1
|
Fan J, Li Q, Liang J, Chen Z, Chen L, Lai J, Chen Q. Regulation of IFNβ expression: focusing on the role of its promoter and transcription regulators. Front Microbiol 2023; 14:1158777. [PMID: 37396372 PMCID: PMC10309559 DOI: 10.3389/fmicb.2023.1158777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
IFNβ is a single-copy gene without an intron. Under normal circumstances, it shows low or no expression in cells. It is upregulated only when the body needs it or is stimulated. Stimuli bind to the pattern recognition receptors (PRRs) and pass via various signaling pathways to several basic transcriptional regulators, such as IRFs, NF-кB, and AP-1. Subsequently, the transcriptional regulators enter the nucleus and bind to regulatory elements of the IFNβ promoter. After various modifications, the position of the nucleosome is altered and the complex is assembled to activate the IFNβ expression. However, IFNβ regulation involves a complex network. For the study of immunity and diseases, it is important to understand how transcription factors bind to regulatory elements through specific forms, which elements in cells are involved in regulation, what regulation occurs during the assembly of enhancers and transcription complexes, and the possible regulatory mechanisms after transcription. Thus, this review focuses on the various regulatory mechanisms and elements involved in the activation of IFNβ expression. In addition, we discuss the impact of this regulation in biology.
Collapse
Affiliation(s)
- Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2
|
Gong W, Dsouza N, Garry DJ. SeATAC: a tool for exploring the chromatin landscape and the role of pioneer factors. Genome Biol 2023; 24:125. [PMID: 37218013 DOI: 10.1186/s13059-023-02954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) reveals chromatin accessibility across the genome. Currently, no method specifically detects differential chromatin accessibility. Here, SeATAC uses a conditional variational autoencoder model to learn the latent representation of ATAC-seq V-plots and outperforms MACS2 and NucleoATAC on six separate tasks. Applying SeATAC to several pioneer factor-induced differentiation or reprogramming ATAC-seq datasets suggests that induction of these factors not only relaxes the closed chromatin but also decreases chromatin accessibility of 20% to 30% of their target sites. SeATAC is a novel tool to accurately reveal genomic regions with differential chromatin accessibility from ATAC-seq data.
Collapse
Affiliation(s)
- Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6Th St SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Brouwer I, Kerklingh E, van Leeuwen F, Lenstra TL. Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting. Nat Struct Mol Biol 2023; 30:692-702. [PMID: 37127821 DOI: 10.1038/s41594-023-00981-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by the remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in Saccharomyces cerevisiae to measure how bursting changes upon combined perturbations of chromatin remodelers, the transcription factor Gal4 and preinitiation complex components. Using dynamic epistasis analysis, we reveal how the remodeling of different nucleosomes regulates transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. At canonical TATA boxes, the nucleosomes are displaced by TBP binding to allow for transcription activation even in the absence of remodelers. Overall, our results reveal how promoter nucleosome remodeling together with Gal4 and preinitiation complex binding regulates transcriptional bursting.
Collapse
Affiliation(s)
- Ineke Brouwer
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Emma Kerklingh
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Lodhi N, Singh M, Srivastava R, Sawant SV, Tuli R. Epigenetic malleability at core promoter initiates tobacco PR-1a expression post salicylic acid treatment. Mol Biol Rep 2023; 50:417-431. [PMID: 36335522 DOI: 10.1007/s11033-022-08074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tobacco's PR-1a gene is induced by pathogen attack or exogenous application of salicylic acid (SA). Nucleosome mapping and chromatin immunoprecipitation assay were used to delineate the histone modifications on the PR-1a promoter. However, the epigenetic modifications of the inducible promoter of the PR-1a gene are not fully understood yet. METHODS AND RESULTS Southern approach was used to scan the promoter of PR-1a to identify presence of nucleosomes, ChIP assays were performed using anti-histones antibodies of repressive chromatin by di- methylated at H3K9 and H4K20 or active chromatin by acetylated H3K9/14 and H4K16 to find epigenetic malleability of nucleosome over core promoter in uninduced or induced state post SA treatment. Class I and II mammalian histone deacetylase (HDAC) inhibitor TSA treatment was used to enhance the expression of PR-1a by facilitating the histone acetylation post SA treatment. Here, we report correlated consequences of the epigenetic modifications correspond to disassembly of the nucleosome (spans from - 102 to + 55 bp, masks TATA and transcription initiation) and repressor complex from core promoter, eventually initiates the transcription of PR-1a gene post SA treatment. While active chromatin marks di and trimethylation of H3K4, acetylation of H3K9 and H4K16 are increased which are associated to the transcription initiation of PR-1a following SA treatment. However, in uninduced state constitutive expression of a negative regulator (SNI1) of AtPR1, suppresses AtPR1 expression by six-fold in Arabidopsis thaliana. Further, we report 50-to-1000-fold increased expression of AtPR1 in uninduced lsd1 mutant plants, up to threefold increased expression of AtPR1 in uninduced histone acetyl transferases (HATs) mutant plants, SNI1 dependent negative regulation of AtPR1, all together our results suggest that inactive state of PR-1a is indeed maintained by a repressive complex. CONCLUSION The study aimed to reveal the mechanism of transcription initiation of tobacco PR-1a gene in presence or absence of SA. This is the first study that reports nucleosome and repressor complex over core promoter region maintains the inactivation of gene in uninduced state, and upon induction disassembling of both initiates the downstream gene activation process.
Collapse
Affiliation(s)
- Niraj Lodhi
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India. .,Mirna Analytics, New York, NY, 19047, USA.
| | - Mala Singh
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Rakesh Srivastava
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Samir V Sawant
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Rakesh Tuli
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India.,University Institute of Engineering & Technology (UIET), Sector 25, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
5
|
Hu Y, Wang X, Song J, Wu J, Xu J, Chai Y, Ding Y, Wang B, Wang C, Zhao Y, Shen Z, Xu X, Cao X. Chromatin remodeler ARID1A binds IRF3 to selectively induce antiviral interferon production in macrophages. Cell Death Dis 2021; 12:743. [PMID: 34315861 PMCID: PMC8316351 DOI: 10.1038/s41419-021-04032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
Transcription factor IRF3 is critical for the induction of antiviral type I interferon (IFN-I). The epigenetic regulation of IFN-I production in antiviral innate immunity needs to be further identified. Here, we reported that epigenetic remodeler ARID1A, a critical component of the mSWI/SNF complex, could bind IRF3 and then was recruited to the Ifn-I promoter by IRF3, thus selectively promoting IFN-I but not TNF-α, IL-6 production in macrophages upon viral infection. Myeloid cell-specific deficiency of Arid1a rendered mice more susceptible to viral infection, accompanied with less IFN-I production. Mechanistically, ARID1A facilitates chromatin accessibility of IRF3 at the Ifn-I promoters by interacting with histone methyltransferase NSD2, which methylates H3K4 and H3K36 of the promoter regions. Our findings demonstrated the new roles of ARID1A and NSD2 in innate immunity, providing insight into the crosstalks of chromatin remodeling, histone modification, and transcription factors in the epigenetic regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Ye Hu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Ding
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingjing Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yong Zhao
- Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongyang Shen
- Institute of Transplanation Medicine, First Central Hospital, Nankai University, Tianjin, China
| | - Xiaoqing Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
- College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Abstract
The TATA box-binding protein (TBP) is highly conserved throughout eukaryotes and plays a central role in the assembly of the transcription preinitiation complex (PIC) at gene promoters. TBP binds and bends DNA, and directs adjacent binding of the transcription factors TFIIA and TFIIB for PIC assembly. Here, we show that yeast TBP can bind to a nucleosome containing the Widom-601 sequence and that TBP-nucleosome binding is stabilized by TFIIA. We determine three cryo-electron microscopy (cryo-EM) structures of TBP-nucleosome complexes, two of them containing also TFIIA. TBP can bind to superhelical location (SHL) -6, which contains a TATA-like sequence, but also to SHL +2, which is GC-rich. Whereas binding to SHL -6 can occur in the absence of TFIIA, binding to SHL +2 is only observed in the presence of TFIIA and goes along with detachment of upstream terminal DNA from the histone octamer. TBP-nucleosome complexes are sterically incompatible with PIC assembly, explaining why a promoter nucleosome generally impairs transcription and must be moved before initiation can occur.
Collapse
|
7
|
Agelopoulos M, Foutadakis S, Thanos D. The Causes and Consequences of Spatial Organization of the Genome in Regulation of Gene Expression. Front Immunol 2021; 12:682397. [PMID: 34149720 PMCID: PMC8212036 DOI: 10.3389/fimmu.2021.682397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Regulation of gene expression in time, space and quantity is orchestrated by the functional interplay of cis-acting elements and trans-acting factors. Our current view postulates that transcription factors recognize enhancer DNA and read the transcriptional regulatory code by cooperative DNA binding to specific DNA motifs, thus instructing the recruitment of transcriptional regulatory complexes forming a plethora of higher-ordered multi-protein-DNA and protein-protein complexes. Here, we reviewed the formation of multi-dimensional chromatin assemblies implicated in gene expression with emphasis on the regulatory role of enhancer hubs as coordinators of stochastic gene expression. Enhancer hubs contain many interacting regulatory elements and represent a remarkably dynamic and heterogeneous network of multivalent interactions. A functional consequence of such complex interaction networks could be that individual enhancers function synergistically to ensure coordination, tight control and robustness in regulation of expression of spatially connected genes. In this review, we discuss fundamental paradigms of such inter- and intra- chromosomal associations both in the context of immune-related genes and beyond.
Collapse
Affiliation(s)
| | | | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
8
|
Pardal AJ, Piquerez SJM, Dominguez-Ferreras A, Frungillo L, Mastorakis E, Reilly E, Latrasse D, Concia L, Gimenez-Ibanez S, Spoel SH, Benhamed M, Ntoukakis V. Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathog 2021; 17:e1009572. [PMID: 34015058 PMCID: PMC8171942 DOI: 10.1371/journal.ppat.1009572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/02/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.
Collapse
Affiliation(s)
- Alonso J. Pardal
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sophie J. M. Piquerez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | | | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Emma Reilly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
| | - Steven H. Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université de Paris, Orsay, France
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Guo L, Wang X, Yuan J, Zhu M, Fu X, Xu RH, Wu C, Wu Y. TSA restores hair follicle-inductive capacity of skin-derived precursors. Sci Rep 2019; 9:2867. [PMID: 30814580 PMCID: PMC6393485 DOI: 10.1038/s41598-019-39394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The genesis of the hair follicle relies on signals derived from mesenchymal cells in the dermis during skin morphogenesis and regeneration. Multipotent skin-derived precursors (SKPs), which exhibit long term proliferation potential when being cultured in spheroids, have been shown to induce hair genesis and hair follicle regeneration in mice, implying a therapeutic potential of SKPs in hair follicle regeneration and bioengineering. However, the hair-inductive property of SKPs declines progressively upon ex vivo culture expansion, suggesting that the expressions of the genes responsible for hair induction are epigenetically unstable. In this study, we found that TSA markedly alleviated culture expansion induced SKP senescence, increased the expression and activity of alkaline phosphatase (AP) in the cells and importantly restored the hair inductive capacity of SKPs. TSA increased the acetylation level of histone H3, including the K19/14 sites in the promoter regions of bone morphogenetic proteins (BMPs) genes, which were associated with elevated gene expression and BMP signaling activity, suggesting a potential attribution of BMP pathway in TSA induced recovery of the hair inductive capacity of SKPs.
Collapse
Affiliation(s)
- Ling Guo
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Meishu Zhu
- Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China
| | - Ren-He Xu
- University of Macau, Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, Taipa, Macau, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
12
|
Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore D. Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Mol Cell 2019; 71:89-102.e5. [PMID: 29979971 DOI: 10.1016/j.molcel.2018.05.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell 2019; 176:520-534.e25. [DOI: 10.1016/j.cell.2018.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
14
|
Yu X, Meng X, Liu Y, Li N, Zhang A, Wang TJ, Jiang L, Pang J, Zhao X, Qi X, Zhang M, Wang S, Liu B, Xu ZY. The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize. PLANT MOLECULAR BIOLOGY 2018; 97:451-465. [PMID: 29956114 DOI: 10.1007/s11103-018-0751-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 05/16/2023]
Abstract
The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
- Department of Bioengineering, Jilin Agricultural Science and Technology College, Jilin, People's Republic of China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Xinxin Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| |
Collapse
|
15
|
Niina T, Brandani GB, Tan C, Takada S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput Biol 2017; 13:e1005880. [PMID: 29194442 PMCID: PMC5728581 DOI: 10.1371/journal.pcbi.1005880] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/13/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements.
Collapse
Affiliation(s)
- Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Voong LN, Xi L, Wang JP, Wang X. Genome-wide Mapping of the Nucleosome Landscape by Micrococcal Nuclease and Chemical Mapping. Trends Genet 2017; 33:495-507. [PMID: 28693826 DOI: 10.1016/j.tig.2017.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 12/30/2022]
Abstract
Nucleosomes regulate the transcription output of the genome by occluding the underlying DNA sequences from DNA-binding proteins that must act on it. Knowledge of the precise locations of nucleosomes in the genome is thus essential towards understanding how transcription is regulated. Current nucleosome-mapping strategies involve digesting chromatin with nucleases or chemical cleavage followed by high-throughput sequencing. In this review, we compare the traditional micrococcal nuclease (MNase)-based approach with a chemical cleavage strategy, with discussion on the important insights each has uncovered about the role of nucleosomes in shaping transcriptional processes.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Liqun Xi
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA.
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
17
|
Ling M, Huang P, Islam S, Heruth DP, Li X, Zhang LQ, Li DY, Hu Z, Ye SQ. Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase. Cell Biosci 2017; 7:27. [PMID: 28546856 PMCID: PMC5442704 DOI: 10.1186/s13578-017-0154-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bone degenerative disorders like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Although there are studies suggesting that metabolic changes occur with stem cell differentiation, the molecular mechanisms governing energy metabolism and epigenetic modification are not understood fully. Here we reported the key role of nicotinamide phosphoribosyltransferase (Nampt), which is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide, in the osteogenic differentiation of bone marrow stromal cells. RESULTS Differentiated bone marrow stromal cells isolated from Nampt+/- mice presented with diminished osteogenesis, as evaluated by alkaline phosphatase (ALP) staining, ALP activity and osteoblast-mediated mineralization, compared to cells from Nampt+/+ mice. Similar results were observed in differentiated Nampt-deficient C3H/10T1/2 and MC3T3-E1 cells. Further studies showed that Nampt promotes osteoblast differentiation through increased function and expression of Runx2 as tested by luciferase reporter assay, RT-PCR, and Western Blotting. Our data also demonstrated that Nampt regulates Runx2 transcription in part through epigenetic modification of H3-Lys9 acetylation. CONCLUSION Our study demonstrated that Nampt plays a critical role in osteoblast differentiation through epigenetic augmentation of Runx2 transcription. NAMPT may be a potential therapeutic target of aging-related osteoporosis.
Collapse
Affiliation(s)
- Min Ling
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA.,Spinal Surgery Division, The People's Hospital of Liuzhou, Guilin Medical University, 8 Wenchang Road, Liuzhou, 545006 Guangxi Province China
| | - Peixin Huang
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Shamima Islam
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Daniel P Heruth
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Xuanan Li
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Li Qin Zhang
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Ding-You Li
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA
| | - Zhaohui Hu
- Spinal Surgery Division, The People's Hospital of Liuzhou, Guilin Medical University, 8 Wenchang Road, Liuzhou, 545006 Guangxi Province China
| | - Shui Qing Ye
- Department of Pediatrics, Children's Mercy, 2401 Gillham Road, PRC/4th FL, Kansas City, MO 64108 USA.,Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| |
Collapse
|
18
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
19
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
|
21
|
The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation. Mol Cell Biol 2016; 36:979-91. [PMID: 26755556 DOI: 10.1128/mcb.00801-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability.
Collapse
|
22
|
Lesne A, Foray N, Cathala G, Forné T, Wong H, Victor JM. Chromatin fiber allostery and the epigenetic code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064114. [PMID: 25563208 DOI: 10.1088/0953-8984/27/6/064114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an 'epigenetic code', by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, UPMC Université Paris 06, Sorbonne Universités, F-75005, Paris, France. Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, F-34293, Montpellier, France. CNRS GDR 3536, UPMC Université Paris 06, F-75005, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
P Singh R, Brysbaert G, F Lensink M, Cleri F, Blossey R. Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Yadav VK, Thakur RK, Eckloff B, Baral A, Singh A, Halder R, Kumar A, Alam MP, Kundu TK, Pandita R, Pandita TK, Wieben ED, Chowdhury S. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity. Nucleic Acids Res 2014; 42:9602-11. [PMID: 25081206 PMCID: PMC4150765 DOI: 10.1093/nar/gku596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Bruce Eckloff
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankita Singh
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rashi Halder
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Akinchan Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Parwez Alam
- Dr B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Raj Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Eric D Wieben
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
25
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Freaney JE, Zhang Q, Yigit E, Kim R, Widom J, Wang JP, Horvath CM. High-density nucleosome occupancy map of human chromosome 9p21-22 reveals chromatin organization of the type I interferon gene cluster. J Interferon Cytokine Res 2014; 34:676-85. [PMID: 24673249 DOI: 10.1089/jir.2013.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21-22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome-DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection.
Collapse
Affiliation(s)
- Jonathan E Freaney
- 1 Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | | | | | | | | | | | | |
Collapse
|
27
|
Silmon de Monerri NC, Kim K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:897-911. [PMID: 24525150 DOI: 10.1016/j.ajpath.2013.12.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved strategies to promote their survival by dramatically modifying the transcriptional profile and protein content of the host cells they infect. Modifications of the host transcriptome and proteome are mediated by pathogen-encoded effector molecules that modulate host cells through a variety of different mechanisms. Recent studies highlight the importance of the host chromatin and other epigenetic regulators as targets of pathogens. Host gene regulatory mechanisms may be targeted through cytoplasmic signaling, directly by pathogen effector proteins, and possibly by pathogen RNA. Although many of these changes are short-lived and persist only during the course of infection, several studies indicate that pathogens are able to induce long-term, heritable changes that are essential to pathogenesis of infectious diseases and persistence of pathogens within their hosts. In this review, we discuss how pathogens modulate the epigenome of host cells, a new and flourishing avenue of host-pathogen interaction studies.
Collapse
Affiliation(s)
- Natalie C Silmon de Monerri
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
28
|
Han B, Li J, Li Z, Guo L, Wang S, Liu P, Wu Y. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS One 2013; 8:e81781. [PMID: 24312356 PMCID: PMC3842316 DOI: 10.1371/journal.pone.0081781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been considered as ideal cells for the treatment of a variety of diseases. However, aging and spontaneous differentiation of MSCs during culture expansion dampen their effectiveness. Previous studies suggest that exvivo aging of MSCs is largely caused by epigenetic changes particularly a decline of histone H3 acetylation levels in promoter regions of pluripotent genes due to inappropriate growth environment. Methodology/Principal Findings In this study, we examined whether histone deacetylase inhibitor trichostatin A (TSA) could suppress the histone H3 deacetylation thus maintaining the primitive property of MSCs. We found that in regular adherent culture, human MSCs became flatter and larger upon successive passaging, while the expression of pluripotent genes such as Oct4, Sox2, Nanog, Rex-1, CD133 and TERT decreased markedly. Administration of low concentrations of TSA in culture significantly suppressed the morphological changes in MSCs otherwise occurred during culture expansion, increased their proliferation while retaining their cell contact growth inhibition property and multipotent differentiation ability. Moreover, TSA stabilized the expression of the above pluripotent genes and histone H3 acetylation levels in K9 and K14 in promoter regions of Oct4, Sox2 and TERT. Conclusions/Significance Our results suggest that TSA may serve as an effective culture additive to maintain the primitive feature of MSCs during culture expansion.
Collapse
Affiliation(s)
- Bing Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhilong Li
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ling Guo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shan Wang
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Shandong, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- * E-mail:
| |
Collapse
|
29
|
Freaney JE, Kim R, Mandhana R, Horvath CM. Extensive cooperation of immune master regulators IRF3 and NFκB in RNA Pol II recruitment and pause release in human innate antiviral transcription. Cell Rep 2013; 4:959-73. [PMID: 23994473 PMCID: PMC3792498 DOI: 10.1016/j.celrep.2013.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022] Open
Abstract
Transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NFκB) are activated by external stimuli, including virus infection, to translocate to the nucleus and bind genomic targets important for immunity and inflammation. To investigate RNA polymerase II (Pol II) recruitment and elongation in the human antiviral gene regulatory network, a comprehensive genome-wide analysis was conducted during the initial phase of virus infection. Results reveal extensive integration of IRF3 and NFκB with Pol II and associated machinery and implicate partners for antiviral transcription. Analysis indicates that both de novo polymerase recruitment and stimulated release of paused polymerase work together to control virus-induced gene activation. In addition to known messenger-RNA-encoding loci, IRF3 and NFκB stimulate transcription at regions not previously associated with antiviral transcription, including abundant unannotated loci that encode novel virus-inducible RNAs (nviRNAs). These nviRNAs are widely induced by virus infections in diverse cell types and represent a previously overlooked cellular response to virus infection.
Collapse
Affiliation(s)
- Jonathan E. Freaney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Rebecca Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Roli Mandhana
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
30
|
Hapala J, Trifonov EN. Nucleosomal TATA-switch: Competing orientations of TATA on the nucleosome. Gene 2013; 527:339-43. [DOI: 10.1016/j.gene.2013.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 01/22/2023]
|
31
|
Wang Y, Chen T, Yan H, Qi H, Deng C, Ye T, Zhou S, Li FR. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. J Cell Biochem 2013; 114:2231-9. [PMID: 23564418 DOI: 10.1002/jcb.24569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/02/2013] [Indexed: 01/13/2023]
Affiliation(s)
| | - Tao Chen
- Laboratory of Stem Cell and Cellular Therapy; The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; Shenzhen; China
| | - Hongjie Yan
- Laboratory of Stem Cell and Cellular Therapy; The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; Shenzhen; China
| | - Hui Qi
- Laboratory of Stem Cell and Cellular Therapy; The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; Shenzhen; China
| | - Chunyan Deng
- Laboratory of Stem Cell and Cellular Therapy; The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; Shenzhen; China
| | - Tao Ye
- Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong SAR; China
| | - Shuyan Zhou
- Laboratory of Stem Cell and Cellular Therapy; The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; Shenzhen; China
| | | |
Collapse
|
32
|
Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 2013; 20:1040-6. [DOI: 10.1038/nsmb.2642] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
|
33
|
Cianfrocco MA, Nogales E. Regulatory interplay between TFIID's conformational transitions and its modular interaction with core promoter DNA. Transcription 2013; 4:120-6. [PMID: 23863784 PMCID: PMC4042585 DOI: 10.4161/trns.25291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent structural and biochemical studies of human TFIID have significantly increased our understanding of the mechanisms underlying the recruitment of TFIID to promoter DNA and its role in transcription initiation. Structural studies using cryo-EM revealed that modular interactions underlie TFIID’s ability to bind simultaneously multiple promoter motifs and to define a DNA state that will facilitate transcription initiation. Here we propose a general model of promoter binding by TFIID, where co-activators, activators, and histone modifications promote and/or stabilize a conformational state of TFIID that results in core promoter engagement. Within this high affinity conformation, we propose that TFIID’s extensive interaction with promoter DNA leads to topological changes in the DNA that facilitate the eventual loading of RNAP II. While more work is required to dissect the individual contributions of activators and repressors to TFIID’s DNA binding, the recent cryo-EM studies provide a physical framework to guide future structural, biophysical, and biochemical experiments.
Collapse
|
34
|
Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci U S A 2013; 110:10165-70. [PMID: 23723349 DOI: 10.1073/pnas.1302209110] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Precise nucleosome-positioning patterns at promoters are thought to be crucial for faithful transcriptional regulation. However, the mechanisms by which these patterns are established, are dynamically maintained, and subsequently contribute to transcriptional control are poorly understood. The switch/sucrose non-fermentable chromatin remodeling complex, also known as the Brg1 associated factors complex, is a master developmental regulator and tumor suppressor capable of mobilizing nucleosomes in biochemical assays. However, its role in establishing the nucleosome landscape in vivo is unclear. Here we have inactivated Snf5 and Brg1, core subunits of the mammalian Swi/Snf complex, to evaluate their effects on chromatin structure and transcription levels genomewide. We find that inactivation of either subunit leads to disruptions of specific nucleosome patterning combined with a loss of overall nucleosome occupancy at a large number of promoters, regardless of their association with CpG islands. These rearrangements are accompanied by gene expression changes that promote cell proliferation. Collectively, these findings define a direct relationship between chromatin-remodeling complexes, chromatin structure, and transcriptional regulation.
Collapse
|
35
|
van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 2013; 9:e1003479. [PMID: 23658529 PMCID: PMC3642058 DOI: 10.1371/journal.pgen.1003479] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. The genome in eukaryotic cells is packaged into nucleosomes, which play critical roles in regulating where and when different genes are expressed. For example, nucleosomes can physically block access of transcription factor to sites on DNA or direct regulatory proteins to DNA. Consistent with these roles, nucleosomes assume a stereotypical pattern around genes: they are depleted at the promoter region that marks the start of genes and assume a regularly spaced array within genes. To identify factors involved in this organization, we generated high-resolution nucleosome and transcriptome maps for 50 loss-of-function mutants with known or suspected roles in nucleosome biology in budding yeast. We show that nucleosome organization is determined by the combined effects of many factors that often exert opposing forces on nucleosomes. We further demonstrate that specific nucleosomes can be positioned independently within genes and that repositioning of nucleosomes at the start of genes may affect expression of these genes in response to environmental stimuli. Data mining of this extensive resource allowed us to show that general transcription factors act as insulators at diverging promoters to prevent the formation of cryptic transcripts, and also revealed 36 novel transcripts regulated by the Tup1/Cyc8 complex.
Collapse
Affiliation(s)
- Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kyle Tsui
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Sanie Mnaimneh
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Department of Medical Research, Banting and Best, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
36
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
37
|
Nahkuri S, Paro R. The role of noncoding RNAs in chromatin regulation during differentiation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:743-52. [PMID: 23799570 DOI: 10.1002/wdev.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A myriad of nuclear noncoding RNAs (ncRNAs) have been discovered since the paradigm of RNAs as plain conveyors of protein translation was discarded. There is increasing evidence that at vital intersections of developmental pathways, ncRNAs target the chromatin modulating machinery to its site of action. However, the mechanistic details of processes involved are still largely unclear, and well-characterized metazoan ncRNA species implicated in chromatin regulation during differentiation remain few. Nevertheless, four major categories are slowly emerging: cis-acting antisense ncRNAs that flag the neighboring genes for the propagation of chromatin marks; allele-specific ncRNAs that perform similar tasks, but target larger loci that typically vary in size from hundreds of thousands of base pairs to a whole chromosome; structural ncRNAs proposed to act as scaffolds that couple chromatin shaping complexes of distinct functionalities; and cofactor ncRNAs with a capacity to inhibit or activate essential components of the intertwined chromatin and transcription apparatuses.
Collapse
Affiliation(s)
- Satu Nahkuri
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
38
|
Recognition of CpG island chromatin by KDM2A requires direct and specific interaction with linker DNA. Mol Cell Biol 2011; 32:479-89. [PMID: 22083960 DOI: 10.1128/mcb.06332-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Up to 70% of human genes are associated with regions of nonmethylated DNA called CpG islands (S. Saxonov, P. Berg, and D. L. Brutlag, Proc. Natl. Acad. Sci. U. S. A. 103:1412-1417, 2006). Usually associated with the 5' end of genes, CpG islands are thought to impact gene expression. We previously demonstrated that the histone demethylase KDM2A is specifically recruited to CpG islands to define a unique chromatin architecture and highlight gene regulatory regions in large and complex mammalian genomes. This targeting relies on a zinc finger CXXC DNA binding domain (ZF-CXXC), but how this demethylase interfaces with CpG island chromatin in vivo remains unknown. Here we demonstrate, using defined chromatin templates in vitro and chromatin profiling in vivo, that nucleosomes are a major barrier to KDM2A binding and that CpG islands are directly interpreted by the ZF-CXXC domain through specific interaction with linker DNA. Furthermore, KDM2A appears to be constrained to CpG islands not only by their nonmethylated state but also by a combination of methylated DNA and nucleosome occlusion elsewhere in the genome. Our observations suggest that both DNA sequence and chromatin structure are defining factors in interpreting CpG island chromatin and translation of the CpG signal. More generally, these features of CpG island recognition suggest that chromatin structure and accessibility play a major role in defining how transcription factors recognize DNA and regulatory elements genome-wide.
Collapse
|
39
|
Yang Z, Hayes JJ. The divalent cations Ca2+ and Mg2+ play specific roles in stabilizing histone-DNA interactions within nucleosomes that are partially redundant with the core histone tail domains. Biochemistry 2011; 50:9973-81. [PMID: 22007636 DOI: 10.1021/bi201377x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously reported that reconstituted nucleosomes undergo sequence-dependent translational repositioning upon removal of the core histone tail domains under physiological conditions, indicating that the tails influence the choice of position. We report here that removal of the core histone tail domains increases the exposure of the DNA backbone in nucleosomes to hydroxyl radicals, a nonbiased chemical cleavage reagent, indicative of an increase in the motility of the DNA on the histone surface. Moreover, we demonstrate that the divalent cations Mg(2+) and Ca(2+) can replace the role of the tail domains with regard to stabilization of histone-DNA interactions within the nucleosome core and restrict repositioning of nucleosomes upon tail removal. However, when nucleosomes were incubated with Mg(2+) after tail removal, the original distribution of translational positions was not re-established, indicating that divalent cations increase the energy barrier between translational positions rather than altering the free energy differences between positions. Interestingly, other divalent cations such as Zn(2+), Fe(2+), Co(2+), and Mn(2+) had little or no effect on the stability of histone-DNA interactions within tailless nucleosomes. These results support the idea that specific binding sites for Mg(2+) and Ca(2+) ions exist within the nucleosome and play a critical role in nucleosome stability that is partially redundant with the core histone tail domains.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
40
|
Abstract
In eukaryotes, all DNA-templated reactions occur in the context of chromatin. Nucleosome packaging inherently restricts DNA accessibility for regulatory proteins but also provides an opportunity to regulate DNA-based processes through modulating nucleosome positions and local chromatin structure. Recent advances in genome-scale methods are yielding increasingly detailed profiles of the genomic distribution of nucleosomes, their modifications and their modifiers. The picture now emerging is one in which the dynamic control of genome accessibility is governed by contributions from DNA sequence, ATP-dependent chromatin remodelling and nucleosome modifications. Here we discuss the interplay of these processes by reviewing our current understanding of how chromatin access contributes to the regulation of transcription, replication and repair.
Collapse
|
41
|
Shiosaki S, Kuramoto M, Toita R, Mori T, Niidome T, Katayama Y. A hydrophilic polymer grafted with a histone tail peptide as an artificial gene regulator. Bioorg Med Chem 2011; 19:4101-5. [PMID: 21636282 DOI: 10.1016/j.bmc.2011.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 11/27/2022]
Abstract
In chromatin, gene transcription is regulated through posttranslational modifications on the histone N-terminal tail sequences, typically an acetyl group modification on lysine residues. To realize a simple model of the gene regulation of chromatin, we designed a hydrophilic polymer grafted with histone H3 tail peptides. The polyplex formed from the polymer and DNA suppressed the gene expression effectively although the polyplex was weaker than the polyplex of poly-L-lysine and DNA. This weaker polyplex afforded the acetylation of the lysine residue of the grafted peptides by histone acetyltransferase. Subsequently, the gene expression was activated due to the relaxation of the polyplex which was brought by a cationic charge decrease in the grafted peptides. This molecular system is the first functional model of the gene regulation of the chromatin.
Collapse
Affiliation(s)
- Shujiro Shiosaki
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Li Z, Liu C, Xie Z, Song P, Zhao RCH, Guo L, Liu Z, Wu Y. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6:e20526. [PMID: 21694780 PMCID: PMC3111432 DOI: 10.1371/journal.pone.0020526] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/02/2011] [Indexed: 11/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood. Methodology/Principal Findings Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes. Conclusions/Significance Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.
Collapse
Affiliation(s)
- Zhilong Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
| | - Chenxiong Liu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhenhua Xie
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Pengyue Song
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Robert C. H. Zhao
- Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Guo
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen University, Shenzhen, China
- * E-mail: (YW); (ZL)
| | - Yaojiong Wu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- * E-mail: (YW); (ZL)
| |
Collapse
|
43
|
The epigenetic landscape of lineage choice: lessons from the heritability of CD4 and CD8 expression. Curr Top Microbiol Immunol 2011; 356:165-88. [PMID: 21989924 PMCID: PMC4417357 DOI: 10.1007/82_2011_175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Developing αβ T cells choose between the helper and cytotoxic lineages, depending upon the specificity of their T cell receptors for MHC molecules. The expression of the CD4 co-receptor on helper cells and the CD8 co-receptor on cytotoxic cells is intimately linked to this decision, and their regulation at the transcriptional level has been the subject of intense study to better understand lineage choice. Indeed, as the fate of developing T cells is decided, the expression status of these genes is accordingly locked. Genetic models have revealed important transcriptional elements and the ability to manipulate these elements in the framework of development has added a new perspective on the temporal nature of their function and the epigenetic maintenance of gene expression. We examine here novel insights into epigenetic mechanisms that have arisen through the study of these genes.
Collapse
|
44
|
Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC, Tanay A, Jones PA. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 2010; 39:901-11. [PMID: 20864037 PMCID: PMC2947862 DOI: 10.1016/j.molcel.2010.08.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/26/2010] [Accepted: 07/06/2010] [Indexed: 11/16/2022]
Abstract
Profound chromatin changes occur during mitosis to allow for gene silencing and chromosome segregation followed by reactivation of memorized transcription states in daughter cells. Using genome-wide sequencing, we found H2A.Z-containing +1 nucleosomes of active genes shift upstream to occupy TSSs during mitosis, significantly reducing nucleosome-depleted regions. Single-molecule analysis confirmed nucleosome shifting and demonstrated that mitotic shifting is specific to active genes that are silenced during mitosis and, thus, is not seen on promoters, which are silenced by methylation or mitotically expressed genes. Using the GRP78 promoter as a model, we found H3K4 trimethylation is also maintained while other indicators of active chromatin are lost and expression is decreased. These key changes provide a potential mechanism for rapid silencing and reactivation of genes during the cell cycle.
Collapse
Affiliation(s)
- Theresa K. Kelly
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Tina Branscombe Miranda
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Gangning Liang
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Benjamin P. Berman
- USC Epigenome Center, University of Southern California, Los Angeles, CA USA
| | - Joy C. Lin
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot, Israel
| | - Peter A. Jones
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
45
|
Arya G, Maitra A, Grigoryev SA. A structural perspective on the where, how, why, and what of nucleosome positioning. J Biomol Struct Dyn 2010; 27:803-20. [PMID: 20232935 DOI: 10.1080/07391102.2010.10508585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The DNA in eukaryotic chromatin is packed by histones into arrays of repeating units called nucleosomes. Each nucleosome contains a nucleosome core, where the DNA is wrapped around a histone octamer, and a stretch of relatively unconstrained DNA called the linker DNA. Since nucleosome cores occlude the DNA from many DNA-binding factors, their positions provide important clues for understanding chromatin packing and gene regulation. Here we review the recent advances in the genome-wide mapping of nucleosome positions, the molecular and structural determinants of nucleosome positioning, and the importance of nucleosome positioning in chromatin higher order folding and transcriptional regulation.
Collapse
Affiliation(s)
- Gaurav Arya
- Department of NanoEngineering, University of California at San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
46
|
Tanase JI, Morohashi N, Fujita M, Nishikawa JI, Shimizu M, Ohyama T. Highly efficient chromatin transcription induced by superhelically curved DNA segments: the underlying mechanism revealed by a yeast system. Biochemistry 2010; 49:2351-8. [PMID: 20166733 DOI: 10.1021/bi901950w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superhelically curved DNA structures can strongly activate transcription in mammalian cells. However, the mechanism underlying the activation has not been clarified. We investigated this mechanism in yeast cells, using 108, 180, and 252 bp synthetic curved DNA segments. Even in the presence of nucleosomes, these DNAs activated transcription from a UAS-deleted CYC1 promoter that is silenced in the presence of nucleosomes. The fold-activations of transcription by these segments, relative to the transcription on the control that lacked such segments, were 51.4, 63.4, and 56.4, respectively. The superhelically curved DNA structures favored nucleosome formation. However, the translational positions of the nucleosomes were dynamic. The high mobility of the nucleosomes on the superhelically curved DNA structures seemed to influence the mobility of the nucleosomes formed on the promoter and eventually enhanced the access to the center region of one TATA sequence. Functioning as a dock for the histone core and allowing nucleosome sliding seem to be the mechanisms underlying the transcriptional activation by superhelically curved DNA structures in chromatin. The present study provides important clues for designing and constructing artificial chromatin modulators, as a tool for chromatin engineering.
Collapse
Affiliation(s)
- Jun-ichi Tanase
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 2010; 6:e1000869. [PMID: 20221260 PMCID: PMC2832679 DOI: 10.1371/journal.pgen.1000869] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/02/2010] [Indexed: 01/05/2023] Open
Abstract
Krüppel-associated box domain-zinc finger proteins (KRAB–ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB–mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB–containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB–mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 β (HP1β) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1–dependent transcriptional repression at an endogenous KRAB–ZFP gene cluster, where KAP1 binds to the 3′ end of genes and mediates propagation of H3K9me3 and HP1β towards their 5′ end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB–ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB–ZFPs and KAP1. The regulation of gene activity by transcription factors is crucial to the function of all cells. Here, we studied the mechanisms of action of the largest family of gene regulators encoded by the human genome, the so-called KRAB–containing zinc finger proteins (KRAB–ZFPs), which in concert with their universal cofactor KAP1 act as transcriptional repressors. For this, we used two parallel approaches. First, by targeting an ectopic KRAB domain to hundreds of different genes, we found that KRAB/KAP1 can repress promoters located several tens of kilobases from the repressor DNA docking site. We further could show that KRAB induces such long-range effects by mediating the spread of repressive chromatin marks along the body of the gene, resulting in a block of transcriptional initiation at the promoter. In a second set of experiments, we analyzed an endogenous KRAB–ZFP gene cluster, where we could also document KAP1–dependent heterochromatin spreading and transcriptional repression. Together, these results support a model whereby KRAB–ZFPs and KAP1 can mediate long-range transcriptional repression through the spread of silencing chromatin marks. This study thus provides insight into KRAB/KAP1–induced gene regulation at KRAB–ZFP gene clusters, and will further help interpret genome-wide studies of KRAB–ZFPs and KAP1 DNA binding patterns.
Collapse
Affiliation(s)
- Anna C. Groner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Meylan
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nadine Zangger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Dénervaud
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philipp Bucher
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Miranda TB, Kelly TK, Bouazoune K, Jones PA. Methylation‐Sensitive Single‐Molecule Analysis of Chromatin Structure. ACTA ACUST UNITED AC 2010; Chapter 21:Unit 21.17.1-16. [DOI: 10.1002/0471142727.mb2117s89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tina B. Miranda
- Norris Comprehensive Cancer Center, University of Southern California Los Angeles California
| | - Theresa K. Kelly
- Norris Comprehensive Cancer Center, University of Southern California Los Angeles California
| | - Karim Bouazoune
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Peter A. Jones
- Norris Comprehensive Cancer Center, University of Southern California Los Angeles California
| |
Collapse
|
49
|
Transcription factors mediate long-range enhancer-promoter interactions. Proc Natl Acad Sci U S A 2009; 106:20222-7. [PMID: 19923429 DOI: 10.1073/pnas.0902454106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-beta enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is placed several kilobases away from these promoters. We demonstrated that the remote IFN-beta enhancer "loops out" the intervening DNA to reach the target promoter. These chromatin loops depend on sequence-specific transcription factors bound to the enhancer and the promoter and thus can explain the specificity observed in enhancer-promoter interactions, especially in complex genetic loci. Transcription factor binding sites scattered between an enhancer and a promoter can work as decoys trapping the enhancer in nonproductive loops, thus resembling insulator elements. Finally, replacement of the transcription factor binding sites involved in DNA looping with those of a heterologous prokaryotic protein, the lambda repressor, which is capable of loop formation, rescues enhancer function from a distance by re-establishing enhancer-promoter loop formation.
Collapse
|
50
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|