1
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Zaidi SA, Fan Z, Chauhdari T, Ding Y. MicroRNA regulatory dynamic, emerging diagnostic and therapeutic frontier in atherosclerosis. Microvasc Res 2025; 160:104818. [PMID: 40368159 DOI: 10.1016/j.mvr.2025.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are pivotal post-transcriptional regulators of gene expression with profound implications in the pathogenesis of atherosclerosis (AS). As a progressive arterial disease driven by vascular cells dysfunction, lipid dysregulation and subsequent chronic inflammation, AS remains a leading cause of global morbidity. Recent studies have demonstrated how important miRNAs are in regulating central biological processes in the vascular wall, such as endothelial function, vascular smooth muscle cell (VSMC) phenotypic switching, and macrophage polarization. This review provides comprehensive insight into the role of miRNAs in the development and complexity of atherosclerotic plaques according to their effects on endothelial cells, macrophages, and VSMCs. We also go over the growing prospects of miRNAs as therapeutic targets and diagnostic biomarkers, providing information to be used in the study of vascular diseases. Lastly, we address recent complications and potential applications of miRNA-based approaches in clinical practice.
Collapse
Affiliation(s)
- Syeda Armana Zaidi
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Zhiyu Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Talha Chauhdari
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| |
Collapse
|
3
|
Chen Z, Wang J, Lu B, Meng W, Zhu Y, Jiang Q, Gao D, Ma Z, Zeng H, Chen J, Liu S, Wang Z, Jia K. Reduction of microRNA-221 in BVDV infection enhances viral replication by targeting the ATG7-mediated autophagy pathway. Ir Vet J 2025; 78:10. [PMID: 40176193 PMCID: PMC11963565 DOI: 10.1186/s13620-025-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Bovine viral diarrhoea (BVD), a condition triggered by bovine viral diarrhoea virus (BVDV), is recognized globally as a prevalent pathogen among ruminants and markedly affects the economics of animal husbandry. MicroRNAs, a class of small noncoding RNAs, play pivotal roles in regulating a myriad of biological processes.The ATG7-LC3 pathway, a canonical autophagy mechanism, is integral in defending against pathogenic invasion and maintaining cellular homeostasis. RESULTS In this study, we observed significant downregulation of bta-miR-221 in cells infected with BVDV. We further established that overexpression of bta-miR-221 markedly attenuated BVDV replication in Madin‒Darby bovine kidney (MDBK) cells. Through bioinformatics prediction analysis, we identified ATG7, an autophagy-related gene, as a direct downstream target of bta-miR-221. However, the intricate relationships among bta-miR-221, the ATG7-LC3 pathway, and BVDV infection remained unclear. Our study revealed that ATG7 expression was significantly elevated in BVDV-infected cells, whereas bta-miR-221 mimics repressed both endogenous and exogenous ATG7 expression. Following BVDV infection, we noted a decrease in LC3I expression, its conversion to LC3II, a significant increase in ATG7 expression, and a notable decrease in SQSTM1/p62 expression. By employing laser confocal microscopy and immunoprecipitation assays, we elucidated the regulation of the ATG7-LC3 pathway by bta-miR-221 in MDBK cells. Our findings recealed that BVDV infection enhanced the ATG7-LC3 interaction, inducing autophagy through the suppression of bta-miR-221 in MDBK cells. Consequently, bta-miR-221 emerged as a potent inhibitor of BVDV, impacting its proliferation and replication within the host. CONCLUSIONS This research sheds light on novel aspects of virus-host interactions and lays a foundation for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Baochun Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Yufan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Qifeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Duo Gao
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zihang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Huijuan Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Jinping Chen
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Shizhe Liu
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, China.
| |
Collapse
|
4
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Ren Y, Lin H, Guo J, Su X, Wang L, Qiao X. Roles of microRNAs in cardiorenal syndrome. Mol Cell Biochem 2025:10.1007/s11010-025-05253-8. [PMID: 40133760 DOI: 10.1007/s11010-025-05253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Cardiac and kidney diseases are intimately linked through numerous pathophysiological pathways, frequently exerting reciprocal influences on one another. This interconnection often culminates in heightened morbidity and mortality rates within the clinical spectrum of cardiorenal syndrome (CRS). CRS is categorized into five types based on the primary organ involved and the chronicity of the condition. Each type of CRS encompasses a complex array of pathophysiological mechanisms. In recent years, the field of microRNAs (miRNAs) has risen to prominence, playing a crucial role in the pathogenesis of a multitude of diseases. By uncovering novel therapeutic targets through the study of miRNAs that influence the expression of the CRS genes, the prognostic outcomes for patients could be significantly improved. This article provides a comprehensive review, examining the pathophysiological underpinnings of CRS, miRNAs alterations and their associated mechanisms in various forms of CRS, as well as the potential of miRNAs in precision medicine and the use of miRNAs for the diagnosis of the disease.
Collapse
Affiliation(s)
- Yilin Ren
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hui Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Junnan Guo
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
6
|
Jin Y, Duan J, Yin Q, Ma Y, Lou J, Zhang W. Bibliometric and visual analysis of miRNAs in heart diseases from 2004 to 2023. Front Cardiovasc Med 2025; 12:1465646. [PMID: 40182423 PMCID: PMC11965657 DOI: 10.3389/fcvm.2025.1465646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background MicroRNAs (miRNAs) add a new dimension to HD forecast, diagnosis, and therapy based on the potential applications. The miRNA-related research in the heart disease (HD) field has received close attention in the past two decades. However, there is a lack of studies that comprehensively and objectively analyze the current situation of miRNA application in the HD field using the bibliometrics method. Objective To comprehensively analyze the global scientific outputs of miRNAs in HD research from 2004 to 2023. Methods All the articles and reviews of miRNA-related research in the HD field were retrieved using the Web of Science core collection (WOSCC) title search, and bibliometric analysis was performed in Microsoft Excel 2019, CiteSpace, VOSviewer, and Bibliometrics (R-Tool of R-Studio). Results 3,874 publications were included in the bibliometric analysis. Collaborative network analysis indicates that China with the maximum number of publications (2,063) and the USA with the highest total citations (59,331) are influential countries in this field. Peking Union Medical College is the most prolific university with the maximum publications (134), and the University of California System is the most authoritative institution regarding betweenness centrality (0.27). PLOS ONE tops the journal list of publications, closely followed by the International Journal of Molecular Sciences and Scientific Reports with more than 100 articles. Considering the number of publications, citations, and total link strength overall, Olson. Eric N, Van Rooij Eva, Thum Thomas, Yang Baofeng, Wang Kun; and Lu Yanjie are authoritative authors in this field. The expression changes and regulatory mechanisms of specific miRNAs in various heart biological and pathophysiological processes have been the continuous research hotspots. "exosomes", "extracellular vesicles", "autophagy", and "management" have been novel hot research topics since 2018, which focused on the diagnosis and treatment of HD. The current research development trend is how to translate the achievement of miRNA-related diagnosis and therapeutic drugs for HD into the clinic. Conclusion Our study revealed the intellectual structure of miRNA in HD research, which may help scholars understand this field comprehensively and find partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of Geriatrics, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
7
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
9
|
Li Y, Chen S, Rao H, Cui S, Chen G. MicroRNA Gets a Mighty Award. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414625. [PMID: 39836690 PMCID: PMC11831481 DOI: 10.1002/advs.202414625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Recent advancements in microRNAs (miRNAs) research have revealed their key roles in both normal physiological processes and pathological conditions, leading to potential applications in diagnostics and therapeutics. However, the path forward is fraught with several scientific and technical challenges. This review article briefly explores the milestones of the discovery, biogenesis, functions, and application for clinical diagnostic and therapeutic strategies of miRNAs. The potential challenges and future directions are also discussed to fully harness their capabilities.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Hai Rao
- Department of BiochemistryKey University Laboratory of Metabolism and Health of GuangdongSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Shengjin Cui
- Clinical LaboratoryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
10
|
Finotti A, Gambari R. Perspectives in MicroRNA Therapeutics for Cystic Fibrosis. Noncoding RNA 2025; 11:3. [PMID: 39846681 PMCID: PMC11755495 DOI: 10.3390/ncrna11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
The discovery of the involvement of microRNAs (miRNAs) in cystic fibrosis (CF) has generated increasing interest in the past years, due to their possible employment as a novel class of drugs to be studied in pre-clinical settings of therapeutic protocols for cystic fibrosis. In this narrative review article, consider and comparatively evaluate published laboratory information of possible interest for the development of miRNA-based therapeutic protocols for cystic fibrosis. We consider miRNAs involved in the upregulation of CFTR, miRNAs involved in the inhibition of inflammation and, finally, miRNAs exhibiting antibacterial activity. We suggest that antago-miRNAs and ago-miRNAs (miRNA mimics) can be proposed for possible validation of therapeutic protocols in pre-clinical settings.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Khanal R, Heinen N, Bogomolova A, Meister TL, Herrmann ST, Westhoven S, Nocke MK, Todt D, Jockenhövel F, Klein IM, Hartmann L, Vondran FWR, Steinmann E, Zimmer G, Ott M, Brown RJP, Sharma AD, Pfaender S. MicroRNAs modulate SARS-CoV-2 infection of primary human hepatocytes by regulating the entry factors ACE2 and TMPRSS2. Liver Int 2024; 44:2983-2995. [PMID: 39175256 DOI: 10.1111/liv.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.
Collapse
Affiliation(s)
- Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Heinen
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Toni L Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Simon T Herrmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Westhoven
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Maximilian K Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Freya Jockenhövel
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Isabel M Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Hartmann
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard J P Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Hanson WA, Romero Agosto GA, Rouskin S. Viral RNA Interactome: The Ultimate Researcher's Guide to RNA-Protein Interactions. Viruses 2024; 16:1702. [PMID: 39599817 PMCID: PMC11599142 DOI: 10.3390/v16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA molecules in the cell are bound by a multitude of RNA-binding proteins (RBPs) with a variety of regulatory consequences. Often, interactions with these RNA-binding proteins are facilitated by the complex secondary and tertiary structures of RNA molecules. Viral RNAs especially are known to be heavily structured and interact with many RBPs, with roles including genome packaging, immune evasion, enhancing replication and transcription, and increasing translation efficiency. As such, the RNA-protein interactome represents a critical facet of the viral replication cycle. Characterization of these interactions is necessary for the development of novel therapeutics targeted at the disruption of essential replication cycle events. In this review, we aim to summarize the various roles of RNA structures in shaping the RNA-protein interactome, the regulatory roles of these interactions, as well as up-to-date methods developed for the characterization of the interactome and directions for novel, RNA-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (W.A.H.); (G.A.R.A.)
| |
Collapse
|
14
|
Guo M, He F, Zhang C. Molecular Therapeutics for Diabetic Kidney Disease: An Update. Int J Mol Sci 2024; 25:10051. [PMID: 39337537 PMCID: PMC11431964 DOI: 10.3390/ijms251810051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes mellitus (DM). With the increasing prevalence of DM worldwide, the incidence of DKD remains high. If DKD is not well controlled, it can develop into chronic kidney disease or end-stage renal disease (ESRD), which places considerable economic pressure on society. Traditional therapies, including glycemic control, blood pressure control, blood lipid control, the use of renin-angiotensin system blockers and novel drugs, such as sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor inhibitors and glucagon-like peptide-1 receptor agonists, have been used in DKD patients. Although the above treatment strategies can delay the progression of DKD, most DKD patients still ultimately progress to ESRD. Therefore, new and multimodal treatment methods need to be explored. In recent years, researchers have continuously developed new treatment methods and targets to delay the progression of DKD, including miRNA therapy, stem cell therapy, gene therapy, gut microbiota-targeted therapy and lifestyle intervention. These new molecular therapy methods constitute opportunities to better understand and treat DKD. In this review, we summarize the progress of molecular therapeutics for DKD, leading to new treatment strategies.
Collapse
Affiliation(s)
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Brillante S, Volpe M, Indrieri A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum Gene Ther 2024; 35:628-648. [PMID: 39150011 DOI: 10.1089/hum.2024.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNA modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.
Collapse
Affiliation(s)
- Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Mariagrazia Volpe
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
16
|
Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M, Krause KH, Gjorgjieva M, Foti M. Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids. JHEP Rep 2024; 6:101126. [PMID: 39263327 PMCID: PMC11388170 DOI: 10.1016/j.jhepr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Alterations of hepatic microRNA (miRNA) expression/activity significantly contribute to the development and progression of MASLD. Genetic polymorphisms of miR-149 are associated with an increased susceptibility to MASLD development in humans. Aberrant expression of miR-149 was also associated with metabolic alterations in several organs, but the impact of hepatic miR-149-5p deregulation in MASLD remains poorly characterized. Methods MiR-149-5p was downregulated in the livers of mice by in vivo transduction with hepatotropic adeno-associated virus 8 harboring short-hairpin RNAs (shRNAs) specific for miR-149-5p (shmiR149) or scrambled shRNAs (shCTL). MASLD was then induced with a methionine/choline-deficient (MCD, n = 7 per group) diet or a fructose/palmitate/cholesterol-enriched (FPC, n = 8-12 per group, per protocol) diet. The impact of miR-149-5p modulation on MASLD development was assessed in vivo and in vitro using multi-lineage 3D human liver organoids (HLOs) and Huh7 cells. Results MiR-149-5p expression was strongly upregulated in mouse livers from different models of MASLD (2-4-fold increase in ob/ob, db/db mice, high-fat and FPC-fed mice). In vivo downregulation of miR-149-5p led to an amelioration of diet-induced hepatic steatosis, inflammation/fibrosis, and to increased whole-body fatty acid consumption. In HLOs, miR-149-5p overexpression promoted lipid accumulation, inflammation and fibrosis. In vitro analyses of human Huh7 cells overexpressing miR-149-5p indicated that glycolysis and intracellular lipid accumulation was promoted, while mitochondrial respiration was impaired. Translatomic analyses highlighted deregulation of multiple potential miR-149-5p targets in hepatocytes involved in MASLD development. Conclusions MiR-149-5p upregulation contributes to MASLD development by affecting multiple metabolic/inflammatory/fibrotic pathways in hepatocytes. Our results further demonstrate that HLOs are a relevant 3D in vitro model to investigate hepatic steatosis and inflammation/fibrosis development. Impact and implications Our research shows compelling evidence that miR-149-5p plays a pivotal role in the development and progression of MASLD. By employing in vivo and innovative in vitro models using multi-lineage human liver organoids, we demonstrate that miR-149-5p upregulation significantly impacts hepatocyte energy metabolism, exacerbating hepatic steatosis and inflammation/fibrosis by modulating a wide network of target genes. These findings not only shed light on the intricate miR-149-5p-dependent molecular mechanisms underlying MASLD, but also underscore the importance of human liver organoids as valuable 3D in vitro models for studying the disease's pathogenesis.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
18
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
19
|
Kura B, Pavelkova P, Kalocayova B, Pobijakova M, Slezak J. MicroRNAs as Regulators of Radiation-Induced Oxidative Stress. Curr Issues Mol Biol 2024; 46:7097-7113. [PMID: 39057064 PMCID: PMC11276491 DOI: 10.3390/cimb46070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Patricia Pavelkova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Bory Hospital–Penta Hospitals, 841 03 Bratislava, Slovakia;
- Radiological Science, Faculty of Nursing and Medical Professional Studies, Slovak Medical University, 831 01 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| |
Collapse
|
20
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
21
|
Ressel S, Kumar S, Bermúdez-Barrientos JR, Gordon K, Lane J, Wu J, Abreu-Goodger C, Schwarze J, Buck A. RNA-RNA interactions between respiratory syncytial virus and miR-26 and miR-27 are associated with regulation of cell cycle and antiviral immunity. Nucleic Acids Res 2024; 52:4872-4888. [PMID: 38412296 PMCID: PMC11109944 DOI: 10.1093/nar/gkae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sujai Kumar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Katrina Gordon
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Julia Lane
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jin Wu
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
22
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
23
|
Nappi F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int J Mol Sci 2024; 25:3630. [PMID: 38612441 PMCID: PMC11011542 DOI: 10.3390/ijms25073630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The use of non-coding RNAs (ncRNAs) as drug targets is being researched due to their discovery and their role in disease. Targeting ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is an attractive approach for treating various diseases, such as cardiovascular disease and cancer. This seminar discusses the current status of ncRNAs as therapeutic targets in different pathological conditions. Regarding miRNA-based drugs, this approach has made significant progress in preclinical and clinical testing for cardiovascular diseases, where the limitations of conventional pharmacotherapy are evident. The challenges of miRNA-based drugs, including specificity, delivery, and tolerability, will be discussed. New approaches to improve their success will be explored. Furthermore, it extensively discusses the potential development of targeted therapies for cardiovascular disease. Finally, this document reports on the recent advances in identifying and characterizing microRNAs, manipulating them, and translating them into clinical applications. It also addresses the challenges and perspectives towards clinical application.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
24
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Unraveling the dynamics of hepatitis C virus adaptive mutations and their impact on antiviral responses in primary human hepatocytes. J Virol 2024; 98:e0192123. [PMID: 38319104 PMCID: PMC10949430 DOI: 10.1128/jvi.01921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
Affiliation(s)
- Nicola Frericks
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | | | - Maike Herrmann
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Florian W. R. Vondran
- Department for General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Clinic for General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
| |
Collapse
|
25
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
26
|
Hagiwara S, Gohda T, Kantharidis P, Okabe J, Murakoshi M, Suzuki Y. Potential of Modulating Aldosterone Signaling and Mineralocorticoid Receptor with microRNAs to Attenuate Diabetic Kidney Disease. Int J Mol Sci 2024; 25:869. [PMID: 38255942 PMCID: PMC10815168 DOI: 10.3390/ijms25020869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetic Kidney Disease (DKD) is a significant complication of diabetes and primary cause of end-stage renal disease globally. The exact mechanisms underlying DKD remain poorly understood, but multiple factors, including the renin-angiotensin-aldosterone system (RAAS), play a key role in its progression. Aldosterone, a mineralocorticoid steroid hormone, is one of the key components of RAAS and a potential mediator of renal damage and inflammation in DKD. miRNAs, small noncoding RNA molecules, have attracted interest due to their regulatory roles in numerous biological processes. These processes include aldosterone signaling and mineralocorticoid receptor (MR) expression. Numerous miRNAs have been recognized as crucial regulators of aldosterone signaling and MR expression. These miRNAs affect different aspects of the RAAS pathway and subsequent molecular processes, which impact sodium balance, ion transport, and fibrosis regulation. This review investigates the regulatory roles of particular miRNAs in modulating aldosterone signaling and MR activation, focusing on their impact on kidney injury, inflammation, and fibrosis. Understanding the complex interaction between miRNAs and the RAAS could lead to a new strategy to target aldosterone signaling and MR activation using miRNAs. This highlights the potential of miRNA-based interventions for DKD, with the aim of enhancing kidney outcomes in individuals with diabetes.
Collapse
Affiliation(s)
- Shinji Hagiwara
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan; (M.M.); (Y.S.)
- Hagiwara Clinic, Tokyo 2030001, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan; (M.M.); (Y.S.)
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia; (P.K.); (J.O.)
| | - Jun Okabe
- Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia; (P.K.); (J.O.)
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan; (M.M.); (Y.S.)
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan; (M.M.); (Y.S.)
| |
Collapse
|
27
|
Naqvi RA, Valverde A, Yadavalli T, Bobat FI, Capistrano KJ, Shukla D, Naqvi AR. Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology. Curr Pharm Des 2024; 30:649-665. [PMID: 38347772 DOI: 10.2174/0113816128286469240129100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024]
Abstract
Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Fatima Ismail Bobat
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Kristelle J Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
28
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
29
|
Ong JWJ, Tan KS, Lee JJX, Seet JE, Choi HW, Ler SG, Gunaratne J, Narasaraju T, Sham LT, Patzel V, Chow VT. Differential effects of microRNAs miR-21, miR-99 and miR-145 on lung regeneration and inflammation during recovery from influenza pneumonia. J Med Virol 2023; 95:e29286. [PMID: 38087452 DOI: 10.1002/jmv.29286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
In a mouse model of influenza pneumonia, we previously documented that proliferating alveolar type II (AT2) cells are the major stem cells involved in early lung recovery. Profiling of microRNAs revealed significant dysregulation of specific ones, including miR-21 and miR-99a. Moreover, miR-145 is known to exhibit antagonism to miR-21. This follow-up study investigated the roles of microRNAs miR-21, miR-99a, and miR-145 in the murine pulmonary regenerative process and inflammation during influenza pneumonia. Inhibition of miR-21 resulted in severe morbidity, and in significantly decreased proliferating AT2 cells due to impaired transition from innate to adaptive immune responses. Knockdown of miR-99a culminated in moderate morbidity, with a significant increase in proliferating AT2 cells that may be linked to PTEN downregulation. In contrast, miR-145 antagonism did not impact morbidity nor the proliferating AT2 cell population, and was associated with downregulation of TNF-alpha, IL1-beta, YM1, and LY6G. Hence, a complex interplay exists between expression of specific miRNAs, lung regeneration, and inflammation during recovery from influenza pneumonia. Inhibition of miR-21 and miR-99a (but not miR-145) can lead to deleterious cellular and molecular effects on pulmonary repair and inflammatory processes during influenza pneumonia.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore
| | - Hyung Won Choi
- Department of Medicine, National University of Singapore, Singapore
| | | | | | - Teluguakula Narasaraju
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Karnataka, India
| | - Lok-To Sham
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Volker Patzel
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vincent T Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
30
|
Yan R, Liang X, Hu J. miR-141-3p alleviates ulcerative colitis by targeting SUGT1 to inhibit colonic epithelial cell pyroptosis. Autoimmunity 2023; 56:2220988. [PMID: 37317573 DOI: 10.1080/08916934.2023.2220988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease of the colon that result in the destruction and inflammation of the colonic mucosa. Current research has established a strong correlation between pyroptosis of colonic epithelial cells and the onset and progression of UC. In addition, miRNAs have been implicated in the development and progression of UC and pyroptosis. This aimed of this study was to identify specific miRNAs that could inhibit pyroptosis in colon epithelial cells and alleviate UC. Lipopolysaccharide (LPS) was used to induce inflammation in FHC normal colonic epithelial cells to construct an enteritis cell model and downregulated expression levels of miRNAs were detected in inflammatory bowel disease mucosal tissue model. Pyroptosis indicators were detected using Cell Counting Kit-8, flow cytometry, ELISA, qPCR, western blot, and immunofluorescence, and miRNA target genes were predicted by miRDB, TargetScan, pyroptosis pathway from KEGG, and double luciferase assay was used for verification. The effect of miR-141-3p on colitis was observed in the mouse DSS colitis model. The results showed that miR-141-3p was the most significantly downregulated miRNA in LPS-induced FHC cells, and promoted the proliferation of LPS-induced FHC cells and suppressed their apoptosis. In addition, miR-141-3p decreased the expression of pyroptosis-related proteins such as NLRP3, caspase-1, N-GSDMD, and the other proteins, as well as the release of IL-18 and IL-1β inflammatory factors. Conversely, the miR-141-3p inhibitor promoted LPS-induced FHC pyroptosis. Dual luciferase experiments confirmed that miR-141-3p could target the HSP90 molecular chaperone SUGT1. Further experiments demonstrated that SUGT1 overexpression could restore the inhibitory effect of miR-141-3p on pyroptosis, while SUGT1 knockdown could alleviate the promotion of pyroptosis induced by miR-141-3p inhibitor. Furthermore, miR-141-3p alleviated the inflammatory phenotype of mouse colonic mucosa in the mouse DSS colitis model. Therefore, miR-141-3p inhibits LPS-induced pyroptosis of colonic epithelial cells by targeting SUGT1. miR-141-3p could also alleviate DSS-induced colitis in mice, suggesting that miR-141-3p may become a nucleic acid drug for the treatment of UC.
Collapse
Affiliation(s)
- Rong Yan
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| | - Xinghua Liang
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| | - Juan Hu
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| |
Collapse
|
31
|
Jarosz-Popek J, Eyileten C, Gager GM, Nowak A, Szwed P, Wicik Z, Palatini J, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The interaction between non-coding RNAs and SGLT2: A review. Int J Cardiol 2023; 398:131419. [PMID: 39492411 DOI: 10.1016/j.ijcard.2023.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2, SLC5A2) is a promising target for a new class of drug primarily established as kidney-targeting as well as emerging class of glucose-lowering drugs in diabetes. Studies showed that SGLT2 inhibitors also have a systemic impact via indirectly targeting the heart and kidneys which exerts broad cardio- and nephroprotective effects. Additionally, as cancer cells tightly require glucose supply, studies also questioned how SGLT2 inhibitors impact molecular pathology and cellular metabolism in cancer hallmarks. However, the exact molecular mechanisms responsible for those benefits have not been fully discovered. MicroRNAs (miRNA) and circularRNAs (circRNAs) are endogenous, single-stranded, non-coding RNAs (ncRNAs) that can control protein-coding genes, affecting significant molecular and cellular processes regulating homeostasis. CircRNAs particularly regulate gene expression at the transcriptional and post-transcriptional level by sponging to miRNAs and by altering interactions between proteins.
Collapse
Affiliation(s)
- Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szwed
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland
| | - Jeff Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
32
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
34
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
35
|
Ahmed N, Francis ME, Ahmed N, Kelvin AA, Pezacki JP. microRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host's Lipid Microenvironment. Viruses 2023; 15:1921. [PMID: 37766327 PMCID: PMC10536008 DOI: 10.3390/v15091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
With the emergence of the novel betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there has been an urgent need for the development of fast-acting antivirals, particularly in dealing with different variants of concern (VOC). SARS-CoV-2, like other RNA viruses, depends on host cell machinery to propagate and misregulate metabolic pathways to its advantage. Herein, we discovered that the immunometabolic microRNA-185 (miR-185) restricts SARS-CoV-2 propagation by affecting its entry and infectivity. The antiviral effects of miR-185 were studied in SARS-CoV-2 Spike protein pseudotyped virus, surrogate virus (HCoV-229E), as well as live SARS-CoV-2 virus in Huh7, A549, and Calu-3 cells. In each model, we consistently observed microRNA-induced reduction in lipid metabolism pathways-associated genes including SREBP2, SQLE, PPARG, AGPAT3, and SCARB1. Interestingly, we also observed changes in angiotensin-converting enzyme 2 (ACE2) levels, the entry receptor for SARS-CoV-2. Taken together, these data show that miR-185 significantly restricts host metabolic and other pathways that appear to be essential to SAR-CoV-2 replication and propagation. Overall, this study highlights an important link between non-coding RNAs, immunometabolic pathways, and viral infection. miR-185 mimics alone or in combination with other antiviral therapeutics represent possible future fast-acting antiviral strategies that are likely to be broadly antiviral against multiple variants as well as different virus types of potential pandemics.
Collapse
Affiliation(s)
- Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Magen E. Francis
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Alyson A. Kelvin
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
36
|
Meng X, Eslami Y, Derafsh E, Saihood A, Emtiazi N, Yasamineh S, Gholizadeh O, Pecho RDC. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Commun Signal 2023; 21:231. [PMID: 37710249 PMCID: PMC10500852 DOI: 10.1186/s12964-023-01250-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.
Collapse
Affiliation(s)
- Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002 China
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University, School of Medicine, St. Kitts, Canada
| | - Anwar Saihood
- Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
Asl ER, Sarabandi S, Shademan B, Dalvandi K, sheikhansari G, Nourazarian A. MicroRNA targeting: A novel therapeutic intervention for ovarian cancer. Biochem Biophys Rep 2023; 35:101519. [PMID: 37521375 PMCID: PMC10382632 DOI: 10.1016/j.bbrep.2023.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Ovarian cancer, a perilous form of cancer affecting the female reproductive system, exhibits intricate communication networks that contribute to its progression. This study aims to identify crucial molecular abnormalities linked to the disease to enhance diagnostic and therapeutic strategies. In particular, we investigate the role of microRNAs (miRNAs) as diagnostic biomarkers and explore their potential in treating ovarian cancer. By targeting miRNAs, which can influence multiple pathways and genes, substantial therapeutic benefits can be attained. In this review we want to shed light on the promising application of miRNA-based interventions and provide insights into the specific miRNAs implicated in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Sajed Sarabandi
- Department of Veterinary, Faculty of Medicine Sciences, Islamic Azad University of Karaj, Karaj, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Dalvandi
- Ministry of Health and Medical Education, Health Department, Tehran, Iran
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
38
|
Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA-122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract 2023; 249:154725. [PMID: 37544130 DOI: 10.1016/j.prp.2023.154725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nadezhda Lenoktovna Korotkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH Russia), Russia
| |
Collapse
|
39
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
40
|
Gouzouasis V, Tastsoglou S, Giannakakis A, Hatzigeorgiou AG. Virus-Derived Small RNAs and microRNAs in Health and Disease. Annu Rev Biomed Data Sci 2023; 6:275-298. [PMID: 37159873 DOI: 10.1146/annurev-biodatasci-122220-111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus-host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA-based research-in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.
Collapse
Affiliation(s)
- Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
41
|
McIlwraith EK, He W, Belsham DD. Promise and Perils of MicroRNA Discovery Research: Working Toward Quality Over Quantity. Endocrinology 2023; 164:bqad111. [PMID: 37453100 DOI: 10.1210/endocr/bqad111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Since the first microRNA (miRNA) was described in 1993 in the humble worm Caenorhabditis elegans, the miRNA field has boomed, with more than 100 000 related patents filed and miRNAs now in ongoing clinical trials. Despite an advanced understanding of the biogenesis and action of miRNAs, applied miRNA research faces challenges and irreproducibility due to a lack of standardization. This review provides guidelines regarding miRNA investigation, while focusing on the pitfalls and considerations that are often overlooked in prevailing applied miRNA research. These include miRNA annotation and quantification, to modulation, target prediction, validation, and the study of circulating miRNAs.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
42
|
Ocker M, Neureiter D. Gene expression inhibitors for the treatment of liver fibrosis: drugs under preclinical and early clinical investigation. Expert Opin Investig Drugs 2023; 32:1133-1141. [PMID: 37997755 DOI: 10.1080/13543784.2023.2288075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Liver fibrosis represents an unmet medical condition with growing incidence and only limited therapeutic options. Interfering with dysregulated gene expression was considered a specific treatment approach, and we are here reviewing the current options to modulate transcription and translation with small molecule inhibitors of involved enzymes, transcription factors or by using non-coding RNA molecules (RNA interference) or DNA antisense oligonucleotides. Despite promising results in preclinical models, only limited data are available from studies in humans. AREAS COVERED This expert opinion provides a general overview of how to interfere with gene expression (transcription and translation) and highlighting recent achievements in liver fibrosis. EXPERT OPINION Many compounds that were explored to modulate gene expression in liver fibrosis (models) were developed as anti-cancer agents. Their use in humans with impaired liver function is often impaired by the lack of specificity to inhibit only fibrosis-related genes in the liver and by associated general toxicity and narrow therapeutic windows. RNAi approaches show a higher degree of specificity and potentially less systemic toxicity. Clinical development in liver fibrosis requires close interaction between pharmaceutical companies and regulatory authorities to address topics like relevant (surrogate) endpoints to achieve meaningful readouts faster.
Collapse
Affiliation(s)
- Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
43
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
44
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
45
|
Papi C, Gasparello J, Zurlo M, Cosenza LC, Gambari R, Finotti A. The Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) Is under Post-Transcriptional Control of microRNAs: Analysis of the Effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p. Noncoding RNA 2023; 9:ncrna9020029. [PMID: 37104011 PMCID: PMC10146138 DOI: 10.3390/ncrna9020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chiara Papi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
46
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
47
|
Kumar V, Turnbull WB. Targeted delivery of oligonucleotides using multivalent protein-carbohydrate interactions. Chem Soc Rev 2023; 52:1273-1287. [PMID: 36723021 PMCID: PMC9940626 DOI: 10.1039/d2cs00788f] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 02/02/2023]
Abstract
Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India.
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
48
|
Systemic Cytokines in Retinopathy of Prematurity. J Pers Med 2023; 13:jpm13020291. [PMID: 36836525 PMCID: PMC9966226 DOI: 10.3390/jpm13020291] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Retinopathy of prematurity (ROP), a vasoproliferative vitreoretinal disorder, is the leading cause of childhood blindness worldwide. Although angiogenic pathways have been the main focus, cytokine-mediated inflammation is also involved in ROP etiology. Herein, we illustrate the characteristics and actions of all cytokines involved in ROP pathogenesis. The two-phase (vaso-obliteration followed by vasoproliferation) theory outlines the evaluation of cytokines in a time-dependent manner. Levels of cytokines may even differ between the blood and the vitreous. Data from animal models of oxygen-induced retinopathy are also valuable. Although conventional cryotherapy and laser photocoagulation are well established and anti-vascular endothelial growth factor agents are available, less destructive novel therapeutics that can precisely target the signaling pathways are required. Linking the cytokines involved in ROP to other maternal and neonatal diseases and conditions provides insights into the management of ROP. Suppressing disordered retinal angiogenesis via the modulation of hypoxia-inducible factor, supplementation of insulin-like growth factor (IGF)-1/IGF-binding protein 3 complex, erythropoietin, and its derivatives, polyunsaturated fatty acids, and inhibition of secretogranin III have attracted the attention of researchers. Recently, gut microbiota modulation, non-coding RNAs, and gene therapies have shown promise in regulating ROP. These emerging therapeutics can be used to treat preterm infants with ROP.
Collapse
|
49
|
Iacomino G. miRNAs: The Road from Bench to Bedside. Genes (Basel) 2023; 14:genes14020314. [PMID: 36833241 PMCID: PMC9957002 DOI: 10.3390/genes14020314] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
miRNAs are small noncoding RNAs that control gene expression at the posttranscriptional level. It has been recognised that miRNA dysregulation reflects the state and function of cells and tissues, contributing to their dysfunction. The identification of hundreds of extracellular miRNAs in biological fluids has underscored their potential in the field of biomarker research. In addition, the therapeutic potential of miRNAs is receiving increasing attention in numerous conditions. On the other hand, many operative problems including stability, delivery systems, and bioavailability, still need to be solved. In this dynamic field, biopharmaceutical companies are increasingly engaged, and ongoing clinical trials point to anti-miR and miR-mimic molecules as an innovative class of molecules for upcoming therapeutic applications. This article aims to provide a comprehensive overview of current knowledge on several pending issues and new opportunities offered by miRNAs in the treatment of diseases and as early diagnostic tools in next-generation medicine.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, National Research Council, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
50
|
Samad AFA, Kamaroddin MF. Innovative approaches in transforming microRNAs into therapeutic tools. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1768. [PMID: 36437633 DOI: 10.1002/wrna.1768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA (miRNA) is regarded as a prominent genetic regulator, as it can fine-tune an entire biological pathway by targeting multiple target genes. This characteristic makes miRNAs promising therapeutic tools to reinstate cell functions that are disrupted as a consequence of diseases. Currently, miRNA replacement by miRNA mimics and miRNA inhibition by anti-miRNA oligonucleotides are the main approaches to utilizing miRNA molecules for therapeutic purposes. Nevertheless, miRNA-based therapeutics are hampered by major issues such as off-target effects, immunogenicity, and uncertain delivery platforms. Over the past few decades, several innovative approaches have been established to minimize off-target effects, reduce immunostimulation, and provide efficient transfer to the target cells in which these molecules exert their function. Recent achievements have led to the testing of miRNA-based drugs in clinical trials, and these molecules may become next-generation therapeutics for medical intervention. Despite the achievement of exciting milestones, the dosage of miRNA administration remains unclear, and ways to address this issue are proposed. Elucidating the current status of the main factors of therapeutic miRNA would allow further developments and innovations to achieve safe therapeutic tools. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Abdul Fatah A Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|