1
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Peng M, Cardoso JCR, Power DM. Evolution of chitin-synthase in molluscs and their response to ocean acidification. Mol Phylogenet Evol 2024; 201:108192. [PMID: 39255869 DOI: 10.1016/j.ympev.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.
Collapse
Affiliation(s)
- Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Doye A, Chaintreuil P, Lagresle-Peyrou C, Batistic L, Marion V, Munro P, Loubatier C, Chirara R, Sorel N, Bessot B, Bronnec P, Contenti J, Courjon J, Giordanengo V, Jacquel A, Barbry P, Couralet M, Aladjidi N, Fischer A, Cavazzana M, Mallebranche C, Visvikis O, Kracker S, Moshous D, Verhoeyen E, Boyer L. RAC2 gain-of-function variants causing inborn error of immunity drive NLRP3 inflammasome activation. J Exp Med 2024; 221:e20231562. [PMID: 39212656 PMCID: PMC11363864 DOI: 10.1084/jem.20231562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
A growing number of patients presenting severe combined immunodeficiencies attributed to monoallelic RAC2 variants have been identified. The expression of the RHO GTPase RAC2 is restricted to the hematopoietic lineage. RAC2 variants have been described to cause immunodeficiencies associated with high frequency of infection, leukopenia, and autoinflammatory features. Here, we show that specific RAC2 activating mutations induce the NLRP3 inflammasome activation leading to the secretion of IL-1β and IL-18 from macrophages. This activation depends on the activation state of the RAC2 variant and is mediated by the downstream kinase PAK1. Inhibiting the RAC2-PAK1-NLRP3 inflammasome pathway might be considered as a potential treatment for these patients.
Collapse
Affiliation(s)
- Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Chantal Lagresle-Peyrou
- Université Paris Cité, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | | | | | | | | | - Rayana Chirara
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Nataël Sorel
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Boris Bessot
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Pauline Bronnec
- Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Julie Contenti
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Johan Courjon
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Valerie Giordanengo
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | - Pascal Barbry
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Marie Couralet
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Autoimmunes de l’Enfant, Pediatric Hematologic Unit, Centre d’Investigation Clinique Plurithématique INSERM 1401, University Hospital of Bordeaux, Bordeaux, France
| | - Alain Fischer
- Imagine Institute, INSERM UMR 1163, Paris, France
- Necker Hospital, Pediatric Hematology-Immunology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| | - Marina Cavazzana
- Université Paris Cité, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Coralie Mallebranche
- Université d’Angers, Université de Nantes, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France
- Centre Hospitalier Universitaire Angers, Pediatric Immuno-Hemato-Oncology Unit, Angers, France
| | | | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Laboratoire Dynamique du Génome et Système Immunitaire, Imagine Institute, INSERM UMR 1163, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Lyon, France
| | | |
Collapse
|
4
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Pfeffer PL. The first lineage determination in mammals. Dev Biol 2024; 513:12-30. [PMID: 38761966 DOI: 10.1016/j.ydbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
This review describes in detail the morphological, cytoskeletal and gene expression events leading to the gene regulatory network bifurcation point of trophoblast and inner cell mass cells in a variety of mammalian preimplantation embryos. The interrelated processes of compaction and polarity establishment are discussed in terms of how they affect YAP/WWTR activity and the location and fate of cells. Comparisons between mouse, human, cattle, pig and rabbit embryos suggest a conserved role for YAP/WWTR signalling in trophoblast induction in eutherian animals though the mechanisms for, and timing of, YAP/WWTR activation differs among species. Downstream targets show further differences, with the trophoblast marker GATA3 being a direct target in all examined mammals, while CDX2-positive and SOX2-negative regulation varies.
Collapse
Affiliation(s)
- Peter L Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
6
|
Kohlbrenner T, Berger S, Laranjeira AC, Aegerter-Wilmsen T, Comi LF, deMello A, Hajnal A. Actomyosin-mediated apical constriction promotes physiological germ cell death in C. elegans. PLoS Biol 2024; 22:e3002775. [PMID: 39178318 PMCID: PMC11376560 DOI: 10.1371/journal.pbio.3002775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/05/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.
Collapse
Affiliation(s)
- Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Ana Cristina Laranjeira
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | | | - Laura Filomena Comi
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Yang J, Xiao S, Li L, Zhu A, Xiao W, Wang Q. Actin Dysregulation Mediates Nephrotoxicity of Cassiae Semen Aqueous Extracts. TOXICS 2024; 12:556. [PMID: 39195658 PMCID: PMC11360101 DOI: 10.3390/toxics12080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Cassiae semen, commonly consumed as roasted tea, has been widely used for both medicinal purposes and dietary supplements. In this study, we investigated the nephrotoxic effects and underlying mechanisms of Cassiae semen aqueous extracts (CSAEs) using computational and animal models. Both male and female Sprague Dawley rats were treated with 4.73-47.30 g/kg (body weight) of CSAEs by oral gavage twice a day for 7-28 days. We found that serum and urinary biomarkers of kidney injury and kidney coefficients were increased in a dose-dependent manner, and were accompanied by morphological alterations in the kidneys of CSAEs-treated rats. Computational and molecular docking approaches predicted that the three most abundant components of CSAEs-obtusifolin, aurantio-obtusin, and obtusin-exhibited strong affinity for the binding of F-actin, ROCK1, and Rac1, and the RhoA-ROCK pathway was identified as the most likely regulatory mechanism mediating the nephrotoxicity of CSAEs. Consistently, immunofluorescence staining revealed F-actin and cytoskeleton were frequently disturbed in renal cells and brush borders at high doses of CSAEs. Results from gene expression analyses confirmed that CSAEs suppressed the key proteins in the RhoA-ROCK signaling pathway and consequently the expression of F-actin and its stabilization genes. In summary, our findings suggest that Cassiae semen can depolymerize and destabilize actin cytoskeleton by inhibition of the RhoA-ROCK pathway and/or direct binding to F-actin, leading to nephrotoxicity. The consumption of Cassiae semen as a supplement and medicine warrants attention.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Sheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
- Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Baba H, Fujita T, Mizuno K, Tambo M, Toda S. Programming Spatial Cell Sorting by Engineering Cadherin Intracellular Activity. ACS Synth Biol 2024; 13:1705-1715. [PMID: 38726686 PMCID: PMC11197096 DOI: 10.1021/acssynbio.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The spatial sorting of cells into appropriate tissue compartments is essential for embryogenesis and tissue development. Spatial cell sorting is controlled by the interplay between cell surface affinity and intracellular mechanical properties. However, intracellular signaling that can sufficiently sort cell populations remains unexplored. In this study, we engineered chimeric cadherins by replacing the cadherin intracellular domain with cytoskeletal regulators to test their ability to induce spatial cell sorting. Using a fibroblast-based reconstitution system, we observed that Rac1 and RhoA activity in the cadherin tail induced outward and inward sorting, respectively. In particular, RhoA activity embedded cells toward the inside of E-cadherin-expressing spheroids and tumor spheroids, leading to tissue invagination. Despite the simplicity of chimeric cadherin design, our results indicate that differences in cadherin intracellular activities can determine the direction of spatial cell sorting, even when cell surface affinity is not different, and provide new molecular tools to engineer tissue architectures.
Collapse
Affiliation(s)
- Hikari Baba
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomohiro Fujita
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate
School of Frontier Science Initiative, Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kosuke Mizuno
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate
School of Frontier Science Initiative, Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mai Tambo
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| | - Satoshi Toda
- WPI
Nano Life Science Institute (NanoLSI), Kanazawa
University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
9
|
Zhang J, Fu L, Wang H, Yonemura A, Semba T, Yasuda-Yoshihara N, Nishimura A, Tajiri T, Tong Y, Yasuda T, Uchihara T, Yamazaki M, Okamoto Y, Yamasaki J, Nagano O, Baba H, Ishimoto T. RAC1-mediated integrin alpha-6 expression in E-cadherin-deficient gastric cancer cells promotes interactions with the stroma and peritoneal dissemination. Cancer Lett 2024; 591:216901. [PMID: 38641311 DOI: 10.1016/j.canlet.2024.216901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer that is prone to peritoneal dissemination, with poor patient prognosis. Although intercellular adhesion loss between cancer cells is a major characteristic of DGCs, the mechanism underlying the alteration in cell-to-extracellular matrix (ECM) adhesion is unclear. We investigated how DGCs progress and cause peritoneal dissemination through interactions between DGC cells and the tumour microenvironment (TME). P53 knockout and KRASG12V-expressing (GAN-KP) cells and Cdh1-deleted GAN-KP (GAN-KPC) cells were orthotopically transplanted into the gastric wall to mimic peritoneal dissemination. The GAN-KPC tumour morphology was similar to that of human DGCs containing abundant stroma. RNA sequencing revealed that pathways related to Rho GTPases and integrin-ECM interactions were specifically increased in GAN-KPC cells compared with GAN-KP cells. Notably, we found that Rac Family Small GTPase 1 (RAC1) induces Integrin Subunit Alpha 6 (ITGA6) trafficking, leading to its enrichment on the GC cell membrane. Fibroblasts activate the FAK/AKT pathway in GC cells by mediating extracellular matrix (ECM)-Itga6 interactions, exacerbating the malignant phenotype. In turn, GC cells induce abnormal expression of fibroblast collagen and its transformation into cancer-associated fibroblasts (CAFs), resulting in DGC-like subtypes. These findings indicate that Cdh1 gene loss leads to abnormal expression and changes in the subcellular localization of ITGA6 through RAC1 signalling. The latter, through interactions with CAFs, allows for peritoneal dissemination.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Huaitao Wang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takuya Tajiri
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yilin Tong
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaya Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuya Okamoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Ageing, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Karthikeyan S, Asakura A. Imaging analysis for muscle stem cells and regeneration. Front Cell Dev Biol 2024; 12:1411401. [PMID: 38774645 PMCID: PMC11106391 DOI: 10.3389/fcell.2024.1411401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Composed of a diverse variety of cells, the skeletal muscle is one of the body's tissues with the remarkable ability to regenerate after injury. One of the key players in the regeneration process is the muscle satellite cell (MuSC), a stem cell population for skeletal muscle, as it is the source of new myofibers. Maintaining MuSC quiescence during homeostasis involves complex interactions between MuSCs and other cells in their corresponding niche in adult skeletal muscle. After the injury, MuSCs are activated to enter the cell cycle for cell proliferation and differentiate into myotubes, followed by mature myofibers to regenerate muscle. Despite decades of research, the exact mechanisms underlying MuSC maintenance and activation remain elusive. Traditional methods of analyzing MuSCs, including cell cultures, animal models, and gene expression analyses, provide some insight into MuSC biology but lack the ability to replicate the 3-dimensional (3-D) in vivo muscle environment and capture dynamic processes comprehensively. Recent advancements in imaging technology, including confocal, intra-vital, and multi-photon microscopies, provide promising avenues for dynamic MuSC morphology and behavior to be observed and characterized. This chapter aims to review 3-D and live-imaging methods that have contributed to uncovering insights into MuSC behavior, morphology changes, interactions within the muscle niche, and internal signaling pathways during the quiescence to activation (Q-A) transition. Integrating advanced imaging modalities and computational tools provides a new avenue for studying complex biological processes in skeletal muscle regeneration and muscle degenerative diseases such as sarcopenia and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Smrithi Karthikeyan
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
11
|
Barth H, Worek F, Steinritz D, Papatheodorou P, Huber-Lang M. Trauma-toxicology: concepts, causes, complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2935-2948. [PMID: 37999755 PMCID: PMC11074020 DOI: 10.1007/s00210-023-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
12
|
Hagelaars MJ, Nikolic M, Vermeulen M, Dekker S, Bouten CVC, Loerakker S. A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells. PLoS Comput Biol 2024; 20:e1012140. [PMID: 38768266 PMCID: PMC11142725 DOI: 10.1371/journal.pcbi.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Milica Nikolic
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Maud Vermeulen
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Jinsheng L, Qing D, Junhao C, Qiqi S, Jieru C, Liwen Y, Zhiyun G, Tailin G, Jie W. Micro/nano topological modification of TiO 2 nanotubes activates Thy-1 signaling to control osteogenic differentiation of stem cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100139. [PMID: 38169172 DOI: 10.1016/j.slasd.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Micro/nano topological modification is critical for improving the in vivo behaviors of bone implants, regulating multiple cellular functions. Titania (TiO2) nanotubes show the capacity of promoting osteoblast-related cell differentiation and induce effective osseointegration, serving as a model material for studying the effects of micro/nano-topological modifications on cells. However, the intracellular signaling pathways by which TiO2 nanotubes regulate the osteogenic differentiation of stem cells are not fully defined. Thy-1 (CD90), a cell surface glycoprotein anchored by glycosylphosphatidylinositol, has been considered a key molecule in osteoblast differentiation in recent years. Nevertheless, whether the micro/nano topology of the implant surface leads to changes in Thy-1 is unknown, as well as whether these changes promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, TiO2 nanotubes of various diameters were prepared by adjusting the anodizing voltage. qPCR and immunoblot were carried out to assess the mechanism by which TiO2 nanotubes regulate Thy-1. The results revealed Ti plates harboring TiO2 nanotubes ∼100-nm diameter (TNT-100) markedly upregulated Thy-1. Subsequently, upregulated Thy-1 promoted the activation of Fyn/RhoA/MLC Ⅱ/F-actin axis, which enhanced the nuclear translocation of YAP. After Thy-1 knockdown by siRNA, the Fyn/RhoA/MLC Ⅱ/F-actin axis was significantly inhibited and TiO2 nanotubes showed decreased effects on osteogenic differentiation. Therefore, Thy-1 upregulation might be a major mechanism by which micro/nano-topological modification of TiO2 nanotubes promotes osteogenic differentiation in BMSCs. This study provides novel insights into the molecular mechanism of TiO2 nanotubes, which may help design improved bone implants for clinical application.
Collapse
Affiliation(s)
- Li Jinsheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Deng Qing
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Chen Junhao
- School of Finance and Economics, Xizang Minzu University, Xianyang 712082, PR China
| | - Si Qiqi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen Jieru
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yang Liwen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guo Zhiyun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guo Tailin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Weng Jie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
14
|
Zhang S, Zhang L, Liu T, Qiao Y, Cao X, Cheng J, Wu H, Shen H. Investigating the transcriptomic variances in two phases Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei. J Invertebr Pathol 2024; 203:108061. [PMID: 38244837 DOI: 10.1016/j.jip.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
This study explores the transcriptomic differences in two distinct phases of Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei, a crucial aspect in shrimp health management. We employed high-throughput sequencing to categorize samples into two phases, 'Phase A' and 'Phase B', defined by the differential expression of PTP2 and TPS1 genes. Our analysis identified 2057 genes, with 78 exhibiting significant variances, including 62 upregulated and 16 downregulated genes. Enrichment analyses via GO and KEGG pathways highlighted these genes' roles in cellular metabolism, signal transduction, and immune responses. Notably, genes like IQGAP2, Rhob, Pim1, and PCM1 emerged as potentially crucial in EHP's infection process and lifecycle. We hypothesize that these genes may influence trehalose metabolism and glucose provision, impacting the biological activities within EHP during different phases. Interestingly, a lower transcript count in 'Phase A' EHP suggests a reduction in biological activities, likely preparing for host cell invasion. This research provides a foundational understanding of EHP infection mechanisms, offering vital insights for future studies and therapeutic interventions.
Collapse
Affiliation(s)
- Sheng Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China
| | - Leiting Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | - Tingyue Liu
- Nanjing Normal University, Nanjing 210023, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hailong Wu
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China; Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
15
|
Mohamed Azar KAH, Ezhilarasan D, Shree Harini K. Coleus vettiveroides ethanolic root extract induces cytotoxicity by intrinsic apoptosis in HepG2 cells. J Appl Toxicol 2024; 44:245-259. [PMID: 37661188 DOI: 10.1002/jat.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to more than 80% of all primary cancers globally and ranks fourth in cancer-related deaths, due to the lack of an effective, definite therapeutic drug. Coleus vettiveroides (CV) has been used in Indian traditional medicine to treat diabetes, liver ailments, skin diseases, leukoderma, and leprosy. This study investigates the anticancer effect of CV ethanolic root extract in HepG2 cells. HepG2 cells were treated with CV extract, and its cytotoxicity was analyzed by MTT assay. AO/EB staining, propidium iodide staining, DCFH-DA assay, phalloidine staining, flow cytometry, and qPCR studies were performed for ROS expression, apoptosis and cell cycle analysis. The phytochemical analysis confirmed the presence of quercetin and galangin in CV root extract. The results showed that CV inhibited the proliferation of HepG2 cells, with altered cellular and nuclear morphology. CV was also found to increase intracellular ROS levels and oxidative stress markers in HepG2 cells. CV significantly altered the actin microfilament distribution in HepG2 cells and caused cell cycle arrest at the sub G0 -G1 phase. CV also induced mitochondria-mediated apoptosis, as evidenced by increased expression of p53, Bax, cytochrome C, Apaf-1, PARP, caspase-3 and caspase-9, and downregulated Bcl-2 expression. Therefore, CV exerts its anticancer effect by inducing mitochondrial dysfunction, oxidative stress, cytoskeletal disorganization, cell cycle arrest, and mitochondria-mediated apoptosis, and it could be a potent therapeutic option for HCC.
Collapse
Affiliation(s)
- Kadmad Abdul Hameed Mohamed Azar
- Department of Pharmacology, Koppal Institute of Medical Sciences, Koppal, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
16
|
Ibáñez-Molero S, Pruijs JTM, Atmopawiro A, Wang F, Terry AM, Altelaar M, Peeper DS, Stecker KE. Phosphoprotein dynamics of interacting T cells and tumor cells by HySic. Cell Rep 2024; 43:113598. [PMID: 38150364 DOI: 10.1016/j.celrep.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Functional interactions between cytotoxic T cells and tumor cells are central to anti-cancer immunity. However, our understanding of the proteins involved is limited. Here, we present HySic (hybrid quantification of stable isotope labeling by amino acids in cell culture [SILAC]-labeled interacting cells) as a method to quantify protein and phosphorylation dynamics between and within physically interacting cells. Using co-cultured T cells and tumor cells, we directly measure the proteome and phosphoproteome of engaged cells without the need for physical separation. We identify proteins whose abundance or activation status changes upon T cell:tumor cell interaction and validate our method with established signal transduction pathways including interferon γ (IFNγ) and tumor necrosis factor (TNF). Furthermore, we identify the RHO/RAC/PAK1 signaling pathway to be activated upon cell engagement and show that pharmacologic inhibition of PAK1 sensitizes tumor cells to T cell killing. Thus, HySic is a simple method to study rapid protein signaling dynamics in physically interacting cells that is easily extended to other biological systems.
Collapse
Affiliation(s)
- Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Joannes T M Pruijs
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Alisha Atmopawiro
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fujia Wang
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alexandra M Terry
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
Xiong J, Xiao R, Zhao J, Zhao Q, Luo M, Li F, Zhang W, Wu M. Matrix stiffness affects tumor-associated macrophage functional polarization and its potential in tumor therapy. J Transl Med 2024; 22:85. [PMID: 38246995 PMCID: PMC10800063 DOI: 10.1186/s12967-023-04810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
The extracellular matrix (ECM) plays critical roles in cytoskeletal support, biomechanical transduction and biochemical signal transformation. Tumor-associated macrophage (TAM) function is regulated by matrix stiffness in solid tumors and is often associated with poor prognosis. ECM stiffness-induced mechanical cues can activate cell membrane mechanoreceptors and corresponding mechanotransducers in the cytoplasm, modulating the phenotype of TAMs. Currently, tuning TAM polarization through matrix stiffness-induced mechanical stimulation has received increasing attention, whereas its effect on TAM fate has rarely been summarized. A better understanding of the relationship between matrix stiffness and macrophage function will contribute to the development of new strategies for cancer therapy. In this review, we first introduced the overall relationship between macrophage polarization and matrix stiffness, analyzed the changes in mechanoreceptors and mechanotransducers mediated by matrix stiffness on macrophage function and tumor progression, and finally summarized the effects of targeting ECM stiffness on tumor prognosis to provide insight into this new field.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiuyan Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Manwen Luo
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
18
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhou X, Hong Y, Liu Y, Wang L, Liu X, Li Y, Yuan H, Hu F. Intervening in hnRNPA2B1-mediated exosomal transfer of tumor-suppressive miR-184-3p for tumor microenvironment regulation and cancer therapy. J Nanobiotechnology 2023; 21:422. [PMID: 37957722 PMCID: PMC10644646 DOI: 10.1186/s12951-023-02190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Despite being a common malignant tumor, the molecular mechanism underlying the initiation and progression of triple-negative breast cancers (TNBCs) remain unclear. Tumor-associated macrophages (TAMs) are often polarized into a pro-tumor phenotype and are associated with a poor prognosis of TNBCs. Exosomes, important mediators of cell-cell communication, can be actively secreted by donor cells to reprogram recipient cells. The functions and molecular mechanisms of tumor cell-derived exosomes in TNBCs progression and TAMs reprogramming urgently need to be further explored. RESULTS We demonstrated that tumor cell-derived exosomes enriched with miR-184-3p were taken up by macrophages to inhibit JNK signaling pathway by targeting EGR1, thereby inducing M2 polarization of macrophages and synergistically promoting tumor progression. Nanoparticles loaded with oncogene c-Myc inhibitor JQ1 could suppress the polarization process by reducing Rac1-related exosome uptake by macrophage. More importantly, it was found for the first time that tumor-suppressive miR-184-3p was actively sorted into exosomes by binding to RNA-binding protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), thus facilitating tumor cell proliferation and metastasis by relieving the inhibitory effect of miR-184-3p on Mastermind-like 1 (MAML1). Overexpressing miR-184-3p in tumor cells and simultaneously knocking down hnRNPA2B1 to block its secretion through exosomes could effectively inhibit tumor growth and metastasis. CONCLUSIONS Our study revealed that hnRNPA2B1-mediated exosomal transfer of tumor-suppressive miR-184-3p from breast cancer cells to macrophages was an important mediator of TNBCs progression, providing new insights into TNBCs pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Xueqing Zhou
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
| | - Yiling Hong
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
| | - Yupeng Liu
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Li Wang
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Liu
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
| | - Hong Yuan
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Fuqiang Hu
- College of pharmaceutical science, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
21
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Cheng K, Chahdi A, Larabee SM, Tolaymat M, Sundel MH, Drachenberg CB, Zhan M, Hu S, Said AH, Shang AC, Xie G, Alizadeh M, Moura NS, Bafford AC, Williams RT, Hanna NN, Raufman JP. Muscarinic receptor agonist-induced βPix binding to β-catenin promotes colon neoplasia. Sci Rep 2023; 13:16920. [PMID: 37805544 PMCID: PMC10560271 DOI: 10.1038/s41598-023-44158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
M3 muscarinic receptors (M3R) modulate β-catenin signaling and colon neoplasia. CDC42/RAC guanine nucleotide exchange factor, βPix, binds to β-catenin in colon cancer cells, augmenting β-catenin transcriptional activity. Using in silico, in vitro, and in vivo approaches, we explored whether these actions are regulated by M3R. At the invasive fronts of murine and human colon cancers, we detected co-localized nuclear expression of βPix and β-catenin in stem cells overexpressing M3R. Using immunohistochemistry, immunoprecipitation, proximity ligand, and fluorescent cell sorting assays in human tissues and established and primary human colon cancer cell cultures, we detected time-dependent M3R agonist-induced cytoplasmic and nuclear association of βPix with β-catenin. βPix knockdown attenuated M3R agonist-induced human colon cancer cell proliferation, migration, invasion, and expression of PTGS2, the gene encoding cyclooxygenase-2, a key player in colon neoplasia. Overexpressing βPix dose-dependently augmented β-catenin binding to the transcription factor TCF4. In a murine model of sporadic colon cancer, advanced neoplasia was attenuated in conditional knockout mice with intestinal epithelial cell deficiency of βPix. Expression levels of β-catenin target genes and proteins relevant to colon neoplasia, including c-Myc and Ptgs2, were reduced in colon tumors from βPix-deficient conditional knockout mice. Targeting the M3R/βPix/β-catenin axis may have therapeutic potential.
Collapse
Affiliation(s)
- Kunrong Cheng
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ahmed Chahdi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shien Hu
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anan H Said
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aaron C Shang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Guofeng Xie
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 20201, USA
| | - Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrea C Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Richelle T Williams
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nader N Hanna
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Baltimore, MD, 21201, USA.
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
23
|
Dang I, Brazzo JA, Bae Y, Assoian RK. Key role for Rac in the early transcriptional response to extracellular matrix stiffness and stiffness-dependent repression of ATF3. J Cell Sci 2023; 136:jcs260636. [PMID: 37737020 PMCID: PMC10617619 DOI: 10.1242/jcs.260636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The Rho family GTPases Rac and Rho play critical roles in transmitting mechanical information contained within the extracellular matrix (ECM) to the cell. Rac and Rho have well-described roles in regulating stiffness-dependent actin remodeling, proliferation and motility. However, much less is known about the relative roles of these GTPases in stiffness-dependent transcription, particularly at the genome-wide level. Here, we selectively inhibited Rac and Rho in mouse embryonic fibroblasts cultured on deformable substrata and used RNA sequencing to elucidate and compare the contribution of these GTPases to the early transcriptional response to ECM stiffness. Surprisingly, we found that the stiffness-dependent activation of Rac was dominant over Rho in the initial transcriptional response to ECM stiffness. We also identified activating transcription factor 3 (ATF3) as a major target of stiffness- and Rac-mediated signaling and show that ATF3 repression by ECM stiffness helps to explain how the stiffness-dependent activation of Rac results in the induction of cyclin D1.
Collapse
Affiliation(s)
- Irène Dang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Richard K. Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Zhu M, Liu Y, Yang X, Zhu L, Shen Y, Duan S, Yang J. p21-activated kinase is involved in the sporulation, pathogenicity, and stress response of Arthrobotrys oligospora under the indirect regulation of Rho GTPase-activating protein. Front Microbiol 2023; 14:1235283. [PMID: 37779704 PMCID: PMC10537225 DOI: 10.3389/fmicb.2023.1235283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.
Collapse
Affiliation(s)
- Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
25
|
Paranjpe I, Wang X, Anandakrishnan N, Haydak JC, Van Vleck T, DeFronzo S, Li Z, Mendoza A, Liu R, Fu J, Forrest I, Zhou W, Lee K, O'Hagan R, Dellepiane S, Menon KM, Gulamali F, Kamat S, Gusella GL, Charney AW, Hofer I, Cho JH, Do R, Glicksberg BS, He JC, Nadkarni GN, Azeloglu EU. Deep learning on electronic medical records identifies distinct subphenotypes of diabetic kidney disease driven by genetic variations in the Rho pathway. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295120. [PMID: 37732187 PMCID: PMC10508814 DOI: 10.1101/2023.09.06.23295120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.
Collapse
|
26
|
van der Krogt JMA, van der Meulen IJE, van Buul JD. Spatiotemporal regulation of Rho GTPase signaling during endothelial barrier remodeling. CURRENT OPINION IN PHYSIOLOGY 2023; 34:None. [PMID: 37547802 PMCID: PMC10398679 DOI: 10.1016/j.cophys.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The vasculature is characterized by a thin cell layer that comprises the inner wall of all blood vessels, the continuous endothelium. Endothelial cells can also be found in the eye's cornea. And even though cornea and vascular endothelial (VE) cells differ from each other in structure, they both function as barriers and express similar junctional proteins such as the adherens junction VE-cadherin and tight-junction member claudin-5. How these barriers are controlled to maintain the barrier and thereby its integrity is of major interest in the development of potential therapeutic targets. An important target of endothelial barrier remodeling is the actin cytoskeleton, which is centrally coordinated by Rho GTPases that are in turn regulated by Rho-regulatory proteins. In this review, we give a brief overview of how Rho-regulatory proteins themselves are spatiotemporally regulated during the process of endothelial barrier remodeling. Additionally, we propose a roadmap for the comprehensive dissection of the Rho GTPase signaling network in its entirety.
Collapse
Affiliation(s)
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
28
|
Liu W, Lu JY, Wang YJ, Xu XX, Chen YC, Yu SX, Xiang XW, Chen XZ, Jiu Y, Gao H, Sheng M, Chen ZJ, Hu X, Li D, Maiuri P, Huang X, Ying T, Xu GL, Pang DW, Zhang ZL, Liu B, Liu YJ. Vaccinia virus induces EMT-like transformation and RhoA-mediated mesenchymal migration. J Med Virol 2023; 95:e29041. [PMID: 37621182 DOI: 10.1002/jmv.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jia-Yin Lu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xiao-Wei Xiang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xue-Zhu Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Xinxin Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, Frontiers Science Center for Cell Responses, College of Chemistry, Nankai University, Tianjin, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Yiu TW, Holman SR, Kaidonis X, Graham RM, Iismaa SE. Transglutaminase 2 Facilitates Murine Wound Healing in a Strain-Dependent Manner. Int J Mol Sci 2023; 24:11475. [PMID: 37511238 PMCID: PMC10380275 DOI: 10.3390/ijms241411475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Transglutaminase 2 (TG2) plays a role in cellular processes that are relevant to wound healing, but to date no studies of wound healing in TG2 knockout mice have been reported. Here, using 129T2/SvEmsJ (129)- or C57BL/6 (B6)-backcrossed TG2 knockout mice, we show that TG2 facilitates murine wound healing in a strain-dependent manner. Early healing of in vivo cutaneous wounds and closure of in vitro scratch wounds in murine embryonic fibroblast (MEF) monolayers were delayed in 129, but not B6, TG2 knockouts, relative to their wild-type counterparts, with wound closure in 129 being faster than in B6 wild-types. A single dose of exogenous recombinant wild-type TG2 to 129 TG2-/- mice or MEFs immediately post-wounding accelerated wound closure. Neutrophil and monocyte recruitment to 129 cutaneous wounds was not affected by Tgm2 deletion up to 5 days post-wounding. Tgm2 mRNA and TG2 protein abundance were higher in 129 than in B6 wild-types and increased in abundance following cutaneous and scratch wounding. Tgm1 and factor XIIA (F13A) mRNA abundance increased post-wounding, but there was no compensation by TG family members in TG2-/- relative to TG2+/+ mice in either strain before or after wounding. 129 TG2+/+ MEF adhesion was greater and spreading was faster than that of B6 TG2+/+ MEFs, and was dependent on syndecan binding in the presence, but not absence, of RGD inhibition of integrin binding. Adhesion and spreading of 129, but not B6, TG2-/- MEFs was impaired relative to their wild-type counterparts and was accelerated by exogenous addition or transfection of TG2 protein or cDNA, respectively, and was independent of the transamidase or GTP-binding activity of TG2. Rho-family GTPase activation, central to cytoskeletal organization, was altered in 129 TG2-/- MEFs, with delayed RhoA and earlier Rac1 activation than in TG2+/+ MEFs. These findings indicate that the rate of wound healing is different between 129 and B6 mouse strains, correlating with TG2 abundance, and although not essential for wound healing, TG2 facilitates integrin- and syndecan-mediated RhoA- and Rac1-activation in fibroblasts to promote efficient wound contraction.
Collapse
Affiliation(s)
- Ting W. Yiu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Sara R. Holman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Xenia Kaidonis
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (T.W.Y.); (S.R.H.); (X.K.)
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
30
|
Mahlandt EK, Palacios Martínez S, Arts JJG, Tol S, van Buul JD, Goedhart J. Opto-RhoGEFs, an optimized optogenetic toolbox to reversibly control Rho GTPase activity on a global to subcellular scale, enabling precise control over vascular endothelial barrier strength. eLife 2023; 12:RP84364. [PMID: 37449837 PMCID: PMC10393062 DOI: 10.7554/elife.84364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The inner layer of blood vessels consists of endothelial cells, which form the physical barrier between blood and tissue. This vascular barrier is tightly regulated and is defined by cell-cell contacts through adherens and tight junctions. To investigate the signaling that regulates vascular barrier strength, we focused on Rho GTPases, regulators of the actin cytoskeleton and known to control junction integrity. To manipulate Rho GTPase signaling in a temporal and spatial manner we applied optogenetics. Guanine-nucleotide exchange factor (GEF) domains from ITSN1, TIAM1, and p63RhoGEF, activating Cdc42, Rac, and Rho, respectively, were integrated into the optogenetic recruitment tool improved light-induced dimer (iLID). This tool allows for Rho GTPase activation at the subcellular level in a reversible and non-invasive manner by recruiting a GEF to a specific area at the plasma membrane, The membrane tag of iLID was optimized and a HaloTag was applied to gain more flexibility for multiplex imaging. The resulting optogenetically recruitable RhoGEFs (Opto-RhoGEFs) were tested in an endothelial cell monolayer and demonstrated precise temporal control of vascular barrier strength by a cell-cell overlap-dependent, VE-cadherin-independent, mechanism. Furthermore, Opto-RhoGEFs enabled precise optogenetic control in endothelial cells over morphological features such as cell size, cell roundness, local extension, and cell contraction. In conclusion, we have optimized and applied the optogenetic iLID GEF recruitment tool, that is Opto-RhoGEFs, to study the role of Rho GTPases in the vascular barrier of the endothelium and found that membrane protrusions at the junction region can rapidly increase barrier integrity independent of VE-cadherin.
Collapse
Affiliation(s)
- Eike K Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastián Palacios Martínez
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Janine J G Arts
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Simon Tol
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jaap D van Buul
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
32
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
33
|
Plazen L, Khadra A. Excitable dynamics in a molecularly-explicit model of cell motility: Mixed-mode oscillations and beyond. J Theor Biol 2023; 564:111450. [PMID: 36868346 DOI: 10.1016/j.jtbi.2023.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Mesenchymal cell motility is mainly regulated by two members of the Rho-family of GTPases, called Rac and Rho. The mutual inhibition exerted by these two proteins on each other's activation and the promotion of Rac activation by an adaptor protein called paxillin have been implicated in driving cellular polarization comprised of front (high active Rac) and back (high active Rho) during cell migration. Mathematical modeling of this regulatory network has previously shown that bistability is responsible for generating a spatiotemporal pattern underscoring cellular polarity called wave-pinning when diffusion is included. We previously developed a 6V reaction-diffusion model of this network to decipher the role of Rac, Rho and paxillin (along with other auxiliary proteins) in generating wave-pinning. In this study, we simplify this model through a series of steps into an excitable 3V ODE model comprised of one fast variable (the scaled concentration of active Rac), one slow variable (the maximum paxillin phosphorylation rate - turned into a variable) and a very slow variable (a recovery rate - also turned into a variable). We then explore, through slow-fast analysis, how excitability is manifested by showing that the model can exhibit relaxation oscillations (ROs) as well as mixed-mode oscillations (MMOs) whose underlying dynamics are consistent with a delayed Hopf bifurcation with a canard explosion. By reintroducing diffusion and the scaled concentration of inactive Rac into the model, we obtain a 4V PDE model that generates several unique spatiotemporal patterns that are relevant to cell motility. These patterns are then characterized and their impact on cell motility are explored by employing the cellular potts model (CPM). Our results reveal that wave pinning produces purely very directed motion in CPM, while MMOs allow for meandering and non-motile behaviors to occur. This highlights the role of MMOs as a potential mechanism for mesenchymal cell motility.
Collapse
Affiliation(s)
- Lucie Plazen
- Department of Mathematics and Statistics, McGill University, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
34
|
An S, Vo TTL, Son T, Choi H, Kim J, Lee J, Kim BH, Choe M, Ha E, Surh YJ, Kim KW, Seo JH. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion. Exp Mol Med 2023; 55:779-793. [PMID: 37009792 PMCID: PMC10167369 DOI: 10.1038/s12276-023-00961-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 04/04/2023] Open
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tam Thuy Lu Vo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 42601, Republic of Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jinyoung Kim
- Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Juyeon Lee
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Misun Choe
- Department of Pathology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
35
|
Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda K, Mishima-Tsumagari C, Ihara K, Inoue M, Yonemochi M, Hanada K, Matsumoto T, Shirouzu M, Zhang KYJ. Targeting Ras-binding domain of ELMO1 by computational nanobody design. Commun Biol 2023; 6:284. [PMID: 36932164 PMCID: PMC10023680 DOI: 10.1038/s42003-023-04657-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yukako Miyata-Yabuki
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Tsuda
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
36
|
Plazen L, Rahbani JA, Brown CM, Khadra A. Polarity and mixed-mode oscillations may underlie different patterns of cellular migration. Sci Rep 2023; 13:4223. [PMID: 36918704 PMCID: PMC10014943 DOI: 10.1038/s41598-023-31042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
In mesenchymal cell motility, several migration patterns have been observed, including directional, exploratory and stationary. Two key members of the Rho-family of GTPases, Rac and Rho, along with an adaptor protein called paxillin, have been particularly implicated in the formation of such migration patterns and in regulating adhesion dynamics. Together, they form a key regulatory network that involves the mutual inhibition exerted by Rac and Rho on each other and the promotion of Rac activation by phosphorylated paxillin. Although this interaction is sufficient in generating wave-pinning that underscores cellular polarization comprised of cellular front (high active Rac) and back (high active Rho), it remains unclear how they interact collectively to induce other modes of migration detected in Chinese hamster Ovary (CHO-K1) cells. We previously developed a six-variable (6V) reaction-diffusion model describing the interactions of these three proteins (in their active/phosphorylated and inactive/unphosphorylated forms) along with other auxiliary proteins, to decipher their role in generating wave-pinning. In this study, we explored, through computational modeling and image analysis, how differences in timescales within this molecular network can potentially produce the migration patterns in CHO-K1 cells and how switching between migration modes could occur. To do so, the 6V model was reduced to an excitable 4V spatiotemporal model possessing three different timescales. The model produced not only wave-pinning in the presence of diffusion, but also mixed-mode oscillations (MMOs) and relaxation oscillations (ROs). Implementing the model using the Cellular Potts Model (CPM) produced outcomes in which protrusions in the cell membrane changed Rac-Rho localization, resulting in membrane oscillations and fast directionality variations similar to those observed experimentally in CHO-K1 cells. The latter was assessed by comparing the migration patterns of experimental with CPM cells using four metrics: instantaneous cell speed, exponent of mean-square displacement ([Formula: see text]-value), directionality ratio and protrusion rate. Variations in migration patterns induced by mutating paxillin's serine 273 residue were also captured by the model and detected by a machine classifier, revealing that this mutation alters the dynamics of the system from MMOs to ROs or nonoscillatory behaviour through variation in the scaled concentration of an active form of an adhesion protein called p21-Activated Kinase 1 (PAK). These results thus suggest that MMOs and adhesion dynamics are the key mechanisms regulating CHO-K1 cell motility.
Collapse
Affiliation(s)
- Lucie Plazen
- Department of Mathematics and Statistics, McGill University, Montreal, Canada
| | | | - Claire M Brown
- Department of Physiology, McGill University, Montreal, Canada
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, QC, Canada
- Cell Information Systems, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
37
|
Andersen T, Wörthmüller D, Probst D, Wang I, Moreau P, Fitzpatrick V, Boudou T, Schwarz US, Balland M. Cell size and actin architecture determine force generation in optogenetically activated cells. Biophys J 2023; 122:684-696. [PMID: 36635962 PMCID: PMC9989885 DOI: 10.1016/j.bpj.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Adherent cells use actomyosin contractility to generate mechanical force and to sense the physical properties of their environment, with dramatic consequences for migration, division, differentiation, and fate. However, the organization of the actomyosin system within cells is highly variable, with its assembly and function being controlled by small GTPases from the Rho family. To understand better how activation of these regulators translates into cell-scale force generation in the context of different physical environments, here we combine recent advances in non-neuronal optogenetics with micropatterning and traction force microscopy on soft elastic substrates. We find that, after whole-cell RhoA activation by the CRY2/CIBN optogenetic system with a short pulse of 100 ms, single cells contract on a minute timescale in proportion to their original traction force, before returning to their original tension setpoint with near perfect precision, on a longer timescale of several minutes. To decouple the biochemical and mechanical elements of this response, we introduce a mathematical model that is parametrized by fits to the dynamics of the substrate deformation energy. We find that the RhoA response builds up quickly on a timescale of 20 s, but decays slowly on a timescale of 50 s. The larger the cells and the more polarized their actin cytoskeleton, the more substrate deformation energy is generated. RhoA activation starts to saturate if optogenetic pulse length exceeds 50 ms, revealing the intrinsic limits of biochemical activation. Together our results suggest that adherent cells establish tensional homeostasis by the RhoA system, but that the setpoint and the dynamics around it are strongly determined by cell size and the architecture of the actin cytoskeleton, which both are controlled by the extracellular environment.
Collapse
Affiliation(s)
- T Andersen
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - D Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - D Probst
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - I Wang
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - P Moreau
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - V Fitzpatrick
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - T Boudou
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - U S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| | - M Balland
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| |
Collapse
|
38
|
Reeb T, Rhea L, Adelizzi E, Garnica B, Dunnwald E, Dunnwald M. ARHGAP29 is required for keratinocyte proliferation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.525978. [PMID: 36778214 PMCID: PMC9915469 DOI: 10.1101/2023.01.30.525978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND RhoA GTPase plays critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, cell adhesions, migration and changes in cell shape. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in keratinocytes of the skin and is decreased in the absence of Interferon Regulator Factor 6, a critical regulator of cell proliferation and migration. However, the role for ARHGAP29 in keratinocyte biology is unknown. RESULTS Novel ARHGAP29 knockdown keratinocyte cell lines were generated using both CRISPR/Cas9 and shRNA technologies. Knockdown cells exhibited significant reduction of ARHGAP29 protein (50-80%) and displayed increased filamentous actin (stress fibers), phospho-myosin light chain (contractility), cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single cell and collective cell migration conditions. Particularly, our results show a reduction in path lengths, speed, directionality and persistence in keratinocytes with reduced ARHGAP29. The delay in scratch closure was rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. CONCLUSIONS These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration mediated through the RhoA pathway.
Collapse
|
39
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
40
|
Lei F, Xu X, Huang J, Su D, Wan P. Drosophila RhoGAP18B regulates actin cytoskeleton during border cell migration. PLoS One 2023; 18:e0280652. [PMID: 36662713 PMCID: PMC9858088 DOI: 10.1371/journal.pone.0280652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Drosophila RhoGAP18B was identified as a negative regulator of small GTPase in the behavioral response to ethanol. However, the effect of RhoGAP18B on cell migration is unknown. Here, we report that RhoGAP18B regulates the migration of border cells in Drosophila ovary. The RhoGAP18B gene produces four transcripts and encodes three translation isoforms. We use different RNAi lines to knockdown each RhoGAP18B isoform, and find that knockdown of RhoGAP18B-PA, but not PC or PD isoform, blocks border cell migration. Knockdown of RhoGAP18B-PA disrupts the asymmetric distribution of F-actin in border cell cluster and increases F-actin level. Furthermore, RhoGAP18B-PA may act on Rac to regulate F-actin organization. Our data indicate that RhoGAP18B shows isoform-specific regulation of border cell migration.
Collapse
Affiliation(s)
- Fengyun Lei
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaoqing Xu
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jianhua Huang
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Dan Su
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Wan
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
41
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
42
|
Androgens and NGF Mediate the Neurite-Outgrowth through Inactivation of RhoA. Cells 2023; 12:cells12030373. [PMID: 36766714 PMCID: PMC9913450 DOI: 10.3390/cells12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Steroid hormones and growth factors control neuritogenesis through their cognate receptors under physiological and pathological conditions. We have already shown that nerve growth factor and androgens induce neurite outgrowth of PC12 cells through a reciprocal crosstalk between the NGF receptor, TrkA and the androgen receptor. Here, we report that androgens or NGF induce neuritogenesis in PC12 cells through inactivation of RhoA. Ectopic expression of the dominant negative RhoA N19 promotes, indeed, the neurite-elongation of unchallenged and androgen- or NGF-challenged PC12 cells and the increase in the expression levels of βIII tubulin, a specific neuronal marker. Pharmacological inhibition of the Ser/Thr kinase ROCK, an RhoA effector, induces neuritogenesis in unchallenged PC12 cells, and potentiates the effect of androgens and NGF, confirming the role of RhoA/ROCK axis in the neuritogenesis induced by androgen and NGF, through the phosphorylation of Akt. These findings suggest that therapies based on new selective androgen receptor modulators and/or RhoA/ROCK inhibitors might exert beneficial effects in the treatment of neuro-disorders, neurological diseases and ageing-related processes.
Collapse
|
43
|
Dai M, Huang W, Huang X, Ma C, Wang R, Tian P, Chen W, Zhang Y, Mi C, Zhang H. BPDE, the Migration and Invasion of Human Trophoblast Cells, and Occurrence of Miscarriage in Humans: Roles of a Novel lncRNA-HZ09. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17009. [PMID: 36719213 PMCID: PMC9888265 DOI: 10.1289/ehp10477] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Recurrent miscarriage (RM) affects 1%-3% of pregnancies. However, in almost 50% of cases, the cause is unknown. Increasing evidence have shown that benzo(a)pyrene [B(a)P], a representative of polycyclic aromatic hydrocarbons (PAHs), is correlated with miscarriage. However, the underlying mechanisms of B(a)P/benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE)-induced trophoblast cell dysfunctions and miscarriage remain largely unknown. OBJECTIVE The objective was to discover the role(s) of a novel lncRNA, lnc-HZ09, in the regulation of BPDE-inhibited migration and invasion of trophoblast cells and the occurrence of miscarriage. METHOD Human trophoblast cells were treated with 0, 0.25, 0.5, 1.0, or 1.5μM BPDE with or without corresponding lnc-HZ09 silencing or overexpression. Using these cells, we evaluated cell migration and invasion, the mRNA and protein levels of members of the PLD1/RAC1/CDC42 pathway, the regulatory roles of lnc-HZ09 in PLD1 transcription and mRNA stability, and lnc-HZ09 transcription and stability. Human villous tissues were collected from RM (n=15) group and their matched healthy control (HC, n=15) group. We evaluated the levels of BPDE-DNA adducts, lnc-HZ09, and the mRNA and protein expression of members of the PLD1/RAC1/CDC42 pathway, and correlated their relative expression levels. We further constructed 0, 0.05 or 0.2mg/kg B(a)P-induced mouse miscarriage model (each n=6), in which the mRNA and protein expression of members of the Pld1/Rac1/Cdc42 pathway were measured. RESULTS We identified a novel lnc-HZ09. Human trophoblast cells treated with lnc-HZ09 exhibited less cell migration and invasion. In addition, the levels of this lncRNA were higher in villous tissues from women with recurrent miscarriage than those from healthy individuals. SP1-mediated PLD1 mRNA levels were lower, and HuR-mediated PLD1 mRNA stability was less in trophoblast cells overexpressing lnc-HZ09. However, trophoblast cells treated with MSX1 had higher levels of lnc-HZ09, and METTL3-mediated m6A methylation on lnc-HZ09 resulted in greater lnc-HZ09 RNA stability. In BPDE-treated human trophoblast cells and in RM villous tissues, MSX1-mediated lnc-HZ09 transcription and METTL3-mediated lnc-HZ09 stability were both greater. In our mouse miscarriage model, B(a)P-treated mice had lower mRNA and protein levels of members of the Pld1/Rac1/Cdc42 pathway. DISCUSSION These results suggest that in human trophoblast cells, BPDE exposure up-regulated lnc-HZ09 level, suppressed PLD1/RAC1/CDC42 pathway, and inhibited migration and invasion, providing new insights in understanding the causes and mechanisms of unexplained miscarriage. https://doi.org/10.1289/EHP10477.
Collapse
MESH Headings
- Pregnancy
- Humans
- Female
- Mice
- Animals
- Trophoblasts
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- RNA, Long Noncoding/genetics
- Benzo(a)pyrene/metabolism
- Abortion, Habitual/genetics
- Abortion, Habitual/metabolism
- RNA, Messenger/metabolism
- Methyltransferases/metabolism
Collapse
Affiliation(s)
- Mengyuan Dai
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinying Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenglong Ma
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Peng Tian
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
44
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
45
|
Liaci C, Camera M, Zamboni V, Sarò G, Ammoni A, Parmigiani E, Ponzoni L, Hidisoglu E, Chiantia G, Marcantoni A, Giustetto M, Tomagra G, Carabelli V, Torelli F, Sala M, Yanagawa Y, Obata K, Hirsch E, Merlo GR. Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Front Cell Dev Biol 2022; 10:875468. [PMID: 36568982 PMCID: PMC9774038 DOI: 10.3389/fcell.2022.875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Mattia Camera
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ammoni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | | | - Luisa Ponzoni
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Enis Hidisoglu
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Giuseppe Chiantia
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | | | - Federico Torelli
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariaelvina Sala
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Yuchio Yanagawa
- Department of Genetic Behavioral Neuroscience, Gunma University, Maebashi, Japan
| | | | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy,*Correspondence: Giorgio R. Merlo,
| |
Collapse
|
46
|
The Forces behind Directed Cell Migration. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.
Collapse
|
47
|
The Effects of Different Doses of ROCK Inhibitor, Antifreeze Protein III, and Boron Added to Semen Extender on Semen Freezeability of Ankara Bucks. Molecules 2022; 27:molecules27228070. [PMID: 36432171 PMCID: PMC9698151 DOI: 10.3390/molecules27228070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
In the presented study, the effects of ROCK inhibitor Y-27632, antifreeze protein III, and boron at two different doses were investigated on the spermatological parameters of Ankara buck semen after freeze−thawing. Ejaculates were collected from bucks using an electroejaculator during the breeding season. The ejaculates that showed appropriate characteristics were pooled and used in the dilution and freezing of semen. The extender groups were formed by adding two different doses of three different additives (ROCK inhibitor Y-27632, 5 and 20 µM; antifreeze protein III, 1 and 4 µg/mL; boron, 0.25 and 1 mM) to the control extender. The semen was diluted with the different extenders at 35−37 °C and loaded into straws. Sperm samples frozen in liquid nitrogen vapors, following equilibration, were stored in liquid nitrogen. It was observed that extender supplementation improved post-thaw motility of Ankara buck semen after freeze−thawing. Differences were significant (p < 0.01) for 5 and 10 µM doses of ROCK inhibitor (71.82% and 74.04 % motility), as well as for 0.25 and 1 mM doses of boron (76.36% and 72.08% motility), compared to the control group (66.15% motility). With respect to the evaluation of acrosomal integrity and mitochondrial activity after freeze−thawing, although supplementation provided protection at all doses, the efficacy was not statistically significant (p > 0.05). It was observed that DNA damage was improved by antifreeze protein III at 1 µg/mL (1.23% ± 0.23%) and by boron at all doses (0.25 mM: 1.83% and 1 mM: 1.18%) compared to the control group (3.37%) (p < 0.01), following the thawing process. In the present study, it was determined that some additives added to the extender provided significant improvements in buck spermatozoa motility and DNA damage after thawing.
Collapse
|
48
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
49
|
Wisniewski É, Czárán D, Kovács F, Bahurek E, Németh A, Sasvári P, Szanda G, Pettkó-Szandtner A, Klement E, Ligeti E, Csépányi-Kömi R. A novel BRET-Based GAP assay reveals phosphorylation-dependent regulation of the RAC-specific GTPase activating protein ARHGAP25. FASEB J 2022; 36:e22584. [PMID: 36190314 DOI: 10.1096/fj.202200689r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow. However, the significance of other potential phosphorylation sites of ARHGAP25 remained unknown. Now, we developed a novel, real-time bioluminescence resonance energy transfer (BRET) assay to monitor the GAP activity of ARHGAP25 in vitro. Using this approach, we revealed that phosphorylation of S363 and S488, but not that of S379-380, controls ARHGAP25's RACGAP activity. On the other hand, we found in granulocyte-differentiated human PLB-985 cells that superoxide production and actin depolymerization are regulated by residues S363 and S379-380. The present data demonstrate the value of our BRET-GAP assay and show that different phosphorylation patterns regulate ARHGAP25's GAP activity and its effect on superoxide production and phagocytosis.
Collapse
Affiliation(s)
- Éva Wisniewski
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Domonkos Czárán
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Fanni Kovács
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Enikő Bahurek
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Afrodité Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Sasvári
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary.,Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
50
|
Liu F, Bouznad N, Kaller M, Shi X, König J, Jaeckel S, Hermeking H. Csf1r mediates enhancement of intestinal tumorigenesis caused by inactivation of Mir34a. Int J Biol Sci 2022; 18:5415-5437. [PMID: 36147476 PMCID: PMC9461672 DOI: 10.7150/ijbs.75503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.
Collapse
Affiliation(s)
- Fangteng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Janine König
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Germany.,German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|