic therapeutic inhibiting VEGF production and its receptor’s activity. Furthermore, luteolin decreases epithelial–mesenchymal transition markers and metastatic proclivity. Luteolin also acts as an antiproliferative by suppressing receptor tyrosine-kinase activity and apoptosis, both of which could prevent incipient colonization of breast cancer. Many of these antimetastatic characteristics accredited to luteolin are likely functionally related. For instance, the PI3K/Akt pathway, which is impeded by luteolin, has several downstream programs involved in increased proliferation, survival, and metastatic potential in breast cancer. In this review, luteolin’s ability to ameliorate breast cancer is summarized. The paper also offers insight into the molecular mechanisms by which luteolin may suppress breast cancer metastasis.
Collapse
Affiliation(s)
- Matthew T Cook
- Department of Biology, Washburn University, Topeka, KS, USA
| |
Collapse
|