1
|
Majidi M, Pakzad S, Salimi M, Azadbakht A, Hajighasemlou S, Amoupour M, Nokhbedehghan Z, Bonakdar S, Sineh Sepehr K, Pal Singh Chauhan N, Gholipourmalekabadi M. Macrophage cell morphology-imprinted substrates can modulate mesenchymal stem cell behaviors and macrophage M1/M2 polarization for wound healing applications. Biotechnol Bioeng 2023; 120:3638-3654. [PMID: 37668186 DOI: 10.1002/bit.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.
Collapse
Affiliation(s)
- Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saieh Hajighasemlou
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wu P, Yanagi K, Yokota K, Hakamada M, Mabuchi M. Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:54. [PMID: 37884819 PMCID: PMC10602965 DOI: 10.1007/s10856-023-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Kazuya Yanagi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Benčina M, Junkar I, Vesel A, Mozetič M, Iglič A. Nanoporous Stainless Steel Materials for Body Implants-Review of Synthesizing Procedures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2924. [PMID: 36079962 PMCID: PMC9457931 DOI: 10.3390/nano12172924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Despite the inadequate biocompatibility, medical-grade stainless steel materials have been used as body implants for decades. The desired biological response of surfaces to specific applications in the body is a highly challenging task, and usually not all the requirements of a biomaterial can be achieved. In recent years, nanostructured surfaces have shown intriguing results as cell selectivity can be achieved by specific surface nanofeatures. Nanoporous structures can be fabricated by anodic oxidation, which has been widely studied for titanium and its alloys, while no systematic studies are so far available for stainless steel (SS) materials. This paper reviews the current state of the art in the anodisation of SS; correlations between the parameters of anodic oxidation and the surface morphology are drawn. The results reported by various authors are scattered because of a variety of experimental configurations. A linear correlation between the pores' diameter anodisation voltage was deduced, while no correlation with other processing parameters was found obvious. The analyses of available data indicated a lack of systematic experiments, which are recommended to understand the kinetics of pore formation and develop techniques for optimal biocompatibility of stainless steel.
Collapse
Affiliation(s)
- Metka Benčina
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ita Junkar
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Bina M, Krywko-Cendrowska A, Daubian D, Meier W, Palivan CG. Multicomponent Copolymer Planar Membranes with Nanoscale Domain Separation. NANO LETTERS 2022; 22:5077-5085. [PMID: 35771654 PMCID: PMC9284607 DOI: 10.1021/acs.nanolett.2c00332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Domain separation is crucial for proper cellular function and numerous biomedical technologies, especially artificial cells. While phase separation in hybrid membranes containing lipids and copolymers is well-known, the membranes' overall stability, limited by the lipid part, is hindering the technological applications. Here, we introduce a fully synthetic planar membrane undergoing phase separation into domains embedded within a continuous phase. The mono- and bilayer membranes are composed of two amphiphilic diblock copolymers (PEO45-b-PEHOx20 and PMOXA10-b-PDMS25) with distinct properties and mixed at various concentrations. The molar ratio of the copolymers in the mixture and the nature of the solid support were the key parameters inducing nanoscale phase separation of the planar membranes. The size of the domains and resulting morphology of the nanopatterned surfaces were tailored by adjusting the molar ratios of the copolymers and transfer conditions. Our approach opens new avenues for the development of biomimetic planar membranes with a nanoscale texture.
Collapse
|
5
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Deguchi S, Yokoyama R, Maki T, Tomita K, Osugi R, Hakamada M, Mabuchi M. A new mechanism for reduced cell adhesion: Adsorption dynamics of collagen on a nanoporous gold surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111461. [PMID: 33321592 DOI: 10.1016/j.msec.2020.111461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 11/24/2022]
Abstract
Nanostructured materials such as nanoparticles and nanoporous materials strongly affect cell behaviors such as cell viability. Because cellular uptake of nanoporous materials does not occur, mechanisms for the effects of nanoporous materials on cells are different from those of nanoparticles. The effects of nanoporous materials on cells are thought to result from large conformational changes in the extracellular matrix (ECM) induced by the nanoporous materials, although the mechanotransduction and the critical focal adhesion cluster size also have an effect on the cell response. However, we show that the adhesion of mesenchymal stem cells to a gold surface is reduced for nanoporous gold (NPG), despite the conformational changes in collagen induced by NPG being below the detection limits of the experimental analyses. The adsorption dynamics of collagen on NPG are investigated by molecular dynamics simulations to determine the origin of the reduced cell adhesion to NPG. The adsorption energy of collagen on NPG is lower than that on flat gold (FG) despite there being little difference between the global conformation of collagen segments adsorbed on NPG compared with FG. This finding is related to the surface strain of NPG and the limited movement of collagen amino acids owing to interchain hydrogen bonds. The results obtained in this study provide new insight into the interactions between nanostructured materials and the ECM.
Collapse
Affiliation(s)
- Soichiro Deguchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan.
| | - Ryo Yokoyama
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Takuya Maki
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Kazuki Tomita
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Ryosuke Osugi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| |
Collapse
|
7
|
Yaşayan G, Mega Tiber P, Orun O, Alarçin E. Doxorubicin hydrochloride loaded nanotextured films as a novel drug delivery platform for ovarian cancer treatment. Pharm Dev Technol 2020; 25:1289-1301. [PMID: 32930020 DOI: 10.1080/10837450.2020.1823992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An approach for cancer treatment is modulation of tumor microenvironment. Based on the role of extracellular matrix in cell modulation, fabrication of textured materials mimicking extracellular matrix could provide novel opportunities such as determining cancer cell behaviour. With this background, in this work, we have fabricated doxorubicin hydrochloride loaded nanotextured films which promote topographical attachment of cancer cells to film surface, and eliminate cells by release of the anti-cancer drug encapsulated within the films. These films are designed to be placed during surgical removal of the tumor with the intent to prevent ovarian cancer recurrence by capturing cancer cell residuals. With this aim, hemispherical protrusion shaped surface textures were acquired using colloidal lithography technique using 280 nm, 210 nm or 99 nm polystyrene particles. Once moulds were formed, nanotextured films were obtained by casting water-in-oil stable polycaprolactone emulsions encapsulating doxorubicin hydrochloride. Films were then characterized, and evaluated as drug delivery systems. According to results, we found that template morphologies were successfully transferred to films by atomic force microscopy studies. Hydrophilic surfaces were formed with contact angle values around 40°. In-vitro drug release studies indicated that nanotextured films best fit into the Higuchi model, and ∼30% of the drug is released from the films within 60 days. Cell culture results indicated increases in the attachment and viability of human ovarian cancer cells to nanotextured surfaces, particularly to the film fabricated using 99 nm particles. Our results demonstrated that delivery of anti-cancer drugs by use of nanotextured materials could be efficient in cancer therapy, and may offer new possibilities for cancer treatment.
Collapse
Affiliation(s)
- Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Pınar Mega Tiber
- Department of Biophysics, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - Oya Orun
- Department of Biophysics, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - Emine Alarçin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Greer AI, Goriainov V, Kanczler J, Black CR, Turner LA, Meek RM, Burgess K, MacLaren I, Dalby MJ, Oreffo RO, Gadegaard N. Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33541-33549. [PMID: 32633478 PMCID: PMC7467557 DOI: 10.1021/acsami.0c10273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 05/05/2023]
Abstract
Accelerated de novo formation of bone is a highly desirable aim of implants targeting musculoskeletal injuries. To date, this has primarily been addressed by biologic factors. However, there is an unmet need for robust, highly reproducible yet economic alternative strategies that strongly induce an osteogenic cell response. Here, we present a surface engineering method of translating bioactive nanopatterns from polymeric in vitro studies to clinically relevant material for orthopedics: three-dimensional, large area metal. We use a titanium-based sol-gel whereby metal implants can be engineered to induce osteoinduction both in vitro and in vivo. We show that controlled disordered nanotopographies presented as pillars with 15-25 nm height and 100 nm diameter on titanium dioxide effectively induce osteogenesis when seeded with STRO-1-enriched human skeletal stem cells in vivo subcutaneous implantation in mice. After 28 days, samples were retrieved, which showed a 20-fold increase in osteogenic gene induction of nanopatterned substrates, indicating that the sol-gel nanopatterning method offers a promising route for translation to future clinical orthopedic implants.
Collapse
Affiliation(s)
- Andrew I.M. Greer
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, GlasgowG12 8LT, United Kingdom
| | - Vitali Goriainov
- Bone
and Joint Research Group, Centre for Human Development Stem Cells
and Regeneration, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Janos Kanczler
- Bone
and Joint Research Group, Centre for Human Development Stem Cells
and Regeneration, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Cameron R.M. Black
- Bone
and Joint Research Group, Centre for Human Development Stem Cells
and Regeneration, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Lesley-Anne Turner
- Centre
for Cell Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Robert M.D. Meek
- Department
of Orthopaedics, Queen Elizabeth University
Hospital, 1345 Govan
Road, Glasgow, Lanarkshire G51 4TF, United Kingdom
| | - Karl Burgess
- Glasgow
Polyomics
Facility, Institute of Biomedical and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Ian MacLaren
- School
of Physics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Matthew J. Dalby
- Centre
for Cell Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Richard O.C. Oreffo
- Bone
and Joint Research Group, Centre for Human Development Stem Cells
and Regeneration, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Nikolaj Gadegaard
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, GlasgowG12 8LT, United Kingdom
| |
Collapse
|
9
|
Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility. COATINGS 2020. [DOI: 10.3390/coatings10020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently has the attention moved to the use of these doped materials as coatings. This paper focusses on the development of a co-RF and pulsed DC magnetron sputtering methodology to produce a high percentage Si containing HA (SiHA) thin films (from 1.8 to 13.4 wt.%; one of the highest recorded in the literature to date). As deposited thin films were found to be amorphous, but crystallised at different annealing temperatures employed, dependent on silicon content, which also lowered surface energy profiles destabilising the films. X-ray photoelectron spectroscopy (XPS) was used to explore the structure of silicon within the films which were found to be in a polymeric (SiO2; Q4) state. However, after annealing, the films transformed to a SiO44−, Q0, state, indicating that silicon had substituted into the HA lattice at higher concentrations than previously reported. A loss of hydroxyl groups and the maintenance of a single-phase HA crystal structure further provided evidence for silicon substitution. Furthermore, a human osteoblast cell (HOB) model was used to explore the in vitro cellular response. The cells appeared to prefer the HA surfaces compared to SiHA surfaces, which was thought to be due to the higher solubility of SiHA surfaces inhibiting protein mediated cell attachment. The extent of this effect was found to be dependent on film crystallinity and silicon content.
Collapse
|
10
|
Effect of Polymer Demixed Nanotopographies on Bacterial Adhesion and Biofilm Formation. Polymers (Basel) 2019; 11:polym11121921. [PMID: 31766551 PMCID: PMC6960884 DOI: 10.3390/polym11121921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022] Open
Abstract
As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies. In the PS/PCL system, PS segregates to the air-polymer interface, with the lower solubility PCL preferring the substrate-polymer interface. In the PS/PMMA and PCL/PMMA systems, PMMA prefers the air-polymer interface due to its greater solubility and lower surface energy. The anti-adhesion efficacy of the demixed films were tested against Pseudomonas aeruginosa (PA14). PS/PCL and PCL/PMMA demixed films showed a significant reduction in cell counts adhered on their surfaces compared to pure polymer control films, while no reduction was observed in the counts adhered on PS/PMMA demixed films. While the specific morphology did not affect the adhesion, a relationship between bacterial cell and topographical surface feature size was apparent. If the surface feature was smaller than the cell, then an anti-adhesion effect was observed; if the surface feature was larger than the cell, then the bacteria preferred to adhere.
Collapse
|
11
|
Banville FA, Moreau J, Chabot K, Cattoni A, Fröhlich U, Bryche JF, Collin S, Charette PG, Grandbois M, Canva M. Nanoplasmonics-enhanced label-free imaging of endothelial cell monolayer integrity. Biosens Bioelectron 2019; 141:111478. [PMID: 31280004 DOI: 10.1016/j.bios.2019.111478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Surface plasmon resonance imaging (SPRI) is a powerful label-free imaging modality for the analysis of morphological dynamics in cell monolayers. However, classical plasmonic imaging systems have relatively poor spatial resolution along one axis due to the plasmon mode attenuation distance (tens of μm, typically), which significantly limits their ability to resolve subcellular structures. We address this limitation by adding an array of nanostructures onto the metal sensing surface (25 nm thick, 200 nm width, 400 nm period grating) to couple localized plasmons with propagating plasmons, thereby reducing attenuation length and commensurately increasing spatial imaging resolution, without significant loss of sensitivity or image contrast. In this work, experimental results obtained with both conventional unstructured and nanostructured gold film SPRI sensor chips show a clear gain in spatial resolution achieved with surface nanostructuring. The work demonstrates the ability of the nanostructured SPRI chips to resolve fine morphological detail (intercellular gaps) in experiments monitoring changes in endothelial cell monolayer integrity following the activation of the cell surface protease-activated receptor 1 (PAR1) by thrombin. In particular, the nanostructured chips reveal the persistence of small intercellular gaps (<5 μm2) well after apparent recovery of cell monolayer integrity as determined by conventional unstructured surface based SPRI. This new high spatial resolution plasmonic imaging technique uses low-cost and reusable patterned substrates and is likely to find applications in cell biology and pharmacology by allowing label-free quantification of minute cell morphological activities associated with receptor dependent intracellular signaling activity.
Collapse
Affiliation(s)
- Frederic A Banville
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School, Université Paris-Saclay, CNRS, Palaiseau, 91127, France
| | - Julien Moreau
- Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School, Université Paris-Saclay, CNRS, Palaiseau, 91127, France
| | - Kevin Chabot
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada
| | - Andrea Cattoni
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR-9001, Université Paris-Sud/Paris-Saclay, Palaiseau, 91120, France
| | - Ulrike Fröhlich
- Département de Pharmacologie et Physiologie, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Canada
| | - Jean-François Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada
| | - Stéphane Collin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR-9001, Université Paris-Sud/Paris-Saclay, Palaiseau, 91120, France
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada
| | - Michel Grandbois
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Département de Pharmacologie et Physiologie, Institut de Pharmacologie de Sherbrooke (IPS), Université de Sherbrooke, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, J1K 0A5, Canada; Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School, Université Paris-Saclay, CNRS, Palaiseau, 91127, France.
| |
Collapse
|
12
|
Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy. Int J Biomater 2019; 2019:2393481. [PMID: 31186649 PMCID: PMC6521382 DOI: 10.1155/2019/2393481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022] Open
Abstract
Whilst the significance of substrate topography as a regulator of cell function is well established, a systematic analysis of the principles underlying this is still unavailable. Here we evaluate the hypothesis that surface energy plays a decisive role in substrate-mediated modulation of cell phenotype by evaluation of cell behaviour on synthetic microstructures exhibiting pronounced differences in surface energy. These microstructures, specifically cubes and walls, were fabricated from a biocompatible base polymer, poly(methyl methacrylate), by variotherm injection molding. The dimensions of the cubes were 1 μm x 1 μm x 1 μm (height x width x length) with a periodicity of 1:1 and 1:5 and the dimensions of the walls 1 μm x 1 μm x 15 mm (height x width x length) with a periodicity of 1:1 and 1:5. Mold inserts were made by lithography and electroplating. The surface energy of the resultant microstructures was determined by static contact angle measurements. Light scanning microscopy of the morphology of NT2/D1 and MC3T3-E1 preosteoblast cells cultured on structured PMMA samples in both cases revealed a profound surface energy dependence. “Walls” appeared to promote significant cell elongation, whilst a lack of cell adhesion was observed on “cubes” with the lowest periodicity. Contact angle measurements on walls revealed enhanced surface energy anisotropy (55 mN/m max., 10 mN/m min.) causing a lengthwise spreading of the test liquid droplet, similar to cell elongation. Surface energy measurements for cubes revealed increased isotropic hydrophobicity (87° max., H2O). A critical water contact angle of ≤ 80° appears to be necessary for adequate cell adhesion. A “switch” for cell adhesion and subsequently cell growth could therefore be applied by, for example, adjusting the periodicity of hydrophobic structures. In summary cell elongation on walls and a critical surface energy level for cell adhesion could be produced for NT2/D1 and MC3T3-E1 cells by symmetrical and asymmetrical energy barrier levels. We, furthermore, propose a water-drop model providing a common physicochemical cause regarding similar cell/droplet geometries and cell adhesion on the investigated microstructures.
Collapse
|
13
|
Yaşayan G, Orun O, Mega Tiber P, Rožman V, Koçyiğit Sevinç S. The interactions of human ovarian cancer cells and nanotextured surfaces: cell attachment, viability and apoptosis studies. RSC Adv 2019; 9:25957-25966. [PMID: 35531028 PMCID: PMC9070382 DOI: 10.1039/c9ra03783g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding cell responses to the topography they are interacting with has a key role in designing surfaces due to the distinctiveness in the responses of different cell types. Thus far, a variety of surface textures have been fabricated, and the cellular responses of diversified cell lines to the surface textures have been assessed together with surface chemistry. However, the results reported in the literature are contradictory, and also not in-depth for inferring the relevance between cells, surface chemistry, and surface topography. Starting from this point of view, we focused on fabricating surfaces having extracellular matrix-like surface patterns and investigated the influence of patterning on human ovarian cancer cells. In this study, hemispherical protrusion-shaped, nanotextured surfaces were prepared via colloidal lithography and polymer casting methods using monolayer templates prepared from 280 nm, 210 nm, and 99 nm polystyrene particles and polydimethylsiloxane moulds. Then, the surface textures were transferred to biocompatible polycaprolactone films. After the characterisation of the surfaces via atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, the cellular response to topography was evaluated by cell attachment, viability, and apoptosis studies. The results were compared with non-textured surfaces and control plate wells. The results showed that human ovarian cancer cell attachment increased with nanotexturing, which suggests that nanotexturing may be a promising approach for cancer cell modulation, and may have the potential to introduce new strategies for cancer treatment. Fabrication and characterisation studies of nanotextured polycaprolactone surfaces, and an investigation of their influence on human ovarian carcinoma cells.![]()
Collapse
Affiliation(s)
- Gökçen Yaşayan
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Marmara University
- İstanbul 34668
- Turkey
| | - Oya Orun
- Department of Biophysics
- Faculty of Medicine
- Marmara University
- İstanbul 34854
- Turkey
| | - Pınar Mega Tiber
- Department of Biophysics
- Faculty of Medicine
- Marmara University
- İstanbul 34854
- Turkey
| | - Veronika Rožman
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Marmara University
- İstanbul 34668
- Turkey
| | | |
Collapse
|
14
|
Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E960. [PMID: 30469378 PMCID: PMC6266401 DOI: 10.3390/nano8110960] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
In the process of bone regeneration, new bone formation is largely affected by physico-chemical cues in the surrounding microenvironment. Tissue cells reside in a complex scaffold physiological microenvironment. The scaffold should provide certain circumstance full of structural cues to enhance multipotent mesenchymal stem cell (MSC) differentiation, osteoblast growth, extracellular matrix (ECM) deposition, and subsequent new bone formation. This article reviewed advances in fabrication technology that enable the creation of biomaterials with well-defined pore structure and surface topography, which can be sensed by host tissue cells (esp., stem cells) and subsequently determine cell fates during differentiation. Three important cues, including scaffold pore structure (i.e., porosity and pore size), grain size, and surface topography were studied. These findings improve our understanding of how the mechanism scaffold microenvironmental cues guide bone tissue regeneration.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hongyuan Fan
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaowei Deng
- Department of Civil Engineering, The University of Hongkong, Pokfulam, Hongkong 999077, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Tao Yi
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Margolis G, Polyak B, Cohen S. Magnetic Induction of Multiscale Anisotropy in Macroporous Alginate Scaffolds. NANO LETTERS 2018; 18:7314-7322. [PMID: 30380888 DOI: 10.1021/acs.nanolett.8b03514] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nano- and microscale topographical cues have become recognized as major regulators of cell growth, migration, and phenotype. In tissue engineering, the complex and anisotropic architecture of culture platforms is aimed to imitate the high degree of spatial organization of the extracellular matrix and basement membrane components. Here, we developed a method of creating a novel, magnetically aligned, three-dimensional (3D) tissue culture matrix with three distinct classes of anisotropy-surface topography, microstructure, and physical properties. Alginate-stabilized magnetic nanoparticles (MNPs) were added to a cross-linked alginate solution, and an external magnetic field of about 2400 G was applied during freezing to form the aligned macroporous scaffold structure. The resultant scaffold exhibited anisotropic topographic features on the submicron scale, the directionality of the pore shape, and increased scaffold stiffness in the direction of magnetic alignment. These scaffold features were modulated by an alteration in the impregnated MNP size and concentration, as quantified by electron microscopy, advanced image processing analyses, and rheological methods. Mouse myoblasts (C2C12) cultured on the magnetically aligned scaffolds, demonstrated co-oriented morphology in the direction of the magnetic alignment. In summary, magnetic alignment introduces several degrees of anisotropy in the scaffold structure, providing diverse mechanical cues that can affect seeded cells and further tissue development. Multiscale anisotropy together with the capability of the MNP-containing alginate scaffolds to undergo reversible shape deformation in an oscillating magnetic field creates interesting opportunities for multifarious stimulation of cells and functional tissue development.
Collapse
Affiliation(s)
- Gal Margolis
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
| | - Boris Polyak
- Department of Surgery, Pharmacology, and Physiology , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
- The Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
- Regenerative Medicine and Stem Cell (RMSC) Research Center , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
| |
Collapse
|
16
|
Fischer NG, Wong J, Baruth A, Cerutis DR. Effect of Clinically Relevant CAD/CAM Zirconia Polishing on Gingival Fibroblast Proliferation and Focal Adhesions. MATERIALS 2017; 10:ma10121358. [PMID: 29186907 PMCID: PMC5744293 DOI: 10.3390/ma10121358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023]
Abstract
Mucosal seal formation around dental abutments is critical to the successful integration of dental implants into the human oral cavity. No information exists for how clinically relevant polishing procedures for computer-aided design and computer-aided manufactured (CAD/CAM) zirconia abutments affects cellular responses important to mucosal seal formation. CAD/CAM zirconia was divided into four groups for clinically relevant polishing utilizing commercial polishing heads: control, coarse, coarse plus medium, and coarse plus medium plus fine. Surfaces were analyzed with scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical profilometry (OP). Subsequently, human gingival fibroblasts (HGFs) were seeded onto the zirconia surfaces. Proliferation was measured via a quantitative SEM technique and focal adhesion kinase (FAK) phosphorylation status was measured by an enzyme-linked immunosorbent assay (ELISA). Results showed an increase in proliferation on all polished surfaces as compared to the control. Phosphorylation of FAK at tyrosine 397 (Y397) was up-modulated on the control surfaces. The associated cell adaptation is discussed. In all cases, FAK phosphorylation was greater at 24 h than 48 h. These results suggest that clinicians should be mindful of the effects of abutment polishing methodology, as this may have an impact on early mucosal seal formation.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Jeffrey Wong
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Andrew Baruth
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - D Roselyn Cerutis
- Department of Oral Biology, School of Dentistry, Creighton University, 2802 Webster Street, Omaha, NE 68178, USA.
| |
Collapse
|
17
|
Barata D, Dias P, Wieringa P, van Blitterswijk C, Habibovic P. Cell-instructive high-resolution micropatterned polylactic acid surfaces. Biofabrication 2017; 9:035004. [PMID: 28671108 DOI: 10.1088/1758-5090/aa7d24] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Micro and nanoscale topographical structuring of biomaterial surfaces has been a valuable tool for influencing cell behavior, including cell attachment, proliferation and differentiation. However, most fabrication techniques for surface patterning of implantable biomaterials suffer from a limited resolution, not allowing controlled generation of sub-cellular three-dimensional features. Here, a direct laser lithography technique based on two-photon absorption was used to construct several patterns varying in size between 500 nm and 15 μm. Through replication via an intermediate mold, the patterns were transferred into polylactic acid (PLA), a widely used biomedical polymer, while retaining the original geometry. An osteoblast-like cell line, MG-63 was used for characterizing the morphological response to the topographical patterns. The results indicated that semi-continuous (dashed) lines, with a height of 1 μm were able to induce cell elongation in the direction of the lines. However, when dashes with a height of 0.5 μm were combined with perpendicularly crossing continuous lines (rails) with a height of 8 μm, the contact guidance effect of the dashes was lost and elongation of the cells was observed in the direction of the larger features. A second pattern, consisting of different arrays of pillars showed that, depending on the pillar height, the cells were either able to spread over the pattern or were confined between the pattern features. These differences in the ability of cells to spread further resulted in the formation of tension forces through stress fibers and displacement of vimentin. The method for high-resolution micropatterning of PLA as presented here can also be applied to other biomedical polymers, making it useful both for fundamental studies and for designing new biomaterials with improved functionality.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, Netherlands. Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, Netherlands
| | | | | | | | | |
Collapse
|
18
|
Skoog SA, Kumar G, Narayan RJ, Goering PL. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol Ther 2017; 182:33-55. [PMID: 28720431 DOI: 10.1016/j.pharmthera.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.
Collapse
Affiliation(s)
- Shelby A Skoog
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Girish Kumar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States.
| |
Collapse
|
19
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
20
|
Dhawan U, Pan HA, Chu YH, Huang GS, Chen PC, Chen WL. Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress. IEEE Trans Nanobioscience 2016; 15:704-712. [PMID: 28029616 DOI: 10.1109/tnb.2016.2605686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biomaterial design involves assessment of cellular response to nanotopography parameters such as shape, dimension of nanotopography features. Here, the effect of nanotopography alongside the in vivo factor, shear stress, on osteoblast cell behavior, is reported. Tantalum oxide nanodots of 50 or 100 nm diameter were engineered using anodized aluminum oxide as a template. Bare tantalum nitride coated silicon substrates were taken as control (flat). MG63 (osteoblast) cells were seeded for 72 hours on flat, 50 or 100 nm nanodots and modulation in cell morphology, cell viability and expression of integrins was studied. Cells displayed a well-extended morphology on 50 nm nanodots in contrast to an elongated morphology on 100 nm nanodots, as observed by scanning electron microscopy and immunofluorescence staining, thereby confirming the cellular response to different nanotopographies. Based on quantitative real-time polymerase chain reaction data, a greater fold change in the expression of α1 , α2 , α3 , α8 , α9 , [Formula: see text], β1 , β4 , β5 , β7 and β8 integrins was observed in cells cultured on 100 nm than on 50 nm nanodots. Moreover, in the presence of a shear stress of 2 dyne/cm2, a 52% increase in the cell viability after culturing the cells for 72 hours was observed on 100 nm nanodots as compared to 50 nm nanodots, thereby validating the effect of shear stress on cell behavior. Duration-of-culture experiments revealed 100 nm nanodots to be an ideal nanotopography choice to engineer optimized implant geometries for an ideal cell response. This study highlights the in vivo factors which need to be considered while designing nanotopographies for in vivo applications, for an ideal response as the cell-nanomaterial interface. Applications in the field of Biomedical, tissue engineering and cancer research are expected.
Collapse
|
21
|
Hadler C, Aliuos P, Brandes G, Warnecke A, Bohlmann J, Dempwolf W, Menzel H, Lenarz T, Reuter G, Wissel K. Polymer Coatings of Cochlear Implant Electrode Surface - An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth. PLoS One 2016; 11:e0157710. [PMID: 27391483 PMCID: PMC4938590 DOI: 10.1371/journal.pone.0157710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022] Open
Abstract
Overgrowth of connective tissue and scar formation induced by the electrode array insertion increase the impedance and, thus, diminish the interactions between neural probes as like cochlear implants (CI) and the target tissue. Therefore, it is of great clinical interest to modify the carrier material of the electrodes to improve the electrode nerve interface for selective cell adhesion. On one side connective tissue growth needs to be reduced to avoid electrode array encapsulation, on the other side the carrier material should not compromise the interaction with neuronal cells. The present in vitro-study qualitatively and quantitatively characterises the interaction of fibroblasts, glial cells and spiral ganglion neurons (SGN) with ultrathin poly(N,N-dimethylacrylamide) (PDMAA), poly(2-ethyloxazoline) (PEtOx) and poly([2-methacryloyloxy)ethyl]trimethylammoniumchlorid) (PMTA) films immobilised onto glass surfaces using a photoreactive anchor layer. The layer thickness and hydrophilicity of the polymer films were characterised by ellipsometric and water contact angle measurement. Moreover the topography of the surfaces was investigated using atomic force microscopy (AFM). The neuronal and non-neuronal cells were dissociated from spiral ganglions of postnatal rats and cultivated for 48 h on top of the polymer coatings. Immunocytochemical staining of neuronal and intermediary filaments revealed that glial cells predominantly attached on PMTA films, but not on PDMAA and PEtOx monolayers. Hereby, strong survival rates and neurite outgrowth were only found on PMTA, whereas PDMAA and PEtOx coatings significantly reduced the SG neuron survival and neuritogenesis. As also shown by scanning electron microscopy (SEM) SGN strongly survived and retained their differentiated phenotype only on PMTA. In conclusion, survival and neuritogenesis of SGN may be associated with the extent of the glial cell growth. Since PMTA was the only of the polar polymers used in this study bearing a cationic charge, it can be assumed that this charge favours adhesion of both glial cells and SG neurons glial cells and SGN.
Collapse
Affiliation(s)
- C. Hadler
- Institute for Technical Chemistry, University of Technology Braunschweig, Braunschweig, Germany
| | - P. Aliuos
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing 4 All”, Hannover, Germany
| | - G. Brandes
- Institute of Cell Biology, Center of Anatomy, Hannover Medical School, Hannover, Germany
| | - A. Warnecke
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing 4 All”, Hannover, Germany
| | - J. Bohlmann
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - W. Dempwolf
- Institute for Technical Chemistry, University of Technology Braunschweig, Braunschweig, Germany
| | - H. Menzel
- Institute for Technical Chemistry, University of Technology Braunschweig, Braunschweig, Germany
| | - T. Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing 4 All”, Hannover, Germany
| | - G. Reuter
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - K. Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
22
|
Hsu SH, Tseng HJ. In vitro Biocompatibility of PTMO-based Polyurethanes and those Containing PDMS Blocks. J Biomater Appl 2016; 19:135-46. [PMID: 15381786 DOI: 10.1177/0885328204044160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a series of different polyurethanes based on poly(tetramethylene oxide) (PTMO, MW 2000) and chain extended with butenediol were synthesized by a two-step solution polymerization. Three of them contained silanol terminated polydimethylsiloxane (PDMS, MW 2000) blocks. It was shown that these polymers exhibited various degrees of micro-phase separation that further influenced their biological performances in vitro. The formulation with diphenylmethane diisocyanate/PTMO/PDMS/2-butene-1,4-diol at a molar ratio of 2: 0.75: 0.5: 1 in synthesis was favorable due to a combination of enhanced mechanical properties, biostability, cellular affinity as well as platelet nonadherence.
Collapse
Affiliation(s)
- Shan-Hui Hsu
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan 402, ROC.
| | | |
Collapse
|
23
|
Dhawan U, Pan HA, Lee CH, Chu YH, Huang GS, Lin YR, Chen WL. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry. PLoS One 2016; 11:e0158425. [PMID: 27362432 PMCID: PMC4928932 DOI: 10.1371/journal.pone.0158425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Nanotopological cues can be exploited to understand the nature of interactions between cells and their microenvironment to generate superior implant geometries. Nanosurface parameters which modulate the cell behavior and characteristics such as focal adhesions, cell morphology are not clearly understood. Here, we studied the role of different nanotopographic dimensions in modulating the cell behavior, characteristics and ultimately the cell fate and accordingly, a methodology to improve implant surface geometry is proposed. Tantalum oxide nanodots of 50, 100nm dot diameter with an inter-dot spacing of 20, 70nm and heights 40, 100nm respectively, were engineered on Silicon substrates. MG63 cells were cultured for 72 hours and the modulation in morphology, focal adhesions, cell extensible area, cell viability, transcription factors and genes responsible for bone protein secretion as a function of the nanodot diameter, inter-dot distance and nanodot height were evaluated. Nanodots of 50nm diameter with a 20nm inter-dot spacing and 40nm height enhanced cell spreading area by 40%, promoted cell viability by 70% and upregulated transcription factors and genes twice as much, as compared to the 100nm nanodots with 70nm inter-dot spacing and 100nm height. Favorable interactions between cells and all dimensions of 50nm nanodot diameter were observed, determined with Scanning electron microscopy and Immunofluorescence staining. Nanodot height played a vital role in controlling the cell fate. Dimensions of nanodot features which triggered a transition in cell characteristics or behavior was also defined through statistical analysis. The findings of this study provide insights in the parameters of nanotopographic features which can vitally control the cell fate and should therefore be taken into account when designing implant geometries.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Hsu An Pan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Chia Hui Lee
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Ying Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Yan Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Wen Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
24
|
Yaşayan G, Xue X, Collier P, Clarke P, Alexander MR, Marlow M. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment. NANOTECHNOLOGY 2016; 27:255102. [PMID: 27184195 DOI: 10.1088/0957-4484/27/25/255102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.
Collapse
Affiliation(s)
- Gökçen Yaşayan
- University of Nottingham, School of Pharmacy, Division of Drug Delivery and Tissue Engineering, Boots Science Building, University Park, Nottingham, NG7 2RD, UK. Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Technology İstanbul, 34668, Turkey
| | | | | | | | | | | |
Collapse
|
25
|
D'Sa RA, Raj J, Dickinson PJ, McCabe F, Meenan BJ. Human Fetal Osteoblast Response on Poly(Methyl Methacrylate)/Polystyrene Demixed Thin Film Blends: Surface Chemistry Vs Topography Effects. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14920-14931. [PMID: 26713767 DOI: 10.1021/acsami.5b08073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.
Collapse
Affiliation(s)
- Raechelle A D'Sa
- Centre for Materials and Structures, University of Liverpool , Brownlow Hill, Liverpool L69 3GH, United Kingdom
| | - Jog Raj
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster , Shore Road, Newtownabbey, BT37 0QB, United Kingdom
| | - Peter J Dickinson
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster , Shore Road, Newtownabbey, BT37 0QB, United Kingdom
| | - Fiona McCabe
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster , Shore Road, Newtownabbey, BT37 0QB, United Kingdom
| | - Brian J Meenan
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), University of Ulster , Shore Road, Newtownabbey, BT37 0QB, United Kingdom
| |
Collapse
|
26
|
Hughes AD, Marsh G, Waugh RE, Foster DG, King MR. Halloysite Nanotube Coatings Suppress Leukocyte Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13553-13560. [PMID: 26605493 PMCID: PMC5097672 DOI: 10.1021/acs.langmuir.5b03288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanoscale topography of adhesive surfaces is known to be an important factor governing cellular behavior. Previous work has shown that surface coatings composed of halloysite nanotubes enhance the adhesion, and therefore capture of, rare target cells such as circulating tumor cells. Here we demonstrate a unique feature of these coatings in their ability to reduce the adhesion of leukocytes and prevent leukocyte spreading. Surfaces were prepared with coatings of halloysite nanotubes and functionalized for leukocyte adhesion with E-selectin, and the dilution of nanotube concentration revealed a threshold concentration below which cell spreading became comparable to smooth surfaces. Evaluation of surface roughness characteristics determined that the average distance between discrete surface features correlated with adhesion metrics, with a separation distance of ∼2 μm identified as the critical threshold. Computational modeling of the interaction of leukocytes with halloysite nanotube-coated surfaces of varying concentrations demonstrates that the geometry of the cell surface and adhesive counter-surface produces a significantly diminished effective contact area compared to a leukocyte interacting with a smooth surface.
Collapse
Affiliation(s)
- Andrew D. Hughes
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853
| | - Graham Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
| | - David G. Foster
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
| | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
27
|
Lee JW, Park JW, Khang D. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes. PLoS One 2015; 10:e0129856. [PMID: 26076355 PMCID: PMC4468207 DOI: 10.1371/journal.pone.0129856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Osteoblast differentiation can be modulated by variations in order of nanoscale topography. Biopolymers embedded with carbon nanotubes can cause various orders of roughness at the nanoscale and can be used to investigate the dynamics of extracellular matrix interaction with cells. In this study, clear relationship between the response of osteoblasts to integrin receptor activation, their phenotype, and transcription of certain genes on polymer composites embedded with carbon nanotubes was demonstrated. We generated an ultrathin nanocomposite film embedded with carbon nanotubes and observed improved adhesion of pre-osteoblasts, with a subsequent increase in their proliferation. The expression of genes encoding integrin subunits α5, αv, β1, and β3 was significantly upregulated at the early of time-point when cells initially attached to the carbon nanotube/polymer composite. The advantage of ultrathin nanocomposite film for pre-osteoblasts was demonstrated by staining for the cytoskeletal protein vinculin and cell nuclei. The expression of essential transcription factors for osteoblastogenesis, such as Runx2 and Sp7 transcription factor 7 (known as osterix), was upregulated after 7 days. Consequently, the expression of genes that determine osteoblast phenotype, such as alkaline phosphatase, type I collagen, and osteocalcin, was accelerated on carbon nanotube embedded polymer matrix after 14 days. In conclusion, the ultrathin nanocomposite film generated various orders of nanoscale topography that triggered processes related to osteoblast bone formation.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
- * E-mail: (J-WP); (DK)
| | - Dongwoo Khang
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
- * E-mail: (J-WP); (DK)
| |
Collapse
|
28
|
Khattak M, Pu F, Curran JM, Hunt JA, D'Sa RA. Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:178. [PMID: 25893385 DOI: 10.1007/s10856-015-5507-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Advances in material sciences have enabled the fabrication of biomaterials which are able to provide the requisite cues to stimulate cells to behave in a specific way. Nanoscale surface topographies are well known to be able to positively influence cell-substrate interactions. This study reports on a novel series of poly(ε-caprolactone) PCL and poly(methyl methacrylate) demixed nanotopographic films as non-biological cell-stimulating cues. The topographic features observed ranged from nanoislands to nanopits. PMMA was observed to segregate to the air interface, while PCL preferred the substrate interface. Preliminary response of human mesenchymal stem cells to these surfaces indicated that the substrate with nanoisland topography has the potential to differentiate to osteogenic, chondrogenic and adipogenic lineages.
Collapse
Affiliation(s)
- Mohammed Khattak
- Centre for Materials and Structures, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | | | | | | | | |
Collapse
|
29
|
Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine (Lond) 2015; 10:849-71. [DOI: 10.2217/nnm.14.222] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell–material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Collapse
Affiliation(s)
- Hala S Dhowre
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Sunil Rajput
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Noah A Russell
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
| | - Mischa Zelzer
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
- Interface & Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
30
|
Ali S, Tian W, Ali N, Shi L, Kong J, Ali N. Polymer melt flow through nanochannels: from theory and fabrication to application. RSC Adv 2015. [DOI: 10.1039/c4ra14787a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This short review presents the theory, fabrication, and application of polymer melts through nanochannels.
Collapse
Affiliation(s)
- Sarmad Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nisar Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Lingxiao Shi
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nazakat Ali
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
31
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Lin SP, Huang SY, Chen SF, Vinzons LU, Ciou JY, Wong PJ. Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12071-12082. [PMID: 25012464 DOI: 10.1021/am503323y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In order to gain insight into how interfacial effects influence cell responses, chemically modified anodized TiO2 nanotubes (ATNs) were used to simultaneously investigate the effects of nanoscale substrate structure and angstrom-scale chemicals on cell morphological change and cell growth. Two small chemicals were used to modify the ATNs, namely, 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), resulting in APTMS-modified ATNs (APTMS-ATNs) and MPTMS-modified ATNs (MPTMS-ATNs), respectively. In our in vitro observation of NIH/3T3 fibroblasts, cells thrived on both unmodified and modified ATNs. Quantitative analyses of cell numbers exhibited that APTMS-ATNs effectively facilitated cell proliferation and directed cell orientation owing to full cell-substrate contact caused by positively charged amino groups (-NH3(+)) on the surface. In addition, scanning electron microscopy and fluorescence images showed different cell morphologies on APTMS-ATNs and MPTMS-ATNs. APTMS-ATNs resulted in flat spreading of fibroblasts, while MPTMS-ATNs resulted in fibroblasts with a three-dimensional solid shape and clear contours. The results indicate that the synergistic effects of nanotube surface topology and small chemical modification and, to a lesser extent, surface hydrophilicity, alter the interfacial interactions between cells and substrates, significantly affecting cell morphology, attachment, and growth. Using ATNs with different interfacial effects from various small chemicals, orientation of cells into various patterns can be achieved and investigation of cell fates, such as proliferation or stem cell differentiation, can be performed for future advanced medical or biological applications.
Collapse
Affiliation(s)
- Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, §Bachelor Program of Biotechnology, National Chung Hsing University , 250 Kuo-Kuang Road, Taichung, 40227 Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. NATURE MATERIALS 2014; 13:558-69. [PMID: 24845995 DOI: 10.1038/nmat3980] [Citation(s) in RCA: 720] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
Stem cells respond to nanoscale surface features, with changes in cell growth and differentiation mediated by alterations in cell adhesion. The interaction of nanotopographical features with integrin receptors in the cells' focal adhesions alters how the cells adhere to materials surfaces, and defines cell fate through changes in both cell biochemistry and cell morphology. In this Review, we discuss how cell adhesions interact with nanotopography, and we provide insight as to how materials scientists can exploit these interactions to direct stem cell fate and to understand how the behaviour of stem cells in their niche can be controlled. We expect knowledge gained from the study of cell-nanotopography interactions to accelerate the development of next-generation stem cell culture materials and implant interfaces, and to fuel discovery of stem cell therapeutics to support regenerative therapies.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
34
|
McNamara LE, Sjöström T, Seunarine K, Meek RD, Su B, Dalby MJ. Investigation of the limits of nanoscale filopodial interactions. J Tissue Eng 2014; 5:2041731414536177. [PMID: 24904726 PMCID: PMC4046805 DOI: 10.1177/2041731414536177] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 04/27/2014] [Indexed: 01/18/2023] Open
Abstract
Mesenchymal stem cells are sensitive to changes in feature height, order and spacing. We had previously noted that there was an inverse relationship between osteoinductive potential and feature height on 15-, 55- and 90 nm-high titania nanopillars, with 15 nm-high pillars being the most effective substrate at inducing osteogenesis of human mesenchymal stem cells. The osteoinductive effect was somewhat diminished by decreasing the feature height to 8 nm, however, which suggested that there was a cut-off point, potentially associated with a change in cell–nanofeature interactions. To investigate this further, in this study, a scanning electron microscopy/three-dimensional scanning electron microscopy approach was used to examine the interactions between mesenchymal stem cells and the 8 and 15 nm nanopillared surfaces. As expected, the cells adopted a predominantly filopodial mode of interaction with the 15 nm-high pillars. Interestingly, fine nanoscale membrane projections, which we have termed ‘nanopodia,’ were also employed by the cells on the 8 nm pillars, and it seems that this is analogous to the cells ‘clinging on with their fingertips’ to this scale of features.
Collapse
Affiliation(s)
- Laura E McNamara
- Centre for Cell Engineering, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Terje Sjöström
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Krishna Seunarine
- Department of Electronics & Electrical Engineering, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Rm Dominic Meek
- Department of Orthopaedics and Trauma, Southern General Hospital, Glasgow, UK
| | - Bo Su
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Karahaliloğlu Z, Ercan B, Denkbaş EB, Webster TJ. Nanofeatured silk fibroin membranes for dermal wound healing applications. J Biomed Mater Res A 2014; 103:135-44. [DOI: 10.1002/jbm.a.35161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Zeynep Karahaliloğlu
- Nanotechnology and Nanomedicine Division; Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Batur Ercan
- Chemical Engineering Department; Northeastern University; Boston 02115 Massachusetts
| | - Emir B. Denkbaş
- Chemistry Department; Biochemistry Division, Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Thomas J. Webster
- Chemical Engineering Department; Northeastern University; Boston 02115 Massachusetts
- Center of Excellence for Advanced Materials Research, King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
36
|
Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1494-533. [PMID: 24339188 PMCID: PMC4076293 DOI: 10.1002/adma.201304431] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Indexed: 04/14/2023]
Abstract
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.
Collapse
Affiliation(s)
- Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA). Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| |
Collapse
|
37
|
Svensson S, Forsberg M, Hulander M, Vazirisani F, Palmquist A, Lausmaa J, Thomsen P, Trobos M. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation. Int J Nanomedicine 2014; 9:775-94. [PMID: 24550671 PMCID: PMC3925225 DOI: 10.2147/ijn.s51465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.
Collapse
Affiliation(s)
- Sara Svensson
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Magnus Forsberg
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Mats Hulander
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden ; SP Technical Research Institute of Sweden, Borås, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
38
|
Miller DC, Webster TJ, Haberstroh KM. Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design. Expert Rev Med Devices 2014; 1:259-68. [PMID: 16293046 DOI: 10.1586/17434440.1.2.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, autologous veins are the first choice for patients in need of bypass grafting materials. However, due to either pre-existing conditions or previous bypass surgery, some patients lack the necessary amount of host tissue for such procedures. Unfortunately, current synthetic vascular grafts of less than 6 mm in diameter have been plagued by a variety of problems. For this reason, there has been significant research aimed at finding more suitable small-diameter vascular graft materials. In order to improve vascular cell functions on such synthetic materials, several techniques are currently under development that attempt to mimic the natural nanometer architecture of the vascular basement membrane. This review presents several processes including colloidal lithography, chemical etching, electrospinning and solid free-form fabrication that could play a role in the future of vascular nanostructured biomaterial development.
Collapse
Affiliation(s)
- Derick C Miller
- Purdue University, Department of Biomedical Engineering, 500 Central Drive, West Lafayette, IN 47907-2022, USA
| | | | | |
Collapse
|
39
|
Diban N, Haimi SP, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot AA, Grijpma DW, Stamatialis D. Effect of Surface Morphology of Poly(ϵ-caprolactone) Scaffolds on Adipose Stem Cell Adhesion and Proliferation. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201300106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nazely Diban
- Department of Chemical Engineering; University of Cantabria; Spain
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
| | - Suvi P. Haimi
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
- Adult Stem Cells/Institute of Biomedical Technology; University of Tampere; Finland
| | - Lydia Bolhuis-Versteeg
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
| | - Sandra Teixeira
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
| | - Susanna Miettinen
- Adult Stem Cells/Institute of Biomedical Technology; University of Tampere; Finland
| | - André A. Poot
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
| | - Dirk W. Grijpma
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
- Department of Biomedical Engineering; University Medical Center Groningen and University of Groningen; The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology/MIRA Institute; University of Twente; The Netherlands
| |
Collapse
|
40
|
|
41
|
Sjöström T, McNamara LE, Meek RMD, Dalby MJ, Su B. 2D and 3D nanopatterning of titanium for enhancing osteoinduction of stem cells at implant surfaces. Adv Healthc Mater 2013; 2:1285-93. [PMID: 23495107 DOI: 10.1002/adhm.201200353] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/13/2012] [Indexed: 02/03/2023]
Abstract
The potential for the use of well-defined nanopatterns to control stem cell behaviour on surfaces has been well documented on polymeric substrates. In terms of translation to orthopaedic applications, there is a need to develop nanopatterning techniques for clinically relevant surfaces, such as the load-bearing material titanium (Ti). In this work, a novel nanopatterning method for Ti surfaces is demonstrated, using anodisation in combination with PS-b-P4VP block copolymer templates. The block copolymer templates allows for fabrication of titania nanodot patterns with precisely controlled dimensions and positioning which means that this technique can be used as a lithography-like patterning method of bulk Ti surfaces on both flat 2D and complex shaped 3D surfaces. In vitro studies demonstrate that precise tuning of the height of titania nanodot patterns can modulate the osteogenic differentiation of mesenchymal stem cells. Cells on both the 8 nm and 15 nm patterned surfaces showed a trend towards a greater number of the large, super-mature osteogenic focal adhesions than on the control polished Ti surface, but the osteogenic effect was more pronounced on the 15 nm substrate. Cells on this surface had the longest adhesions of all and produced larger osteocalcin deposits. The results suggest that nanopatterning of Ti using the technique of anodisation through a block copolymer template could provide a novel way to enhance osteoinductivity on Ti surfaces.
Collapse
Affiliation(s)
- Terje Sjöström
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces. Acta Biomater 2013; 9:7354-61. [PMID: 23454055 DOI: 10.1016/j.actbio.2013.02.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/31/2013] [Accepted: 02/20/2013] [Indexed: 12/14/2022]
Abstract
There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments.
Collapse
|
43
|
Hung HS, Tang CM, Lin CH, Lin SZ, Chu MY, Sun WS, Kao WC, Hsien-Hsu H, Huang CY, Hsu SH. Biocompatibility and favorable response of mesenchymal stem cells on fibronectin-gold nanocomposites. PLoS One 2013; 8:e65738. [PMID: 23826082 PMCID: PMC3691216 DOI: 10.1371/journal.pone.0065738] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/27/2013] [Indexed: 12/20/2022] Open
Abstract
A simple surface modification method, comprising of a thin coating with gold nanoparticles (AuNPs) and fibronectin (FN), was developed to improve the biocompatibility required for cardiovascular devices. The nanocomposites from FN and AuNPs (FN-Au) were characterized by the atomic force microscopy (AFM), UV-Vis spectrophotometry (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the nanocomposites was evaluated by the response of monocytes and platelets to the material surface in vitro. FN-Au coated surfaces demonstrated low monocyte activation and platelet activation. The behavior of human umbilical cord-derived mesenchymal stem cells (MSCs) on FN-Au was further investigated. MSCs on FN-Au nanocomposites particularly that containing 43.5 ppm of AuNPs (FN-Au 43.5 ppm) showed cell proliferation, low ROS generation, as well as increases in the protein expression levels of matrix metalloproteinase-9 (MMP-9) and endothelial nitric oxide synthase (eNOS), which may account for the enhanced MSC migration on the nanocomposites. These results suggest that the FN-Au nanocomposite thin film coating may serve as a potential and simple solution for the surface modification of blood-contacting devices such as vascular grafts.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Cheng-Ming Tang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Chien-Hsun Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
- China Medical University Beigang Hospital, Yunlin, Taiwan, R.O.C.
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, R.O.C.
| | - Mei-Yun Chu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
| | - Wei-Shen Sun
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
| | - Wei-Chien Kao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
| | - Hsieh Hsien-Hsu
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, R. O. C.
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.
- * E-mail: (CYH); (SHH)
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
- Rehabilitation Engineering Research Center, National Taiwan University, Taipei, Taiwan, R.O.C.
- * E-mail: (CYH); (SHH)
| |
Collapse
|
44
|
Inzunza D, Covarrubias C, Von Marttens A, Leighton Y, Carvajal JC, Valenzuela F, Díaz-Dosque M, Méndez N, Martínez C, Pino AM, Rodríguez JP, Cáceres M, Smith P. Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res A 2013; 102:37-48. [PMID: 23568757 DOI: 10.1002/jbm.a.34673] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/18/2013] [Accepted: 02/07/2013] [Indexed: 11/11/2022]
Abstract
Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces.
Collapse
Affiliation(s)
- Débora Inzunza
- Departamento de Ciencias Básicas, Laboratorio de Nanobiomateriales, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Independencia, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Singh AV, Patil R, Thombre DK, Gade WN. Micro-nanopatterning as tool to study the role of physicochemical properties on cell-surface interactions. J Biomed Mater Res A 2013; 101:3019-32. [PMID: 23559501 DOI: 10.1002/jbm.a.34586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 11/09/2022]
Abstract
The current nano-biotechnologies interfacing synthetic materials and cell biology requires a better understanding of cell-surface interactions on the micro-to-nanometer scale. Cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids to the substrate. The effect of nanotopography and surface chemistry on protein adsorption as well as the mediation effect on subsequent cellular communication with substratum is not well documented. This review discusses the role of physicochemical properties of cell-surface interactions and state-of-the-art methods currently available for micro-nanoscale surface fabrication and patterning. We also briefly discuss the current surface patterning techniques that allow the combination of a fine and independent control on nanotopography and chemistry to understand the effect of surface nanoscale substrate morphology on cell-surface interactions which has never been realized in previous reports. In addition, we discuss the influence of various chemical patterning and modulation of the nano-topography of surfaces on cell functionality and phenotype.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590; Center for Biotechnology and Interdisciplinary Studies, Room 2145, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
| | | | | | | |
Collapse
|
46
|
Oberringer M, Akman E, Lee J, Metzger W, Akkan CK, Kacar E, Demir A, Abdul-Khaliq H, Pütz N, Wennemuth G, Pohlemann T, Veith M, Aktas C. Reduced myofibroblast differentiation on femtosecond laser treated 316LS stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:901-8. [DOI: 10.1016/j.msec.2012.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/17/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
47
|
Reynolds PM, Pedersen R, Stormonth-Darling J, Dalby MJ, Riehle MO, Gadegaard N. Label-free segmentation of Co-cultured cells on a nanotopographical gradient. NANO LETTERS 2013; 13:570-6. [PMID: 23252684 PMCID: PMC3633255 DOI: 10.1021/nl304097p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/17/2012] [Indexed: 05/25/2023]
Abstract
The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents.
Collapse
Affiliation(s)
- Paul M. Reynolds
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Rasmus
H. Pedersen
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - John Stormonth-Darling
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Matthew J. Dalby
- Center for Cell Engineering,
Institute of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Mathis O. Riehle
- Center for Cell Engineering,
Institute of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| |
Collapse
|
48
|
Klymov A, Prodanov L, Lamers E, Jansen JA, Walboomers XF. Understanding the role of nano-topography on the surface of a bone-implant. Biomater Sci 2013; 1:135-151. [DOI: 10.1039/c2bm00032f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Sjöström T, McNamara LE, Yang L, Dalby MJ, Su B. Novel anodization technique using a block copolymer template for nanopatterning of titanium implant surfaces. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6354-61. [PMID: 23138392 DOI: 10.1021/am301987e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Precise surface nanopatterning is a promising route for predictable control of cellular behavior on biomedical materials. There is currently a gap in taking such precision engineered surfaces from the laboratory to clinically relevant implant materials such as titanium (Ti). In this work, anodization of Ti surfaces was performed in combination with block copolymer templates to create highly ordered and tunable oxide nanopatterns. Secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) analyses showed that the composition of the anodized structures was mainly titania with small amounts of nitrogen left from the block copolymer. It was further demonstrated that these nanopatterns can be superimposed on more complex shaped Ti surfaces such as microbeads, using the same technique. Human mesenchymal stem cells were cultured on Ti microbead surfaces, with and without nanopatterns, in vitro to study the effect of nanotopography on Ti surfaces. The results presented in this work demonstrate a promising method of producing highly defined and well-arranged surface nanopatterns on Ti implant surfaces.
Collapse
Affiliation(s)
- Terje Sjöström
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom.
| | | | | | | | | |
Collapse
|
50
|
Zhou F, Li D, Wu Z, Song B, Yuan L, Chen H. Enhancing Specific Binding of L929 Fibroblasts: Effects of Multi-Scale Topography of GRGDY Peptide Modified Surfaces. Macromol Biosci 2012; 12:1391-400. [DOI: 10.1002/mabi.201200129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/17/2012] [Indexed: 11/09/2022]
|