1
|
Presa M, Pham V, Ray S, Piec PA, Ryan J, Billings T, Coombs H, Schlotawa L, Lund T, Ahrens-Nicklas RC, Lutz C. Bone marrow transplantation increases sulfatase activity in somatic tissues in a multiple sulfatase deficiency mouse model. COMMUNICATIONS MEDICINE 2024; 4:215. [PMID: 39448727 PMCID: PMC11502872 DOI: 10.1038/s43856-024-00648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Multiple Sulfatase Deficiency (MSD) is an ultra-rare autosomal recessive disorder characterized by deficient enzymatic activity of all known sulfatases. MSD patients frequently carry two loss of function mutations in the SUMF1 gene, encoding a formylglycine-generating enzyme (FGE) that activates 17 different sulfatases. MSD patients show common features of other lysosomal diseases like mucopolysaccharidosis and metachromatic leukodystrophy, including neurologic impairments, developmental delay, and visceromegaly. There are currently no approved therapies for MSD patients. Hematopoietic stem cell transplant (HSCT) has been applied with success in the treatment of certain lysosomal diseases. In HSCT, donor-derived myeloid cells are a continuous source of active sulfatase enzymes that can be taken up by sulfatase-deficient host cells. Thus, HSCT could be a potential approach for the treatment of MSD. METHODS To test this hypothesis, we used a clinically relevant mouse model for MSD, B6-Sumf1(S153P/S153P) mice, engrafted with bone marrow cells, Sumf1+/+, from B6-PtprcK302E mice (CD45.1 immunoreactive). RESULTS After 10 months post-transplant, flow cytometric analysis shows an average of 90% of circulating leukocytes of donor origin (Sumf1(+/+)). Enzymatic activity for ARSA, ARSB, and SGSH is significantly increased in spleen of B6-Sumf1(S153P/S153P) recipient mice. In non-lymphoid organs, only liver and heart show a significant correction of sulfatase activity and GAG accumulation. Frequency of inflammatory cells and lysosomal pathology is significantly reduced in liver and heart, while no significant improvement is detected in brain. CONCLUSIONS Our results indicate that HSCT could be a suitable approach to treat MSD-pathology affecting peripheral organs, however that benefit to CNS pathology might be limited.
Collapse
Affiliation(s)
- Maximiliano Presa
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vi Pham
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Somdatta Ray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Jennifer Ryan
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Timothy Billings
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Harold Coombs
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology - Tranlational Neuroinflammation and Automated Microscopy, Goettingen, Germany
| | - Troy Lund
- Division of Hematology-Oncology and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
2
|
Sinha MH, Mehtab T, Entesari M, Nguyen HH, Yun A, Hwang I. Production of active human iduronate-2-sulfatase (IDS) enzyme in Nicotiana benthamiana. Sci Rep 2024; 14:23066. [PMID: 39367006 PMCID: PMC11452390 DOI: 10.1038/s41598-024-73778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Many strategies have been developed to produce high levels of biologically active recombinant proteins in plants for biopharmaceutical purposes. However, the production of an active form of human iduronate-2-sulfatase (hIDS) for the treatment of Hunter syndrome by enzyme replacement therapy (ERT) is challenging due to the requirement for cotranslational modification by a formylglycine-producing enzyme encoded by sulfatase modifying factor 1 (hSUMF1) at the Cys84 residue, which converts it to C(alpha)-formylglycine. In this study, we have shown that hIDS can be highly expressed in N. benthamiana by using different constructs. Among them, BiP-GB1-L-dCBD1-2L-8xHis-L-6xHis-3L-EK-hIDS-HDEL (GB1-CBD1-hIDS) showed a high expression level when transiently co-expressed with the turnip crinkle virus gene silencing suppressor P38 and GB1-fused human calreticulin (GB1-CRT1) as a folding enhancer. The hSUMF1 was co-expressed with hIDS for cotranslational modification. The full-length recombinant proteins were purified using Ni2+-NTA affinity resin followed by enterokinase treatment to obtain tag-free hIDS. The N-terminal fragment was removed using microcrystalline cellulose (MCC) beads. The purified active form of hIDS can successfully cleave the sulfate group from an artificial substrate, 4-nitrocatechol sulfate, at a similar level to commercial hIDS expressed in animal cells. These results suggest that plants could be a promising platform for the production of recombinant hIDS.
Collapse
Affiliation(s)
- Md Hasif Sinha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Tahrin Mehtab
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mehrnaz Entesari
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Hong Hanh Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Areum Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
3
|
Pham V, Tricoli L, Hong X, Wongkittichote P, Castruccio Castracani C, Guerra A, Schlotawa L, Adang LA, Kuhs A, Cassidy MM, Kane O, Tsai E, Presa M, Lutz C, Rivella SB, Ahrens-Nicklas RC. Hematopoietic stem cell gene therapy improves outcomes in a clinically relevant mouse model of multiple sulfatase deficiency. Mol Ther 2024:S1525-0016(24)00538-0. [PMID: 39169621 DOI: 10.1016/j.ymthe.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.
Collapse
Affiliation(s)
- Vi Pham
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucas Tricoli
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, 37075 Goettingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, 37075 Goettingen, Germany
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret M Cassidy
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Owen Kane
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Tsai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maximiliano Presa
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Stefano B Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Panigrahi A, Benicky J, Aljuhani R, Mukherjee P, Nováková Z, Bařinka C, Goldman R. Galectin-3-Binding Protein Inhibits Extracellular Heparan 6-O-Endosulfatase Sulf-2. Mol Cell Proteomics 2024; 23:100793. [PMID: 38825040 PMCID: PMC11259796 DOI: 10.1016/j.mcpro.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA.
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA
| | - Reem Aljuhani
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, District of Columbia, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
6
|
Pham V, Sertori Finoti L, Cassidy MM, Maguire JA, Gagne AL, Waxman EA, French DL, King K, Zhou Z, Gelb MH, Wongkittichote P, Hong X, Schlotawa L, Davidson BL, Ahrens-Nicklas RC. A novel iPSC model reveals selective vulnerability of neurons in multiple sulfatase deficiency. Mol Genet Metab 2024; 141:108116. [PMID: 38161139 PMCID: PMC10951942 DOI: 10.1016/j.ymgme.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.
Collapse
Affiliation(s)
- Vi Pham
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| | - Livia Sertori Finoti
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Margaret M Cassidy
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| | - Jean Ann Maguire
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Alyssa L Gagne
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Elisa A Waxman
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Deborah L French
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA.
| | - Kaitlyn King
- The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Zitao Zhou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Parith Wongkittichote
- The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Xinying Hong
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA; The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Lars Schlotawa
- University Medical Center Goettingen, Department of Pediatrics and Adolescent Medicine, Robert-Koch-Str. 40, 37075 Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology - Translational Neuroinflammation and Automated Microscopy, Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Beverly L Davidson
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA.
| | - Rebecca C Ahrens-Nicklas
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
8
|
Panigrahi A, Benicky J, Aljuhani R, Mukherjee P, Nováková Z, Bařinka C, Goldman R. Galectin-3-binding protein inhibits extracellular heparan 6- O-endosulfatse Sulf-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572603. [PMID: 38187586 PMCID: PMC10769223 DOI: 10.1101/2023.12.20.572603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). In spite of its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the secretome of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP has functional relevance, and may regulate physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
9
|
Saberi-Karimian M, Houra M, Jamialahmadi T, Sarvghadi P, Nikbaf M, Akhlaghi S, Sahebkar A. The Effects of N-Acetyl-L-Leucine on the Improvement of Symptoms in a Patient with Multiple Sulfatase Deficiency. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1250-1256. [PMID: 36482027 PMCID: PMC9735006 DOI: 10.1007/s12311-022-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Multiple Sulfatase Deficiency (MSD) is a rare autosomal recessive disease with specific clinical findings such as psychomotor retardation and neurological deterioration. No therapy is available for this genetic disorder. Previous studies have shown that N-acetyl-L-leucine (NALL) can improve the neurological inflammation in the cerebellum.In the current study, the effects of NALL on ataxia symptoms and quality of life were explored in a patient with MSD.This study was a crossover case study. The subject, a girl aged 12 years old, received NALL at a dose of 3 g/day (1 g in the morning, 1 g in the afternoon, and 1 g in the evening). A fasting blood sample was taken from the subject to evaluate side effects before the intervention and 4 weeks after taking supplement/placebo in every study stage. The ataxia moving symptoms were evaluated using the Scale for the Assessment and Rating of Ataxia (SARA) score in every study stage. Dietary intake was measured using 24-h dietary recall before and after the intervention. The diet compositions were assessed by Nutritionist IV software. Serum IL-6 level was measured using an ELISA kit.There was no significant change in complete blood count (CBC) and serum biochemical factors in the patient with MSD after receiving NALL (3 g/day) over 4 weeks. The SARA score was reduced by 25%. The gait whose maximum score accounts for approximately one-fifth of the maximum total SARA score (8/40) was decreased. The heel-to-shin slide, the only SARA item performed without visual control, was also improved after therapy. Furthermore, there was a downward trend in the 8MWT (8.71 to 7.93 s). Regarding quality of life assessments, the parent and child reported improved quality of life index, physical health, and emotional function after taking NALL. Moreover, total energy intake was increased with NALL treatment through the study period.Supplementation with NALL at a dose of 3 g/day over 4 weeks was well tolerated and improved ataxia symptoms, quality of life measure, and serum IL-6 levels in the patient with MSD. Further proof-of-concept trials are warranted to confirm the present findings.
Collapse
Affiliation(s)
- Maryam Saberi-Karimian
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Houra
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahlagha Nikbaf
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Akhlaghi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, WA, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
12
|
Gusarova VD, Smolov MA, Lyagoskin IV, Degterev MB, Rechetnik EV, Rodionov AV, Pantyushenko MS, Shukurov RR. Characterization of a HIR-Fab-IDS, Novel Iduronate 2-Sulfatase Fusion Protein for the Treatment of Neuropathic Mucopolysaccharidosis Type II (Hunter Syndrome). BioDrugs 2023; 37:375-395. [PMID: 37014547 DOI: 10.1007/s40259-023-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Mucopolysaccharidosis type II is a severe lysosomal storage disease caused by deficient activity of the enzyme iduronate-2-sulfatase. The only medicinal product approved by the US Food and Drug Administration for enzyme replacement therapy, recombinant iduronate-2-sulfatase (idursulfase, Elaprase®), is a large molecule that is not able to cross the blood-brain barrier and neutralize progressive damage of the central nervous system caused by the accumulation of glycosaminoglycans. Novel chimeric protein HIR-Fab-IDS is an anti-human insulin receptor Fab fragment fused to recombinant modified iduronate-2-sulfatase. This modification provides a highly selective interaction with the human insulin receptor, which leads to the HIR-Fab-IDS crossing the blood-brain barrier owing to internalization of the hybrid molecule by transcytosis into endothelial cells adjacent to the nervous system by the principle of a 'molecular Trojan horse'. OBJECTIVES In this work, the physicochemical and biological characterization of a blood-brain barrier-penetrating fusion protein, HIR-Fab-IDS, is carried out. HIR-Fab-IDS consists of an anti-human insulin receptor Fab fragment fused to recombinant iduronate-2-sulfatase. METHODS Comprehensive analytical characterization utilizing modern techniques (including surface plasmon resonance and mass spectrometry) was performed using preclinical and clinical batches of HIR-Fab-IDS. Critical quality parameters that determine the therapeutic effect of iduronate-2-sulfatase, as well as IDS enzymatic activity and in vitro cell uptake activity were evaluated in comparison with the marketed IDS product Elaprase® (IDS RP). In vivo efficiency of HIR-Fab-IDS in reversing mucopolysaccharidosis type II pathology in IDS-deficient mice was also investigated. The affinity of the chimeric molecule for the INSR was also determined by both an enzyme-linked immunosorbent assay and surface plasmon resonance. We also compared the distribution of 125I-radiolabeled HIR-Fab-IDS and IDS RP in the tissues and brain of cynomolgus monkeys after intravenous administration. RESULTS The HIR-Fab-IDS primary structure investigation showed no significant post-translational modifications that could affect IDS activity, except for the formylglycine content, which was significantly higher for HIR-Fab-IDS compared with that for IDS RP (~ 76.5 vs ~ 67.7%). Because of this fact, the specific enzyme activity of HIR-Fab-IDS was slightly higher than that of IDS RP (~ 2.73 × 106 U/μmol vs ~ 2.16 × 106 U/μmol). However, differences were found in the glycosylation patterns of the compared IDS products, causing a minor reduced in vitro cellular uptake of HIR-Fab-IDS by mucopolysaccharidosis type II fibroblasts compared with IDS RP (half-maximal effective concentration ~ 26.0 vs ~ 23.0 nM). The efficacy of HIR-Fab-IDS in IDS-deficient mice has demonstrated a statistically significant reduction in the level of glycosaminoglycans in the urine and tissues of the main organs to the level of healthy animals. The HIR-Fab-IDS has revealed high in vitro affinity for human and monkey insulin receptors, and the radioactively labeled product has been shown to penetrate to all parts of the brain and peripheral tissues after intravenous administration to cynomolgus monkeys. CONCLUSIONS These findings indicate that HIR-Fab-IDS, a novel iduronate-2-sulfatase fusion protein, is a promising candidate for the treatment of central nervous system manifestations in neurological mucopolysaccharidosis type II.
Collapse
Affiliation(s)
- Valentina D Gusarova
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia.
| | - Maxim A Smolov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Ivan V Lyagoskin
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Maksim B Degterev
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Elizaveta V Rechetnik
- Department of Scientific Expertise and Pharmacovigilance, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy district, Vladimir Region, 601125, Russia
| | - Alexander V Rodionov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Marina S Pantyushenko
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| | - Rahim R Shukurov
- Pharmaceutical Analysis Department, JSC "GENERIUM", 14 Vladimirskaya Street, Volginskiy, Petushinskiy District, Vladimir Region, 601125, Russia
| |
Collapse
|
13
|
Fischer J, Hotz A, Komlosi K. Syndromic ichthyoses. MED GENET-BERLIN 2023; 35:23-32. [PMID: 38835422 PMCID: PMC10842576 DOI: 10.1515/medgen-2023-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Inherited ichthyoses are classified as Mendelian disorders of cornification (MEDOC), which are further defined on the basis of clinical and genetic features and can be divided into non-syndromic and syndromic forms. To date, mutations in more than 30 genes are known to result in various types of syndromic ichthyoses, which, in addition to mostly generalised scaling and hyperkeratosis of the skin, also show additional organ involvement. The syndromic ichthyoses are generally very rare and are classified based on the mode of inheritance, and can be further subdivided according to the predominant symptoms. In our review we provide a concise overview of the most prevalent syndromic forms of ichthyosis within each subgroup. We emphasize the importance of the clinical assessment of complex syndromes even in the era of genetic testing as a first-tier diagnostic and specifically the need to actively assess potential organ involvement in patients with ichthyosis, thereby enabling efficient diagnostic and therapeutic approaches and timely access to specialized centers for rare disorders of cornifications. As part of the Freiburg Center for Rare Diseases a Center for Cornification Disorders was recently established with collaboration of the Institute of Human Genetics and the Department of Dermatology. An early diagnosis of syndromes will be of direct benefit to the patient regarding interventional and therapeutic measures e. g. in syndromes with cardiac or metabolic involvement and allows informed reproductive options and access to prenatal and preimplantation genetic diagnosis in the family.
Collapse
Affiliation(s)
- Judith Fischer
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Alrun Hotz
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Katalin Komlosi
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| |
Collapse
|
14
|
Schlotawa L, Tyka K, Kettwig M, Ahrens‐Nicklas RC, Baud M, Berulava T, Brunetti‐Pierri N, Gagne A, Herbst ZM, Maguire JA, Monfregola J, Pena T, Radhakrishnan K, Schröder S, Waxman EA, Ballabio A, Dierks T, Fischer A, French DL, Gelb MH, Gärtner J. Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency. EMBO Mol Med 2023; 15:e14837. [PMID: 36789546 PMCID: PMC9994482 DOI: 10.15252/emmm.202114837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Karolina Tyka
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Matthias Kettwig
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Rebecca C Ahrens‐Nicklas
- Division of Human Genetics and MetabolismThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Matthias Baud
- School of Chemistry and Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Tea Berulava
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Nicola Brunetti‐Pierri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Alyssa Gagne
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | - Jean A Maguire
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Jlenia Monfregola
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Bioinformatics UnitGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | | | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Elisa A Waxman
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
- Department of Molecular and Human Genetics and Neurological Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Thomas Dierks
- Faculty of Chemistry, Biochemistry IBielefeld UniversityBielefeldGermany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center GöttingenUniversity of GöttingenGöttingenGermany
| | - Deborah L French
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Michael H Gelb
- Department of ChemistryUniversity of WashingtonSeattleWAUSA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| |
Collapse
|
15
|
Sorrentino NC, Presa M, Attanasio S, Cacace V, Sofia M, Zuberi A, Ryan J, Ray S, Petkovic I, Radhakrishnan K, Schlotawa L, Ballabio A, Lutz C, Brunetti-Pierri N. New mouse models with hypomorphic SUMF1 variants mimic attenuated forms of multiple sulfatase deficiency. J Inherit Metab Dis 2023; 46:335-347. [PMID: 36433920 PMCID: PMC10832386 DOI: 10.1002/jimd.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.
Collapse
Affiliation(s)
- Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Sergio Attanasio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Martina Sofia
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | | | | | - Igor Petkovic
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | | | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Wu Y, Zhao C, Su Y, Shaik S, Lai W. Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew Chem Int Ed Engl 2023; 62:e202212053. [PMID: 36545867 DOI: 10.1002/anie.202212053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII -superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII -OOH species that couples with the substrate radical, leading to a CuI -alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O-O bond cleavage is coupled with the C-S bond breaking that generates the formylglycine and a CuII -oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2 , which will be useful for future experimental work.
Collapse
Affiliation(s)
- Yao Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Cong Zhao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
17
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
18
|
Amaral O, Martins M, Oliveira AR, Duarte AJ, Mondragão-Rodrigues I, Macedo MF. The Biology of Lysosomes: From Order to Disorder. Biomedicines 2023; 11:213. [PMID: 36672721 PMCID: PMC9856021 DOI: 10.3390/biomedicines11010213] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Since its discovery in 1955, the understanding of the lysosome has continuously increased. Once considered a mere waste removal system, the lysosome is now recognised as a highly crucial cellular component for signalling and energy metabolism. This notable evolution raises the need for a summarized review of the lysosome's biology. As such, throughout this article, we will be compiling the current knowledge regarding the lysosome's biogenesis and functions. The comprehension of this organelle's inner mechanisms is crucial to perceive how its impairment can give rise to lysosomal disease (LD). In this review, we highlight some examples of LD fine-tuned mechanisms that are already established, as well as others, which are still under investigation. Even though the understanding of the lysosome and its pathologies has expanded through the years, some of its intrinsic molecular aspects remain unknown. In order to illustrate the complexity of the lysosomal diseases we provide a few examples that have challenged the established single gene-single genetic disorder model. As such, we believe there is a strong need for further investigation of the exact abnormalities in the pathological pathways in lysosomal disease.
Collapse
Affiliation(s)
- Olga Amaral
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Martins
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Rita Oliveira
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Joana Duarte
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - M. Fátima Macedo
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
20
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
21
|
Tan A, Prasad R, Lee C, Jho EH. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ 2022; 29:1433-1449. [PMID: 35739255 PMCID: PMC9345944 DOI: 10.1038/s41418-022-01028-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-loop-helix leucine zipper transcription factors, is an established central regulator of the autophagy/lysosomal-to-nucleus signaling pathway. Originally described as an oncogene, TFEB is now widely known as a regulator of various processes, such as energy homeostasis, stress response, metabolism, and autophagy-lysosomal biogenesis because of its extensive involvement in various signaling pathways, such as mTORC1, Wnt, calcium, and AKT signaling pathways. TFEB is also implicated in various human diseases, such as lysosomal storage disorders, neurodegenerative diseases, cancers, and metabolic disorders. In this review, we present an overview of the major advances in TFEB research over the past 30 years, since its description in 1990. This review also discusses the recently discovered regulatory mechanisms of TFEB and their implications for human diseases. We also summarize the moonlighting functions of TFEB and discuss future research directions and unanswered questions in the field. Overall, this review provides insight into our understanding of TFEB as a major molecular player in human health, which will take us one step closer to promoting TFEB from basic research into clinical and regenerative applications.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chaerin Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
22
|
Mashima R, Nakanishi M. Mammalian Sulfatases: Biochemistry, Disease Manifestation, and Therapy. Int J Mol Sci 2022; 23:ijms23158153. [PMID: 35897729 PMCID: PMC9330403 DOI: 10.3390/ijms23158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfatases are enzymes that catalyze the removal of sulfate from biological substances, an essential process for the homeostasis of the body. They are commonly activated by the unusual amino acid formylglycine, which is formed from cysteine at the catalytic center, mediated by a formylglycine-generating enzyme as a post-translational modification. Sulfatases are expressed in various cellular compartments such as the lysosome, the endoplasmic reticulum, and the Golgi apparatus. The substrates of mammalian sulfatases are sulfolipids, glycosaminoglycans, and steroid hormones. These enzymes maintain neuronal function in both the central and the peripheral nervous system, chondrogenesis and cartilage in the connective tissue, detoxification from xenobiotics and pharmacological compounds in the liver, steroid hormone inactivation in the placenta, and the proper regulation of skin humidification. Human sulfatases comprise 17 genes, 10 of which are involved in congenital disorders, including lysosomal storage disorders, while the function of the remaining seven is still unclear. As for the genes responsible for pathogenesis, therapeutic strategies have been developed. Enzyme replacement therapy with recombinant enzyme agents and gene therapy with therapeutic transgenes delivered by viral vectors are administered to patients. In this review, the biochemical substrates, disease manifestation, and therapy for sulfatases are summarized.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Correspondence: ; Fax: +81-3-3417-2238
| | | |
Collapse
|
23
|
Consiglieri G, Bernardo ME, Brunetti-Pierri N, Aiuti A. Ex Vivo and In Vivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematol Oncol Clin North Am 2022; 36:865-878. [DOI: 10.1016/j.hoc.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Jarenbäck L, Frantz S, Weidner J, Ankerst J, Nihlén U, Bjermer L, Wollmer P, Tufvesson E. Single-nucleotide polymorphisms in the sulfatase-modifying factor 1 gene are associated with lung function and COPD. ERJ Open Res 2022; 8:00668-2021. [PMID: 35586453 PMCID: PMC9108960 DOI: 10.1183/23120541.00668-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/17/2022] [Indexed: 11/05/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in various genes have been shown to associate with COPD, suggesting a role in disease pathogenesis. Sulfatase modifying factor (SUMF1) is a key modifier in connective tissue remodelling, and we have shown previously that several SNPs in SUMF1 are associated with COPD. The aim of this study was to investigate the association between SUMF1 SNPs and advanced lung function characteristics. Never-, former and current smokers with (n=154) or without (n=405) COPD were genotyped for 21 SNPs in SUMF1 and underwent spirometry, body plethysmography, diffusing capacity of the lung for carbon monoxide (D LCO) measurement and impulse oscillometry. Four SNPs (rs793391, rs12634248, rs2819590 and rs304092) showed a significantly decreased odds ratio of having COPD when heterozygous for the variance allele, together with a lower forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) ratio and an impaired peripheral resistance and reactance. Moreover, individuals homozygous for the variance allele of rs3864051 exhibited a strong association to COPD, a lower FEV1/FVC, FEV1 and D LCO, and an impaired peripheral resistance and reactance. Other SNPs (rs4685744, rs2819562, rs2819561 and rs11915920) were instead associated with impaired lung volumes and exhibited a lower FVC, total lung capacity and alveolar volume, in individuals having the variance allele. Several SNPs in the SUMF1 gene are shown to be associated with COPD and impaired lung function. These genetic variants of SUMF1 may cause a deficient sulfation balance in the extracellular matrix of the lung tissue, thereby contributing to the development of COPD.
Collapse
Affiliation(s)
- Linnea Jarenbäck
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Sophia Frantz
- Dept of Translational Science, Clinical Physiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Julie Weidner
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Jaro Ankerst
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Ulf Nihlén
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Leif Bjermer
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Per Wollmer
- Dept of Translational Science, Clinical Physiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ellen Tufvesson
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Kong W, Lu C, Ding Y, Meng Y. Molecular environment and atypical function: What do we know about enzymes associated with Mucopolysaccharidoses? Orphanet J Rare Dis 2022; 17:112. [PMID: 35246201 PMCID: PMC8895820 DOI: 10.1186/s13023-022-02211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders caused by deficiency of enzymes involved in glycosaminoglycans degradation. Relationship between mucopolysaccharidoses and related enzymes has been clarified clearly. Based on such relationship, lots of therapies have been commercialized or are in the process of research and development. However, many potential treatments failed, because those treatments did not demonstrate expected efficacy or safety data. Molecular environment of enzyme, which is essential for their expression and activity, is fundamental for efficacy of therapy. In addition to enzyme activities, mucopolysaccharidoses-related enzymes have other atypical functions, such as regulation, which may cause side effects. This review tried to discuss molecular environment and atypical function of enzymes that are associated with mucopolysaccharidoses, which is very important for the efficacy and safety of potential therapies.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
27
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
28
|
Schlachter CR, O’Malley A, Grimes LL, Tomashek JJ, Chruszcz M, Lee LA. Purification, Characterization, and Structural Studies of a Sulfatase from Pedobacter yulinensis. Molecules 2021; 27:87. [PMID: 35011319 PMCID: PMC8746622 DOI: 10.3390/molecules27010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Sulfatases are ubiquitous enzymes that hydrolyze sulfate from sulfated organic substrates such as carbohydrates, steroids, and flavones. These enzymes can be exploited in the field of biotechnology to analyze sulfated metabolites in humans, such as steroids and drugs of abuse. Because genomic data far outstrip biochemical characterization, the analysis of sulfatases from published sequences can lead to the discovery of new and unique activities advantageous for biotechnological applications. We expressed and characterized a putative sulfatase (PyuS) from the bacterium Pedobacter yulinensis. PyuS contains the (C/S)XPXR sulfatase motif, where the Cys or Ser is post-translationally converted into a formylglycine residue (FGly). His-tagged PyuS was co-expressed in Escherichia coli with a formylglycine-generating enzyme (FGE) from Mycobacterium tuberculosis and purified. We obtained several crystal structures of PyuS, and the FGly modification was detected at the active site. The enzyme has sulfatase activity on aromatic sulfated substrates as well as phosphatase activity on some aromatic phosphates; however, PyuS did not have detectable activity on 17α-estradiol sulfate, cortisol 21-sulfate, or boldenone sulfate.
Collapse
Affiliation(s)
- Caleb R. Schlachter
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC 29063, USA; (C.R.S.); (L.L.G.); (J.J.T.)
| | - Andrea O’Malley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Linda L. Grimes
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC 29063, USA; (C.R.S.); (L.L.G.); (J.J.T.)
| | - John J. Tomashek
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC 29063, USA; (C.R.S.); (L.L.G.); (J.J.T.)
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - L. Andrew Lee
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC 29063, USA; (C.R.S.); (L.L.G.); (J.J.T.)
| |
Collapse
|
29
|
Janson N, Heinks T, Beuel T, Alam S, Höhne M, Bornscheuer UT, Fischer von Mollard G, Sewald N. Efficient Site‐Selective Immobilization of Aldehyde‐Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nils Janson
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Heinks
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Beuel
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Matthias Höhne
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | | | - Norbert Sewald
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
30
|
DeMichele-Sweet MAA, Klei L, Creese B, Harwood JC, Weamer EA, McClain L, Sims R, Hernandez I, Moreno-Grau S, Tárraga L, Boada M, Alarcón-Martín E, Valero S, Liu Y, Hooli B, Aarsland D, Selbaek G, Bergh S, Rongve A, Saltvedt I, Skjellegrind HK, Engdahl B, Stordal E, Andreassen OA, Djurovic S, Athanasiu L, Seripa D, Borroni B, Albani D, Forloni G, Mecocci P, Serretti A, De Ronchi D, Politis A, Williams J, Mayeux R, Foroud T, Ruiz A, Ballard C, Holmans P, Lopez OL, Kamboh MI, Devlin B, Sweet RA. Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Mol Psychiatry 2021; 26:5797-5811. [PMID: 34112972 PMCID: PMC8660923 DOI: 10.1038/s41380-021-01152-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD with psychosis, AD + P). AD + P affects ~50% of individuals with AD, identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive impairment and depressive symptoms, compared to subjects without psychosis (AD - P). Although the estimated heritability of AD + P is 61%, genetic sources of risk are unknown. We report a genome-wide meta-analysis of 12,317 AD subjects, 5445 AD + P. Results showed common genetic variation accounted for a significant portion of heritability. Two loci, one in ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p = 1.26 × 10-8) and one spanning the 3'-UTR of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56-0.76), p = 3.24 × 10-8), had genome-wide significant associations with AD + P. Gene-based analysis identified a significant association with APOE, due to the APOE risk haplotype ε4. AD + P demonstrated negative genetic correlations with cognitive and educational attainment and positive genetic correlation with depressive symptoms. We previously observed a negative genetic correlation with schizophrenia; instead, we now found a stronger negative correlation with the related phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic correlation and documented a positive genetic correlation with risk variation for AD, beyond the effect of ε4. We also document a small set of SNPs likely to affect risk for AD + P and AD or schizophrenia. These findings provide the first unbiased identification of the association of psychosis in AD with common genetic variation and provide insights into its genetic architecture.
Collapse
Affiliation(s)
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron Creese
- University of Exeter Medical School, College of Medicine and Health, Exeter, UK
- Norwegian, Exeter and King's College Consortium for Genetics of Neuropsychiatric Symptoms in Dementia, Exeter, UK
| | - Janet C Harwood
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Elise A Weamer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabel Hernandez
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Yushi Liu
- Global Statistical Science, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Basavaraj Hooli
- Neurodegeneration Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London and Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit in Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Bergh
- Research Centre of Age-related Functional Decline and Disease, Innlandet Hospital Trust, Pb 68, Ottestad, Norway
| | - Arvid Rongve
- Department of Research and Innovation, Helse Fonna, Haugesund and Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Ingvild Saltvedt
- Geriatric Department, St. Olav Hospital, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Håvard K Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Bo Engdahl
- Norwegian Institute of Public Health, Oslo, Norway
| | - Eystein Stordal
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Diego Albani
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Antonis Politis
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute @ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard Mayeux
- Departments of Neurology, Psychiatry and Epidemiology, Columbia University, New York, NY, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Kumari P, Bowmik S, Paul SK, Biswas B, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Sortase A: A chemoenzymatic approach for the labeling of cell surfaces. Biotechnol Bioeng 2021; 118:4577-4589. [PMID: 34491580 DOI: 10.1002/bit.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 01/31/2023]
Abstract
Sortase A, a transpeptidase enzyme is present in many Gram-positive bacteria and helps in the recruitment of the cell surface proteins. Over the last two decades, Sortase A has become an attractive tool for performing in vivo and in vitro ligations. Sortase A-mediated ligation has continuously been used for its specificity, robustness, and highly efficient nature. These properties make it a popular choice among protein engineers as well as researchers from different fields. In this review, we give an overview of Sortase A-mediated ligation of various molecules on the cell surfaces, which can have diverse applications in interdisciplinary fields.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sujoy Bowmik
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sudipto Kumar Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Bidisha Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| |
Collapse
|
32
|
Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins. J Bacteriol 2021; 203:e0028121. [PMID: 34398661 DOI: 10.1128/jb.00281-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which prevent effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of the antibacterial effector of unknown function Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data shows that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against non-kin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be co-opted as a scaffold in multiple proteins to carry out diverse functions. Importance Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.
Collapse
|
33
|
A molecular genetics view on Mucopolysaccharidosis Type II. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108392. [PMID: 34893157 DOI: 10.1016/j.mrrev.2021.108392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis Type II (MPS II) is an X-linked recessive genetic disorder that primarily affects male patients. With an incidence of 1 in 100,000 male live births, the disease is one of the orphan diseases. MPS II symptoms are caused by mutations in the lysosomal iduronate-2-sulfatase (IDS) gene. The mutations cause a loss of enzymatic performance and result in the accumulation of glycosaminoglycans (GAGs), heparan sulfate and dermatan sulfate, which are no longer degradable. This inadvertent accumulation causes damage in multiple organs and leads either to a severe neurological course or to an attenuated course of the disease, although the exact relationship between mutation, extent of GAG accumulation and disease progression is not yet fully understood. This review is intended to present current diagnostic procedures and therapeutic interventions. In times when the genetic profile of patients plays an increasingly important role in the assessment of therapeutic success and future drug design, we chose to further elucidate the impact of genetic diversity within the IDS gene on disease phenotype and potential implications in current diagnosis, prognosis and therapy. We report recent advances in the structural biological elucidation of I2S enzyme that that promises to improve our future understanding of the molecular damage of the hundreds of IDS gene variants and will aid damage prediction of novel mutations in the future.
Collapse
|
34
|
Leisinger F, Miarzlou DA, Seebeck FP. Non-Coordinative Binding of O 2 at the Active Center of a Copper-Dependent Enzyme. Angew Chem Int Ed Engl 2021; 60:6154-6159. [PMID: 33245183 DOI: 10.1002/anie.202014981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Molecular oxygen (O2 ) is a sustainable oxidation reagent. O2 is strongly oxidizing but kinetically stable and its final reaction product is water. For these reasons learning how to activate O2 and how to steer its reactivity along desired reaction pathways is a longstanding challenge in chemical research.[1] Activation of ground-state diradical O2 can occur either via conversion to singlet oxygen or by one-electron reduction to superoxide. Many enzymes facilitate activation of O2 by direct fomation of a metal-oxygen coordination complex concomitant with inner sphere electron transfer. The formylglycine generating enzyme (FGE) is an unusual mononuclear copper enzyme that appears to follow a different strategy. Atomic-resolution crystal structures of the precatalytic complex of FGE demonstrate that this enzyme binds O2 juxtaposed, but not coordinated to the catalytic CuI . Isostructural complexes that contain AgI instead of CuI or nitric oxide instead of O2 confirm that formation of the initial oxygenated complex of FGE does not depend on redox activity. A stepwise mechanism that decouples binding and activation of O2 is unprecedented for metal-dependent oxidases, but is reminiscent of flavin-dependent enzymes.
Collapse
Affiliation(s)
- Florian Leisinger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dzmitry A Miarzlou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
35
|
Leisinger F, Miarzlou DA, Seebeck FP. Non‐Coordinative Binding of O
2
at the Active Center of a Copper‐Dependent Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Florian Leisinger
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Dzmitry A. Miarzlou
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
36
|
Beck‐Wödl S, Kehrer C, Harzer K, Haack TB, Bürger F, Haas D, Rieß A, Groeschel S, Krägeloh‐Mann I, Böhringer J. Long-term disease course of two patients with multiple sulfatase deficiency differs from metachromatic leukodystrophy in a broad cohort. JIMD Rep 2021; 58:80-88. [PMID: 33728250 PMCID: PMC7932862 DOI: 10.1002/jmd2.12189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused by a deficiency of formylglycine-generating enzyme due to SUMF1 defects. MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as neurological and neuroimaging findings are similar, and arylsulfatase A (ARSA) deficiency and enhanced urinary sulfatide excretion may also occur. While ARSA deficiency seems a cause for neurological symptoms and later neurodegenerative disease course, deficiency of other sulfatases results in clinical features such as dysmorphism, dysostosis, or ichthyosis. We report on a girl and a boy of the same origin presenting with severe ARSA deficiency and neurological and neuroimaging features compatible with MLD. However, exome sequencing revealed not yet described homozygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We asked whether dynamics of disease course differs between MSD and MLD. Comparison to a cohort of 59 MLD patients revealed different disease course concerning onset and disease progression in both MSD patients. The MSD patients showed first gross motor symptoms earlier than most patients with juvenile MLD (<10th percentile of Gross-Motor-Function in MLD [GMFC-MLD] 1). However, subsequent motor decline was more protracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)). Language decline started clearly after 50th percentile of juvenile MLD and progressed rapidly. Thus, dynamics of disease course may be a further clue for the characterization of MSD. These data may contribute to knowledge of natural course of ultra-rare MSD and be relevant for counseling and therapy.
Collapse
Affiliation(s)
- Stefanie Beck‐Wödl
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Christiane Kehrer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | - Klaus Harzer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | | | - Dorothea Haas
- Metabolic CentreUniversity Children's HospitalHeidelbergGermany
| | - Angelika Rieß
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Samuel Groeschel
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | | | - Judith Böhringer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| |
Collapse
|
37
|
Evaluation of HIV-1 derived lentiviral vectors as transductors of Mucopolysaccharidosis type IV a fibroblasts. Gene 2021; 780:145527. [PMID: 33636292 DOI: 10.1016/j.gene.2021.145527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease produced by the deficiency of the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, leading to glycosaminoglycans (GAGs) accumulation. Since currently available treatments remain limited and unspecific, novel therapeutic approaches are essential for the disease treatment. In an attempt to reduce treatment limitations, gene therapy rises as a more effective and specific alternative. We present in this study the delivery assessment of GALNS and sulfatase-modifying factor 1 (SUMF1) genes via HIV-1 derived lentiviral vectors into fibroblasts from MPS IVA patients. After transduction, we determined GALNS enzymatic activity, lysosomal mass change, and autophagy pathway impairment. Additionally, we computationally assessed the effect of mutations over the enzyme-substrate interaction and phenotypic effects. The results showed that the co-transduction of MPS IVA fibroblasts with GALNS and SUMF1 cDNAs led to a significant increase in GALNS enzyme activity and a reduction of lysosomal mass. We show that patient-specific differences in cellular response are directly associated with the set of mutations on each patient. Lastly, we present new evidence supporting autophagy impairment in MPS IVA due to the presence and changes in autophagy proteins in treated MPS IVA fibroblasts. Our results offer new evidence that demonstrate the potential of lentiviral vectors as a strategy to correct GALNS deficiency.
Collapse
|
38
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
39
|
Tamhankar P, Bansal V, Tamhankar V, Mithbawkar S. CEDNIK Syndrome: Report of an Ultra-Rare Case from India. Neurol India 2021; 69:1861-1862. [DOI: 10.4103/0028-3886.333502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
|
41
|
Janson N, Krüger T, Karsten L, Boschanski M, Dierks T, Müller KM, Sewald N. Bifunctional Reagents for Formylglycine Conjugation: Pitfalls and Breakthroughs. Chembiochem 2020; 21:3580-3593. [PMID: 32767537 PMCID: PMC7756428 DOI: 10.1002/cbic.202000416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Abstract
Formylglycine-generating enzymes specifically oxidize cysteine within the consensus sequence CxPxR to Cα -formylglycine (FGly). This noncanonical electrophilic amino acid can subsequently be addressed selectively by bioorthogonal hydrazino-iso-Pictet-Spengler (HIPS) or Knoevenagel ligation to attach payloads like fluorophores or drugs to proteins to obtain a defined payload-to-protein ratio. However, the disadvantages of these conjugation techniques include the need for a large excess of conjugation building block, comparably low reaction rates and limited stability of FGly-containing proteins. Therefore, functionalized clickable HIPS and tandem Knoevenagel building blocks were synthesized, conjugated to small proteins (DARPins) and subsequently linked to strained alkyne-containing payloads for protein labeling. This procedure allowed the selective bioconjugation of one or two DBCO-carrying payloads with nearly stoichiometric amounts at low concentrations. Furthermore, an azide-modified tandem Knoevenagel building block enabled the synthesis of branched PEG linkers and the conjugation of two fluorophores, resulting in an improved signal-to-noise ratio in live-cell fluorescence-imaging experiments targeting the EGF receptor.
Collapse
Affiliation(s)
- Nils Janson
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Tobias Krüger
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Lennard Karsten
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Mareile Boschanski
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Thomas Dierks
- Faculty of ChemistryBiochemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Kristian M. Müller
- Cellular and Molecular BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Faculty of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
42
|
Schlotawa L, Preiskorn J, Ahrens-Nicklas R, Schiller S, Adang LA, Gärtner J, Friede T. A systematic review and meta-analysis of published cases reveals the natural disease history in multiple sulfatase deficiency. J Inherit Metab Dis 2020; 43:1288-1297. [PMID: 32621519 DOI: 10.1002/jimd.12282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
Multiple Sulfatase Deficiency (MSD, MIM#272200) is an ultra-rare lysosomal storage disorder arising from mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE). FGE is necessary for the activation of sulfatases, a family of enzymes that are involved in the degradation of sulfated substrates such as glycosaminoglycans and sulfolipids. SUMF1 mutations lead to functionally impaired FGE and individuals with MSD demonstrate clinical signs of single sulfatase deficiencies, including metachromatic leukodystrophy (MLD) and several mucopolysaccharidosis (MPS) subtypes. Comprehensive information related to the natural history of MSD is missing. We completed a systematic literature review and a meta-analysis on data from published cases reporting on MSD. As available from these reports, we extracted clinical, genetic, biochemical, and brain imaging information. We identified 75 publications with data on 143 MSD patients with a total of 53 unique SUMF1 mutations. The mean survival was 13 years (95% CI 9.8-16.2 years). Seventy-five clinical signs and 11 key clusters of signs were identified. The most frequently affected organs systems were the nervous, skeletal, and integumentary systems. The most frequent MRI features were abnormal myelination and cerebral atrophy. Individuals with later onset MSD signs and survived longer than those with signs at birth. Less severe mutations, low disease burden and achievement of independent walking positively correlated with longer survival. Despite the limitations of our approach, we were able to define clinical characteristics and disease outcomes in MSD. This work will provide the foundation of natural disease history data needed for future clinical trial design.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Joana Preiskorn
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Rebecca Ahrens-Nicklas
- Division of Clinical Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stina Schiller
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Laura A Adang
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Adang LA, Schlotawa L, Groeschel S, Kehrer C, Harzer K, Staretz‐Chacham O, Silva TO, Schwartz IVD, Gärtner J, De Castro M, Costin C, Montgomery EF, Dierks T, Radhakrishnan K, Ahrens‐Nicklas RC. Natural history of multiple sulfatase deficiency: Retrospective phenotyping and functional variant analysis to characterize an ultra-rare disease. J Inherit Metab Dis 2020; 43:1298-1309. [PMID: 32749716 PMCID: PMC7693296 DOI: 10.1002/jimd.12298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGermany
| | | | | | | | | | - Thiago Oliveira Silva
- Nuclimed‐Clinical Research Center, Hospital de Clinicas de Porto Alegre‐RSPorto AlegreBrazil
| | - Ida Vanessa D. Schwartz
- Nuclimed‐Clinical Research Center, Hospital de Clinicas de Porto Alegre‐RSPorto AlegreBrazil
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGermany
| | | | | | | | - Thomas Dierks
- Department of Chemistry, Biochemistry IBielefeld UniversityBielefeldGermany
| | | | - Rebecca C. Ahrens‐Nicklas
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
44
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
45
|
Parviainen R, Skarp S, Korhonen L, Serlo W, Männikkö M, Sinikumpu JJ. A single genetic locus associated with pediatric fractures: A genome-wide association study on 3,230 patients. Exp Ther Med 2020; 20:1716-1724. [PMID: 32742401 PMCID: PMC7388260 DOI: 10.3892/etm.2020.8885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/29/2020] [Indexed: 12/25/2022] Open
Abstract
The understanding of the biological and environmental risk factors of fractures in pediatrics is limited. Previous studies have reported that fractures involve heritable traits, but the genetic factors contributing to the risk of fractures remain elusive. Furthermore, genetic influences specific to immature bone have not been thoroughly studied. Therefore, the aim of the present study was to identify genetic variations that are associated with fractures in early childhood. The present study used a prospective Northern Finland Birth Cohort (year 1986; n=9,432). The study population was comprised of 3,230 cohort members with available genotype data. A total of 48 members of the cohort (1.5%) had in-hospital treated bone fractures during their first 6 years of life. Furthermore, individuals without fracture (n=3,182) were used as controls. A genome-wide association study (GWAS) was performed using a frequentist association test. In the GWAS analysis, a linear regression model was fitted to test for additive effects of single-nucleotide polymorphisms (SNPs; genotype dosage) adjusting for sex and performing population stratification using genotypic principal components. Using the GWAS analysis, the present study identified one locus with a significant association with fractures during childhood on chromosome 10 (rs112635931) and six loci with a suggested implication. The lead SNP rs112635931 was located near proline- and serine-rich 2 (PROSER2) antisense RNA 1 (PROSER2-AS1) and PROSER2, thus suggesting that these may be novel candidate genes associated with the risk of pediatric fractures.
Collapse
Affiliation(s)
- Roope Parviainen
- Department of Children and Adolescents, Oulu Childhood Fracture and Sports Injury Study, Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Oulu Medical Research Center (MRC), University of Oulu and Oulu University Hospital, FI-90029 Oulu, Finland
| | - Sini Skarp
- Northern Finland Birth Cohort, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Linda Korhonen
- Department of Children and Adolescents, Oulu Childhood Fracture and Sports Injury Study, Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Oulu Medical Research Center (MRC), University of Oulu and Oulu University Hospital, FI-90029 Oulu, Finland
| | - Willy Serlo
- Department of Children and Adolescents, Oulu Childhood Fracture and Sports Injury Study, Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Oulu Medical Research Center (MRC), University of Oulu and Oulu University Hospital, FI-90029 Oulu, Finland
| | - Minna Männikkö
- Northern Finland Birth Cohort, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Juha-Jaakko Sinikumpu
- Department of Children and Adolescents, Oulu Childhood Fracture and Sports Injury Study, Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Oulu Medical Research Center (MRC), University of Oulu and Oulu University Hospital, FI-90029 Oulu, Finland
| |
Collapse
|
46
|
Cappuccio G, Alagia M, Brunetti-Pierri N. A systematic cross-sectional survey of multiple sulfatase deficiency. Mol Genet Metab 2020; 130:283-288. [PMID: 32620537 DOI: 10.1016/j.ymgme.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Marianna Alagia
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
| |
Collapse
|
47
|
Chkioua L, Grissa O, Leban N, Gribaa M, Boudabous H, Turkia HB, Ferchichi S, Tebib N, Laradi S. The mutational spectrum of hunter syndrome reveals correlation between biochemical and clinical profiles in Tunisian patients. BMC MEDICAL GENETICS 2020; 21:111. [PMID: 32448126 PMCID: PMC7247178 DOI: 10.1186/s12881-020-01051-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/14/2020] [Indexed: 11/10/2022]
Abstract
Background Mucopolysaccharidosis type II (MPS II) or Hunter syndrome is an X-linked recessive lysosomal storage disorder resulting from deficient activity of iduronate 2-sulfatase (IDS) and the progressive lysosomal accumulation of sulfated glycosaminoglycans (GAGs). Methods A diagnosis of MPS II or Hunter syndrome was performed based on the following approach after a clinical and paraclinical suspicion. Two biochemical and molecular tests were carried out separately and according to the availability of the biological material. Results All patients in this cohort presented the most common MPS II clinical features. Electrophoresis of GAGs on a cellulose acetate plate in the presence of a high concentration of heparane sulfate showed an abnormal dermatan sulfate band in the patients compared with that in a control case. Furthermore, leukocyte IDS activity ranged from 0.00 to 0.75 nmol/h/mg of leukocyte protein in patients. Five previously reported mutations were identified in this study patients: one splice site mutation, c.240 + 1G > A; two missense mutations, p.R88P and p.G94D; a large deletion of exon 1 to exon 7; and one nonsense mutation, p.Q396*. In addition, two novel alterations were identified in the MPS II patients: one frame shift mutation, p.D450Nfs*95 and one nonsense mutation, p.Q204*. Additionally, five known IDS polymorphisms were identified in the patients: c.419–16 delT, c.641C > T (p.T214M), c.438 C > T (p.T146T), c.709-87G > A, and c.1006 + 38 T > C. Conclusions The high level of urine GAGs and the deficiency of iduronate 2-sulfatase activity was associated with the phenotype expression of Hunter syndrome. Molecular testing was useful for the patients’ phenotypic classification and the detection of carriers.
Collapse
Affiliation(s)
- L Chkioua
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy, University of Monastir, Street Avicenne, 5000, Monastir, Tunisie.
| | - O Grissa
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy, University of Monastir, Street Avicenne, 5000, Monastir, Tunisie
| | - N Leban
- Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy, University of Monastir, Street Avicenne, 5000, Monastir, Tunisie
| | - M Gribaa
- Department of Cytogenetic and Reproductive Biology Farhat HACHED Hospital, Sousse, Tunisia
| | - H Boudabous
- Laboratory of pediatrics, La Rabta Hospital Tunis, Tunis, Tunisia
| | - H Ben Turkia
- Laboratory of pediatrics, La Rabta Hospital Tunis, Tunis, Tunisia
| | - S Ferchichi
- Biochemistry Laboratory, Farhat HACHED Hospital Sousse, Sousse, Tunisia
| | - N Tebib
- Laboratory of pediatrics, La Rabta Hospital Tunis, Tunis, Tunisia
| | - S Laradi
- The Auvergne-Rhône-Alpes Regional Branch of the French National Blood System EFS/GIMAP-EA 3064, 42100, Saint Etienne, France
| |
Collapse
|
48
|
Schlotawa L, Adang LA, Radhakrishnan K, Ahrens-Nicklas RC. Multiple Sulfatase Deficiency: A Disease Comprising Mucopolysaccharidosis, Sphingolipidosis, and More Caused by a Defect in Posttranslational Modification. Int J Mol Sci 2020; 21:E3448. [PMID: 32414121 PMCID: PMC7279497 DOI: 10.3390/ijms21103448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) is an ultra-rare disease comprising pathophysiology and clinical features of mucopolysaccharidosis, sphingolipidosis and other sulfatase deficiencies. MSD is caused by impaired posttranslational activation of sulfatases through the formylglycine generating enzyme (FGE) encoded by the sulfatase modifying factor 1 (SUMF1) gene, which is mutated in MSD. FGE is a highly conserved, non-redundant ER protein that activates all cellular sulfatases by oxidizing a conserved cysteine in the active site of sulfatases that is necessary for full catalytic activity. SUMF1 mutations result in unstable, degradation-prone FGE that demonstrates reduced or absent catalytic activity, leading to decreased activity of all sulfatases. As the majority of sulfatases are localized to the lysosome, loss of sulfatase activity induces lysosomal storage of glycosaminoglycans and sulfatides and subsequent cellular pathology. MSD patients combine clinical features of all single sulfatase deficiencies in a systemic disease. Disease severity classifications distinguish cases based on age of onset and disease progression. A genotype- phenotype correlation has been proposed, biomarkers like excreted storage material and residual sulfatase activities do not correlate well with disease severity. The diagnosis of MSD is based on reduced sulfatase activities and detection of mutations in SUMF1. No therapy exists for MSD yet. This review summarizes the unique FGE/ sulfatase physiology, pathophysiology and clinical aspects in patients and their care and outlines future perspectives in MSD.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Goettingen, 37075 Goettingen, Germany
| | - Laura A. Adang
- Division of Child Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | | | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics and Metabolism, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Hong X, Kumar AB, Daiker J, Yi F, Sadilek M, De Mattia F, Fumagalli F, Calbi V, Damiano R, Della Bona M, la Marca G, Vanderver AL, Waldman AT, Adang L, Sherbini O, Woidill S, Suhr T, Kurtzberg J, Beltran-Quintero ML, Escolar M, Aiuti A, Finglas A, Olsen A, Gelb MH. Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Anal Chem 2020; 92:6341-6348. [PMID: 31922725 DOI: 10.1021/acs.analchem.9b05274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fan Yi
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Roberta Damiano
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Maria Della Bona
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | - Adeline L Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amy T Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Teryn Suhr
- MLD Foundation, West Linn, Oregon 97068, United States
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina 27705, United States
| | | | - Maria Escolar
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | | | - Amber Olsen
- United MSD Foundation, Ocean Springs, Misssissippi 39564, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
50
|
Pathogenesis of Mucopolysaccharidoses, an Update. Int J Mol Sci 2020; 21:ijms21072515. [PMID: 32260444 PMCID: PMC7178160 DOI: 10.3390/ijms21072515] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.
Collapse
|