1
|
Yu YZ, Xie X, Cai MP, Hong YY, Ren YZ, Kang X, Yan HC, Xiong Y, Chen H, Wu XC, Luo DS, Zhao SC. Identification of pyrimidine metabolism-based molecular subtypes and prognostic signature to predict immune landscape and guide clinical treatment in prostate cancer. Ann Med 2025; 57:2449584. [PMID: 39803822 PMCID: PMC11731156 DOI: 10.1080/07853890.2025.2449584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/03/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND We previously described the enrichment of plasma exosome metabolites in CRPC, PCa, and TFC cohorts, and found significant differences in pyrimidine metabolites. The PMGs is associated with the clinical prognosis of several cancers, but its biological role in PCa is still unclear. METHODS This study extracted 98 reliable PMGs, and analyzed their somatic mutations, expression levels, and prognostic significance. Unsupervised clustering was applied to classify patients with PCa into clusters based on six PMGs that were related to the prognosis of PCa. The TME, gene mutations, and immune escape ability were compared among the clusters. A scoring algorithm based on prognostic PMGs, referred to as the PMGscore, was developed. TK1 was identified and the biological functions of TK1 were determined using loss-of-function experiments. RNA sequencing was subsequently performed to determine the molecules associated with the underlying mechanisms of TK1 function. RESULTS In total, six out of 98 PMGs simultaneously exhibited differential expression in PCa and were correlated with BCR. Patients were clustered into two clusters according to the expression levels of these six PMGs, which reflected distinct clinical outcomes and immune cell infiltration characteristics. Clinical features, tumor prognosis, and functional annotation were analyzed. Subsequently, we constructed a prognostic signature using these six PMGs. In combination with other clinical traits, we found that the six PMGs' prognostic signature was an independent prognostic factor for patients with PCa. Finally, we found that the expression of TK1 was higher in CRPC tissues than in PCa tissues in three GEO datasets. The results indicated that TK1 promotes the growth and metastasis of PCa cells. CONCLUSIONS We provide evidence for a PMG signature for PCa patients to accurately predict clinical prognosis. TK1 plays crucial roles in the progression of PCa cells and can be used as a potential therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yu-Zhong Yu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Xie
- Department of Urology, Pingxiang People’s Hospital, Pingxiang, China
| | - Mao-Ping Cai
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ya-Ying Hong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang-Zi Ren
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Kang
- Department of Urology, Pingxiang People’s Hospital, Pingxiang, China
| | - Hai-Chen Yan
- Department of Urology, Pingxiang People’s Hospital, Pingxiang, China
| | - Yang Xiong
- Department of Urology, Pingxiang People’s Hospital, Pingxiang, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xing-Cheng Wu
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dao-Sheng Luo
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Jin S, Zhou Y, Lv J, Lu Y, Zhang Y, Li M, Feng N. Microbially produced imidazole propionate impairs prostate cancer progression through PDZK1. Mol Med 2025; 31:14. [PMID: 39819421 PMCID: PMC11740605 DOI: 10.1186/s10020-025-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND A close relationship exists between castration-resistant prostate cancer (CRPC) and histidine metabolism by gut microbes. However, the effects of the histidine metabolite imidazole propionate (IMP) on prostate cancer (PCa) and its underlying mechanisms are not well understood. METHODS We first assessed the effects of IMP on cell proliferation and migration at the cellular level. Subsequently, we investigated the mechanism of action of IMP using transcriptome sequencing, qPCR, and Western blot analysis. Finally, we validated our findings in vivo using a mouse model. RESULTS Histidine had no effect on PCa cell proliferation; however, IMP significantly inhibited the proliferation and migration of PC3 and DU145 cells. Mechanistic studies indicate that IMP exerts its effects by upregulating PDZK1 expression, which subsequently inhibits the phosphorylation of the PI3K-AKT pathway. CONCLUSIONS In conclusion, IMP significantly inhibits the progression of PCa, offering new insights into potential treatments for CRPC.
Collapse
Affiliation(s)
- Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yichen Lu
- Nanjing Medical University, Nanjing, 211166, China
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yuwei Zhang
- Nantong University Medical School, 9 Qiangyuan Road, Nantong, 226019, China.
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| | - Menglu Li
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Nantong University Medical School, 9 Qiangyuan Road, Nantong, 226019, China.
- Department of Urology, Jiangnan University Medical School, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
3
|
Huang L, Xie Y, Jiang S, Liu K, Ming Z, Shan H. Elucidating the role of pyrimidine metabolism in prostate cancer and its therapeutic implications. Sci Rep 2025; 15:2003. [PMID: 39814835 PMCID: PMC11735813 DOI: 10.1038/s41598-025-86052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells. In addition, immune infiltration analysis revealed a strong correlation between pyrimidine metabolism and immune cell regulation, particularly involving T cell activity. Tumors in the P2 subgroup, characterized by higher pyrimidine metabolism, exhibited greater infiltration of activated CD4 + T cells and M2 macrophages, indicating a potential link between metabolic reprogramming and the immune response in prostate cancer. Drug sensitivity analysis further demonstrated that tumors with elevated pyrimidine metabolism displayed increased responsiveness to several chemotherapeutic agents, including BI-2536, JW-7-24-1, and PAC-1, suggesting that targeting pyrimidine metabolism may enhance treatment efficacy. Moreover, key genes involved in pyrimidine de novo synthesis, such as RRM2, were identified as potential drivers of tumor progression, providing new insights into the molecular mechanisms underlying aggressive prostate cancer phenotypes. In conclusion, pyrimidine metabolism plays a critical role in prostate cancer progression, influencing immune infiltration and drug sensitivity. Targeting this metabolic pathway offers a promising strategy for the development of new therapeutic approaches, particularly for overcoming drug resistance and improving outcomes in patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Liang Huang
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yu Xie
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shusuan Jiang
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Kan Liu
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Zhihao Ming
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Hong Shan
- Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
| |
Collapse
|
4
|
Yaremenko AV, Khan MM, Zhen X, Tang Y, Tao W. Clinical advances of mRNA vaccines for cancer immunotherapy. MED 2025; 6:100562. [PMID: 39798545 DOI: 10.1016/j.medj.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response. This review provides a comprehensive overview of recent clinical progress in mRNA cancer vaccines, discusses the innovative strategies being employed to overcome existing hurdles, and explores future directions, including the integration of CRISPR-Cas9 technology and advancements in mRNA design. Our aim is to provide insights into the ongoing research and clinical trials, highlighting the transformative potential of mRNA vaccines in advancing oncology and improving patient outcomes.
Collapse
Affiliation(s)
- Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Development of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Bastos DA, Soares A, Schutz FAB, Cronemberger E, de Almeida Luz M, Martins SPDS, Muniz DQB, Cárcano FM, Smaletz O, Peixoto FA, Gomes AJ, Cruz FM, Franke FA, Herchenhorn D, Gidekel R, Werutsky G, Rebelatto TF, Gomes de Jesus R, Souza VC, Fay AP, Maluf FC. Androgen Receptor Pathway Inhibitor Therapy for Advanced Prostate Cancer: Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2454253. [PMID: 39804646 PMCID: PMC11731179 DOI: 10.1001/jamanetworkopen.2024.54253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025] Open
Abstract
Importance The open-label randomized phase 2 LACOG0415 trial evaluated 3 treatment strategies for patients with advanced castration-sensitive prostate cancer (CSPC): androgen deprivation therapy (ADT) plus abiraterone acetate and prednisone (AAP), apalutamide (APA) alone, or APA plus AAP. Objective To investigate the association of ADT plus AAP, APA alone, or APA plus AAP with health-related quality of life (HRQOL) in patients with advanced CSPC in the LACOG0415 trial. Design, Setting, and Participants The LACOG0415 randomized clinical trial comprised 128 patients with advanced CSPC who were randomized (1:1:1) to 1 of 3 treatment arms from October 16, 2017, to April 23, 2019. Statistical analysis was conducted from March to September 2022. Interventions Patients were randomized (1:1:1) to 1 of 3 treatment arms: ADT plus AAP, APA alone, or APA plus AAP. Main Outcomes and Measures Health-related quality of life was evaluated using the Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire, including its subscales, completed at baseline and every 4 weeks until week 25. FACT-P scores range from 0 to 156, and higher scores indicate better HRQOL. Mean changes in score from baseline to week 25 were adjusted by baseline score and were calculated to evaluate whether there was a difference according to the treatment arm using a mixed-effect model for repeated measures. Time to deterioration was estimated by Kaplan-Meier curves and compared by stratified log-rank test. Analysis was performed on an intention-to-treat basis. Results A total of 128 patients with advanced CSPC were randomized to receive ADT plus AAP (n = 42; median age, 69.8 years [IQR, 58.9-71.6 years]), APA alone (n = 42; median age, 69.5 years [IQR, 59.8-72.6 years]), or APA plus AAP (n = 44; median age, 71.0 years [IQR, 63.0-72.3 years]). Metastatic disease was present in 95 patients (74.2%), high-risk biochemical recurrence disease in 22 (17.2%), and locally advanced disease in 11 (8.6%). There was no significant difference in baseline mean (SD) FACT-P total scores and subscales among the 3 treatment arms (FACT-P total score: ADT plus AAP arm, 118.5 [24.3]; APA alone arm, 116.1 [23.9]; AAP plus APA arm, 114.9 [18.1]; P = .69). Health-related quality of life was maintained during treatment period, and there were no statistically significant differences at 25 weeks in mean (SD) FACT-P total scores or subscales between treatment arms (FACT-P total score: ADT plus AAP arm, 122.3 [20.4]; APA alone arm, 119.5 [16.4]; AAP plus APA arm, 119.9 [20.3]). The APA alone and AAP plus APA arms were not associated with meaningful improvements in HRQOL compared with the ADT plus AAP arm, except in time to deterioration of the emotional well-being score, which was more favorable in the APA alone arm (reference arm: ADT plus AAP arm; APA alone arm: hazard ratio, 0.37 [0.15-0.85]; P = .02; ADT plus AAP arm: hazard ratio, 0.56 [0.26-1.19]; P = .13). Limitations include short follow-up period and the absence of other questionnaires to capture differences between therapies. Conclusions and Relevance In this prespecified secondary analysis of a randomized clinical trial of ADT plus AAP, APA alone, or APA plus AAP for patients with advanced CSPC, HRQOL was not statistically different between treatments with APA alone or APA plus AAP as compared with ADT plus AAP. Larger studies with longer follow-up and more specific questionnaires are needed to further evaluate HRQOL with these treatment strategies. Trial Registration ClinicalTrials.gov Identifier: NCT02867020.
Collapse
Affiliation(s)
- Diogo Assed Bastos
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Andrey Soares
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro Paulista de Oncologia–Oncoclinicas, São Paulo, Brazil
| | - Fabio Augusto Barros Schutz
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Oncology, Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Eduardo Cronemberger
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Centro Regional Integrado de Oncologia, Fortaleza, Brazil
| | | | | | | | | | - Oren Smaletz
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Felipe Melo Cruz
- IBCC Oncologia–Centro Universitário São Camilo, São Paulo, Brazil
| | | | - Daniel Herchenhorn
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Oncologia D’OR/Instituto D’OR de Ensino e Pesquisa, Rio de Janeiro, Brazil
| | - Rosemarie Gidekel
- Now with Janssen Pharmaceuticals, Latin America, Buenos Aires, Argentina
| | - Gustavo Werutsky
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
| | | | | | - Vinicius Carrera Souza
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Oncologia D’OR, Salvador, Brazil
| | - André Poisl Fay
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil
| | - Fernando Cotait Maluf
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Medical Oncology, Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Zheng Y, Mao J, Yang L, Zhu Q. Recent trends in the incidence of early-onset prostate cancer. Eur J Cancer Prev 2025; 34:89-95. [PMID: 38837196 DOI: 10.1097/cej.0000000000000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Early-onset prostate cancer (EOPC) is relatively uncommon. It is unclear if the incidence of EOPC is evolving. Utilizing data from the SEER database from 2000 to 2020, the study identified prostate cancer cases in men under 55 years, focusing on trends in annual age-adjusted incidence rates (AAIR), stage at presentation, race/ethnicity, and local treatment patterns. The study encompassed 93 071 cases of EOPC, with the median age at diagnosis being 51 years. From 2000 to 2007, the AAIR of EOPC experienced a wave-like increase from 6.9 to 8.3 per 100 000 people. It then sharply declined to 5.4 by 2014, followed by 6 years of stability, and by 2020 it had dropped to its lowest point of 4.5. The trend observed across different racial groups was consistent with the overall pattern, where non-Hispanic Black patients consistently exhibited the highest incidence and the least reduction rate (annual percent change, -1.0; 95% confidence interval, -1.8 to -0.2; P < 0.05). Stage II was the most commonly diagnosed, although its AAIR declined from 4.9 to 1.2 per 100 000 people. From 2010 through 2020, the proportion of receiving prostatectomy decreased from 63.0 to 43.6%. The declining rates of EOPC across diverse racial groups emphasize the critical need for focused research and interventions. Specifically, there is an urgent call to establish a tailored screening protocol for prostate cancer targeting Black youth.
Collapse
Affiliation(s)
- Yanjun Zheng
- Department of Urology, Quzhou Hospital of Traditional Chinese Medicine, Quzhou
| | - Jinshui Mao
- Department of Urology, Quzhou Hospital of Traditional Chinese Medicine, Quzhou
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao
| | - Qiansan Zhu
- Department of Urology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
7
|
Wang K, Chen M, Yan S, Han Y, Yuan H, Liu Q, Lu D, Li L, Wang K, Liu F, Li Q, Luo D, Jiang J, Zhou H, Chen Y, Qin J, Gao D. Zinc ions activate AKT and promote prostate cancer cell proliferation via disrupting AKT intramolecular interaction. Oncogene 2025; 44:8-18. [PMID: 39438763 DOI: 10.1038/s41388-024-03195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Prostate is a zinc rich organ and the physiological function of the abundant zinc ions is relatively less understood. AKT kinase is a pivotal regulator downstream of cytokines, growth factors and other extracellular stimuli, and the attachment of its PH domain to PtdIns-3,4,5-P3 (PIP3) and the subsequent phosphorylation of its kinase domain by PDPK1 are considered important for its activation. Herein, we report a regulatory mechanism of AKT kinase by zinc ions. Mechanistically, zinc ions directly bind to AKT and facilitate AKT activation through disrupting the interaction between PH and kinase domains within AKT molecule. Consistently, AKT1-H89A/E91A mutant (zinc-binding-deficient) fails to respond to zinc ions and exhibits strong interaction between PH and kinase domains, and it is less oncogenic in orthotopic xenograft model of prostate cancer. On the other hand, the AKT1-W80L mutant with minimum intra-molecular interaction between PH and kinase domains shows strong tumor promoting capacity although it could not be further stimulated by zinc ions. Overall, this study reveals a distinctive regulatory mechanism of AKT activation and implies a tumor promoting role of the zinc ions in prostate cancer.
Collapse
Affiliation(s)
- Kangjunjie Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Long Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kaihua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Daming Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
8
|
Frame G, Huang X, Haas R, Khan KA, Leong HS, Kislinger T, Boutros PC, Downes M, Liu SK. Accelerated growth and local progression of radiorecurrent prostate cancer in an orthotopic bioluminescent mouse model. Sci Rep 2024; 14:31205. [PMID: 39732766 DOI: 10.1038/s41598-024-82546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied. To address this, we have established an orthotopic mouse model for study that recapitulates the aggressive clinical progression of radiorecurrent prostate cancer. Radiorecurrent DU145 cells which survived conventional fraction (CF) irradiation were orthotopically injected into the prostates of athymic nude mice and monitored with bioluminescent imaging. CF tumours exhibited higher take rates and grew more rapidly than treatment-naïve parental tumours (PAR). Pathohistological analysis revealed extensive seminal vesicle invasion and necrosis in CF tumours, recapitulating the aggressive progression towards locally advanced disease exhibited by radiorecurrent tumours clinically. RNA sequencing of CF and PAR tumours identified ROBO1, CAV1, and CDH1 as candidate targets of radiorecurrent progression associated with biochemical relapse clinically. Together, this study presents a clinically relevant orthotopic model of radiorecurrent prostate cancer progression that will enable discovery of targets for therapeutic intervention to improve outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, USA
| | - Kabir A Khan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Hon S Leong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University of California Los Angeles, Los Angeles, USA
| | - Michelle Downes
- Division of Anatomic Pathology, Precision Diagnostics & Therapeutics Program-Laboratory Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Chen J, Ma N, Chen B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Bai J, Ning S, Ai J, Wei Q, Liu L, Cao D. Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management. Crit Rev Oncol Hematol 2024:104604. [PMID: 39732304 DOI: 10.1016/j.critrevonc.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy. Multiple factors including the heterogeneity of prostate cancer, the cold tumor microenvironment, and a low level of neoantigens, contribute to the poor immunotherapy response. Significant effort is being devoted to improving immune-based prostate cancer therapy. Recently, several key discoveries demonstrate that prostate cancer immunotherapy agents may be used to promise better prognosis for patients as part of combination strategies with other agents targeting tumor-associated immune mechanism of resistance. Here, this review comprehensively examines the recent advancements in immunotherapy for prostate cancer, exploring its potential synergistic effects when combined with other treatment modalities to enhance clinical efficacy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxing Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Ma S, Xu M, Zhang J, Li T, Zhou Q, Xi Z, Wang Z, Wang J, Ge Y. Analysis and functional validations of multiple cell death patterns for prognosis in prostate cancer. Int Immunopharmacol 2024; 143:113216. [PMID: 39353397 DOI: 10.1016/j.intimp.2024.113216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer (PCa) has garnered significant attention due to its rising incidence, variable therapeutic outcomes, and the absence of reliable prognostic markers. The significance of different cell death patterns in tumor development underscores their potential as predictors of PCa prognosis. This study utilized The Cancer Genome Atlas (TCGA) datasets to evaluate the prognostic capabilities of 15 cell death patterns and established a Cell Death Index (CDI) signature based on necrosis and cuproptosis-related genes. The predictive efficacy of the CDI signature was validated in our PCa cohort and in two public datasets: Deutsches Krebsforschungszentrum (DKFZ) and Memorial Sloan-Kettering Cancer Center (MSKCC) PCa cohorts. Our comprehensive analysis examined the relationship between CDI signature and clinical characteristics, published prognostic signatures, gene mutations, immune cell infiltration, enrichment pathways, and drug sensitivity in PCa. In vitro and in vivo studies assessed the impact of EDA2R and LOXL2 on PCa progression. The CDI signature exhibited robust predictive performance across three independent validation sets, with 1-, 2-, 3-, 4-, and 5-year area under the curve (AUC) values in the TCGA cohort of 0.866, 0.77, 0.836, 0.776, and 0.787, respectively. Higher CDI scores were correlated with advanced T and N stages, elevated Gleason scores, increased immune cell infiltration, gene mutations, and drug sensitivity. EDA2R inhibited PCa cell proliferation and migration, related to tumor necrosis, while LOXL2 promoted these processes and was associated with cuproptosis. In summary, our study identified a novel CDI signature as an effective indicator for diagnosis, personalized treatment, and prognostic assessment in PCa.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tengfei Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, Qinghai 810001, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
11
|
Amseian G, Figueras M, Mases J, Mengual L, Ribal MJ, Quintero K, Pages R, Ingelmo-Torres M, Roldan FL, Caratini R, Fuster D, Alcaraz A, Izquierdo L, Paredes P. cfDNA fragmentation patterns correlate with tumor burden measured via PSMA PET/CT volumetric parameters in patients with biochemical recurrence of prostate cancer. EJNMMI Res 2024; 14:124. [PMID: 39694939 DOI: 10.1186/s13550-024-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Prostate cancer recurrence following primary treatment poses a significant clinical challenge, particularly when detected through biochemical recurrence at low PSA levels. Conventional imaging modalities often fail to localize the disease at this early stage. PSMA PET has demonstrated superior sensitivity in detecting recurrent lesions, even in patients with low PSA. Concurrently, liquid biopsy, through analysis of cell-free DNA (cfDNA), offers a minimally invasive approach for monitoring disease. There is scarce evidence about the association between liquid biopsy and PSMA PET/CT findings. This study aimed to assess the correlation between liquid biopsy and tumor burden assessed by PSMA PET/CT in early recurring prostate cancer patients. RESULTS PSMA PET/CT and liquid biopsies of 32 patients in biochemical recurrence were analyzed. 12 patients (37.5%) had no PSMA PET-measurable disease. Four patients (12.5%) presented local recurrence, seven (21.9%) had recurrence in pelvic lymph nodes, one of whom also had local recurrence. Nine patients (28.1%) presented metastatic recurrence, with or without local or nodal recurrence. PSA levels correlated with molecular imaging data (p < 0.05), including whole body PSMA-TV, whole body PSMA-TL, whole body SUVmean and whole body SUVmax. The mean cfDNA fragment size fraction was inversely correlated with tumour burden measured with whole body PSMA-TV, with a Spearman correlation coefficient of -0.451 and a p-value of 0.009. No correlation was found between cfDNA concentration and PET-PSMA data. CONCLUSION This prospective study demonstrated a statistically significant negative correlation between cfDNA fragmentation patterns and PSMA PET/CT volumetric parameters in patients with presumed localized prostate cancer with early biochemical recurrence. These findings underscore the potential of liquid biopsy as a biomarker and a complementary tool to PSMA PET/CT to assess disease progression during the follow-up of these patients.
Collapse
Affiliation(s)
- Gary Amseian
- Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Marcel Figueras
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Joel Mases
- Department of Radiotherapy Oncology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Lourdes Mengual
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria-Jose Ribal
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Katherine Quintero
- Department of Nuclear Medicine, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Rita Pages
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Mercedes Ingelmo-Torres
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Fiorella-Lizzeth Roldan
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Rocío Caratini
- Department of Nuclear Medicine, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - David Fuster
- Department of Nuclear Medicine, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Antonio Alcaraz
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Surgery and Medical Specialities, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Izquierdo
- Department and Laboratory of Urology, Urology Department, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Genetics and Urological Tumours, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Department of Surgery and Medical Specialities, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Pilar Paredes
- Department of Nuclear Medicine, Hospital Clínic Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
12
|
Wang H, Jiang S, Luo H, Zhou F, He D, Ma L, Guo H, Liang C, Chong T, Jiang J, Chen Z, Wang Y, Zou Q, Tian Y, Xiao J, Huang J, Chen J, Dong Q, Zhang X, Li H, Yang X, Lian J, Wang W, Ye D. Patient-reported outcomes of rezvilutamide versus bicalutamide in combination with androgen deprivation therapy in high-volume metastatic hormone-sensitive prostate cancer patients (CHART): a randomized, phase 3 study. Signal Transduct Target Ther 2024; 9:351. [PMID: 39690158 DOI: 10.1038/s41392-024-02064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
The randomized phase 3 CHART trial (NCT03520478) revealed that rezvilutamide (REZ) plus androgen deprivation therapy (ADT) in high-volume, metastatic, hormone-sensitive prostate cancer (mHSPC) significantly enhanced radiographic progression-free and overall survival than bicalutamide (BIC)-ADT. Accordingly, we examined patient-reported outcomes (PROs) results, which were exploratory endpoints in the CHART trial. The patients were randomly allocated to receive REZ-ADT or BIC-ADT in a 1:1 ratio. The PROs were evaluated with the Brief Pain Inventory-Short Form (BPI-SF) and the Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaires. Both study groups displayed comparable baseline pain scores and functional status. Patients administered REZ-ADT had an extended time to progression of worst pain intensity in comparison to those treated with BIC-ADT (25th percentile, 9.2 [95% CI 7.4-16.6] vs. 6.4 months [95% CI 5.5-8.3]; HR 0.75 [95% CI 0.57-0.97]; p = 0.026). Similarly, patients received REZ-ADT exhibited a delayed time to progression of pain interference in comparison to those receiving BIC-ADT (25th percentile, 20.2 [95% CI 12.9-31.3] vs. 10.2 months [95% CI 7.4-11.1]; HR 0.70 [95% CI 0.52-0.93]; p = 0.015). Additionally, the REZ-ADT group demonstrated a prolonged delay in the deterioration of the total score on the FACT-P questionnaire (25th percentile, 12.8 [95% CI 7.4-20.3] vs. 6.0 months [95% CI 4.6-9.2]; HR 0.66 [95% CI 0.50-0.86]; p = 0.002), as well as most of the FACT-P subscale scores, in comparison to the BIC-ADT group. In conclusion, REZ-ADT is superior to BIC-ADT regarding the pain alleviation and enhancement of functional scales for high-volume mHSPC.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shusuan Jiang
- Urology Surgery, Hunan Cancer Hospital, Changsha, China
| | - Hong Luo
- Department of Urology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fangjian Zhou
- Urology Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dalin He
- Urology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lulin Ma
- Urology Surgery, Peking University Third Hospital, Beijing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tie Chong
- Urology Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Jiang
- Department of Urology, Army Medical Center of PLA, Chongqing, China
| | - Zhiwen Chen
- Department of Urology, The First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qing Zou
- Department of Urology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ye Tian
- Urology Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jun Xiao
- Division of Life Sciences and Medicine, Department of Urology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jian Huang
- Urology Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinchao Chen
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qiang Dong
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoping Zhang
- Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanzhong Li
- Urology Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xinfeng Yang
- Department of Biometrics, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Shanghai, China
| | - Jianpo Lian
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Shanghai, China
| | - Wenliang Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
- Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2024; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
14
|
Op ’t Hoog CJP, Bosman SJE, Boerrigter E, Mehra N, van Oort IM, van Erp NP, Kievit W. Circulating tumor DNA-guided treatment decision in metastatic castration-resistant prostate cancer patients: a cost-effectiveness analysis. Ther Adv Med Oncol 2024; 16:17588359241305084. [PMID: 39687053 PMCID: PMC11648017 DOI: 10.1177/17588359241305084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background The androgen receptor pathway inhibitors (ARPI), abiraterone acetate and enzalutamide, are commonly used in first-line treatment of patients with metastatic castration-resistant prostate cancer (mCRPC). However, early resistance to ARPI treatment occurs frequently. Traditionally, the response is evaluated 3-6 months after the start of treatment. However, recent findings indicate that by detecting circulating tumor DNA (ctDNA) at baseline and 4 weeks after ARPI treatment initiation, patients with a nondurable response can be identified after 4 weeks of treatment, enabling an early switch to alternative treatments. Objective This study aims to evaluate the cost-effectiveness of ctDNA-guided treatment switch after 4 weeks of ARPI therapy in mCRPC patients compared to standard of care. Design A cost-effectiveness analysis. Methods A cost-effectiveness analysis was conducted by creating a Markov state transition model to simulate progression, mortality, and treatment costs over a 5-year time horizon comparing ctDNA-guided care versus standard of care. The outcomes measured were incremental treatment costs per life-years and quality-adjusted life-years (QALYs) gained. Results The analysis showed an incremental cost-effectiveness ratio of €65,400.86 per QALY gained and an incremental net monetary benefit of €2716.62. Thereby, the use of ctDNA-guided treatment was cost-effective in comparison to standard care in 74% of the simulations using a willingness-to-pay threshold of €80,000 per QALY gained. Conclusion Our study demonstrated the cost-effectiveness of using a ctDNA-guided early therapy switch in non-responders after only 4 weeks of first-line ARPI therapy in mCRPC patients. This paves the way for implementing ctDNA-guided treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Catharina J. P. Op ’t Hoog
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabien J. E. Bosman
- IQ Health, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge M. van Oort
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nielka P. van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wietske Kievit
- IQ Health (160), Research Institute for Medical Innovation, Radboud University Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
- IQ Health, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Lee CW, Chiang YC, Vo TTT, Lin ZC, Chi MC, Fang ML, Peng KT, Tsai MH, Lee IT. Deciphering the Liaison Between Fine Particulate Matter Pollution, Oxidative Stress, and Prostate Cancer: Where Are We Now? Antioxidants (Basel) 2024; 13:1505. [PMID: 39765833 PMCID: PMC11672957 DOI: 10.3390/antiox13121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/03/2025] Open
Abstract
Prostate cancer (PCa), a highly prevalent cancer in men worldwide, is projected to rise in the coming years. As emerging data indicate the carcinogenic effects of fine particulate matter (PM2.5) in lung cancer and other site-specific cancers, there is an urgent need to evaluate the relationship between this environmental risk factor and PCa as a potential target for intervention. The present review provides up-to-date evidence about the impact of airborne PM2.5 pollution on the initiation and progression of PCa. Examining the composition and characteristics of PM2.5 reveals its ability to induce toxic effects, inflammatory injuries, and oxidative damages. Additionally, PM2.5 can attach to endocrine-disrupting chemicals implicated in prostatic carcinogenesis. Considering the potential significance of oxidative stress in the risk of the disease, our review underlines the protective strategies, such as antioxidant-based approaches, for individuals exposed to increased PM2.5 levels. Moreover, the findings call for further research to understand the associations and mechanisms linking PM2.5 exposure to PCa risk as well as to suggest appropriate measures by policymakers, scientific researchers, and healthcare professionals in order to address this global health issue.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (C.-W.L.); (M.-C.C.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Yao-Chang Chiang
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh 70000, Vietnam;
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
| | - Miao-Ching Chi
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (C.-W.L.); (M.-C.C.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
16
|
Huang T, Jiao B, Luo Z, Zhang X, Wang Z. BUD23 promote the cell proliferation ability by affecting the PPAR signaling pathways: evidence from the online dataset and cell experiment. Discov Oncol 2024; 15:750. [PMID: 39636451 PMCID: PMC11621292 DOI: 10.1007/s12672-024-01648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Prostate cancer is a major public health challenge for men worldwide, being the second most common cancer diagnosis and the fifth leading cause of cancer-related deaths among men. The etiology of prostate cancer is multifactorial, with age, genetic predispositions, and lifestyle factors playing critical roles. The role of the peroxisome proliferator-activated receptors (PPARs) in prostate cancer remains complex and not fully elucidated. METHODS Transcriptomic data from The Cancer Genome Atlas (TCGA) were utilized for this study. The data were analyzed using single-sample Gene Set Enrichment Analysis (ssGSEA), Gene Ontology (GO) enrichment analysis, KEGG pathway analysis, and Gene Set Enrichment Analysis (GSEA). A prognosis-prediction model was constructed using Cox regression and LASSO analysis. Functional experiments, including Western blotting, quantitative PCR (qPCR), Cell Counting Kit-8 (CCK-8) assays, and EdU incorporation assays, were performed to validate the role of BUD23 in prostate cancer. RESULTS Significant differences were observed in the immune microenvironment and HLA gene expression profiles between high and low PPAR expression groups in prostate cancer. The high PPAR group exhibited a less active immune microenvironment with higher fractions of immunosuppressive T regulatory cells (Tregs). A robust prognostic model identified key genes, including BUD23, associated with patient survival. Elevated BUD23 expression was correlated with more aggressive clinical features such as advanced pathological stages, nodal metastasis, and higher Gleason scores. Knockdown of BUD23 in PC-3 and LNCaP prostate cancer cell lines significantly inhibited cell proliferation. Western blotting and qPCR confirmed effective BUD23 knockdown, and CCK-8 and EdU assays demonstrated reduced cell proliferation. BUD23 knockdown resulted in significant reductions in PPAR-α, PPAR-β, and PPAR-γ protein levels, suggesting a regulatory axis between BUD23 and PPARs in prostate cancer. CONCLUSION The study highlights the distinct roles of PPARα, PPARβ/δ, and PPARγ in prostate cancer progression and their potential as therapeutic targets. Elevated BUD23 expression is associated with aggressive prostate cancer features and patient survival, making it a potential prognostic biomarker. The knockdown of BUD23 not only inhibited cell proliferation but also reduced the expression of PPAR-related proteins, indicating a potential regulatory axis between BUD23 and PPARs. These findings suggest that targeting BUD23 could modulate PPAR signaling and inhibit tumor growth in prostate cancer.
Collapse
Affiliation(s)
- Tao Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Binbin Jiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Zhenkai Luo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
17
|
Beitzen-Heineke A, Wise DR, Berger JS. Thrombo-inflammation linking androgen suppression with cardiovascular risk in patients with prostate cancer. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:87. [PMID: 39639392 PMCID: PMC11619638 DOI: 10.1186/s40959-024-00278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Androgen deprivation therapy (ADT), a key element of prostate cancer treatment, is associated with increased risk for cardiovascular morbidity and mortality. The underlying mechanisms include adverse metabolic alterations, but further mechanisms are likely. Animal studies suggest increased progression of atherosclerosis in androgen deprived conditions. Based on in vitro studies, lack of androgens may modulate immune cells including monocytes, macrophages, and T-cells towards a pro-inflammatory phenotype and pro-atherogenic function. As a novel aspect, this review summarizes existing data on the effect of androgens and androgen deprivation on platelet activity, which play a major role in inflammation and in the initiation and progression of atherosclerotic lesions. Testosterone modulates platelet aggregation responses which are affected by dose level, source of androgen, and age. Data on the effects of ADT on platelet activity and aggregation are limited and conflicting, as both increased and decreased aggregation responses during ADT have been reported. Gaps in knowledge about the mechanisms leading to increased cardiovascular risk during ADT remain and further research is warranted. Improved understanding of pathogenic pathways linking ADT to cardiovascular risk may help identify clinically useful diagnostic and prognostic biomarkers, and accelerate finding novel therapeutic targets, and thus optimize prostate cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonia Beitzen-Heineke
- Department of Medicine, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Jeffrey S Berger
- Department of Medicine, New York University Grossman School of Medicine, 530 First Avenue, Skirball 9R, New York, NY, 10016, USA.
| |
Collapse
|
18
|
Wu Y, Wang X, Zeng Y, Liu X. Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review). Exp Ther Med 2024; 28:439. [PMID: 39355518 PMCID: PMC11443591 DOI: 10.3892/etm.2024.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2024] [Indexed: 10/03/2024] Open
Abstract
Prostate cancer poses a serious threat to the well-being of men worldwide, with the leading cause of mortality being primarily through metastasis. Prostate cancer metastasis is dependent on cell communication, which is an essential component of this process; yet its exact mechanism remains obscure. Nonetheless, cell-to-cell communication plays a critical part in prostate cancer metastasis. Exosomes play an indispensable role in the development of metastatic growth by promoting intercellular communication. They are pivotal regulatory agents for both prostate cancer cells as well as their microenvironment. The present study investigated the makeup and function of exosomes in the tumor microenvironment, highlighting their significance to prostate cancer metastasis.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
20
|
Guo Y, Dupart M, Irondelle M, Peraldi P, Bost F, Mazure NM. YAP1 modulation of primary cilia-mediated ciliogenesis in 2D and 3D prostate cancer models. FEBS Lett 2024; 598:3071-3086. [PMID: 39424416 DOI: 10.1002/1873-3468.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
The primary cilium, a non-motile organelle present in most human cells, plays a crucial role in detecting microenvironmental changes and regulating intracellular signaling. Its dysfunction is linked to various diseases, including cancer. We explored the role of ciliated cells in prostate cancer by using Gefitinib and Jasplakinolide compounds to induce ciliated cells in both normal and tumor-like prostate cell lines. We assessed GLI1 and IFT20 expression and investigated YAP1 protein's role, which is implicated in primary cilium regulation. Finally, we examined these compounds in 3D cell models, aiming to simulate in vivo conditions. Our study highlights YAP1 as a potential target for novel genetic models to understand the primary cilium's role in mediating resistance to anticancer treatments.
Collapse
Affiliation(s)
- Yingbo Guo
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Mathilde Dupart
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
- IRCAN, Université Côte d'Azur, Nice Cedex 02, France
| | - Marie Irondelle
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
| | - Pascal Peraldi
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Frederic Bost
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Nathalie M Mazure
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| |
Collapse
|
21
|
Li W, Xu H, Shang W, Hong G. Comparisons of three scoring systems based on biparametric magnetic resonance imaging for prediction of clinically significant prostate cancer. Prostate Int 2024; 12:201-206. [PMID: 39735200 PMCID: PMC11681326 DOI: 10.1016/j.prnil.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose In this study, we aimed to validate and compare three scoring systems based on biparametric magnetic resonance imaging (bpMRI) for the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve patients. Method In this study, we included patients who underwent MRI examinations between January 2018 and December 2022, with MRI-targeted fusion biopsy (MRGB) as the reference standard. The MRI findings were categorized using three bpMRI-based scorings, in all of them the diffusion-weighted imaging (DWI) was the dominant sequence for peripheral zone (PZ) and T2-weighed imaging (T2WI) was the dominant sequence for transition zone (TZ). We also used the Prostate Imaging Reporting and Data System version (PI-RADS) v2.1 to evaluate each lesion. For each scoring, we calculated the sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and area under the receiver operating characteristic (ROC) curves (AUC). Results The calculated AUC for three bpMRI-based scorings were 83.2% (95% CI 78.8%-87.6%), 85.0% (95% CI 80.8%-89.3%), 82.9% (95% CI 78.4%-87.5%), and 86.0% (95% CI 81.8%-90.1%), respectively. Scoring 2 exhibited significantly superior performance than scoring 1 (P = 0.01) and scoring 3 (P < 0.001). Moreover, the accuracy of scoring 2 was not decreased significantly as compared to PI-RADS v2.1 (P = 0.05). There was no significant difference between 3 bpMRI-based scorings and with PI-RADS in TZ. However, although scoring 2 yielded the highest AUC, it was still notably inferior to PI-RADS (P = 0.02). Conclusion All three bpMRI-based scorings demonstrated favorite diagnostic accuracy, and scoring 2 performed significantly better than the other two bpMRI-based scorings. Notably, scoring 2 was not significantly inferior to the full-sequence PI-RADS v2.1 in terms of sensitivity and specificity.
Collapse
Affiliation(s)
| | | | - Wenwen Shang
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Guohui Hong
- Department of Medical Imaging, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
22
|
Park J, Kim J. CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1589. [PMID: 39770431 PMCID: PMC11676443 DOI: 10.3390/ph17121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related death in men. Although current therapies can effectively manage the primary tumor, most patients with late-stage disease manifest with metastasis in different organs. From surgery to treatment intensification (TI), several combinations of therapies are administered to improve the prognosis of patients with metastatic PCa. Due to the high frequency of the mutation during the metastatic phase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genetic engineering tool can accelerate the effects of TI by enhancing targeted gene therapy or immunotherapy. This review describes the genetic background of metastatic PCa and how CRISPR/Cas9 technology can contribute to the field of PCa treatment development. It also discusses the current limitations of conventional PCa therapy and the potential of CRISPR-based PCa therapy.
Collapse
Affiliation(s)
- Jieun Park
- Department of Neurology, College of Medicine, Dongguk University, Ilsan, Goyang 10326, Republic of Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
23
|
Liu X, Wang H, Zhao Z, Zhong Q, Wang X, Liu X, Chen J, Han C, Shi Z, Liang Q. Advances in irreversible electroporation for prostate cancer. Discov Oncol 2024; 15:713. [PMID: 39589586 PMCID: PMC11599553 DOI: 10.1007/s12672-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Irreversible electroporation is a nonthermal ablation technique that uses a high-voltage electric current to create nanosized pores in the cell membrane of a malignant tumor, thus resulting in cell death. In recent years, an increasing number of clinical studies have shown that irreversible electroporation is a safe and effective treatment for prostate cancer. We describe the progress of irreversible electroporation in prostate cancer in recent years in terms of its mechanism of action, clinical studies, advantages and disadvantages and summarize the gaps in existing studies and directions for future research.
Collapse
Affiliation(s)
- Xinyu Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zilin Zhao
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qikai Zhong
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinlei Wang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xing Liu
- Southeast University, Nanjing, Jiangsu, China
| | - Junzhi Chen
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Conghui Han
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhenduo Shi
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| | - Qing Liang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Fonseca LRS, Carreira RJP, Feijó M, Cavaco JEB, Cardoso HJ, Vaz CV, Figueira MI, Socorro S. Downregulated Regucalcin Expression Induces a Cancer-like Phenotype in Non-Neoplastic Prostate Cells and Augments the Aggressiveness of Prostate Cancer Cells: Interplay with the G Protein-Coupled Oestrogen Receptor? Cancers (Basel) 2024; 16:3932. [PMID: 39682121 DOI: 10.3390/cancers16233932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Regucalcin (RGN) is a calcium-binding protein and an oestrogen target gene, which has been shown to play essential roles beyond calcium homeostasis. Decreased RGN expression was identified in several cancers, including prostate cancer (PCa). However, it is unknown if the loss of RGN is a cause or a consequence of malignancy. Also, it needs confirmation if RGN oestrogenic regulation occurs through the G-protein-coupled oestrogen receptor (GPER). This study investigates how RGN knockdown affects prostate cell fate and metabolism and highlights the GPER/RGN interplay in PCa. METHODS Bioinformatic analysis assessed the relationship between RGN expression levels and patients' outcomes. RGN knockdown (siRNA) was performed in non-neoplastic prostate and castration-resistant PCa. Wild-type and RGN knockdown PCa cells were treated with the GPER agonist G1. Viability (MTT), proliferation (Ki-67 immunocytochemistry), apoptosis (caspase-3-like activity) and migration (Transwell assays) were evaluated. Spectrophotometric analysis was used to determine glucose consumption, lactate production and lactate dehydrogenase activity. Lipid content was assessed using the Oil Red assay. RESULTS/CONCLUSIONS Bioinformatic analysis showed that the loss of RGN correlates with the development of metastatic PCa and poor survival outcomes. RGN knockdown induced a cancer-like phenotype in PNT1A cells, indicated by increased cell viability and proliferation and reduced apoptosis. In DU145 PCa cells, RGN knockdown augmented migration and enhanced the glycolytic profile, which indicates increased aggressiveness, in line with patients' data. GPER activation modulated RGN expression in PCa cells and RGN knockdown in DU145 cells influenced GPER actions, which highlighted an interplay between these molecular players with relevance for their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Ricardo J P Carreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Mariana Feijó
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - José E B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
25
|
Eapen RS, Williams SG, Macdonald S, Keam SP, Lawrentschuk N, Au L, Hofman MS, Murphy DG, Neeson PJ. Neoadjuvant lutetium PSMA, the TIME and immune response in high-risk localized prostate cancer. Nat Rev Urol 2024; 21:676-686. [PMID: 39112733 DOI: 10.1038/s41585-024-00913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 11/02/2024]
Abstract
High-risk localized prostate cancer remains a lethal disease with high rates of recurrence, metastases and death, despite attempts at curative local treatment including surgery. Disease recurrence is thought to be a result of failure of local control and occult micrometastases. Neoadjuvant strategies before surgery have been effective in many cancers, but, to date, none has worked in this setting for prostate cancer. Prostate-specific membrane antigen (PSMA)-based theranostics is an exciting and rapidly evolving field in prostate cancer. The novel intravenous radionuclide therapy, [177Lu]Lu-PSMA-617 (lutetium PSMA) has been shown to be effective in treating men with metastatic castration-resistant prostate cancer, targeting cells expressing PSMA throughout the body. When given in a neoadjuvant setting, lutetium PSMA might also improve long-term oncological outcomes in men with high-risk localized disease. A component of radiotherapy is potentially an immunogenic form of cancer cell death. Lutetium PSMA could cause cancer cell death, resulting in release of tumour antigens and induction of a tumour-specific systemic immune response. This targeted radioligand treatment has the potential to treat local and systemic tumour sites by directly targeting cells that express PSMA, but might also act indirectly via this systemic immune response. In selected patients, lutetium PSMA could potentially be combined with systemic immunotherapies to augment the antitumour T cell response, and this might produce long-lasting immunity in prostate cancer.
Collapse
Affiliation(s)
- Renu S Eapen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Scott G Williams
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Simon P Keam
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Nathan Lawrentschuk
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lewis Au
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael S Hofman
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
26
|
Wang C, Liu B, Dan W, Wei Y, Li M, Guo C, Zhang Y, Xie H. Liquiritigenin inhibits the migration, invasion, and EMT of prostate cancer through activating ER stress. Arch Biochem Biophys 2024; 761:110184. [PMID: 39447623 DOI: 10.1016/j.abb.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Liquiritigenin (LQ) is a monomeric compound found in licorice, a leguminous plant, and has been reported to exhibit antitumor effects in various lines of cancer cells. However, the underlying molecular mechanisms by which LQ exerts its antitumor effects remain largely unknown. In this study, the effects of LQ on the migration, invasion, and epithelial-mesenchymal transition (EMT) of prostate cancer (PCa) cells were investigated. We found that LQ effectively inhibited the migration and invasion of PCa cells in vitro, and this effect was further confirmed in xenograft lung metastasis models. In addition, LQ was found to activate endoplasmic reticulum stress (ER stress) in PCa cells. Further studies found that LQ upregulated the expression of inositol-requiring enzyme type 1α (IRE1). When IRE1 was knocked down, we observed a weakened inhibitory effect of LQ treatment on the migration and invasion of PCa cells. This observation suggests that LQ may inhibit the migration, invasion and EMT of PCa cells through activating the IRE1 branch of ER stress. In conclusion, our research may provide a novel therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Chi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yi Wei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Mengxing Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chendong Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yishuai Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hongjun Xie
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
27
|
Nturubika BD, Guardia CM, Gershlick DC, Logan JM, Martini C, Heatlie JK, Lazniewska J, Moore C, Lam GT, Li KL, Ung BSY, Brooks RD, Hickey SM, Bert AG, Gregory PA, Butler LM, O'Leary JJ, Brooks DA, Johnson IRD. Altered expression of vesicular trafficking machinery in prostate cancer affects lysosomal dynamics and provides insight into the underlying biology and disease progression. Br J Cancer 2024; 131:1263-1278. [PMID: 39217195 PMCID: PMC11473802 DOI: 10.1038/s41416-024-02829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Bukuru D Nturubika
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health and Science, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jessica M Logan
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Carmela Martini
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jessica K Heatlie
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Joanna Lazniewska
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Courtney Moore
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Giang T Lam
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ka L Li
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ben S-Y Ung
- Quality Use of Medicines and Pharmacy Research Centre, University of South Australia City East Campus, Frome Rd, Adelaide, SA, 5000, Australia
| | - Robert D Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shane M Hickey
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Dublin 8, Ireland
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Ian R D Johnson
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
28
|
Skingen VE, Salberg UB, Hompland T, Fjeldbo CS, Helgeland H, Frikstad KAM, Ragnum HB, Vlatkovic L, Hole KH, Seierstad T, Lyng H. Spatial analysis of microRNA regulation at defined tumor hypoxia levels reveals biological traits of aggressive prostate cancer. J Pathol 2024; 264:270-283. [PMID: 39329425 DOI: 10.1002/path.6344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024]
Abstract
Mechanisms regulating the gene expression program at different hypoxia severity levels in patient tumors are not understood. We aimed to determine microRNA (miRNA) regulation of this program at defined hypoxia levels from moderate to severe in prostate cancer. Biopsies from 95 patients were used, where 83 patients received the hypoxia marker pimonidazole before prostatectomy. Forty hypoxia levels were extracted from pimonidazole-stained histological sections and correlated with miRNA and gene expression profiles determined by RNA sequencing and Illumina bead arrays. This identified miRNAs associated with moderate (n = 7) and severe (n = 28) hypoxia and predicted their target genes. The scores of miRNAs or target genes showed prognostic significance, as validated in an external cohort of 417 patients. The target genes showed enrichment of gene sets for cell proliferation and MYC activation at all hypoxia levels and PTEN inactivation at severe hypoxia. This was confirmed by RT-qPCR for MYC and PTEN, by Ki67 immunohistochemistry, and by gene set analysis in an external cohort. To assess whether miRNA regulation occurred within the predicted hypoxic regions, a method to quantify co-localization of multiple histopathology parameters at defined hypoxia levels was applied. A high Ki67 proliferation index co-localized significantly with hypoxia at all levels. The co-localization index was strongly associated with poor prognosis. Absence of PTEN staining co-localized significantly with severe hypoxia. The scores for miRNAs correlated with the co-localization index for Ki67 staining and hypoxia, consistent with miRNA regulation within the overlapping regions. This was confirmed by showing miR-210-3p expression within severe hypoxia by in situ hybridization. Cell line experiments (22Rv1, PC3) were conducted to determine whether miRNAs and target genes were regulated directly by hypoxia. Most of them were hypoxia-unresponsive, and probably regulated by other mechanisms such as MYC activation. In conclusion, in aggressive, hypoxic prostate tumors, cancer cells exhibit different proliferative gene expression programs that is regulated by miRNAs and depend on whether the cells reside in moderate or severe hypoxic regions. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vilde E Skingen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Unn Beate Salberg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christina S Fjeldbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hanna Helgeland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald B Ragnum
- Department of Hematology and Oncology, Telemark Hospital Trust, Skien, Norway
| | | | - Knut Håkon Hole
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Wang L, Zhuang Y, Pan R, Wang T, Zhang J, Wang D, Liu C, Shen W, Tang S. Simultaneous targeting and monitoring of free antigen and in-situ membrane antigen in prostate cancer cells via an aggregation-induced emission-based bifunctional probe. Biosens Bioelectron 2024; 263:116581. [PMID: 39079208 DOI: 10.1016/j.bios.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The precise clinical diagnosis of prostate cancer still presents inherent challenges, and usually a monitoring of multiple biomarkers is required. In this study, a new aggregation-induced emission (AIE)-based bifunctional strategy was developed for the simultaneous detection of prostate cancer-specific in situ membrane antigens (PSMA) and free antigens (PSA). First, a bifunctional fluorescent probe with double sensing sites (a PSA-specific sensing site and a PSMA-targeted ligand) was constructed. In the presence of PSA, it specifically binds to the PSA-specific sensing site of the probe, resulting in the restoration of the fluorescence signal, enabling linear sensing of PSA. For the detection of PSMA, the PSMA-targeted ligand modified on the probe can specifically recognize PSMA, inducing the aggregation of the AIE material and resulting in an enhanced fluorescence signal. Moreover, a liposome-based artificial cell was developed to simulate the real prostate cancer cell, and it was used to investigate the feasibility of monitoring the two types of antigens. Utilizing this bifunctional fluorescent strategy, a dual-analysis of free serum antigen biomarker of PSA and in-situ membrane antigen of PSMA was achieved. The assay exhibited a wide linearity range for PSA detection from 0.0001 to 0.1 μg/mL, with a low limit of detection (LOD) of 6.18 pg/mL. For PSMA, the obtained LOD is 8.79 pg/mL, with a linearity range from 0.0001 to 0.1 μg/mL. This strategy allows us to simultaneously assess the levels of two types of biomarkers in living human prostatic cancer cells, providing a highly accurate and selective tool for early screening and monitoring of prostatic cancer.
Collapse
Affiliation(s)
- Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yao Zhuang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China
| | - Tingwei Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dongyang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| |
Collapse
|
30
|
Fan S, Liu H, Hou J, Zheng G, Gu P, Liu X. Characterizing adipocytokine-related signatures for prognosis prediction in prostate cancer. Front Cell Dev Biol 2024; 12:1475980. [PMID: 39524226 PMCID: PMC11544632 DOI: 10.3389/fcell.2024.1475980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Prostate cancer (PCa) is a prevalent malignant tumor in males, with a significant incidence of biochemical recurrence (BCR) despite advancements in treatment. Adipose tissue surrounding the prostate, known as periprostatic adipose tissue (PPAT), contributes to PCa invasion through adipocytokine production. However, the relationship between adipocytokine-related genes and PCa prognosis remains understudied. This study was conducted to provide a theoretical basis and serve as a reference for the use of adipocytokine-related genes as prognostic markers in PCa. Methods Transcriptome and survival data of PCa patients from The Cancer Genome Atlas (TCGA) database were analyzed. Differential gene expression analysis was conducted using the DESeq2 and limma packages. Prognostic genes were identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. A prognostic model was developed and validated utilizing receiver operating characteristic (ROC) and Kaplan-Meier (K-M) curves. Assessments of immune cell infiltration and drug sensitivity were also carried out. Subsequently, the function of BNIP3L gene in PCa was verified. Results A total of 47 adipocytokine-related differentially expressed genes (DEGs) were identified. Five genes (PPARGC1A, APOE, BNIP3L, STEAP4, and C1QTNF3) were selected as prognostic markers. The prognostic model demonstrated significant predictive accuracy in both training and validation cohorts. Patients with higher risk scores exhibited poorer survival outcomes. Immune cell infiltration analysis revealed that the high-risk group had increased immune and ESTIMATE scores, while the low-risk group had higher tumor purity. In vitro experiments confirmed the suppressive effects of BNIP3L on PCa cell proliferation, migration, and invasion. Conclusion The prognostic model independently predicts the survival of patients with PCa, aiding in prognostic prediction and therapeutic efficacy. It expands the study of adipocytokine-related genes in PCa, presenting novel targets for treatment.
Collapse
Affiliation(s)
- Shicheng Fan
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haolin Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Hou
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiying Zheng
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Gu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
31
|
González-Rueda S, García-Pérez O, Luna-Gutiérrez M, Ocampo-García B, Santos-Cuevas C, Ramírez-Nava G, Vargas-Ahumada J, Azorín-Vega E, Ferro-Flores G, Meléndez-Alafort L. Theranostic Potential of the iPSMA-Bombesin Radioligand in Patients with Metastatic Prostate Cancer: A Pilot Study. Pharmaceutics 2024; 16:1358. [PMID: 39598482 PMCID: PMC11597761 DOI: 10.3390/pharmaceutics16111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Prostate cancer (PC) represents the second most diagnosed form of cancer in men on a global scale. Despite the theranostic efficacy of prostate-specific membrane antigen (PSMA) radioligands, there is a spectrum of PC disease in which PSMA expression is low or absent. The gastrin-releasing peptide receptor (GRPR), also known as the bombesin type 2 receptor, has been identified as a target in both the early and advanced stages of PC. The objective of this study was to prepare and preclinically evaluate [99mTc]Tc-iPSMA-Bombesin ([99mTc]Tc-iPSMA-BN), estimate dosimetry in healthy subjects, and assess the diagnostic efficacy of the radiotracer in patients with metastatic PC, with the hypothesis of non-inferiority to one of the gold standards, [18F]-PSMA-1007. Moreover, the potential of [99mTc]Tc-iPSMA-BN as a theranostic pair with [177Lu]Lu-iPSMA-BN was investigated. Methods: [99mTc]Tc-iPSMA-BN was prepared under GMP conditions with radiochemical purities > 95%, showing specific recognition by PSMA and GRP receptors in prostate cancer cells and mice bearing PC tumors. Six healthy volunteers were enrolled, and [99mTc]Tc-iPSMA-BN SPECT/CT imaging (740 MBq) was performed to estimate the dosimetry. The pilot clinical study included seven mCRPC and four mCSPC patients with prior androgen deprivation therapy. All patients had a recent [18F]-PSMA-PET/CT scan and were enrolled in this prospective study on their own signed behalf. Volumetric lesion target-to-background ratios (TBRs) were obtained from PET/CT and SPECT/CT images. Results: [99mTc]Tc-iPSMA-BN effective radiation dose was 1.94 ± 0.39 mSv/740 MBq. A total of 178 lesions were detected via CT, 162 via [18F]-PSMA-1007 PET, and 155 via [99mTc]Tc-iPSMA-BN SPECT. Three patients with mCRPC had higher TBR values on SPECT than on PET. [99mTc]Tc-iPSMA-BN appears to have better lesion detection in patients with aggressive histologic transformation. Two-way ANOVA analysis revealed a significant difference in TBR values between patients with mCRPC and mCSPC (p < 0.05) but no difference between [18F]-PSMA-1007 and [99mTc]Tc-iPSMA-BN (p > 0.05). In one patient, [177Lu]Lu-iPSMA-BN showed a high correlation with [99mTc]Tc-iPSMA-BN for lesions that concentrated radioactivity. Conclusions: [99mTc]Tc-iPSMA-BN SPECT/CT is a promising alternative not only for diagnostic purposes but also for broadening the spectrum of PC patients who may benefit from radionuclide theranostics. The results justify the development of a clinical trial involving a significant number of patients with PC.
Collapse
Affiliation(s)
- Sofía González-Rueda
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Osvaldo García-Pérez
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Gerardo Ramírez-Nava
- Institute of Advanced Materials for Sustainable Manufacturing, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Joel Vargas-Ahumada
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Erika Azorín-Vega
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Laura Meléndez-Alafort
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| |
Collapse
|
32
|
Ma X, Tian F, Xiao Y, Huang M, Song D, Chen X, Xu H. Synergistic effects of bloom helicase (BLM) inhibitor AO/854 with cisplatin in prostate cancer. Sci Rep 2024; 14:24962. [PMID: 39438537 PMCID: PMC11496540 DOI: 10.1038/s41598-024-75938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
To determine the synergistic effect and mechanism of AO/854, a new Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, cell viability assays, neutral comet assays, and Western blotting (WB) were performed on prostate cancer (PCa) cells. According to our findings, combining AO/854 and CDDP enhanced the antiproliferative capabilities of PC3 cell lines. As evidenced by the upregulation of γH2AX, cleaved caspase-3/caspase-3, and BAX/Bcl-2, AO/854 dramatically increased PC3 apoptosis and DNA damage induced by CDDP. Furthermore, combining AO/854 and CDDP synergistically inhibited PC3 cell migration and invasion. In addition, AO/854 inhibited CDDP-induced S-phase cell-cycle arrest in PC3 cells while enhancing G2/M-phase cell-cycle arrest. In vivo, the antitumor efficacy of the combination therapy group was greater than that of the groups treated with AO/854 or CDDP alone. Our findings indicate that synergistic chemotherapy with AO/854 and CDDP may be a novel anticancer strategy for PCa.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Yuanpin Xiao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564500, China
| | - Xinlin Chen
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
33
|
Kang Z, Wan ZH, Gao RC, Chen DN, Zheng QS, Xue XY, Xu N, Wei Y. Disulfidptosis-related subtype and prognostic signature in prostate cancer. Biol Direct 2024; 19:97. [PMID: 39444006 PMCID: PMC11515740 DOI: 10.1186/s13062-024-00544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Disulfidptosis refers to cell death caused by the accumulation and bonding of disulfide in the cytoskeleton protein of SLC7A11-high level cells under glucose deprivation. However, the role of disulfidptosis-related genes (DRGs) in prostate cancer (PCa) classification and regulation of the tumor microenvironment remains unclear. METHODS Firstly, we analyzed the expression and mutation landscape of DRGs in PCa. We observed the expression levels of SLC7A11 in PCa cells through in vitro experiments and assessed the inhibitory effect of the glucose transporter inhibitor BAY-876 on SLC7A11-high cells using CCK-8 assay. Subsequently, we performed unsupervised clustering of the PCa population and analyzed the differentially expressed genes (DEGs) between clusters. Using machine learning techniques to select a minimal gene set and developed disulfidoptosis-related risk signatures for PCa. We analyzed the tumor immune microenvironment and the sensitivity to immunotherapy in different risk groups. Finally, we validated the accuracy of the prognostic signatures genes using single-cell sequencing, qPCR, and western blot. RESULTS Although SLC7A11 can increase the migration ability of tumor cells, BAY-876 effectively suppressed the viability of prostate cancer cells, particularly those with high SLC7A11 expression. Based on the DRGs, PCa patients were categorized into two clusters (A and B). The risk label, consisting of a minimal gene set derived from DEGs, included four genes. The expression levels of these genes in PCa were initially validated through in vitro experiments, and the accuracy of the risk label was confirmed in an external dataset. Cluster-B exhibited higher expression levels of DRG, representing lower risk, better prognosis, higher immune cell infiltration, and greater sensitivity to immune checkpoint blockade, whereas Cluster A showed the opposite results. These findings suggest that DRGs may serve as targets for PCa classification and treatment. Additionally, we constructed a nomogram that incorporates DRGs and clinical pathological features, providing clinicians with a quantitative method to assess the prognosis of PCa patients. CONCLUSION This study analyzed the potential connection between disulfidptosis and PCa, and established a prognostic model related to disulfidptosis, which holds promise as a valuable tool for the management and treatment of PCa patients.
Collapse
Affiliation(s)
- Zhen Kang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zheng-Hua Wan
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Rui-Cheng Gao
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Urology, National Regional Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
34
|
Figueras M, Mengual L, Ingelmo-Torres M, Roldán FL, Padullés B, Alfambra H, Herranz S, Paredes P, Amseian G, Mases J, Ribal MJ, Izquierdo L, Alcaraz A. Role of Liquid Biopsy in Progressive PSA Patients after Radical Prostatectomy. Diagnostics (Basel) 2024; 14:2293. [PMID: 39451616 PMCID: PMC11506865 DOI: 10.3390/diagnostics14202293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Currently, the prediction of disease recurrence after radical prostatectomy (RP) in localized prostate cancer (PCa) relies on clinicopathological parameters, which lack accuracy in predicting clinical outcomes. This study focused on evaluating the utility of cfDNA levels and fragmentation patterns as prognostic biomarkers in progressive prostate-specific antigen (PSA) patients, including those with persistent PSA and biochemical recurrence (BR), after primary treatment in localized PCa patients. Methods: Twenty-nine high-risk localized PCa patients were enrolled in the study between February 2022 and May 2023. Blood samples were obtained before robotic RP. cfDNA concentration and fragment size were quantified using the Quant-it PicoGreen dsDNA Assay kit and Agilent 2200 TapeStation System, respectively. Results: The mean PSA value at diagnosis was 9.4 ng/mL. Seven patients (24.1%) had stage pT2 and 22 (75.9%) pT3. Nine patients (31%) had detectable PSA at the first PSA control six weeks after surgery, and four patients (20%) had BR during a mean follow-up of 18.4 months. No associations were found between cfDNA levels or fragmentation patterns and clinicopathological data. Although not statistically significant, patients with detectable PSA levels post-surgery exhibited higher cfDNA levels and shorter fragments compared with those with undetectable PSA. Conclusions: Our study indicated a tendency toward more fragmented cfDNA levels in PCa patients with persistent PSA. Strikingly, biochemical recurrent PCa patients exhibited similar cfDNA levels and fragmentation patterns compared to non-recurrent patients. Further studies exploring liquid biopsy-derived biomarkers in localized PCa patients are needed to elucidate their clinical utility in predicting PSA persistence.
Collapse
Affiliation(s)
- Marcel Figueras
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Lourdes Mengual
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Mercedes Ingelmo-Torres
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Fiorella L. Roldán
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Bernat Padullés
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Héctor Alfambra
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
| | - Sandra Herranz
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
| | - Pilar Paredes
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Nuclear Medicine, Hospital Clínic Barcelona, 08036 Barcelona, Spain
- Department of Clinical Fundamentals, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Gary Amseian
- Department of Radiology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Joel Mases
- Department of Radiotherapy Oncology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Maria J. Ribal
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Surgery and Medical Specialities, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Laura Izquierdo
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Surgery and Medical Specialities, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Antonio Alcaraz
- Department and Laboratory of Urology, Hospital Clínic Barcelona, 08036 Barcelona, Spain; (M.F.)
- Genetics and Urological Tumours, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Surgery and Medical Specialities, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
35
|
Liu S, Garcia-Marques FJ, Shen M, Bermudez A, Pitteri SJ, Stoyanova T. Ubiquitin C-terminal hydrolase L1 is a regulator of tumor growth and metastasis in double-negative prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:306-322. [PMID: 39584005 PMCID: PMC11578776 DOI: 10.62347/jnbr1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men worldwide. With heavy androgen deprivation therapies, prostate cancer may shift to androgen receptor negative and neuroendocrine negative subtype of castration resistant prostate cancer, defined as double-negative prostate cancer. Double-negative prostate cancer is associated with poor prognosis and disease mortality. The molecular mechanisms underlying the emergence of double-negative prostate cancer remain poorly understood. Here, we demonstrate that Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), is negatively correlated with androgen receptor levels in prostate cancer patients. UCH-L1 plays a functional role in tumorigenesis and metastasis in double-negative prostate cancer. Knock-down of UCH-L1 decreases double-negative prostate cancer colony formation in vitro and tumor growth in vivo. Moreover, decrease of UCH-L1 significantly delays cell migration in vitro and spontaneous metastasis and metastatic colonization in vivo. Proteomic analysis revealed that mTORC1 signaling, androgen response signaling and MYC targets are the top three decreased pathways upon UCH-L1 decrease. Further, treatment with LDN-57444, a UCH-L1 small molecule inhibitor, impairs double-negative prostate cancer cell colony formation, migration in vitro, and metastatic colonization in vivo. Our study reveals that UCH-L1 is an important regulator of double-negative prostate cancer tumor growth and progression, providing a promising therapeutic target for this subtype of metastatic prostate cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | | | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
- Department of Urology, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
36
|
Soler-Agesta R, Moreno-Loshuertos R, Yim CY, Congenie MT, Ames TD, Johnson HL, Stossi F, Mancini MG, Mancini MA, Ripollés-Yuba C, Marco-Brualla J, Junquera C, Martínez-De-Mena R, Enríquez JA, Price MR, Jimeno J, Anel A. Cancer cell-selective induction of mitochondrial stress and immunogenic cell death by PT-112 in human prostate cell lines. J Transl Med 2024; 22:927. [PMID: 39394618 PMCID: PMC11470694 DOI: 10.1186/s12967-024-05739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
PT-112 is a novel immunogenic cell death (ICD)-inducing small molecule currently under Phase 2 clinical development, including in metastatic castration-resistant prostate cancer (mCRPC), an immunologically cold and heterogeneous disease state in need of novel therapeutic approaches. PT-112 has been shown to cause ribosome biogenesis inhibition and organelle stress followed by ICD in cancer cells, culminating in anticancer immunity. In addition, clinical evidence of PT-112-driven immune effects has been observed in patient immunoprofiling. Given the unmet need for immune-based therapies in prostate cancer, along with a Phase I study (NCT#02266745) showing PT-112 activity in mCRPC patients, we investigated PT-112 effects in a panel of human prostate cancer cell lines. PT-112 demonstrated cancer cell selectivity, inhibiting cell growth and leading to cell death in prostate cancer cells without affecting the non-tumorigenic epithelial prostate cell line RWPE-1 at the concentrations tested. PT-112 also caused caspase-3 activation, as well as stress features in mitochondria including ROS generation, compromised membrane integrity, altered respiration, and morphological changes. Moreover, PT-112 induced damage-associated molecular pattern (DAMP) release, the first demonstration of ICD in human cancer cell lines, in addition to autophagy initiation across the panel. Taken together, PT-112 caused selective stress, growth inhibition and death in human prostate cancer cell lines. Our data provide additional insight into mitochondrial stress and ICD in response to PT-112. PT-112 anticancer immunogenicity could have clinical applications and is currently under investigation in a Phase 2 mCRPC study.
Collapse
Affiliation(s)
- R Soler-Agesta
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - R Moreno-Loshuertos
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| | - C Y Yim
- Promontory Therapeutics Inc, New York, NY, USA
| | | | - T D Ames
- Promontory Therapeutics Inc, New York, NY, USA
| | - H L Johnson
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - F Stossi
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M G Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M A Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - C Ripollés-Yuba
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - J Marco-Brualla
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - C Junquera
- Anatomy and Human Histology Department, Faculty of Medicine, University of Zaragoza/IIS-Aragón, Zaragoza, Spain
| | | | - J A Enríquez
- Carlos III National Center for Cardiovascular Research, Madrid, Spain
| | - M R Price
- Promontory Therapeutics Inc, New York, NY, USA
| | - J Jimeno
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
- Promontory Therapeutics Inc, New York, NY, USA
| | - A Anel
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
37
|
Liu S, Guo H, Li D, Wang C. Immunologically effective biomaterials enhance immunotherapy of prostate cancer. J Mater Chem B 2024; 12:9821-9834. [PMID: 39239675 DOI: 10.1039/d3tb03044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignant neoplasms affecting the male population. The onset of the disease is insidious and often associated with severe consequences, such as bone metastases at the time of initial diagnosis. Once it advances to metastatic castration-resistant PCa (mCRPC), conventional treatment methods become ineffective. As research on the mechanism of tumor therapy advances, immunotherapy has been evolving rapidly. However, PCa is a solid tumor type that primarily faces the challenges of poor immunogenicity and inhibitory tumor microenvironment (TME). Fortunately, the extensive use of biomaterials has led to continuous advancement in PCa immunotherapy. These innovative materials aim to address intractable issues, such as immune escape and immune desert, to inhibit tumor progression and metastasis. This detailed review focuses on the regulation of different aspects of tumor immunity by immunologically effective biomaterials, including modulating adaptive immunity, innate immunity, and the immune microenvironment, to enhance the efficacy of PCa immunotherapy. In addition, this review provides a perspective on the future prospects of immunotherapeutic nanoplatforms based on biomaterials in the treatment of PCa.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Hui Guo
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| | - Chunxi Wang
- Department of Urology, General Surgery Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130061, P. R. China
| |
Collapse
|
38
|
Zhou Q, Guo D, Shen T, Jiang H. Identification of KLHL17 as a prognostic marker for prostate cancer based on single-cell sequencing and in vitro/in vivo experiments. Discov Oncol 2024; 15:524. [PMID: 39365488 PMCID: PMC11452370 DOI: 10.1007/s12672-024-01406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a leading cause of cancer-related mortality among men, characterized by significant heterogeneity that complicates diagnosis and treatment. METHODS AND RESULTS To enhance our understanding of PCa, we utilized single-cell RNA sequencing (scRNA-seq) data to identify distinct malignant epithelial cell subpopulations and their molecular characteristics. By integrating scRNA-seq data with bulk RNA-seq data, we constructed a prognostic risk score model. The influence of key genes identified in the risk score on PCa was validated through both in vitro and in vivo experiments. Our study revealed eight unique malignant epithelial cell clusters, each exhibiting distinct molecular characteristics and biological functions. KEGG and GO enrichment analyses highlighted their involvement in various pathways. The prognostic risk score model demonstrated strong predictive power for patient outcomes, particularly in predicting progression-free survival (PFS). Notably, KLHL17, identified as a high-risk gene, was found to significantly impact PCa cell proliferation, migration, invasion, and apoptosis upon knockdown. This finding was further validated in vivo using a subcutaneous xenograft tumor model, where reduced KLHL17 expression led to decreased tumor growth. CONCLUSION Our research provides a comprehensive analysis of PCa heterogeneity and highlights KLHL17 as a potential therapeutic target.
Collapse
Affiliation(s)
- Qingyu Zhou
- Department of urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Dan Guo
- Department of urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Tong Shen
- Department of urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Huamao Jiang
- Department of urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
39
|
Andreozzi G, Corvino A, Severino B, Magli E, Perissutti E, Frecentese F, Santagada V, Caliendo G, Fiorino F. Arylpiperazine Derivatives and Cancer: A New Challenge in Medicinal Chemistry. Pharmaceuticals (Basel) 2024; 17:1320. [PMID: 39458961 PMCID: PMC11510360 DOI: 10.3390/ph17101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: In recent decades, there has been a startling rise in the number of cancer patients worldwide, which has led to an amazing upsurge in the development of novel anticancer treatment candidates. On a positive note, arylpiperazines have garnered attention in cancer research due to their potential as scaffolds for developing anticancer agents. These compounds exhibit a diverse array of biological activities, including cytotoxic effects against cancer cells. Indeed, one of the key advantages of arylpiperazines lies in their ability to interact with various molecular targets implicated in cancer pathogenesis. Aim: Here, we focus on the chemical structures of several arylpiperazine derivatives, highlighting their anti-proliferative activity in different tumor cell lines. The modular structure, diverse biological activities, and potential for combination therapies of arylpiperazine compounds make them valuable candidates for further preclinical and clinical investigations in the fight against cancer. Conclusion: This review, providing a careful analysis of different arylpiperazines and their biological applications, allows researchers to refine the chemical structures to improve potency, selectivity, and pharmacokinetic properties, thus advancing their therapeutic potential in oncology.
Collapse
Affiliation(s)
- Giorgia Andreozzi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Angela Corvino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Elisa Magli
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| |
Collapse
|
40
|
He J, Wu J, Li Z, Zhao Z, Qiu L, Zhu X, Liu Z, Xia H, Hong P, Yang J, Ni L, Lu J. Immunotherapy Vaccines for Prostate Cancer Treatment. Cancer Med 2024; 13:e70294. [PMID: 39463159 PMCID: PMC11513549 DOI: 10.1002/cam4.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Therapeutic tumor vaccines have emerged as a compelling avenue for treating patients afflicted with advanced prostate cancer (PCa), particularly those experiencing biochemical relapse or ineligible for surgical intervention. This study serves to consolidate recent research findings on therapeutic vaccines targeting prostate tumors while delineating prevalent challenges within vaccine research and development. METHODS We searched electronic databases, including PubMed, Web of Science, Embase, and Scopus, up to August 31, 2024, using keywords such as 'vaccine', 'prostate cancer', 'immunotherapy', and others. We reviewed studies on various therapeutic vaccines, including dendritic cell-based, antigen, nucleic acid, and tumor cell vaccines. RESULTS Studies consistently showed that therapeutic vaccines, notably DC vaccines, had favorable safety profiles with few adverse effects. These vaccines, with varied antigenic formulations, demonstrated strong clinical outcomes, as indicated by metrics such as PSA response rates (9.5%-58%), extended PSA doubling times (52.9%-89.7%), overall survival durations (17.7-33.8 months), two-year mortality rates (0%-12.5%), biochemical relapse rates (42%-73%), and antigen-specific immune responses (33.3%-71.4% in responsive groups). CONCLUSION While clinical data for tumor vaccines have illuminated robust evidence of tumoricidal activity, the processes of their formulation and deployment are riddled with complexities. Combining vaccines with other therapies may enhance outcomes, and future research should focus on early interventions and deciphering the immune system's role in oncogenesis.
Collapse
Affiliation(s)
- Jide He
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jialong Wu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Ziang Li
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zhenkun Zhao
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Lei Qiu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Xuehua Zhu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zenan Liu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Haizhui Xia
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Peng Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jianling Yang
- Institute of Medical Innovation and ResearchPeking University Third HospitalBeijingChina
| | - Ling Ni
- Institute for Immunology and School of MedicineTsinghua University, Medical Research BuildingBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking University
| |
Collapse
|
41
|
Xie J, Guo H, Dong B, Chen W, Jin C, Xu Q, Ding L, Liu W, Dong S, Zhao T, Yu Y, Guo C, Yao X, Peng B, Yang B. Olaparib Combined with Abiraterone versus Olaparib Monotherapy for Patients with Metastatic Castration-resistant Prostate Cancer Progressing after Abiraterone and Harboring DNA Damage Repair Deficiency: A Multicenter Real-world Study. Eur Urol Oncol 2024; 7:1088-1096. [PMID: 38458891 DOI: 10.1016/j.euo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone. METHODS The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy. DDR-deficient status was defined as the presence of a DDR gene with a pathogenic or likely pathogenic variant (DDR-PV), or with a variant of unknown significance (DDR-VUS). We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier method. Potential factors influencing PFS and OS were compared between the treatment arms using Cox proportional-hazards models. The prostate-specific antigen (PSA) response, the treatment effect across subgroups, and adverse events (AEs) were also evaluated. KEY FINDINGS AND LIMITATIONS Median follow-up was 9 mo. In the overall cohort, median PFS and OS were significantly longer in the combination arm than in the monotherapy arm (PFS: 6.0 vs 3.0 mo; hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.25-0.67; p < 0.01; OS: 25.0 vs 12.0 mo; HR 0.30, 95% CI 0.14-0.67; p < 0.01). PSA responses were significantly higher following combination therapy versus monotherapy. Combination therapy had significantly better efficacy in the DDR-PV and DDR-VUS subgroups, and was an independent predictor of better PFS and OS. AE rates were acceptable. The retrospective nature, small sample size, and short follow-up are limitations. CONCLUSIONS Olaparib + abiraterone resulted in better PFS and OS than olaparib alone for patients with DDR-deficient mCRPC progressing after abiraterone. These results need to be confirmed by a large-scale prospective randomized controlled trial. PATIENT SUMMARY Our study shows that the drug combination of olaparib plus abiraterone improved survival over olaparib alone for patients who have mutations in genes affecting DNA repair and metastatic prostate cancer resistant to hormone therapy. The results provide evidence of a synergistic effect of the two drugs in these patients.
Collapse
Affiliation(s)
- Jun Xie
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China
| | - Hanxu Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqi Jin
- Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Qiufan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wujianhong Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengrong Dong
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai, China; Research Institute, GloriousMed Clinical Laboratory, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
42
|
Liang J, Gondane A, Itkonen HM. CDK12-inactivation-induced MYC signaling causes dependency on the splicing kinase SRPK1. Mol Oncol 2024; 18:2510-2523. [PMID: 38775167 PMCID: PMC11459032 DOI: 10.1002/1878-0261.13666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 10/09/2024] Open
Abstract
Inactivation of cyclin-dependent kinase 12 (CDK12) characterizes an aggressive sub-group of castration-resistant prostate cancer (CRPC). Hyper-activation of MYC transcription factor is sufficient to confer the CRPC phenotype. Here, we show that loss of CDK12 promotes MYC activity, which renders the cells dependent on the otherwise non-essential splicing regulatory kinase SRSF protein kinase 1 (SRPK1). High MYC expression is associated with increased levels of SRPK1 in patient samples, and overexpression of MYC sensitizes prostate cancer cells to SRPK1 inhibition using pharmacological and genetic strategies. We show that Endovion (SCO-101), a compound currently in clinical trials against pancreatic cancer, phenocopies the effects of the well-characterized SRPK1 inhibitor SRPIN340 on nascent transcription. This is the first study to show that Endovion is an SRPK1 inhibitor. Inhibition of SRPK1 with either of the compounds promotes transcription elongation, and transcriptionally activates the unfolded protein response. In brief, here we discover that CDK12 inactivation promotes MYC signaling in an SRPK1-dependent manner, and show that the clinical grade compound Endovion selectively targets the cells with CDK12 inactivation.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Harri M. Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
43
|
Mateo J, Zurita AJ. 177Lu-PSMA-617 for metastatic prostate cancer: aiming for the right spot. Lancet 2024; 404:1174-1176. [PMID: 39293463 DOI: 10.1016/s0140-6736(24)01919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Joaquin Mateo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital Campus, Barcelona 08035, Spain.
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Zhang M, Ma J, Zeng FY, Hou XH. Network pharmacology combined with molecular docking revealed the potential targets of Coridius chinensis in prostate cancer treatment. World J Clin Cases 2024; 12:6094-6104. [PMID: 39328854 PMCID: PMC11326102 DOI: 10.12998/wjcc.v12.i27.6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) has high morbidity and mortality rates in elderly men. With a history of thousands of years, traditional Chinese medicine derived from insects could be an important source for developing cancer-targeted drugs to prevent tumorigenesis, enhance therapeutic effects, and reduce the risk of recurrence and metastasis. Multiple studies have shown that Coridius chinensis (Cc) has anticancer effects. AIM To elucidate the mechanism of action of Cc against PCa via network pharmacology and molecular docking. METHODS Potential targets for Cc and PCa were predicted using ChemDraw 19.0 software, the PharmMapper database and the GeneCards database. Then, the STRING database was used to construct the protein-protein interaction network. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and molecular docking analyses were subsequently conducted to identify the key targets, active ingredients and pathways involved. RESULTS GO and KEGG analyses indicated that the PI3K-Akt signalling pathway was the critical pathway (P value < 1.0 × 10-8). Multiple targeting ingredients that can affect multiple pathways in PCa have been identified in Cc. Seven active compounds (asponguanosines A, asponguanine B, asponguanine C, aspongpyrazine A, N-acetyldopamine, aspongadenine B and aspongpyrazine B) were selected for molecular docking with 9 potential targets, and the results revealed that aspongpyrazine A and asponguanosine A are the main components by which Cc affects PCa (affinity<-5 kcal/mol, hydrogen bonding), but more studies are needed. CONCLUSION We used network pharmacology to predict the bioactive components and important targets of Cc for the treatment of PCa, supporting the development of Cc as a natural anticancer agent.
Collapse
Affiliation(s)
- Mei Zhang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Jing Ma
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Feng-Yin Zeng
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao-Hui Hou
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
45
|
Roes MV, Dick FA. A Genome Wide CRISPR Screen Reveals That HOXA9 Promotes Enzalutamide Resistance in Prostate Cancer. Mol Cell Biol 2024; 44:529-542. [PMID: 39300912 PMCID: PMC11583586 DOI: 10.1080/10985549.2024.2401465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Androgen receptor inhibitors are commonly used for prostate cancer treatment, but acquired resistance is a significant problem. Codeletion of RB and p53 is common in castration resistant prostate cancers, however they are difficult to target pharmacologically. To comprehensively identify gene loss events that contribute to enzalutamide response, we performed a genome-wide CRISPR knockout screen in LNCaP prostate cancer cells. This revealed novel genes implicated in resistance that are largely unstudied. Gene loss events that confer enzalutamide sensitivity are enriched for GSEA categories related to stem cell and epigenetic regulation. We investigated the myeloid lineage stem cell factor HOXA9 as a candidate gene whose loss promotes sensitivity to enzalutamide. Cancer genomic data reveals that HOXA9 overexpression correlates with poor prognosis and characteristics of advanced prostate cancer. In cell culture, HOXA9 depletion sensitizes cells to enzalutamide, whereas overexpression drives enzalutamide resistance. Combination of the HOXA9 inhibitor DB818 with enzalutamide demonstrates synergy. This demonstrates the utility of our CRISPR screen data in discovering new approaches for treating enzalutamide resistant prostate cancer.
Collapse
Affiliation(s)
- Michael V. Roes
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- London Regional Cancer Program, London, Ontario, Canada
- London Health Sciences Research Institute, London, Ontario, Canada
| | - Frederick A. Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- London Regional Cancer Program, London, Ontario, Canada
- London Health Sciences Research Institute, London, Ontario, Canada
| |
Collapse
|
46
|
Ventura D, Rassek P, Schindler P, Akkurt BH, Bredensteiner L, Bögemann M, Schlack K, Seifert R, Schäfers M, Roll W, Rahbar K. Early treatment response assessment with [ 177Lu]PSMA whole-body-scintigraphy compared to interim PSMA-PET. Cancer Imaging 2024; 24:126. [PMID: 39300507 PMCID: PMC11414098 DOI: 10.1186/s40644-024-00773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Prostate-specific membrane antigen positron emission tomography (PSMA-PET) is an essential tool for patient selection before radioligand therapy (RLT). Interim-staging with PSMA-PET during RLT allows for therapy monitoring. However, its added value over post-treatment imaging is poorly elucidated. The aim of this study was to compare early treatment response assessed by post-therapeutic whole-body scans (WBS) with interim-staging by PSMA-PET after 2 cycles in order to prognosticate OS. METHODS Men with metastasized castration-resistant PC (mCRPC) who had received at least two cycles of RLT, and interim PSMA-PET were evaluated retrospectively. PROMISE V2 framework was used to categorize PSMA expression and assess response to treatment. Response was defined as either disease control rate (DCR) for responders or progression for non-responders. RESULTS A total of 188 men with mCRPC who underwent RLT between February 2015 and December 2021 were included. The comparison of different imaging modalities revealed a strong and significant correlation with Cramer V test: e.g. response on WBS during second cycle compared to interim PET after two cycles of RLT (cφ = 0.888, P < 0.001, n = 188). The median follow-up time was 14.7 months (range: 3-63 months; 125 deaths occurred). Median overall survival (OS) time was 14.5 months (95% CI: 11.9-15.9). In terms of OS analysis, early progression during therapy revealed a significantly higher likelihood of death: e.g. second cycle WBS (15 vs. 25 months, P < 0.001) with a HR of 2.81 (P < 0.001) or at PET timepoint after 2 cycles of RLT (11 vs. 24 months, P < 0.001) with a HR of 3.5 (P < 0.001). For early biochemical response, a PSA decline of at least 50% after two cycles of RLT indicates a significantly lower likelihood of death (26 vs. 17 months, P < 0.001) with a HR of 0.5 (P < 0.001). CONCLUSION Response assessment of RLT by WBS and interim PET after two cycles of RLT have high congruence and can identify patients at risk of poor outcome. This indicates that interim PET might be omitted for response assessment, but future trials corroborating these findings are warranted.
Collapse
Affiliation(s)
- David Ventura
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- West German Cancer Center (WTZ), 48149, Münster site, Germany.
| | - Philipp Rassek
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Center (WTZ), 48149, Münster site, Germany
| | - Philipp Schindler
- West German Cancer Center (WTZ), 48149, Münster site, Germany
- Department of Radiology, University Hospital Münster, 48149, Münster, Germany
| | - Burak Han Akkurt
- West German Cancer Center (WTZ), 48149, Münster site, Germany
- Department of Radiology, University Hospital Münster, 48149, Münster, Germany
| | - Linus Bredensteiner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Bögemann
- West German Cancer Center (WTZ), 48149, Münster site, Germany
- Department of Urology, University Hospital Münster, 48149, Münster, Germany
| | - Katrin Schlack
- West German Cancer Center (WTZ), 48149, Münster site, Germany
- Department of Urology, University Hospital Münster, 48149, Münster, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Bern, 3010, Bern, Switzerland
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Center (WTZ), 48149, Münster site, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Center (WTZ), 48149, Münster site, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Center (WTZ), 48149, Münster site, Germany
| |
Collapse
|
47
|
He Q, Su Q, Wei C, Zhang P, Liu W, Chen J, Su X, Zhuang W. Extrachromosomal circular DNAs in prostate adenocarcinoma: global characterizations and a novel prediction model. Front Pharmacol 2024; 15:1464145. [PMID: 39355773 PMCID: PMC11442297 DOI: 10.3389/fphar.2024.1464145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Background The role of focal amplifications and extrachromosomal circular DNA (eccDNA) is still uncertain in prostate adenocarcinoma (PRAD). Here, we first mapped the global characterizations of eccDNA and then investigate the characterization of eccDNA-amplified key differentially expressed encoded genes (eKDEGs) in the progression, immune response and immunotherapy of PRAD. Methods Circular_seq was used in conjunction with the TCGA-PRAD transcriptome dataset to sequence, annotate, and filter for eccDNA-amplified differentially expressed coding genes (eDEGs) in PRAD and para-cancerous normal prostate tissues. Afterwards, risk models were created and eKDEGs linked to the PRAD prognosis were identified using Cox and Lasso regression analysis. The immune microenvironment of the risk model was quantified using a variety of immunological algorithms, which also identified its characteristics with regard to immunotherapy, immune response, and immune infiltration. Results In this research, there was no significant difference in the size, type, and chromosomal distribution of eccDNA in PRAD and para-cancerous normal prostate tissues. However, 4,290 differentially expressed eccDNAs were identified and 1,981 coding genes were amplified. Following that, 499 eDEGs were tested in conjunction with the transcriptome dataset from TCGA-PRAD. By using Cox and Lasso regression techniques, ZNF330 and PITPNM3 were identified as eKDEGs of PRAD, and a new PRAD risk model was conducted based on this. Survival analysis showed that the high-risk group of this model was associated with poor prognosis and validated in external data. Immune infiltration analysis showed that the model risks affected immune cell infiltration in PRAD, not only mediating changes in immune cell function, but also correlating with immunophenotyping. Furthermore, the high-risk group was negatively associated with anti-CTLA-4/anti-PD-1 response and mutational burden. In addition, Tumor Immune Dysfunction and Exclusion analyses showed that high-risk group was more prone to immune escape. Drug sensitivity analyses identified 10 drugs, which were instructive for PRAD treatment. Conclusion ZNF330 and PITPNM are the eKDEGs for PRAD, which can be used as potential new prognostic markers. The two-factor combined risk model can effectively assess the survival and prognosis of PRAD patients, but also can predict the different responses of immunotherapy to PRAD patients, which may provide new ideas for PRAD immunotherapy.
Collapse
Affiliation(s)
- Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengcheng Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pu Zhang
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoping Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Nursing, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
48
|
Li Q, Wang Y, Chen J, Zeng K, Wang C, Guo X, Hu Z, Hu J, Liu B, Xiao J, Zhou P. Machine learning based androgen receptor regulatory gene-related random forest survival model for precise treatment decision in prostate cancer. Heliyon 2024; 10:e37256. [PMID: 39296076 PMCID: PMC11407950 DOI: 10.1016/j.heliyon.2024.e37256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Background It has been demonstrated that aberrant androgen receptor (AR) signaling contributes to the pathogenesis of prostate cancer (PCa). To date, the most efficacious strategy for the treatment of PCa remains to target the AR signaling axis. However, numerous PCa patients still face the issue of overtreatment or undertreatment. The establishment of a precise risk prediction model is urgently needed to distinguish patients with high-risk and select appropriate treatment modalities. Methods In this study, a consensus AR regulatory gene-related signature (ARS) was developed by integrating a total of 101 algorithm combinations of 10 machine learning algorithms. We evaluated the value of ARS in predicting patient prognosis and the therapeutic effects of the various treatments. Additionally, we conducted a screening of therapeutic targets and agents for high-risk patients, followed by the verification in vitro and in vivo. Results ARS was an independent risk factor for biochemical recurrence and distant metastasis in PCa patients. The enhanced and consistent prognostic predictive capability of ARS across various platforms was confirmed when compared with 44 previously published signatures. More importantly, PCa patients in the ARShigh group benefit more from PARP inhibitors and immunotherapy, while chemotherapy, radiotherapy, and AR-targeted therapy are more effective for ARSlow patients. The results of in silico screening suggest that AURKB could potentially serve as a promising therapeutic target for ARShigh patients. Conclusions Collectively, this prediction model based on AR regulatory genes holds great clinical translational potential to solve the dilemma of treatment choice and identify potential novel therapeutic targets in PCa.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengwei Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
49
|
Chen L, Xu YX, Wang YS, Ren YY, Chen YM, Zheng C, Xie T, Jia YJ, Zhou JL. Integrative Chinese-Western medicine strategy to overcome docetaxel resistance in prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118265. [PMID: 38677579 DOI: 10.1016/j.jep.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ying-Jie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
50
|
Li G, Wang Y, Wang Y, Wang B, Liang Y, Wang P, He Y, Hu X, Liu G, Lei Z, Zhang B, Shi Y, Gao X, Zhang X, Ci W. PCaseek: ultraspecific urinary tumor DNA detection using deep learning for prostate cancer diagnosis and Gleason grading. Cell Discov 2024; 10:90. [PMID: 39223118 PMCID: PMC11369186 DOI: 10.1038/s41421-024-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Gaojie Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Ying Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Yuan Liang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ping Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yudan He
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshan Hu
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Guojun Liu
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Bao Zhang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Yue Shi
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Xu Gao
- Department of Urology, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China.
| | - Weimin Ci
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|