1
|
Zhao KY, Chen GY, Huang H, Jiao XD, Li XP, Zhang J. PoCXCL8, a teleost chemokine, exerts direct bactericidal, chemotactic/phagocytic, and NETs releasing properties, promoting host anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109874. [PMID: 39241818 DOI: 10.1016/j.fsi.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce. In this research, we investigated the antibacterial property and leukocyte activation of PoCXCL8. PoCXCL8 consists of 100 amino acid residues, with a conserved chemokine CXC domain. PoCXCL8 was expressed in various tissues, with the highest level in liver and the lowest level in muscle, and sharply induced by V. harveyi or E. tarda in liver, spleen, and head kidney. In vitro, the recombinant PoCXCL8 (rPoCXCL8) could bind to Bacillus subtilis, Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Staphylococcus aureus, and Micrococcus luteus, affect the growth of E. coli, E. tarda, M. luteus, and P. fluorescens, and have a direct bactericidal effect on E. coli and E. tarda. Moreover, rPoCXCL8 was able to bind the outer membranal protein rPilA of E. tarda. In addition, rPoCXCL8 could bind to PBLs, activating the PBLs activity including chemotaxis, proliferation, phagocytosis, reactive oxygen species, acid phosphatase activity. At same time, rPoCXCL8 could induce neutrophil to generate neutrophil extracellular traps (NETs) and promote the expression of inflammatory genes including IL-1β, IL6, MMP13, TNF-α, and NF-κB. In flounder, the presence of rPoCXCL8 could enhance the in vivo resistance to E. tarda in liver, spleen, and head kidney. Moreover, the PoCXCL8-deficient could attenuate the fish defense against E. tarda infection in in spleen and head kidney. In conclusion, these results provided new insights into the antibacterial properties of CXCL8 in P. olivaceus.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Guan-Yu Chen
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
2
|
Michael P, Panchavarnam S, Bagthasingh C, Palaniappan S, Velu R, Mohaideenpitchai MM, Palraj M, Muthumariyapan S, David EP. Innate immune response of snakehead fish to Indian strain of snakehead rhabdovirus (SHRV-In) infection and the infectivity potential of the virus to other freshwater fishes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109577. [PMID: 38643957 DOI: 10.1016/j.fsi.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.
Collapse
Affiliation(s)
- Priyadharshini Michael
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Sivasankar Panchavarnam
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India.
| | - Chrisolite Bagthasingh
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Subash Palaniappan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Rani Velu
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mohamed Mansoor Mohaideenpitchai
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mageshkumar Palraj
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Selvamagheswaran Muthumariyapan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Evangelin Paripoorana David
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| |
Collapse
|
3
|
Muangrerk C, Uchuwittayakul A, Srisapoome P. Identification, Expression and Antimicrobial Functional Analysis of Interleukin-8 (IL-8) in Response to Streptococcus iniae and Flavobacterium covae in Asian Seabass ( Lates calcarifer Bloch, 1790). Animals (Basel) 2024; 14:475. [PMID: 38338118 PMCID: PMC10854937 DOI: 10.3390/ani14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this research, the proinflammatory cytokine interleukin-8 (IL-8) was shown to play a key role in inflammatory responses in fish. This study involved the cloning of the gene that encodes IL-8 in Asian seabass (Lates calcarifer) as well as analyses of its expression and function in this fish. The expression levels of LcIL-8 indicated that it was broadly expressed in most analyzed tissues, with the most predominant expression in the whole blood 6 to 24 h after infection with S. iniae at concentrations of 105 colony-forming units (CFU)/fish (p < 0.05). After fish were immersed in F. covae, the LcIL-8 transcript was upregulated in the gills, liver and intestine, and the highest expression level was observed in the gills. However, LcIL-8 was downregulated in all the tested tissues at 48 and 96 h after infection with the two pathogenic strains, indicating that Lc-IL8 has a short half-life during the early immune responses to pathogens. Moreover, the MIC of the rLcIL-8 protein against S. iniae was 10.42 ± 3.61 µg/mL. Furthermore, functional analyses clearly demonstrated that 10 and 100 µg of the rLcIL-8 protein efficiently enhanced the phagocytic activity of Asian seabass phagocytes in vitro (p < 0.05). Additionally, in vivo injection of S. iniae following the rLcIL-8 protein indicated that 50 and 100 µg of rLc-IL-8 were highly effective in protecting fish from this pathogen (p < 0.001). The obtained results demonstrate that rLcIL-8 possesses a biological function in the defense against bacterial infections in Asian seabass.
Collapse
Affiliation(s)
- Chayanee Muangrerk
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.M.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Li X, Jiang B, Zhang Z, Huang M, Feng J, Huang Y, Amoah K, Huang Y, Jian J. Interleukin-8 involved in Nile Tilapia (Oreochromis niloticus) against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109004. [PMID: 37598734 DOI: 10.1016/j.fsi.2023.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.
Collapse
Affiliation(s)
- Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jiamin Feng
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Kwaku Amoah
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Leal Y, Valenzuela-Muñoz V, Casuso A, Benavente BP, Gallardo-Escárate C. Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the Sea Louse Cr-Cathepsin. Genes (Basel) 2023; 14:genes14040905. [PMID: 37107663 PMCID: PMC10138087 DOI: 10.3390/genes14040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of vaccines against sea lice in salmon farming is complex, expensive, and takes several years for commercial availability. Recently, transcriptome studies in sea louse have provided valuable information for identifying relevant molecules with potential use for fish vaccines. However, the bottleneck is the in vivo testing of recombinant protein candidates, the dosage, and the polyvalent formulation strategies. This study explored a cell-based approach to prospect antigens as candidate vaccines against sea lice by comparison with immunized fish. Herein, SHK-1 cells and Atlantic salmon head kidney tissue were exposed to the antigen cathepsin identified from the sea louse Caligus rogercresseyi. The cathepsin protein was cloned and recombinantly expressed in Escherichia coli, and then SHK-1 cell lines were stimulated with 100 ng/mL cathepsin recombinant for 24 h. In addition, Atlantic salmons were vaccinated with 30 ug/mL recombinant protein, and head kidney samples were then collected 30 days post-immunization. SHK-1 cells and salmon head kidney exposed to cathepsin were analyzed by Illumina RNA sequencing. The statistical comparisons showed differences in the transcriptomic profiles between SHK-1 cells and the salmon head kidney. However, 24.15% of the differentially expressed genes were shared. Moreover, putative gene regulation through lncRNAs revealed tissue-specific transcription patterns. The top 50 up and downregulated lncRNAs were highly correlated with genes involved in immune response, iron homeostasis, pro-inflammatory cytokines, and apoptosis. Also, highly enriched pathways related to the immune system and signal transduction were shared between both tissues. These findings highlight a novel approach to evaluating candidate antigens for sea lice vaccine development, improving the antigens screening in the SHK-1 cell line model.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
6
|
Molecular characterization of four innate immune genes in Tor putitora and their comparative transcriptional abundance during wild- and captive-bred ontogenetic developmental stages. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100058. [DOI: 10.1016/j.fsirep.2022.100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
|
7
|
Fu Q, Hu J, Zhang P, Li Y, Zhao S, Cao M, Yang N, Li C. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:82-98. [PMID: 35690275 DOI: 10.1016/j.fsi.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a superfamily of structurally related cytokines, which exert essential roles in guiding cell migration in development, homeostasis, and immunity. CC and CXC chemokines are the two major subfamilies in teleost species. In this study, a total of seventeen CC and CXC chemokines, with inclusion of twelve CC and five CXC chemokines, were systematically identified from the turbot genome, making turbot the teleost harboring the least number of CC and CXC chemokines among all teleost species ever reported. Phylogeny, synteny, and genomic organization analyses were performed to annotate these genes, and multiple chemokine genes were identified in the turbot genome, due to the tandem duplications (CCL19 and CCL20), the whole genome duplications (CCL20, CCL25, and CXCL12), and the teleost-specific members (CCL34-36, CCL44, and CXCL18). In addition, chemokines were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in liver, gill, and spleen. Moreover, most chemokines were significantly differentially expressed in gill and spleen after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that turbot chemokines interacted with a few immune-related genes such as interleukins, cathepsins, stats, and TLRs. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines in teleost.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Chen H, Zhao Y, Chen K, Wei Y, Luo H, Li Y, Liu F, Zhu Z, Hu W, Luo D. Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Front Immunol 2022; 13:872896. [PMID: 35844551 PMCID: PMC9279890 DOI: 10.3389/fimmu.2022.872896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Various bacterial diseases have caused great economic losses to the high-density and intensive aquaculture industry; however, the pathogenic mechanism underlying the large-scale challenged to caused by many bacteria remain unclear, making the prevention and treatment of these diseases difficult. In the present study, we isolated a bacterial strain from Cyprinus carpio having a typical bacterial disease and named it Cc2021. Through subsequent morphological observations, a regression challenge, biochemical identification, and 16S rRNA gene sequence analysis, we determined Cc2021 to be Plesiomonas shigelloides. Subsequently, we comprehensively investigated the pathogenicity of P. shigelloides in C. carpio through a regression challenge and assessed the underlying the pathogenic mechanism. Mortality results revealed that P. shigelloides is highly pathogenic and infects various tissues throughout the body, resulting in edema of the liver, spleen, and body and head kidneys. Histopathological analysis revealed obvious inflammation, bleeding, and necrosis in the intestine, spleen, and head kidney. The body’s immune tissues actively produce complement C3, superoxide dismutase, and lysozyme after a challenge to resist bacterial invasion. With regard to the underlying pathogenesis of P. shigelloides, comparative transcriptome analysis revealed 876 upregulated genes and 828 downregulated genes in the intestine of C. carpio after the challenge. Analysis of differentially expressed unigenes revealed the involvement of major immune pathways, particularly the TNF signaling pathway, interleukin (IL)-17 signaling pathway, and Toll-like receptor signaling pathway. The present study provides new valuable information on the immune system and defense mechanisms of P. shigelloides.
Collapse
Affiliation(s)
- Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kuangxin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulai Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daji Luo,
| |
Collapse
|
9
|
Yang X, Wu Y, Zhang P, Chen G, Cao Z, Ao J, Sun Y, Zhou Y. CC chemokine 1 protein from Cromileptes altivelis (CaCC1) promotes antimicrobial immune defense. FISH & SHELLFISH IMMUNOLOGY 2022; 123:102-112. [PMID: 35240293 DOI: 10.1016/j.fsi.2022.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Chemokines are a family of small signaling proteins that are secreted by various cells. In addition to their roles in immune surveillance, localization of antigen, and lymphocyte trafficking for the maintenance of homeostasis, chemokines also function in induce immune cell migration under pathological conditions. In the present study, a novel CC chemokine gene (CaCC1) from humpback grouper (Cromileptes altivelis) was cloned and characterized. CaCC1 comprised a 435 bp open reading frame encoding 144 amino acid residues. The putative molecular weight of CaCC1 protein was 15 kDa CaCC1 contains four characteristic cysteines that are conserved in other known CC chemokines. CaCC1 also shares 11.64%-90.28% identity with other teleost and mammal CC chemokines. Phylogenetic analysis revealed that CaCC1 is most closely related to Epinephelus coioides EcCC1, both of which are in a fish-specific CC chemokine clade. CaCC1 was constitutively expressed in all examined C. altivelis tissues, with high expression levels in skin, heart, liver, and intestine. Vibrio harveyi stimulation up-regulated CaCC1 expression levels in liver, spleen, and head-kidney. Functional analyses revealed that the recombinant protein (rCaCC1) could induce the migration of head-kidney lymphocytes from C. altivelis. Moreover, rCaCC1 significantly enhanced phagocytosis in head-kidney macrophages from C. altivelis. In addition, rCaCC1 exhibited antimicrobial activities against Staphylococcus aureus, Edwardsiella tarda, and V. harveyi. In vivo, CaCC1 overexpression improved bacterial clearance in V. harveyi infected fish. Conversely, CaCC1 knockdown resulted in a significant decrease of bacterial clearance. These results demonstrate the important roles that CaCC1 plays in homeostasis and in inflammatory response to bacterial infection.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Guisen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
10
|
Zhao M, Liu Y, Gao Y, Wang X, Zhou H, Zhang A. Insights into the functional role of grass carp IL-8 in head kidney leukocytes: pro-inflammatory effects and signalling mechanisms. JOURNAL OF FISH BIOLOGY 2022; 100:192-202. [PMID: 34716580 DOI: 10.1111/jfb.14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Interleukin-8 (IL-8) is a critical chemokine regulating immune cells' chemotaxis as well as their physiological or pathological activations. In fish cells, recombinant IL-8 proteins induced transcriptions of pro-inflammatory cytokines. Nonetheless, the exact mechanisms underlying the function of fish IL-8 as a pro-inflammatory cytokine are still unclear. In this paper, the authors first prepared recombinant grass carp IL-8 (rgcIL-8) using an Escherichia coli expression system, and later confirmed rgcIL-8 increased gene expression of il8, il1β and tumour necrosis factor alpha (tnfα) in grass carp head kidney leukocytes (HKLs). Using signalling pathway inhibitors, the authors showed that rgcIL-8 regulated transcriptions of pro-inflammatory cytokines via MAPK and/or NF-κB signalling pathways. They cloned gcIL-8-specific receptor CXCR1 and subsequently discovered that gcIL-8 could increase the activity of NF-κB and the transcription of IL-1β via CXCR1. Simultaneously, antibody neutralization assay showed that endogenous IL-8 is partially relevant to the self-regulation of IL-1β. Moreover, rgcIL-8 led to the expression of inducible nitric oxide synthase gene, causing an accumulation of nitric oxide in the culture medium of HKLs, suggesting the potential of gcIL-8 to mediate inflammatory response. This study not only enriched the function of IL-8 in teleost but also revealed it as a potential target for the inflammatory control in grass carp.
Collapse
Affiliation(s)
- Minghui Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yazhen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajun Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Sáenz-Martínez DE, Santana PA, Aróstica M, Forero JC, Guzmán F, Mercado L. Immunodetection of rainbow trout IL-8 cleaved-peptide: Tissue bioavailability and potential antibacterial activity in a bacterial infection context. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104182. [PMID: 34166719 DOI: 10.1016/j.dci.2021.104182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 μM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.
Collapse
Affiliation(s)
- Daniel E Sáenz-Martínez
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile.
| | - Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Juan C Forero
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Luis Mercado
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
12
|
Veenstra KA, Wang T, Russell KS, Tubbs L, Ben Arous J, Secombes CJ. Montanide™ ISA 763A VG and ISA 761 VG induce different immune pathway responses in rainbow trout (Oncorhynchus mykiss) when used as adjuvant for an Aeromonas salmonicida bacterin. FISH & SHELLFISH IMMUNOLOGY 2021; 114:171-183. [PMID: 33940174 DOI: 10.1016/j.fsi.2021.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Adjuvants are the helper substances that increase vaccine efficacy by enhancing the potency and longevity of specific immune responses to antigens. Most existing fish vaccines are presented in the form of oil-based emulsions delivered by intraperitoneal injection. The characterization of their mode of action is a valuable aid to future vaccine development, particularly for the potential identification and stimulation of specific immunological pathways related to the desired protective response. This study characterized the expression of selected immune-related genes in the peritoneal cavity, head kidney and spleen following the administration of two adjuvanted-bacterial vaccines thought to induce humoral (Montanide™ ISA 763A VG) or humoral and cell mediated (Montanide™ ISA 761 VG) immune responses, to determine if differences in responsiveness are readily apparent. The most informative site was the spleen, where Montanide™ ISA 763A VG + bacterin gave rise to upregulation of genes driving T-cell/lymphoid responses, namely IL-2, IL-15 and IL-21. This combined with upregulation of IFNγ1 and IFNγ2, IL-4/13B2, p35A1 and p40 (B1 and C) indicated that the induction of Th1 and possibly Th2 immunity was occurring in fish vaccinated with this adjuvant. Perhaps the most intriguing finding was the lack of a detectable Th1 response in fish given Montanide™ ISA 761 VG + bacterin, suggesting some other arm of the immune system is activated to give protection. Whatever the reason for the different responses detected, it is clear from the present study that the adjuvant used has a major impact on the responses elicited. Since these differences are readily detectable it allows, in principle, their use to help select the most appropriate adjuvants for inclusion into fish vaccines, where the type of response elicited may need to be tailored to a particular pathogen to confer protection.
Collapse
Affiliation(s)
- Kimberly A Veenstra
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - K Spencer Russell
- Elanco Canada Ltd, Aquaculture Research and Development, P.O. Box 17, Victoria PE, C0A 2G0, Canada.
| | - Lincoln Tubbs
- Elanco Canada Ltd, Aquaculture Research and Development, P.O. Box 17, Victoria PE, C0A 2G0, Canada.
| | - Juliette Ben Arous
- Seppic, Paris La Défense, 50 Boulevard National, 92257, La Garenne Colombes, France.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
13
|
Feng J, Han T, Zhang Y, Zhang B, Huang D, Wang T, Yang J. Molecular characterization and biological function of CXCR1 in Nocardia seriolae-infected largemouth bass (Micropterus salmoides). Tissue Cell 2021; 72:101551. [PMID: 33932879 DOI: 10.1016/j.tice.2021.101551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Interleukin-8 (IL-8, CXCL8), a pro-inflammatory chemokine secreted by a variety of cell types, plays a critical role in the development of various immune diseases. Interactions between IL-8 and its receptor CXC receptor 1/2 (CXCR1/2) are known to promote chemotaxis and phagocytosis in many immune responses. In this study, we report the molecular characteristics and pharmacological activity of CXCR1 (MsCXCR1) in largemouth bass (Micropterus salmoides) and evaluated the functional involvement of MsCXCR1 in individuals infected with the pathogen Nocardia seriolae. MsCXCR1 was cloned into the pEGFP-N1 plasmid and the subcellular localization of MsCXCR1 on the cell membrane was verified in MsCXCR1-EGFP-expressing HEK293 cells. Following observation of receptor internalization and intracellular signaling detection, we further determined the functional interaction of secreted interleukin-8 (LcIL-8, the ligand for CXCR1 in large yellow croaker) and MsCXCR1 was further determined, and the ERK phosphorylation signal activation mediated by MsCXCR1 was demonstrated. Quantitative real-time PCR assays were conducted to analyze the transcriptional distribution of MsCXCR1 in various tissues of healthy and diseased largemouth bass. These results illustrate the significant elevation of MsCXCR1 expression in the head kidney, spleen and liver of M. salmoides, suggesting that MsCXCR1 was involved in the immune response in N. seriolae-infected largemouth bass and potentially affects the digestive function of this species.
Collapse
Affiliation(s)
- Jiaqian Feng
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Yuexing Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Bing Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Dexiang Huang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Tianming Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China
| | - Jingwen Yang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, People's Republic of China.
| |
Collapse
|
14
|
Terzi E, Kucukkosker B, Bilen S, Kenanoglu ON, Corum O, Özbek M, Parug SS. A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. FISH & SHELLFISH IMMUNOLOGY 2021; 110:55-66. [PMID: 33383177 DOI: 10.1016/j.fsi.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this 21-day study, we examined the effects of the aqueous methanolic extract of thin-skinned plum (Prunus domestica) on growth, immune response and resistance to a pathogenic bacterium, Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish were fed with diets containing thin-skinned plum extract doses as 0 (Control) 0.1 (PD01), 0.5 (PD05) and 1% (PD1) ad libitum twice in a day. At the end of the study, growth was affected positively but not significantly. Feed conversion ratio (FCR) was decreased in the PD01 group (P < 0.05). There were elevated respiratory burst and potential bacterial killing activities on the 7th day in the PD1 fish group. No differences were observed in lysozyme activity (P > 0.05). An increased myeloperoxidase activity was recorded on the 14th day of study. Expression of interleukin and COX-2 genes was elevated on the 7th day of study in the kidney and intestine of treated fish. Histological results indicated no marked changes in organs (gill, kidney, liver and spleen) of PD treated fish groups. Challenge results of fish in all plum extract-treated groups showed an increased survival rate against Y. ruckeri (P < 0.05). This study indicated that the thin-skinned plum aqueous methanolic extract could improve innate immunity, survival against Y. ruckeri and decrease the FCR level.
Collapse
Affiliation(s)
- Ertugrul Terzi
- Faculty of Fisheries, Kastamonu University, 37200, Kastamonu, Turkey.
| | - Bunyamin Kucukkosker
- Department of Aquaculture, Institute of Science, Kastamonu University, 37200, Kastamonu, Turkey
| | - Soner Bilen
- Faculty of Fisheries, Kastamonu University, 37200, Kastamonu, Turkey
| | | | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, 37200, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, 15030, Burdur, Turkey
| | - Sukru Senol Parug
- Faculty of Fisheries, Kastamonu University, 37200, Kastamonu, Turkey
| |
Collapse
|
15
|
Comparative Characterization of Two cxcl8 Homologs in Oplegnathus fasciatus: Genomic, Transcriptional and Functional Analyses. Biomolecules 2020; 10:biom10101382. [PMID: 32998424 PMCID: PMC7601086 DOI: 10.3390/biom10101382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and gene structure suggested that they belonged to lineages 1 (L1) and 3 (L3), and designated Ofcxcl8-L1 and Ofcxcl8-L3. While Ofcxcl8-L1 and Ofcxcl8-L3 revealed quadripartite and tripartite organization, in place of the mammalian ELR (Glu-Leu-Arg) motif, their peptides harbored EMH (Glu-Met-His) and NSH (Asn-Ser-His) motifs, respectively. Transcripts of Ofcxcl8s were constitutively detected by Quantitative Real-Time PCR (qPCR) in 11 tissues examined, however, at different levels. Ofcxcl8-L1 transcript robustly responded to treatments with stimulants, such as flagellin, concanavalin A, lipopolysaccharide, and poly(I:C), and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus, when compared with Ofcxcl8-L3 mRNA. The differences in the putative promoter features may partly explain the differential transcriptional modulation of Ofcxcl8s. Purified recombinant OfCXCL8 (rOfCXCL8) proteins were used in in vitro chemotaxis and proliferation assays. Despite the lack of ELR motif, both rOfCXCL8s exhibited leukocyte chemotactic and proliferative functions, where the potency of rOfCXCL8-L1 was robust and significant compared to that of rOfCXCL8-L3. The results, taken together, are indicative of the crucial importance of Ofcxcl8s in inflammatory responses and immunoregulatory roles in rock bream immunity.
Collapse
|
16
|
Zhu X, Zhang Z, Ren J, Jia L, Ding S, Pu J, Ma W, Tao Y, Zu Y, Li W, Zhang Q. Molecular Characterization and Chemotactic Function of CXCL8 in Northeast Chinese Lamprey ( Lethenteron morii). Front Immunol 2020; 11:1738. [PMID: 33013827 PMCID: PMC7461807 DOI: 10.3389/fimmu.2020.01738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokine-induced chemotaxis of leukocytes is an important part of the innate immunity and has been shown to mediate inflammation in all groups of jawed vertebrates. For jawless vertebrates, hagfish leukocytes are known to show chemotaxis toward mammalian complement anaphylotoxin and Gram-negative bacteria lipopolysaccharide. However, whether chemokines mediate chemotaxis of leukocytes in jawless vertebrates has not been conclusively examined. Here, we show C-X-C motif chemokine ligand 8 (CXCL8, also named interleukin 8) of the Northeast Chinese lamprey (Lethenteron morii) (designated as LmCXCL8) induces chemotaxis in its leukocytes. We identified LmCXCL8 and found it possesses the characteristic N-terminal cysteine residues and GGR (Gly-Gly-Arg) motif. The Lmcxcl8 gene was found to be expressed in all examined tissues, and its expression was inducible in the lamprey challenged by an infectious bacterium, Pseudomonas aeruginosa. A recombinant LmCXCL8 protein elicited concentration-dependent chemotaxis in peripheral blood leukocytes isolated from the Northeast Chinese lamprey. Based on these results, we conclude that LmCXCL8 is a constitutive and inducible acute-phase cytokine that mediates immune defense and trace the chemotactic function of chemokine to basal vertebrates.
Collapse
Affiliation(s)
- Xinyun Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jiafei Pu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Wenyuan Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yan Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
Nakharuthai C, Srisapoome P. Molecular Identification and Dual Functions of Two Different CXC Chemokines in Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae and Flavobacterium columnare. Microorganisms 2020; 8:microorganisms8071058. [PMID: 32708611 PMCID: PMC7409096 DOI: 10.3390/microorganisms8071058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022] Open
Abstract
Two CXC chemokines in Nile tilapia (On-CXC1 and On-CXC2) were identified at both the genomic and proteomic levels. A southern blot analysis and comparison searching in Ensembl confirmed the typical structure of the CXC chemokine genes and provided evidence for unusual mechanisms used to generate the two different CXC chemokine transcripts that have not been reported in other vertebrate species so far. The expression levels of On-CXC1 and On-CXC2 were analyzed by quantitative real-time PCR. These two mRNAs were detected in various tissues of normal Nile tilapia, especially in the spleen, heart, and head kidney, indicating a homeostatic function in immunosurveillance. A time-course experiment clearly demonstrated that these two transcripts were effectively enhanced in the head kidney, spleen and trunk kidney of Nile tilapia 6, 12 and 24 h after injection with Streptococcus agalactiae but were down-regulated in all tested tissues at 48 h, reflecting the fact that they have short half-lives during the crucial response to pathogens that is characteristic of CXC chemokine genes in other vertebrates. Functional analyses obviously exhibited that these two CXC chemokines at concentrations of 1–10 μg strongly inactivated S. agalactiae and Flavobacterium columnare and effectively induced phagocytosis of leukocytes in vitro.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
18
|
Pulpipat T, Maekawa S, Wang PC, Chen SC. Immune Responses and Protective Efficacy of a Formalin-Killed Francisella Noatunensis Subsp. Orientalis Vaccine Evaluated through Intraperitoneal and Immersion Challenge Methods in Oreochromis Niloticus. Vaccines (Basel) 2020; 8:vaccines8020163. [PMID: 32260212 PMCID: PMC7348880 DOI: 10.3390/vaccines8020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Francisella noatunensis subsp. orientalis (Fno), an intracellular bacterium, causes systemic granulomatous diseases, resulting in high mortality and huge economic losses in Taiwanese tilapia farming. In this study, we tested the efficacy of a formalin-killed Fno vaccine in cultured tilapia. Fno was isolated from diseased tilapia, inactivated with formalin, and mixed with the mineral oil base adjuvant (MontanideTM ISA 763 AVG). A total of 300 tilapia were divided into two groups. The experimental group was intraperitoneally injected with 0.1 mL of vaccine, which was substituted with phosphate-buffered saline (PBS) in the control group. A booster was administered at 2 weeks post-immunization. Tilapia were challenged at 6 weeks post primary immunization by intraperitoneal (IP) injection and immersion methods. Mortality was recorded at 21 and 60 days. The results revealed that the vaccine induced a greater antibody titer and led to 71% and 76% of relative percent survival (RPS) after the IP and immersion challenge. The transcripts of proinflammatory cytokines and immune-related genes, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), C-X-C motif chemokine ligand 8 (CXCL8), and interleukin-17C (IL-17C), were significantly upregulated after vaccination. Additionally, vaccinated fish had lower bacterial loads in the blood and lower granuloma intensities in the kidney, spleen, liver, and gill than control fish. The results in this study demonstrate that the inactivated Fno vaccine could be an essential resource in Taiwanese tilapia farming.
Collapse
Affiliation(s)
- Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
| | - Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-770-3202 (ext. 5076 or 5095)
| |
Collapse
|
19
|
Kim KH, Kim HC, Park CJ, Park JW, Lee YM, Kim WJ. Interleukin-8 (IL-8) Expression in the Olive Flounder ( Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus (VHSV) Challenge. Dev Reprod 2019; 23:231-238. [PMID: 31660450 PMCID: PMC6812972 DOI: 10.12717/dr.2019.23.3.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022]
Abstract
Interleukin-8 (IL-8) is an inflammatory cytokine that plays an important role in the inflammatory response through the activation of neutrophil cells. The expression of IL-8 was investigated in early developmental stages of the olive flounder and in tissues of 8-month-old individuals. The expression of IL-8 increased after the initiation of the immune system rather than at the early stage of development, and high expression was observed in the gills and spleen, the organs associated with immunity and metabolism. In addition, IL-8 expression after infection by viral hemorrhagic septicemia virus significantly increased in the fin, gill, muscles, and spleen. These results suggest that IL-8 is closely related to inflammation and immune regulation in the immune response of the olive flounder and may be used as a basis for studies on the immune systems of other fish.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Korea
| |
Collapse
|
20
|
Pijanowski L, Verburg-van Kemenade BML, Chadzinska M. A role for CXC chemokines and their receptors in stress axis regulation of common carp. Gen Comp Endocrinol 2019; 280:194-199. [PMID: 31075272 DOI: 10.1016/j.ygcen.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Although chemokines mainly function to activate leukocytes and to direct their migration, novel evidence indicates non-immune functions for chemokines within the nervous and endocrine systems. These include development of the nervous system, neuromodulation, neuroendocrine regulation and direct neurotransmitter-like actions. In order to clarify a potential role for chemokines and their receptors in the stress response of fish, we studied changes in the expression patterns of CXC ligands and their receptors in the stress axis organs of carp, during a restraint stress procedure. We showed that stress down-regulated the gene expression of CXCL9-11 (CXCb1 and CXCb2) in stress axis organs and up-regulated expression of CXCR4 chemokine receptor in NPO and pituitary. Moreover, upon stress, reduced gene expression of CXCL12a and CXCL14 was observed in the head kidney. Our results imply that in teleost fish, CXC chemokines and their receptors are involved in neuroendocrine regulation. The active regulation of their expression in stress axis organs during periods of restraint indicates a significant role in the stress response.
Collapse
Affiliation(s)
- Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
21
|
Peng H, Yang B, Li B, Cai Z, Cui Q, Chen M, Liu X, Yang X, Jiang C. Comparative transcriptomic analysis reveals the gene expression profiles in the liver and spleen of Japanese pufferfish (Takifugu rubripes) in response to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:308-316. [PMID: 31059812 DOI: 10.1016/j.fsi.2019.04.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Japanese pufferfish (Takifugu rubripes) is one of the main marine aquatic fish species cultured in Asia due to its high nutritional value. In recent years, disease caused by Vibrio harveyi infections have led to serious mortality in Japanese pufferfish industry. To understand the complex molecular mechanisms between V. harveyi and Japanese pufferfish, we performed a transcriptome analysis of liver and spleen samples from Japanese pufferfish at 1 and 2 day post-infection. Between-group comparisons revealed 922 genes that were significantly differentially expressed. The altered genes emphasized the function in several immune related pathways including MAPK signaling pathway, JAK-STAT signaling pathway, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and lysosomal pathway. The data generated in this study provided insight into the responses of Japanese pufferfish against V. harveyi at the transcriptome level, promoting our comprehensive understanding of immune responses for aquatic animal against V. harveyi.
Collapse
Affiliation(s)
- Hongyu Peng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boxue Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boyan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhonglu Cai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Qianjin Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Mingkang Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xia Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xu Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Wang X, Ma G, Zhang R, Liu L, Zhu J, Zhu H. Molecular characterization and biological functioning of interleukin-8 in Siberian sturgeon (Acipenser baeri). FISH & SHELLFISH IMMUNOLOGY 2019; 90:91-101. [PMID: 30978450 DOI: 10.1016/j.fsi.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-8, otherwise known as CXCL8, is a CXC chemokine that plays a pivotal regulatory role in immune and inflammation responses of animals. Here, we identified an interleukin-8 homologue from Siberian sturgeon (Acipenser baeri), named AbIL-8, which belongs to the lineage 1 group of teleost fish IL-8s. The cDNA of Abil-8 is 1130 bp in length, containing a 5'- untranslated region (UTR) of 50 bp, a 3'- UTR of 783 bp, and an open reading frame (ORF) of 297 bp that encodes a protein consisting of 98 amino acids. The deduced AbIL-8 contained five cysteines, four of which are highly conserved, and an ELR motif typical of known mammalian CXC chemokines was also found preceding the CXC motif. Our phylogenetic analysis showed that AbIL-8 clustered with the CXCL8_L1 sequences from other teleosts, being clearly distinct from those of either birds or mammals. Abil-8 mRNA was constitutively expressed in all tested tissues and significantly up-regulated in the liver and spleen tissues by the bacteria Aernomas hydrophila. The in vitro experiment using primary spleen cells stimulated with heat-killed Aernomas hydrophila or lipopolysaccharide (LPS) revealed a similar expression pattern to that found in vivo, whereas stimulation on spleen cells with β-glucan or polyI:C elicited negligible changes in levels of Abil-8 mRNA. Purified recombinant AbIL-8 not only exhibited chemotactic activity for lymphocytes and monocytes in peripheral blood leukocytes (PBLs) and, to a lesser extent, spleen cells, but also stimulated the proliferation of spleen cells at 10 ng/mLor above. Furthermore, intraperitoneal injection of rAbIL-8 also up-regulated the expression of immuno-related genes (IL-6, IgM and MHCIIβ) at 24 h. Collectively, these results enhance our understanding of how IL-8 functions in the regulation of the immune responses in sturgeon.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Guoqing Ma
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Rong Zhang
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Lili Liu
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Jianya Zhu
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hua Zhu
- Beijing Fisheries Research Institute& Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China.
| |
Collapse
|
23
|
Wang T, Liang J, Xiang X, Yuan J, Chen X, Xiang X, Yang J. Functional identification and expressional responses of large yellow croaker (Larimichthys crocea) interleukin-8 and its receptor. FISH & SHELLFISH IMMUNOLOGY 2019; 87:470-477. [PMID: 30708055 DOI: 10.1016/j.fsi.2019.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-8 (IL-8 or chemokine (C-X-C motif) ligand 8, CXCL8) is a chemokine produced by multiple cell types. It promotes chemotaxis and phagocytosis via interaction with chemokine receptors CXCR1 and CXCR2. Using published data, IL-8 gene (LcIL-8) of the large yellow croaker (Larimichthys crocea) was cloned into the pcDNA3.1 plasmid, and an interleukin-8 receptor (LcCXCR2) was cloned into the pEGFP-N1 plasmid. Secratory expression of LcIL-8 in HEK293T cells was carried out, and product in culture medium was collected for LcCXCR2 stimulation in HEK293 cells. Following receptor internalization observation and intracellular signaling detection, the functional interaction of LcIL-8 and LcCXCR2 was further determined and the ERK phosphorylation signal activation mediated by LcCXCR2 was demonstrated. Quantitative real-time PCR analysis was used to analyze transcription level regulation of LcIL-8 and LcCXCR2 in various tissues of large yellow croaker. Expression of LcIL-8 and LcCXCR2 was elevated in the spleen, head kidney, and liver after Vibrio parahemolyticus challenge. Results illustrated the functional interaction between LcIL-8 and LcCXCR2 in mediating intracellular ERK1/2 phosphorylation signaling and suggested that the LcIL-8 and LcCXCR2 system is part of the immune response induced by V. Parahemolyticus in L. crocea.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jing Liang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiaowei Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jiajie Yuan
- Shaoxing Entry-exit Inspection and Quarantine Bureau Comprehensive Technology Service Center, Shaoxing, Zhejiang, 312000, China
| | - Xu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xingwei Xiang
- Zhejiang Marine Development Research Institute, Tiyu Road 10, New Town, Zhoushan, Zhejiang Province 316000, China.
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
24
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
25
|
Wangkahart E, Secombes CJ, Wang T. Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM). FISH & SHELLFISH IMMUNOLOGY 2019; 85:18-30. [PMID: 28757198 DOI: 10.1016/j.fsi.2017.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Enteric redmouth disease (ERM or yersiniosis) is one of the most important diseases of salmonids and leads to significant economic losses. It is caused by the Gram-negative bacterium Yersinia ruckeri but can be controlled by bacterin vaccination. The first commercial ERM vaccine was licenced in 1976 and is one of the most significant and successful health practices within the aquaculture industry. Although ERM vaccination provides complete protection, knowledge of the host immune response to the vaccine and the molecular mechanisms that underpin the protection elicited is limited. In this report, we analysed the expression in spleen and gills of a large set of genes encoding for cytokines, acute phase proteins (APPs) and antimicrobial peptides (AMPs) in response to ERM vaccination in rainbow trout, Oncorhynchus mykiss. Many immune genes in teleost fish are known to have multiple paralogues that can show differential responses to ERM vaccination, highlighting the necessity to determine whether all of the genes present react in a similar manner. ERM vaccination immediately activated a balanced inflammatory response with correlated expression of both pro- and anti-inflammatory cytokines (eg IL-1β1-2, TNF-α1-3, IL-6, IL-8 and IL-10A etc.) in the spleen. The increase of pro-inflammatory cytokines may explain the systemic upregulation of APPs (eg serum amyloid A protein and serum amyloid protein P) and AMPs (eg cathelicidins and hepcidin) seen in both spleen and gills. We also observed an upregulation of all the α-chains but only one β-chain (p40B2) of the IL-12 family cytokines, that suggests specific IL-12 and IL-23 isoforms with distinct functions might be produced in the spleen of vaccinated fish. Notably the expression of Th1 cytokines (IFN-γ1-2) and a Th17 cytokine (IL-17A/F1a) was also up-regulated and correlated with enhanced expression of the IL-12 family α-chains, and the majority of pro- and anti-inflammatory cytokines, APPs and AMPs. These expression profiles may suggest that ERM vaccination activates host innate immunity and expression of specific IL-12 and IL-23 isoforms leading to a Th1 and Th17 biased immune response. A late induction of Th2 cytokines (IL-4/13B1-2) was also observed, that may have a homeostatic role and/or involvement in antibody production. This study has increased our understanding of the host immune response to ERM vaccination and the adaptive pathways involved. The early responses of a set of genes established in this study may provide essential information and function as biomarkers in future vaccine development in aquaculture.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham 44150, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
26
|
Hu Y, Maisey K, Subramani PA, Liu F, Flores-Kossack C, Imarai M, Secombes CJ, Wang T. Characterisation of rainbow trout peripheral blood leucocytes prepared by hypotonic lysis of erythrocytes, and analysis of their phagocytic activity, proliferation and response to PAMPs and proinflammatory cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:104-113. [PMID: 30009927 DOI: 10.1016/j.dci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Rapid and high quality preparation of peripheral blood leucocytes (PBL) is important in fish immunology research and in particular for fish vaccine development, where multiple immune parameters can be monitored on the same fish over time. Fish PBL are currently prepared by density separation using Percoll or Hispaque-1.077, which is time consuming, costly and prone to erythrocyte contamination. We present here a modified PBL preparation method that includes a 20 s hypotonic lysis of erythrocytes and a subsequent separation of PBL from cell debris by a cell strainer. This method is simple, rapid and cost effective. The PBL obtained are similar in cellular composition to those prepared by density separation but have less erythrocyte contamination as demonstrated by FACS analysis and the expression of cell marker genes. Marker gene analysis also suggested that PBL prepared by hypotonic lysis are superior to those obtained by the gradient method in that some high-density cells (certain B cell types and neutrophils) might be lost using the latter. The PBL prepared in this way can proliferate in response to the T cell mitogen PHA, and both lymphoid and myeloid cells can phagocytose fluorescent beads and bacteria, with the latter enhanced by treatment with pro-inflammatory cytokines (IL-1β and IL-6). Furthermore, the PBL can respond to stimulation with PAMPs (LPS, poly I:C) and cytokines (IL-1β and IFNγ) in terms of upregulation of proinflammatory cytokine gene expression. Such data demonstrate the utility of this approach (hypotonic lysis of erythrocytes) for PBL isolation and will enable more studies of their role in disease protection in future immunological and vaccine development research in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Kevin Maisey
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Parasuraman Aiya Subramani
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Camila Flores-Kossack
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Immunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
27
|
Wang T, Hu Y, Wangkahart E, Liu F, Wang A, Zahran E, Maisey KR, Liu M, Xu Q, Imarai M, Secombes CJ. Interleukin (IL)-2 Is a Key Regulator of T Helper 1 and T Helper 2 Cytokine Expression in Fish: Functional Characterization of Two Divergent IL2 Paralogs in Salmonids. Front Immunol 2018; 9:1683. [PMID: 30093902 PMCID: PMC6070626 DOI: 10.3389/fimmu.2018.01683] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mammalian interleukin (IL)-2 is a cytokine centrally involved in the differentiation and survival of CD4+ T helper subsets and CD4+ T regulatory cells and in activation of cytotoxic effector lymphocytes. In bony fish, IL2 orthologs have been identified with an additional divergent IL2-Like gene on the same locus present in several fish species. We report here two divergent IL2 paralogs, IL2A and IL2B, in salmonids that originated from the whole genome duplication event in this fish lineage. The salmonid IL2 paralogs differ not only in sequence but also in exon sizes. The IL-2 isoforms that are encoded have disparate pI values and may have evolved to preferentially bind specific IL-2 receptors. Rainbow trout IL2 paralogs are highly expressed in thymus, spleen, gills, kidney and intestine, important tissues/organs in fish T cell development and function. Their expression in peripheral blood leukocytes (PBL) is low constitutively but can be upregulated by the mixed leukocyte reaction, by the T cell mitogen phytohemagglutinin and by signal mimics of T cell activation (phorbol 12-myristate 13-acetate and calcium ionophore). Both trout IL-2 isoforms promoted PBL proliferation and sustained high-level expression of CD4 and CD8, suggesting that trout IL-2 isoforms are T cell growth/survival factors mainly expressed by activated T cells. The recombinant proteins for these two trout IL2 paralogs have been produced in E. coli and possess shared but also distinct bioactivities. IL-2A, but not IL-2B, induced IL12P35A1 and CXCR1 expression in PBL. IL-2B had a stronger effect on upregulation of the T helper 1 (Th1) cytokine interferon-γ (IFNγ) and could sustain CD8α and CD8β expression levels. Nevertheless, both cytokines upregulated key Th1 (IFNγ1, IFNγ2, TNFα2 and IL12) and T helper 2 (Th2) cytokines (IL4/13B1 and IL4/13B2), cytokine and chemokine receptors and the antimicrobial peptide cathelicidin-1 but had limited effects on T helper 17 cytokines and TGFβ1 in PBL. They could also enhance PBL phagocytosis. These results suggest, for the first time in fish, that IL-2 isoforms may have an important role in regulating Th1 and Th2 cell development, and innate and adaptive host defenses in fish, and shed light on lineage-specific expansion, evolution, and functional diversification of IL2 in vertebrates.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Thailand
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eman Zahran
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Kevin R Maisey
- Laboratorio de Immunologia, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Min Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,College of Animal Science and Technology, Northeast Agriculture University, Harbin, China
| | - Qiaoqing Xu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,School of Animal Science, Yangtze University, Jingzhou, China
| | - Mónica Imarai
- Laboratorio de Immunologia, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
28
|
Zhao X, Hong X, Chen R, Yuan L, Zha J, Qin J. New cytokines and TLR pathway signaling molecules in Chinese rare minnow (Gobiocypris rarus): Molecular characterization, basal expression, and their response to chlorpyrifos. CHEMOSPHERE 2018; 199:26-34. [PMID: 29427811 DOI: 10.1016/j.chemosphere.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, the cDNA fragments of cytokines (il-8) and toll-like receptor (TLR) pathway signaling molecules (myd88, irak-1, irf5, and irf7) in the Chinese rare minnow were cloned and exhibited a high amino-acid sequence identity compared to other cyprinid fish orthologs. The mRNA expressions of these genes in the different tissues (liver, brain, spleen, kidney, and skin) were observed. The highest expression levels of myd88, irak-1, and irf5 were detected in the spleen, whereas il-8 and irf7 were detected in the kidney and liver respectively. The mRNA expression of irak-1, irf5, and irf7 in the liver from 0.1 μg/L and 0.5 μg/L CPF treatments were significantly increased on day 7 (p < 0.05), whereas the levels of only irak-1 and irf7 were markedly increased on day 28 (p < 0.05). Moreover, the mRNA expression of il-8 in the spleen following 0.5 μg/L CPF treatments was significantly decreased on day 7 (p < 0.05), whereas significantly decrease were observed in the levels of irf7 in the spleen at 2.5 μg/L CPF on days 7 and 28 (p < 0.05). The 0.1 μg/L and 0.5 μg/L of CPF significantly induced the levels of irak-1 and myd88 in the spleen after 28 d exposure (p < 0.05). Therefore, the high induction of cytokines and TLR pathway signaling molecules demonstrated that Chinese rare minnow was immune-compromised exposed to CPF. Moreover, our finding indicated that these immune-related genes could be feasible to screen for substances hazardous to the immune system of fish.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
29
|
Zhou S, Mu Y, Ao J, Chen X. Molecular characterization and functional activity of CXCL8_L3 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2018; 75:124-131. [PMID: 29367006 DOI: 10.1016/j.fsi.2017.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
CXCL8, also called interleukin-8, is a typical CXC chemokine that plays a key role in promoting inflammation. Phylogenetically, fish CXCL8 chemokines can be divided into three subgroups, CXCL8_L1, CXCL8_L2, and CXCL8_L3, of which CXCL8_L3 is a new subgroup. The CXCL8_L3 gene sequences have been reported in many fish species, but their function remains unknown. Here, a CXCL8_L3 (LycCXCL8_L3) gene was cloned from large yellow croaker Larimichthys crocea. Its open reading frame (ORF) was 309 nucleotides long, encoding a peptide of 102 amino acids. The deduced LycCXCL8_L3 protein contains an 18-aa signal peptide and an 84-aa mature polypeptide, which has four conserved cysteine residues (C30, C32, C57, and C73) as found in other known CXCL8 chemokines. Phylogenetic analysis showed LycCXCL8_L3 formed a major clade with CXCL8_L3 sequences from other fish species. The LycCXCL8_L3 transcript was constitutively expressed in all examined tissues and significantly up-regulated in the spleen and head kidney tissues by inactivated trivalent bacterial vaccine. The LycCXCL8_L3 transcript was also detected in peripheral blood leukocytes (PBLs), primary head kidney macrophages (PKM), and large yellow croaker head kidney cell line (LYCK), with the highest levels in PKM. Recombinant LycCXCL8_L3 (rLycCXCL8_L3) protein could not only chemotactically attract lymphocytes and eosinophils in PBLs, but also enhance the respiratory burst activity of PKM. These results indicate that LycCXCL8_L3 may play an important role in the inflammatory response of large yellow croaker. To our knowledge, this is the first report on functional study of the CXCL8_L3 in fish.
Collapse
Affiliation(s)
- Shimin Zhou
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yinnan Mu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinhua Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
30
|
Veenstra KA, Wangkahart E, Wang T, Tubbs L, Ben Arous J, Secombes CJ. Rainbow trout (Oncorhynchus mykiss) adipose tissue undergoes major changes in immune gene expression following bacterial infection or stimulation with pro-inflammatory molecules. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:83-94. [PMID: 29126991 DOI: 10.1016/j.dci.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In mammals, visceral adipose is increasingly seen as playing an important role in immune function with numerous pro-inflammatory, anti-inflammatory and immune-modulating proteins and peptides being identified in adipocytes. Adipose is also now known as a tissue that has an important role in the regulation of peritoneal immune responses. Despite this, only lately has consideration been given to visceral adipose as an important immune tissue in fish, especially in the context of intraperitoneal vaccination. The present study demonstrates that fish visceral adipose is capable of expressing a large range of immune molecules in response to stimulation with a live bacterium (A. salmonicida), a bacterial PAMP (Y. ruckeri flagellin), and the pro-inflammatory cytokines IL-1β, TNF-α3 and IFN-γ. Following infection and stimulation with flagellin and IL-1β a large upregulation of pro-inflammatory and antimicrobial molecules was seen, with a high degree of overlap. TNF-α treatment affected relatively few genes and the effects were more modest. IFN-γ had the smallest impact on adipose but IFN-γ inducible genes showed some of the largest effects. Overall, it is clear that adipose tissue should be considered an active immune site in fish, capable of participating in and influencing immune responses.
Collapse
Affiliation(s)
- Kimberly A Veenstra
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Lincoln Tubbs
- Elanco Canada Ltd., Aquaculture Research and Development, P.O. Box 17, Victoria, P.E., C0A 2G0, Canada.
| | | | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
31
|
Bhatt P, Kumaresan V, Palanisamy R, Ravichandran G, Mala K, Amin SMN, Arshad A, Yusoff FM, Arockiaraj J. A mini review on immune role of chemokines and its receptors in snakehead murrel Channa striatus. FISH & SHELLFISH IMMUNOLOGY 2018; 72:670-678. [PMID: 29162541 DOI: 10.1016/j.fsi.2017.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - S M Nurul Amin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Pietsch C. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue. Toxins (Basel) 2017; 9:toxins9090283. [PMID: 28914814 PMCID: PMC5618216 DOI: 10.3390/toxins9090283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Zearalenone (ZEN) is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg−1, medium: 621 µg kg−1, and high: 797 µg kg−1 feed). The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H+ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
33
|
Qi Z, Holland JW, Jiang Y, Secombes CJ, Nie P, Wang T. Molecular characterization and expression analysis of four fish-specific CC chemokine receptors CCR4La, CCR4Lc1, CCR4Lc2 and CCR11 in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 68:411-427. [PMID: 28732768 DOI: 10.1016/j.fsi.2017.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The chemokine and chemokine receptor networks regulate leukocyte trafficking, inflammation, immune cell differentiation, cancer and other biological processes. Comparative immunological studies have revealed that both chemokines and their receptors have expanded greatly in a species/lineage specific way. Of the 10 human CC chemokine receptors (CCR1-10) that bind CC chemokines, orthologues only to CCR6, 7, 9 and 10 are present in teleost fish. In this study, four fish-specific CCRs, termed as CCR4La, CCR4Lc1, CCR4Lc2 and CCR11, with a close link to human CCR1-5 and 8, in terms of amino acid homology and syntenic conservation, have been identified and characterized in rainbow trout (Oncorhynchus mykiss). These CCRs were found to possess the conserved features of the G protein-linked receptor family, including an extracellular N-terminal, seven TM domains, three extracellular loops and three intracellular loops, and a cytoplasmic carboxyl tail with multiple potential serine/threonine phosphorylation sites. Four cysteine residues known to be involved in forming two disulfide bonds are present in the extracellular domains and a DRY motif is present in the second intracellular loop. Signaling mediated by these receptors might be regulated by N-glycosylation, tyrosine sulfation, S-palmitoylation, a PDZ ligand motif and di-leucine motifs. Studies of intron/exon structure revealed distinct fish-specific CCR gene organization in different fish species/lineages that might contribute to the diversification of the chemokine ligand-receptor networks in different fish lineages. Fish-specific trout CCRs are highly expressed in immune tissues/organs, such as thymus, spleen, head kidney and gills. Their expression can be induced by the pro-inflammatory cytokines, IL-1β, IL-6 and IFNγ, by the pathogen associated molecular patterns, PolyIC and peptidoglycan, and by bacterial infection. These data suggest that fish-specific CCRs are likely to have an important role in immune regulation in fish.
Collapse
Affiliation(s)
- Zhitao Qi
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, Yancheng, 224051, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei province 430072, China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
34
|
Oh M, Bathige SDNK, Kim Y, Lee S, Yang H, Kim MJ, Lee J. A CXCL ortholog from Hippocampus abdominalis: Molecular features and functional delineation as a pro-inflammatory chemokine. FISH & SHELLFISH IMMUNOLOGY 2017; 67:218-227. [PMID: 28546023 DOI: 10.1016/j.fsi.2017.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Chemokines are a family of chemotactic cytokines that regulate leukocyte migration. They are classified into four groups namely, CXC, CC, C and CX3C, based on the formation of a disulfide bridge. Among these, CXC chemokines have been identified as the largest group of chemokines in humans. In this study, we identified and functionally characterized a homolog of CXC chemokine from the big-belly seahorse, Hippocampus abdominalis, and designated it as ShCXCL. The cDNA of ShCXCL composed of a 342-bp open reading frame encoding 113 amino acids (aa). The CXC family-specific small cytokine domain (SCY) was identified from the mature peptide region, which comprised of a conserved CXC motif. As ShCXCL lacks an ELR (Glutamic acid-Leucine-Arginine) motif, it belongs to ELR- subfamily. The recombinant ShCXCL protein strongly induced the nitric oxide (NO) production in macrophage cells (RAW 264.7 cell line) and showed the chemotactic effect on flounder peripheral blood leukocytes. Tissue profiling showed a ubiquitous expression pattern in all examined tissues, with a high abundance in spleen. The up-regulated mRNA expression pattern of ShCXCL was observed in blood and kidney tissues after immune stimulation by live bacteria, such as Streptococcus iniae and Edwardsiella tarda, and mitogens, such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly I:C), suggesting its important role in host immune defense against microbial infection.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Yucheol Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
35
|
Nguyen TTT, Nguyen HT, Wang PC, Chen SC. Identification and expression analysis of two pro-inflammatory cytokines, TNF-α and IL-8, in cobia (Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2017; 67:159-171. [PMID: 28600195 DOI: 10.1016/j.fsi.2017.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8/CXCL8) play pivotal roles in mediating inflammatory responses to invading pathogens. In this study, we identified and analyzed expressions of cobia TNF-α and IL-8 during Streptococcus dysgalactiae infection. The cloned cDNA transcript of cobia TNF-α comprised of 1281 base pairs (bp), with a 774 bp open reading frame (ORF) encoding 257 amino acids. The deduced amino acid sequence of cobia TNF-α showed a close relationship (84% similarity) with TNF-α of yellowtail amberjack. The cloned IL-8 cDNA sequence was 828 bp long, including a 300-bp ORF encoding 99 amino acids. The deduced amino acid sequence of cobia IL-8 shared 90% identity with IL-8 of striped trumpeter. Cobia challenged with a virulent S. dysgalactiae strain displayed an early significant up-regulation of TNF-α and IL-8 in head kidney, liver, and spleen. Notably, IL-8 expression level increased dramatically in the liver at the severe stage of infection (72 h). In conclusion, a better understanding of TNF-α and IL-8 allows more detailed investigation of immune responses in cobia and furthers study on controlling the infectious disease caused by S. dysgalactiae.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
36
|
Wang GL, Wang MC, Zhang XW, Chang MX, Xie HX, Nie P. Molecular cloning, biological effect, and tissue distribution of interleukin-8 protein in mandarin fish (Siniperca chuasti) upon Flavobacterium columnare infection. FISH & SHELLFISH IMMUNOLOGY 2017; 66:112-119. [PMID: 28478260 DOI: 10.1016/j.fsi.2017.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-8 (IL-8), a CXC-type chemokine, plays a key role in acute inflammation by recruiting neutrophils in mammals. In the present study, the open reading frame (ORF) of IL-8, encoding 99 amino acids was cloned in mandarin fish, and its function in inflammation was investigated. The IL-8 contains four conserved cysteine residues, with the first two forming the CXC signature motif. The genomic sequence of mandarin fish IL-8 has four exons and three introns, a typical gene organization of the CXC chemokine. Bioactive recombinant IL-8 (rIL-8) exhibited a chemotactic effect on head kidney leukocytes in vitro, and activates the transcription of the inflammatory genes, IL-8 and IL-1β. When mandarin fish was challenged intraperitoneally with the pathogenic bacterium Flavobacterium columnare G4, the steady-state protein level of IL-8 was up-regulated in trunk kidney and head kidney. These results suggest that IL-8 is a functional CXC chemokine in mandarin fish, and plays a key role in the inflammatory responses towards bacterial infection.
Collapse
Affiliation(s)
- Gai Ling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province, 463000, China
| | - Ming Cheng Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province, 463000, China
| | - Xiao Wen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| |
Collapse
|
37
|
Korytář T, Nipkow M, Altmann S, Goldammer T, Köllner B, Rebl A. Adverse Husbandry of Maraena Whitefish Directs the Immune System to Increase Mobilization of Myeloid Cells and Proinflammatory Responses. Front Immunol 2016; 7:631. [PMID: 28066440 PMCID: PMC5179527 DOI: 10.3389/fimmu.2016.00631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Adverse life circumstances evoke a common “conserved transcriptional response to adversity” (CTRA) in mammalian leukocytes. To investigate whether this pattern is preserved in lower vertebrates, maraena whitefish (Coregonus maraena) were exposed for 9 days to different stocking densities: ~10 kg/m3 (low density), ~33 kg/m3 (moderate), ~60 kg/m3 (elevated), and ~100 kg/m3 (high). Transcriptome profiling in the liver and kidney of individuals from each group suggested that crowding conditions activate stress-related signaling and effector pathways. Remarkably, about one-quarter of the genes differentially expressed under crowding conditions were involved in the activation of immune pathways such as acute-phase response and interleukin/TNF signaling attended by the simultaneous reduction of antiviral potency. Network analysis confirmed the complex interdigitation of immune- and stress-relevant pathways with interleukin-1 playing a central role. Antibody-based techniques revealed remarkable changes in the blood composition of whitefish and demonstrated the correlation between increasing stocking densities and elevated number of myeloid cells together with the increased phagocytic activity of peripheral blood leukocytes. In line with current studies in mammals, we conclude that crowding stress triggers in whitefish hallmarks of a CTRA, indicating that the stress-induced molecular mechanisms regulating the immune responses not only are conserved within mammals but were established earlier in evolution.
Collapse
Affiliation(s)
- Tomáš Korytář
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mareen Nipkow
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN) , Dummerstorf , Germany
| | - Simone Altmann
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN) , Dummerstorf , Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN) , Dummerstorf , Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Alexander Rebl
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN) , Dummerstorf , Germany
| |
Collapse
|
38
|
Zhou S, Mu Y, Liu Y, Ao J, Chen X. Identification of a fish specific chemokine CXCL_F2 in large yellow croaker (Larimichthys crocea) reveals its primitive chemotactic function. FISH & SHELLFISH IMMUNOLOGY 2016; 59:115-122. [PMID: 27729274 DOI: 10.1016/j.fsi.2016.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Chemokines are a superfamily of cytokines regulating immune cell migration under both inflammatory and normal physiological conditions. Currently, a number of fish specific CXC chemokines, named as CXCL_F1-5, have been identified in several species. However, understanding of their functional characteristics is still limited. In this study, we identified a fish specific chemokine CXCL_F2 (LycCXCL_F2) from large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of LycCXCL_F2 is 348 nucleotides long, encoding a protein of 115 amino acids (aa). The deduced LycCXCL_F2 protein contains a 20-aa signal peptide and a 95-aa mature polypeptide. Phylogenetic analysis showed that LycCXCL_F2 fell into a major clade formed by CXCL_F2 sequences and was separated from CXCL_F1 and CXCL_F3-5 subgroups. LycCXCL_F2 mRNA transcript was constitutively expressed in various tissues, with the highest levels in spleen and head kidney. After stimulation with inactivated trivalent bacterial vaccines, LycCXCL_F2 mRNA transcription was significantly increased in both spleen and head kidney. Moreover, recombinant LycCXCL_F2 protein exhibited obvious chemotaxis to monocytes, lymphocytes and eosnophils of PBLs isolated from large yellow croaker, but could not induce the respiratory burst of macrophages. These results indicate that this fish specific CXC chemokine LycCXCL_F2 possesses primitive chemotactic activity and may play a role in immune response in large yellow croaker.
Collapse
Affiliation(s)
- Shimin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; South China Sea Bio-Resource Exploration and Utilization Collaborative Innovation Center, Xiamen 361005, China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; South China Sea Bio-Resource Exploration and Utilization Collaborative Innovation Center, Xiamen 361005, China
| | - Yingdi Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; South China Sea Bio-Resource Exploration and Utilization Collaborative Innovation Center, Xiamen 361005, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; South China Sea Bio-Resource Exploration and Utilization Collaborative Innovation Center, Xiamen 361005, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; South China Sea Bio-Resource Exploration and Utilization Collaborative Innovation Center, Xiamen 361005, China.
| |
Collapse
|
39
|
Santana PA, Guzmán F, Forero JC, Luna OF, Mercado L. Hepcidin, Cathelicidin-1 and IL-8 as immunological markers of responsiveness in early developmental stages of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:48-57. [PMID: 27106706 DOI: 10.1016/j.dci.2016.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
During the early developmental stage of salmonids, high mortality occurs largely as a result of pathogens. These cause low immune competence in fry, producing disease, decreasing production and finally leading to economic losses. Therefore, the aim of this study was to characterise the developmental stages in which rainbow trout acquires immune response capability when challenged with LPS from Pseudomona aeruginosa for 8 h, studying the hepcidin, cathelicidin-1 and IL-8. Total RNA was extracted from fry at 34, 42, 56 and 66 days post hatching (dph). Hepcidin and cathelicidin-1 transcripts were detected only at days 34 and 42, whereas the IL-8 transcript was detected from day 34 to day 66. To analyse the protein expression in the fry, polyclonal anti-peptide antibodies were generated in rabbit. These three immune sera demonstrated the ability to recognise the whole molecule in biological samples. Immunofluorescence showed that skin, gills and intestine mainly responded to the LPS challenge, indicating that these portals of pathogen entry are capturing LPS. This study constitutes a valuable approach, since it has the potential to identify molecules with biological activity that can be used to evaluate the status of fry in culture.
Collapse
Affiliation(s)
- Paula A Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Juan C Forero
- Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Omar F Luna
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
40
|
Cordero H, Mauro M, Cuesta A, Cammarata M, Esteban MÁ. In vitro cytokine profile revealed differences from dorsal and ventral skin susceptibility to pathogen-probiotic interaction in gilthead seabream. FISH & SHELLFISH IMMUNOLOGY 2016; 56:188-191. [PMID: 27422755 DOI: 10.1016/j.fsi.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Skin is the first barrier of defense on fish, which is crucial to protection against different stressors, including pathogens. Skin samples obtained from dorsal and ventral part of Sparus aurata specimens were incubated with Photobacterium damselae subsp. piscicida (a pathogen for this fish species), with Shewanella putrefaciens Pdp11 (a probiotic bacteria isolated from healthy gilthead seabream skin) or with both bacteria. The gene expression profile of nine cytokines (il1b, tnfa, il6, il7, il8, il15, il18, il10 and tgfb) was studied by qPCR in all the skin samples. The present findings revealed different patterns of cytokine profile in dorsal and ventral skin of gilthead seabream, which could be related to the influence and susceptibility to a possible infection.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Manuela Mauro
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, Palermo, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, Palermo, Italy
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
41
|
Riera Romo M, Pérez-Martínez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology 2016; 148:125-39. [PMID: 26878338 DOI: 10.1111/imm.12597] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022] Open
Abstract
Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation.
Collapse
Affiliation(s)
- Mario Riera Romo
- Pharmacology Department, Centre of Marine Bioproducts, Havana, Cuba
| | | | | |
Collapse
|
42
|
Wangkahart E, Scott C, Secombes CJ, Wang T. Re-examination of the rainbow trout (Oncorhynchus mykiss) immune response to flagellin: Yersinia ruckeri flagellin is a potent activator of acute phase proteins, anti-microbial peptides and pro-inflammatory cytokines in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:75-87. [PMID: 26719024 DOI: 10.1016/j.dci.2015.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
Flagellin is the principal component of bacterial flagellum and a major target of the host immune system. To provide new insights into the role of flagellin in fish immune responses to flagellated microorganisms, a recombinant flagellin from Yersinia ruckeri (rYRF) was produced and its bioactivity investigated in the trout macrophage cell line RTS-11 and head kidney cells. rYRF is a potent activator of pro-inflammatory cytokines, acute phase proteins, antimicrobial peptides and subunits of the IL-12 cytokine family. This and the synergy seen with IFN-γ to enhance further expression of specific IL-12 and TNF-α isoforms may suggest that flagellin could be a useful immune stimulant or adjuvant for use in aquaculture. Gene paralogues were often differentially modulated, highlighting the need to study all of the paralogues of immune genes in fish to gain a full understanding of the effects of PAMPs or other stimulants, and the potential immune responses elicited.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Callum Scott
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
43
|
Gorgoglione B, Zahran E, Taylor NGH, Feist SW, Zou J, Secombes CJ. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen. Mol Immunol 2016; 71:64-77. [PMID: 26866873 DOI: 10.1016/j.molimm.2016.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Nick G H Taylor
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Stephen W Feist
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
44
|
Brietzke A, Arnemo M, Gjøen T, Rebl H, Korytář T, Goldammer T, Rebl A, Seyfert HM. Structurally diverse genes encode Tlr2 in rainbow trout: The conserved receptor cannot be stimulated by classical ligands to activate NF-κB in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:75-88. [PMID: 26348603 DOI: 10.1016/j.dci.2015.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/31/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
The mammalian toll-like receptor 2 (TLR2) is a dominant receptor for the recognition of Gram-positive bacteria. Its structure and functional properties were unknown in salmonid fish. In RT-PCR and RACE experiments, we obtained the full-length cDNA sequence encoding Tlr2 from rainbow trout (Oncorhynchus mykiss) as well as a copy of an unspliced nonsense message from a highly segmented gene. The primary structure of the encoded receptor complies with the domain structure and ligand-binding sites known from mammals and other fish species and sorts well into the evolutionary tree of teleostean Tlr2s. We retrieved a gene version encoding the receptor on a single exon (tlr2a) and also a partial sequence of a second gene variant being segmented into multiple exons (tlr2b). Surprisingly, the abundances of both transcript variants accounted only for ∼10% of all Tlr2-encoding transcripts in various tissues and cell types of healthy fish. This suggests the expression of several distinct tlr2 gene variants in rainbow trout. We expressed tlr2a in HEK-293 cells, but were unable to demonstrate its functionality through NF-κB activation. Neither synthetic lipopeptides known to stimulate mammalian TLR2 nor different bacterial challenges induced OmTLR2-mediated NF-κB activation, not in HEK-293 or in salmon CHSE-214 cells. Positive demonstration of TLR2-MYD88 interaction excluded that its functional impairment caused the failure of NF-κB activation. We discuss impaired heterodimerization with a necessary Tlr partner as one from among several alternatives to explain the dysfunction of Tlr2a in the interspecies reconstitution system of TLR signaling.
Collapse
Affiliation(s)
- Andreas Brietzke
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Marianne Arnemo
- University of Oslo, School of Pharmacy, Department of Pharmaceutical Biosciences, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Tor Gjøen
- University of Oslo, School of Pharmacy, Department of Pharmaceutical Biosciences, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
45
|
Hao LX, Li MF. Molecular characterization and expression analysis of nine CC chemokines in half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:717-724. [PMID: 26470888 DOI: 10.1016/j.fsi.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a large, diverse group of small cytokines that can be classified into several families, including the CC chemokine family, which plays a pivotal role in host defense by inducing leukocyte chemotaxis under physiological and inflammatory conditions. Here we studied 9 CC chemokines from half-smooth tongue sole (Cynoglossus semilaevis). Phylogenetic analysis divided these chemokines into four groups. The tissue specific expression patterns of the 9 chemokines under normal physiological conditions varied much, with most chemokines highly expressed in immune organs, while some other chemokines showing high expression levels in non-immune organs. In addition, the 9 chemokines exhibited similar or distinctly different expression profiles in response to the challenge of virus and intracellular and extracellular bacterial pathogens. These results indicate that in tongue sole, CC chemokines may be involved in different immune responses as homeostatic or inflammatory chemokines.
Collapse
Affiliation(s)
- Lian-xu Hao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
46
|
Bird S, Tafalla C. Teleost Chemokines and Their Receptors. BIOLOGY 2015; 4:756-84. [PMID: 26569324 PMCID: PMC4690017 DOI: 10.3390/biology4040756] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022]
Abstract
Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specifically zebrafish (Daniorerio), rainbow trout (Oncorhynchusmykiss) and catfish (Ictaluruspunctatus), outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.
Collapse
Affiliation(s)
- Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Waikato 3240, New Zealand.
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, Madrid 28130, Spain.
| |
Collapse
|
47
|
Zhao B, Katagiri T, Kondo H, Hirono I. Comparative analysis of two types of CXCL8 from Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:37-47. [PMID: 25912356 DOI: 10.1016/j.dci.2015.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
A new type of CXCL8, named CXCL8_L1b, was identified in this research. Comparison of amino acid sequences of Japanese flounder CXCL8_L1b and CXCL8_L1a (BAB86884.1) showed only 41.2% identity. Transcripts of CXCL8_L1a were highly detected in spleen, kidney, gill and liver, while transcripts of CXCL8_L1b only were detected highly in spleen and kidney of apparently healthy fish. In fish challenged with E. tarda, transcripts of CXCL8_L1a were significantly increased at day 6, while no significant increase was detected in the mRNA level of CXCL8_L1b. On the other hand, fish infected by S. iniae significantly increased both transcripts of CXCL8_L1a and CXCL8_L1b at days 1 and 3. In VHSV-infected fish, only the transcripts of CXCL8_L1b were significantly induced at day 6. LPS and poly I:C stimulation of PBLs induced a high level of CXCL8_L1a transcripts, while CXCL8_L1b transcripts were significantly increased only post poly I:C treatment. To evaluate the chemotactic activity of CXCL8_L1a and CXCL8_L1b, Japanese flounder were intramuscularly injected with recombinant plasmids pCI-CXCL8_L1a and pCI-CXCL8_L1b. H & E staining showed that injections of both pCI-CXCL8_L1a and pCI-CXCL8_L1b caused strong immune responses in the form of intermuscular cell infiltration and capillary congestion. Injection of pCI-CXCL8_L1a and pCI-CXCL8_L1b significantly induced the expressions of genes related to inflammatory response such as IL-6 and CD8α on day 1 post-injection. The transcripts of IgM only significantly increased on day 7 post-injection of pCI-CXCL8_L1b.
Collapse
Affiliation(s)
- Beibei Zhao
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Takayuki Katagiri
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
48
|
Aeromonas salmonicida Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss). J Immunol Res 2015; 2015:901015. [PMID: 26266270 PMCID: PMC4525466 DOI: 10.1155/2015/901015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are known to detect a defined spectrum of microbial structures. However, the knowledge about the specificity of teleost Tlr factors for distinct pathogens is limited so far. We measured baseline expression profiles of 18 tlr genes and associated signaling factors in four immune-relevant tissues of rainbow trout Oncorhynchus mykiss. Intraperitoneal injection of a lethal dose of Aeromonas salmonicida subsp. salmonicida induced highly increased levels of cytokine mRNAs during a 72-hour postinfection (hpi) period. In contrast, only the fish-specific tlr22a2 and the downstream factor irak1 featured clearly increased transcript levels, while the mRNA concentrations of many other tlr genes decreased. Flow cytometry quantified cell trafficking after infection indicating a dramatic influx of myeloid cells into the peritoneum and a belated low level immigration of lymphoid cells. T and B lymphocytes were differentiated with RT-qPCR revealing that B lymphocytes emigrated from and T lymphocytes immigrated into head kidney. In conclusion, no specific TLR can be singled out as a dominant receptor for A. salmonicida. The recruitment of cellular factors of innate immunity rather than induced expression of pathogen receptors is hence of key importance for mounting a first immune defense against invading A. salmonicida.
Collapse
|
49
|
Mu Y, Wang K, Ao J, Chen X. Molecular characterization and biological effects of a CXCL8 homologue in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2015; 44:462-470. [PMID: 25827624 DOI: 10.1016/j.fsi.2015.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
CXCL8 also called interleukin-8, is a CXC-type chemokine that plays a key role in promoting inflammation. Three subgroups of CXCL8 homologues have been reported in teleost fish, including CXCL8_L1, CXCL8_L2 and CXCL8_L3. In the present study, we identified a CXCL8 homologue belonging to CXCL8_L1 subgroup (LycCXCL8_L1) in large yellow croaker (Larimichthys crocea) that shares low identity to the previously reported large yellow croaker CXCL8 (LycCXCL8). The full-length cDNA of LycCXCL8_L1 is 716 nucleotides (nt) long and encodes a protein consisting of 99 amino acids (aa) with a putative molecular weight of 11.2 kDa. The deduced LycCXCL8_L1 protein contains a 22-aa signal peptide and a 77-aa mature polypeptide, which possesses an arrangement of four cysteines typical of other known CXC chemokines (C(34), C(36), C(60), and C(77)). Genomic analysis revealed that the LycCXCL8_L1 gene consisted of four exons and three introns and exhibited a similar exon-intron organization to LycCXCL8 and other species CXCL8 genes except for a different intron length. Phylogenetic analysis showed that both LycCXCL8_L1 and LycCXCL8 belong to CXCL8_L1 subgroup. LycCXCL8_L1 mRNA was constitutively expressed in all tissues examined although at different levels. Upon bacterial vaccine induction, LycCXCL8_L1 mRNA expression was rapidly increased in the spleen and head kidney tissues. Recombinant LycCXCL8_L1 and LycCXCL8 proteins produced in Escherichia coli both induced chemotaxis and superoxide production in peripheral blood leucocytes from large yellow croaker. These results indicate that two CXCL8_L1 molecules exist in large yellow croaker and play roles in inflammatory response.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Kunru Wang
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China.
| |
Collapse
|
50
|
Pietsch C, Katzenback BA, Garcia-Garcia E, Schulz C, Belosevic M, Burkhardt-Holm P. Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed. Mycotoxin Res 2015; 31:151-64. [DOI: 10.1007/s12550-015-0226-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
|