1
|
Aitken TJ, Liu Z, Ly T, Shehata S, Sivakumar N, La Santa Medina N, Gray LA, Zhang J, Dundar N, Barnes C, Knight ZA. Negative feedback control of hypothalamic feeding circuits by the taste of food. Neuron 2024; 112:3354-3370.e5. [PMID: 39153476 DOI: 10.1016/j.neuron.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhengya Liu
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingkun Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Althukair NK, Abdeen GN, le Roux CW, Miras AD, Alqahtani AR. The Effects of Sleeve Gastrectomy on the Appetitive Domain of Taste Using the Progressive Ratio Task. Obes Surg 2024; 34:1168-1173. [PMID: 38372880 PMCID: PMC11026271 DOI: 10.1007/s11695-023-07035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Sleeve gastrectomy (SG) is an effective treatment for obesity in adolescents. The underlying weight loss mechanism may impact the peripheral and central gustatory system along with reward circuits in the brain. This study aims to assess changes in appetitive behavior in short-, medium-, and long-term follow-up. METHODS In this prospective observational study, a total of 8 adolescents with obesity who underwent SG and 9 comparator unoperated participants were studied. Appetitive behaviour towards fat and sweet taste stimuli was assessed using the Progressive Ratio Task (PRT) over a 6 year period. RESULTS Mean body mass index (BMI) of the surgical patients dropped from 51.5 ± 2.8 kg/m2 to 31.4 ± 1.9 and 30.9 ± 2.3 kg/m2 at 1 and 6 years follow-up, respectively. (p < 0.001). The median (interquartile range) total rewards earned during the PRT was 6 (5-7) pre-surgery, 5 (3-6) after one year and 4 (2-4) after six years from surgery (p = 0.007). CONCLUSION SG reduced appetitive behaviour at 1 year with maintained the benefit over 6 years as measured by the progressive ratio task.
Collapse
Affiliation(s)
- Noura K Althukair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghalia N Abdeen
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 5, London, UK.
| | - Carel W le Roux
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 5, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, 10, Dublin, Ireland
- Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Alex D Miras
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 5, London, UK
| | - Aayed R Alqahtani
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Aitken TJ, Ly T, Shehata S, Sivakumar N, Medina NLS, Gray LA, Dundar N, Barnes C, Knight ZA. Negative feedback control of hunger circuits by the taste of food. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569492. [PMID: 38077047 PMCID: PMC10705440 DOI: 10.1101/2023.11.30.569492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here we show that hunger-promoting AgRP neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco; San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Mukherjee A, Paladino MS, McSain SL, Gilles-Thomas EA, Lichte DD, Camadine RD, Willock S, Sontate KV, Honeycutt SC, Loney GC. Escalation of alcohol intake is associated with regionally decreased insular cortex activity but not changes in taste quality. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:868-881. [PMID: 36941800 PMCID: PMC10289132 DOI: 10.1111/acer.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive. METHODS We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake. First, taste reactivity analyses quantified the degree to which intermittent brief-access ethanol exposure (BAEE) alters sensitivity to the aversive properties of ethanol. Next, we determined whether pharmacological IC inhibition facilitated ethanol escalation. Finally, given that the IC is primary gustatory cortex, we employed psychophysical paradigms to assess whether escalation of ethanol intake induced changes in ethanol taste. These paradigms measured changes in sensitivity to the intensity of ethanol taste and whether escalation in intake shifts the salient taste quality of ethanol by measuring the degree to which the taste of ethanol generalized to a sucrose-like ("sweet") or quinine-like ("bitter") percept. RESULTS We found a near-complete loss of aversive oromotor responses in ethanol-exposed relative to ethanol-naïve rats. Additionally, we observed significantly lower expression of ethanol-induced c-Fos expression in the posterior IC in exposed rats relative to naïve rats. Inhibition of the IC resulted in a modest, but statistically reliable increase in the acceptance of higher ethanol concentrations in naïve rats. Finally, we found no evidence of changes in the psychophysical assessment of the taste of ethanol in exposed, relative to naïve, rats. CONCLUSIONS Our results demonstrate that neural activity within the IC adapts following repeated presentations of ethanol in a manner that correlates with reduced sensitivity to the aversive hedonic properties of ethanol. These data help to establish that alterations in IC activity may be driving exposure-induced escalations in ethanol intake.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Morgan S Paladino
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Rece D Camadine
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Saidah Willock
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
6
|
Santollo J, Daniels D, Leshem M, Schulkin J. Sex Differences in Salt Appetite: Perspectives from Animal Models and Human Studies. Nutrients 2023; 15:208. [PMID: 36615865 PMCID: PMC9824138 DOI: 10.3390/nu15010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Salt ingestion by animals and humans has been noted from prehistory. The search for salt is largely driven by a physiological need for sodium. There is a large body of literature on sodium intake in laboratory rats, but the vast majority of this work has used male rats. The limited work conducted in both male and female rats, however, reveals sex differences in sodium intake. Importantly, while humans ingest salt every day, with every meal and with many foods, we do not know how many of these findings from rodent studies can be generalized to men and women. This review provides a synthesis of the literature that examines sex differences in sodium intake and highlights open questions. Sodium serves many important physiological functions and is inextricably linked to the maintenance of body fluid homeostasis. Indeed, from a motivated behavior perspective, the drive to consume sodium has largely been studied in conjunction with the study of thirst. This review will describe the neuroendocrine controls of fluid balance, mechanisms underlying sex differences, sex differences in sodium intake, changes in sodium intake during pregnancy, and the possible neuronal mechanisms underlying these differences in behavior. Having reviewed the mechanisms that can only be studied in animal experiments, we address sex differences in human dietary sodium intake in reproduction, and with age.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Derek Daniels
- Department of Biology, University at Buffalo, Buffalo, NY 14260, USA
| | - Micah Leshem
- School of Psychological Sciences, The University of Haifa, Haifa 3498838, Israel
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Hyde KM, Blonde GD, Nisi AV, Spector AC. The Influence of Roux-en-Y Gastric Bypass and Diet on NaCl and Sucrose Taste Detection Thresholds and Number of Circumvallate and Fungiform Taste Buds in Female Rats. Nutrients 2022; 14:nu14040877. [PMID: 35215527 PMCID: PMC8880222 DOI: 10.3390/nu14040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) in rats attenuates preference for, and intake of, sugar solutions. Additionally, maintenance on a high-fat diet (HFD) reportedly alters behavioral responsiveness to sucrose in rodents in short-term drinking tests. Due to the fact that the behavioral tests to date rely on the hedonic value of the stimulus to drive responsiveness, we sought to determine whether taste detection thresholds to sucrose and NaCl are affected by these manipulations as measured in an operant two-response signal detection paradigm. Female rats were maintained on HFD or chow for 10 weeks, at which point animals received either RYGB or SHAM surgery followed by a gel-based diet and then powdered chow. Upon recovery, half of the rats that were previously on HFD were switched permanently to chow, and the other rats were maintained on their presurgical diets (n = 5–9/diet condition x surgery group for behavioral testing). The rats were then trained and tested in a gustometer. There was a significant interaction between diet condition and surgery on NaCl threshold that was attributable to a lower value in RYGB vs. SHAM rats in the HFD condition, but this failed to survive a Bonferroni correction. Importantly, there were no effects of diet condition or surgery on sucrose thresholds. Additionally, although recent evidence suggests that maintenance on HFD alters taste bud number in the circumvallate papillae (CV) of mice, in a subset of rats, we did not find that diet significantly influenced taste pores in the anterior tongue or CV of female rats. These results suggest that any changes in sucrose responsiveness in intake/preference or hedonically oriented tests in rats as a function of HFD maintenance or RYGB are not attributable to alterations in taste sensitivity.
Collapse
|
8
|
Patwell R, Yang H, Pandey SC, Glover EJ. An operant ethanol self-administration paradigm that discriminates between appetitive and consummatory behaviors reveals distinct behavioral phenotypes in commonly used rat strains. Neuropharmacology 2021; 201:108836. [PMID: 34648771 PMCID: PMC8578460 DOI: 10.1016/j.neuropharm.2021.108836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.
Collapse
Affiliation(s)
- Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hyerim Yang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Levina AD, Mikhailova ES, Kasumyan AO. Taste preferences and feeding behaviour in the facultative herbivorous fish, Nile tilapia Oreochromis niloticus. JOURNAL OF FISH BIOLOGY 2021; 98:1385-1400. [PMID: 33448377 DOI: 10.1111/jfb.14675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Taste preferences in fishes are known mainly for carnivorous species, whereas herbivorous consumers were rarely used in such studies. The main goal of the present study was to evaluate the taste preferences in the herbivorous African cichlid fish, Nile tilapia Oreochromis niloticus. In laboratory settings, the palatability of widely used taste substances (four taste substances that are considered to be sweet, sour, bitter and salty for humans - sucrose, citric acid, calcium chloride and sodium chloride; 21 free L-amino acids; 12 sugars and artificial sweetener Na-saccharin; 0.1-0.0001 M) was evaluated. In each trial, a standard agar pellet flavoured with a substance was offered for fish individually. The consumption of pellet, the number of grasps and the retention time before the pellet was finally ingested or rejected were registered. Overall, 21 of 38 substances were palatable, whereas other substances did not shift consumption of pellets in relation to blank pellets. Pellets containing citric acid, L-cysteine, L-norvaline, L-isoleucine, L-valine, Na-saccharin and D-sorbitol were consumed in >85% of trials. Taste attractiveness of amino acids was highly species-specific and was not associated with the trophic category of the 19 species compared. Moreover, it did not correlate with dietary quantitative requirements of Nile tilapia (rs = 0.27; P > 0.05). Palatability of sugars for O. niloticus and their sweetness for humans did not correlate as well (rs = 0.21; P > 0.05); nonetheless, Na-saccharin has the most attractive taste for both O. niloticus and humans. The most palatable amino acids lost their effect if the concentration was lowered to 0.01 M for L-cysteine and 0.001 M for L-norvaline (lower than 242.3 μg and 23.4 μg per a pellet, respectively). Single pellet grasp was characteristic of O. niloticus feeding behaviour (>95% of trials), and this pattern may be related to the social lifestyle of this species. Fish spent 4-8 s on average for orosensory evaluation of pellet edibility. The retention time correlated with the palatability of substances and was significantly longer in trials that ended up with pellet swallowing. It is suggested that prolonged orosensory evaluation of food before swallowing provides a reliable and accurate sensory evaluation, which, in turn, can reduce the probability that inadequate food will be consumed.
Collapse
Affiliation(s)
- Aleksandra D Levina
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena S Mikhailova
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander O Kasumyan
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory for Behaviour of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Bales MB, Spector AC. Chemospecific deficits in taste sensitivity following bilateral or right hemispheric gustatory cortex lesions in rats. J Comp Neurol 2020; 528:2729-2747. [PMID: 32671857 PMCID: PMC8008699 DOI: 10.1002/cne.24928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Our prior studies showed bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts (NaCl and KCl) and quinine ("bitter") but not to sucrose ("sweet"). The range of qualitative tastants tested here has been extended in a theoretically relevant way to include the maltodextrin, Maltrin, a preferred stimulus by rats thought to represent a unique taste quality, and the "sour" stimulus citric acid; NaCl was also included as a positive control. Male rats (Sprague-Dawley) with histologically confirmed neurotoxin-induced bilateral (BGCX, n = 13), or right (RGCX, n = 13) or left (LGCX, n = 9) unilateral GC lesions and sham-operated controls (SHAM, n = 16) were trained to discriminate a tastant from water in an operant two-response detection task. A mapping system was used to determine placement, size, and symmetry (when bilateral) of the lesion. BGCX significantly impaired taste sensitivity to NaCl, as expected, but not to Maltrin or citric acid, emulating our prior results with sucrose. However, in the case of citric acid, there was some disruption in performance at higher concentrations. Interestingly, RGCX, but not LGCX, also significantly impaired taste sensitivity, but only to NaCl, suggesting some degree of lateralized function. Taken together with our prior findings, extensive bilateral lesions in GC do not disrupt basic taste signal detection to all taste stimuli uniformly. Moreover, GC lesions do not preclude the ability of rats to learn and perform the task, clearly demonstrating that, in its absence, other brain regions are able to maintain sensory-discriminative taste processing, albeit with attenuated sensitivity for select stimuli.
Collapse
Affiliation(s)
- Michelle B Bales
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
11
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
12
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Naneix F, Peters KZ, McCutcheon JE. Investigating the Effect of Physiological Need States on Palatability and Motivation Using Microstructural Analysis of Licking. Neuroscience 2019; 447:155-166. [PMID: 31682949 DOI: 10.1016/j.neuroscience.2019.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
The study of consummatory responses during food intake represents a unique opportunity to investigate the physiological, psychological and neurobiological processes that control ingestive behavior. Recording the occurrence and temporal organization of individual licks across consumption, also called lickometry, yields a rich data set that can be analyzed to dissect consummatory responses into different licking patterns. These patterns, divided into trains of licks separated by pauses, have been used to deconstruct the many influences on consumption, such as palatability evaluation, incentive properties, and post-ingestive processes. In this review, we describe commonly used definitions of licking patterns and how various studies have defined and measured these. We then discuss how licking patterns can be used to investigate the impact of different physiological need states on processes governing ingestive behavior. We also present new data showing how licking patterns are changed in an animal model of protein appetite and how this may guide food choice in different protein-associated hedonic and homeostatic states. Thus, recording lick microstructure can be achieved relatively easily and represents a useful tool to provide insights, beyond the measurement of total intake, into the multiple factors influencing ingestive behavior.
Collapse
Affiliation(s)
- Fabien Naneix
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
| | - Kate Z Peters
- Dept. of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James E McCutcheon
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; Dept. of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Nielsen MS, Schmidt JB, le Roux CW, Sjödin A. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Food Preferences and Potential Mechanisms Involved. Curr Obes Rep 2019; 8:292-300. [PMID: 31222526 DOI: 10.1007/s13679-019-00354-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Bariatric surgery leads to a substantial decrease in energy intake. It is unclear whether this decrease in energy intake is simply due to eating smaller portions of the same food items or a shift in food preference towards less energy-dense foods. This review evaluates the existing literature on changes in food preferences after bariatric surgery and the potential mechanisms involved. RECENT FINDINGS Changes in food preferences have been reported; however, the evidence is mainly based on indirect measurements, such as self-reporting. When changes in food preferences are directly assessed, results contradict previous findings, indicating that results based on self-reporting must be interpreted with caution as they do not necessarily reflect actual behaviour. However, it seems that there could be inter-individual differences in the response to surgery. Future studies investigating changes in food preferences should not only focus on direct measured of behaviour but should also consider the heterogeneity of the response after bariatric surgery.
Collapse
Affiliation(s)
- Mette S Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
- The Danish Diabetes Academy, Odense University Hospital, Odense, Denmark.
| | - Julie B Schmidt
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Carel W le Roux
- Investigative Science, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science (Obesity research), University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Mathes CM. Taste- and flavor-guided behaviors following Roux-en-Y gastric bypass in rodent models. Appetite 2019; 146:104422. [PMID: 31472198 DOI: 10.1016/j.appet.2019.104422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most efficacious treatments for obesity, but the behavioral and physiological mechanisms through which it enacts its effects are not completely understood. The weight loss that follows RYGB surgery is due to some extent to decreased caloric intake. The perception of flavor and the sense of taste undoubtedly contribute to ingestion, and changes in taste sensation and flavor perception may, even in part, propel the altered feeding seen after RYGB surgery. Measuring observable behavior in non-human animal models of RYGB surgery is an objective way by which to evaluate underlying mechanism, including the influence of flavor and taste to intake changes after RYGB surgery, as well as the interaction of flavor and taste with post-oral consequences and learning phenomena. Collectively, the data in rodent models support the conclusion that neither palatability nor motivational potency are reduced following RYGB surgery. Indeed, rats still typically show preference for sweet and fatty solids and liquids, and positive flavor-guided hedonic responses for these substances remain stable in some tests. However, preference for these foods and fluids is reduced, and flavor-guided behaviors after long-term tests are reorganized. These patterns suggest that, while rats are still motivated to consume sweet and fatty consumables and find them palatable, they learn to limit their intake of them to avoid undesirable post-oral consequences. Examination of these interactions and elucidating their physiologic correlates may maximize the efficacy of RYGB surgery and/or promote the development of alternative or supplemental treatments.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Neuroscience, Baldwin Wallace University, 275 Eastland Rd, Berea, OH, 44017, USA.
| |
Collapse
|
16
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
17
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
18
|
Abdeen GN, Miras AD, Alqhatani AR, le Roux CW. Sugar Detection Threshold After Laparoscopic Sleeve Gastrectomy in Adolescents. Obes Surg 2017; 28:1302-1307. [DOI: 10.1007/s11695-017-2999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Smith KR, Spector AC. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer. Am J Physiol Regul Integr Comp Physiol 2017; 313:R450-R462. [PMID: 28768658 DOI: 10.1152/ajpregu.00049.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022]
Abstract
Maltodextrins, such as Maltrin and Polycose, are glucose polymer mixtures of varying chain lengths that are palatable to rodents. Although glucose and other sugars activate the T1R2 + T1R3 "sweet" taste receptor, recent evidence from T1R2- or T1R3-knockout (KO) mice suggests that maltodextrins, despite their glucose polymer composition, activate a separate receptor mechanism to generate a taste percept qualitatively distinguishable from that of sweeteners. However, explicit discrimination of maltodextrins from prototypical sweeteners has not yet been psychophysically tested in any murine model. Therefore, mice lacking T1R2 + T1R3 and wild-type controls were tested in a two-response taste discrimination task to determine whether maltodextrins are 1) detectable when both receptor subunits are absent and 2) perceptually distinct from that of sucrose irrespective of viscosity, intensity, and hedonics. Most KO mice displayed similar Polycose sensitivity as controls. However, some KO mice were only sensitive to the higher Polycose concentrations, implicating potential allelic variation in the putative polysaccharide receptor or downstream pathways unmasked by the absence of T1R2 + T1R3. Varied Maltrin and sucrose concentrations of approximately matched viscosities were then presented to render the oral somatosensory features, intensity, and hedonic value of the solutions irrelevant. Although both genotypes competently discriminated Maltrin from sucrose, performance was apparently driven by the different orosensory percepts of the two stimuli in control mice and the presence of a Maltrin but not sucrose orosensory cue in KO mice. These data support the proposed presence of an orosensory receptor mechanism that gives rise to a qualitatively distinguishable sensation from that of sucrose.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
20
|
Taste preference changes throughout different life stages in male rats. PLoS One 2017; 12:e0181650. [PMID: 28742813 PMCID: PMC5526549 DOI: 10.1371/journal.pone.0181650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/30/2017] [Indexed: 11/19/2022] Open
Abstract
Taste preference, a key component of food choice, changes with aging. However, it remains unclear how this occurs. To determine differences in taste preference between rats in different life stages, we examined the consumption of taste solutions and water using a two-bottle test. Male Sprague-Dawley rats of different ages were used: juvenile (3-6 weeks), young adult (8-11 weeks), adult (17-20 weeks), middle-aged (34-37 weeks), and old-aged (69-72 weeks). The intakes of the high and low concentration solutions presented simultaneously were measured. We observed that the old-aged group had lower preference ratios for 0.3 M sucrose and 0.1 M MSG in comparison with other groups. The preference ratio for 0.03 mM QHCl was higher in the middle-aged group than in the three younger groups and higher in the old-aged group than the juvenile group. The taste preferences for HCl and NaCl did not significantly differ among the age groups. The old-aged group tended to prefer high concentrations of sucrose, QHCl, NaCl, and MSG to low concentrations, indicating age-related decline in taste sensitivity. We also aimed to investigate differences between life stages in the electrophysiological responses of the chorda tympani nerve, one of the peripheral gustatory nerves, to taste stimuli. The electrophysiological recordings showed that aging did not alter the function of the chorda tympani nerve. This study showed that aging induced alterations in taste preference. It is likely that these alterations are a result of functional changes in other peripheral taste nerves, the gastrointestinal system, or the central nervous system.
Collapse
|
21
|
Boudjarane MA, Grandgeorge M, Marianowski R, Misery L, Lemonnier É. Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Res 2017; 10:1045-1057. [PMID: 28371114 DOI: 10.1002/aur.1760] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/11/2022]
Abstract
Olfaction and gustation are major sensory functions implied in processing environmental stimuli. Some evidences suggest that loss of olfactory function is an early biomarker for neurodegenerative disorders and atypical processing of odor and taste stimuli is present in several neurodevelopmental disorders, notably in Autism Spectrum Disorders (ASD). In this paper, we conducted a systematic review investigating the assessments of olfaction and gustation with psychophysics methods in individuals with ASD. Pubmed, PMC and Sciencedirect were scrutinized for relevant literature published from 1970 to 2015. In this review, fourteen papers met our inclusion criteria. They were analyzed critically in order to evaluate the occurrence of olfactory and gustatory dysfunction in ASD, as well as to report the methods used to assess olfaction and gustation in such conditions. Regarding to these two senses, the overall number of studies is low. Most of studies show significant difference regarding to odor or taste identification but not for detection threshold. Overall, odor rating through pleasantness, intensity and familiarity do not differ significantly between control and individuals with ASD. The current evidences can suggest the presence of olfactory and gustatory dysfunction in ASD. Therefore, our analysis show a heterogeneity of findings. This is due to several methodological limitations such as the tools used or population studied. Understanding these disorders could help to shed light on other atypical behavior in this population such as feeding or social behavior. Autism Res 2017, 0: 000-000. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1045-1057. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed A Boudjarane
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - Marine Grandgeorge
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,UMR-CNRS 6552, Animal and Human Ethology University of Rennes 1-CNRS, Rennes Cedex, France
| | - Rémi Marianowski
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of ENT, University Hospital of Brest, Brest Cedex, France
| | - Laurent Misery
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest Cedex, France
| | - Éric Lemonnier
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France.,University Hospital of Limoges, Expert Center of Autism Limousin, Limoges Cedex, France (É.L.)
| |
Collapse
|
22
|
Behavioral evidence that select carbohydrate stimuli activate T1R-independent receptor mechanisms. Appetite 2016; 122:26-31. [PMID: 28034739 DOI: 10.1016/j.appet.2016.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/21/2023]
Abstract
Three decades ago Tony Sclafani proposed the existence of a polysaccharide taste quality that was distinguishable from the taste generated by common sweeteners and that it was mediated by a separate receptor mechanism. Since that time, evidence has accumulated, including psychophysical studies conducted in our laboratory, buttressing this hypothesis. The use of knockout (KO) mice that lack functional T1R2 + T1R3 heterodimers, the principal taste receptor for sugars and other sweeteners, have been especially informative in this regard. Such KO mice display severely diminished electrophysiological and behavioral responsiveness to sugars, artificial sweeteners, and some amino acids, yet display only slightly impaired concentration-dependent responsiveness to a representative polysaccharide, Polycose. Moreover, although results from gene deletion experiments in the literature provide strong support for the primacy of the T1R2 + T1R3 heterodimer in the taste transduction of sugars and other sweeteners, there is also growing evidence suggesting that there may be T1R-independent receptor mechanism(s) activated by select sugars, especially glucose. The output of these latter receptor mechanisms appears to be channeled into brain circuits subserving various taste functions such as cephalic phase responses and ingestive motivation. This paper highlights some of the findings from our laboratory and others that lend support for this view, while emphasizing the importance of considering the multidimensional nature of taste function in the interpretation of outcomes from experiments involving manipulations of the gustatory system.
Collapse
|
23
|
Spector AC, le Roux CW, Munger SD, Travers SP, Sclafani A, Mennella JA. Proceedings of the 2015 ASPEN Research Workshop-Taste Signaling. JPEN J Parenter Enteral Nutr 2016; 41:113-124. [PMID: 26598504 DOI: 10.1177/0148607115617438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article summarizes research findings from 6 experts in the field of taste and feeding that were presented at the 2015 American Society for Parenteral and Enteral Nutrition Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass and increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding.
Collapse
Affiliation(s)
- Alan C Spector
- 1 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Carel W le Roux
- 2 Diabetes Complications Research Centre, Conway Institute, University College, Dublin, Ireland
| | - Steven D Munger
- 3 Department of Pharmacology and Therapeutics; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism; Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Susan P Travers
- 4 Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, USA
| | - Anthony Sclafani
- 5 Department of Psychology, Brooklyn College of the City University of New York, New York, New York, USA
| | - Julie A Mennella
- 6 Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Ekmekcioglu C, Maedge J, Lam L, Blasche G, Shakeri-Leidenmühler S, Kundi M, Ludvik B, Langer FB, Prager G, Schindler K, Dürrschmid K. Salt taste after bariatric surgery and weight loss in obese persons. PeerJ 2016; 4:e2086. [PMID: 27330856 PMCID: PMC4906643 DOI: 10.7717/peerj.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Little is known about the perception of salty taste in obese patients, especially after bariatric surgery. Therefore, the aim of this study was to analyse possible differences in salt detection thresholds and preferences for foods differing in salt content in obese persons before and after bariatric surgery with weight loss compared to non-obese individuals. Methods. Sodium chloride detection thresholds and liking for cream soups with different salt concentrations were studied with established tests. Moreover, a brief salt food questionnaire was assessed to identify the usage and awareness of salt in food. Results. The results showed similar mean sodium chloride detection thresholds between non-obese and obese participants. After bariatric surgery a non-significant increase in the salt detection threshold was observed in the obese patients (mean ± SD: 0.44 ± 0.24 g NaCl/L before OP vs. 0.64 ± 0.47 g NaCl/L after OP, p = 0.069). Cream soup liking between controls and obese patients were not significantly different. However, significant sex specific differences were detected with the tested women not liking the soups (p < 0.001). Results from the food questionnaire were similar between the groups. Conclusion. No differences between non-obese persons and obese patients were shown regarding the salt detection threshold. However, due to highly significant differences in soup liking, sex should be taken into consideration when conducting similar sensory studies.
Collapse
Affiliation(s)
- Cem Ekmekcioglu
- Institute of Environmental Health, Centre for Public Health, Medical University of Vienna , Vienna , Austria
| | - Julia Maedge
- Institute of Environmental Health, Centre for Public Health, Medical University of Vienna, Vienna, Austria; Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Linda Lam
- Institute of Environmental Health, Centre for Public Health, Medical University of Vienna, Vienna, Austria; Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Gerhard Blasche
- Institute of Environmental Health, Centre for Public Health, Medical University of Vienna , Vienna , Austria
| | | | - Michael Kundi
- Institute of Environmental Health, Centre for Public Health, Medical University of Vienna , Vienna , Austria
| | - Bernhard Ludvik
- Karl Landsteiner Institute for Obesity and Metabolic Diseases, 1. Medical Department, Rudolfstiftung Hospital Vienna , Vienna , Austria
| | - Felix B Langer
- Department of Surgery, Division of General Surgery, Medical University of Vienna , Vienna , Austria
| | - Gerhard Prager
- Department of Surgery, Division of General Surgery, Medical University of Vienna , Vienna , Austria
| | - Karin Schindler
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna , Vienna , Austria
| | - Klaus Dürrschmid
- Department of Food Science and Technology, University of Natural Resources and Life Sciences , Vienna , Austria
| |
Collapse
|
25
|
Abstract
Various bariatric surgical procedures are effective at improving health in patients with obesity associated co-morbidities, but the aim of this review is to specifically describe the mechanisms through which Roux-en-Y gastric bypass (RYGB) surgery enables weight loss for obese patients using observations from both human and animal studies. Perhaps most but not all clinicians would agree that the beneficial effects outweigh the harm of RYGB; however, the mechanisms for both the beneficial and deleterious (for example postprandial hypoglycaemia, vitamin deficiency and bone loss) effects are ill understood. The exaggerated release of the satiety gut hormones, such as GLP-1 and PYY, with their central and peripheral effects on food intake has given new insight into the physiological changes that happen after surgery. The initial enthusiasm after the discovery of the role of the gut hormones following RYGB may need to be tempered as the magnitude of the effects of these hormonal responses on weight loss may have been overestimated. The physiological changes after RYGB are unlikely to be due to a single hormone, or single mechanism, but most likely involve complex gut-brain signalling. Understanding the mechanisms involved with the beneficial and deleterious effects of RYGB will speed up the development of effective, cheaper and safer surgical and non-surgical treatments for obesity.
Collapse
Affiliation(s)
- G Abdeen
- Investigative Science, Imperial College London, London, UK.
| | - C W le Roux
- Investigative Science, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
- Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Dixon JB, Lambert EA, Lambert GW. Neuroendocrine adaptations to bariatric surgery. Mol Cell Endocrinol 2015; 418 Pt 2:143-52. [PMID: 26044866 DOI: 10.1016/j.mce.2015.05.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023]
Abstract
The global epidemic of obesity and its related disease in combination with robust physiological defence of intentional weight loss generates a pressing need for effective weight loss therapies. Bariatric surgery, which works very effectively at delivering substantial sustained weight loss, has been an enigma with respect to mechanism of action. Naive concepts of restriction and malabsorption do not explain the efficacy of the most commonly used bariatric procedures. This century has seen increased interest in unravelling the mystery of the mechanisms underlying surgery associated weight loss with a focus on integrative gastrointestinal (GI) physiology, gut-brain signalling, and beyond weight loss effects on metabolism. GI interventions, some very minor, can alter GI wall stretch and pressure receptors; a range of GI hormones affecting hunger and satiety; bile acid metabolism and signalling; the characteristics of GI microbiome; portal vein nutrient sensing; and circulating concentrations of amino acids. Understanding the mechanisms involved should present targets for less invasive effective therapies.
Collapse
Affiliation(s)
- J B Dixon
- Baker IDI Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - E A Lambert
- Baker IDI Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - G W Lambert
- Baker IDI Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
27
|
Bales MB, Schier LA, Blonde GD, Spector AC. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats. PLoS One 2015; 10:e0143419. [PMID: 26599914 PMCID: PMC4657922 DOI: 10.1371/journal.pone.0143419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
Recently, we reported that large bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX) and in sham-operated controls (SHAM). Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p.), but postsurgical tests indicated a weak conditioned taste aversion (CTA) even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average). For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001) in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006) in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and/or perceptual features of the stimulus.
Collapse
Affiliation(s)
- Michelle B. Bales
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - Lindsey A. Schier
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - Ginger D. Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
28
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
29
|
Schier LA, Blonde GD, Spector AC. Bilateral lesions in a specific subregion of posterior insular cortex impair conditioned taste aversion expression in rats. J Comp Neurol 2015; 524:54-73. [PMID: 26053891 DOI: 10.1002/cne.23822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022]
Abstract
The gustatory cortex (GC) is widely regarded for its integral role in the acquisition and retention of conditioned taste aversions (CTAs) in rodents, but large lesions in this area do not always result in CTA impairment. Recently, using a new lesion mapping system, we found that severe CTA expression deficits were associated with damage to a critical zone that included the posterior half of GC in addition to the insular cortex (IC) that is just dorsal and caudal to this region (visceral cortex). Lesions in anterior GC were without effect. Here, neurotoxic bilateral lesions were placed in the anterior half of this critical damage zone, at the confluence of the posterior GC and the anterior visceral cortex (termed IC2 ), the posterior half of this critical damage zone that contains just VC (termed IC3), or both of these subregions (IC2 + IC3). Then, pre- and postsurgically acquired CTAs (to 0.1 M NaCl and 0.1 M sucrose, respectively) were assessed postsurgically in 15-minute one-bottle and 96-hour two-bottle tests. Li-injected rats with histologically confirmed bilateral lesions in IC2 exhibited the most severe CTA deficits, whereas those with bilateral lesions in IC3 were relatively normal, exhibiting transient disruptions in the one-bottle sessions. Groupwise lesion maps showed that CTA-impaired rats had more extensive damage to IC2 than did unimpaired rats. Some individual differences in CTA expression among rats with similar lesion profiles were observed, suggesting idiosyncrasies in the topographic representation of information in the IC. Nevertheless, this study implicates IC2 as the critical zone of the IC for normal CTA expression.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306
| |
Collapse
|
30
|
Glendinning JI, Stano S, Holter M, Azenkot T, Goldman O, Margolskee RF, Vasselli JR, Sclafani A. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol 2015; 309:R552-60. [PMID: 26157055 PMCID: PMC4591378 DOI: 10.1152/ajpregu.00056.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, New York;
| | - Sarah Stano
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Marlena Holter
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Tali Azenkot
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Olivia Goldman
- Department of Biology, Barnard College, Columbia University, New York, New York
| | | | - Joseph R Vasselli
- Obesity Research Center, Department of Medicine, Columbia University, New York, New York; and
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, New York
| |
Collapse
|
31
|
King CT, Hashimoto K, Blonde GD, Spector AC. Unconditioned oromotor taste reactivity elicited by sucrose and quinine is unaffected by extensive bilateral damage to the gustatory zone of the insular cortex in rats. Brain Res 2014; 1599:9-19. [PMID: 25536305 DOI: 10.1016/j.brainres.2014.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
Abstract
Rats display stereotypical oromotor and somatic responses to small volumes of intraorally infused taste solutions. These behaviors, known as taste reactivity, are categorized by their association with ingestion or rejection and are thought to reflect the palatability of the stimulus. Because supracollicular decerebrate rats display normal taste reactivity responses, it would appear that forebrain structures are not necessary for generating them. However, because moving the plane of transection rostrally, or damaging or manipulating specific ventral forebrain sites disrupts normal taste reactivity behavior, lesions of the gustatory cortex, a region that has been suggested to be involved with palatability processing, may do the same. In the current study, rats received two injections of either ibotenic acid (N=12) or vehicle (N=8), targeting the conventionally defined gustatory cortex in each hemisphere, and were implanted with intraoral cannulae. Following recovery, their responses to intraoral infusions (0.23ml in 1min) of dH2O, sucrose (1.0M and 0.1M), and quinine hydrochloride (3mM and 0.3mM) were video recorded. Analysis of brains with sufficient bilateral lesions (N=10) revealed that, on average, approximately 94% of the gustatory cortex was destroyed. These extensive bilateral lesions had no significant effect on taste reactivity; the numbers of ingestive and aversive responses to sucrose and quinine were similar between groups. Though these findings do not rule out involvement of the gustatory cortex in palatability processing, they make evident that the region of insular cortex destroyed is not necessary for the normal expression of unconditioned affective behavioral responses to taste stimuli.
Collapse
Affiliation(s)
| | - Koji Hashimoto
- Department of Morphological and Physiological Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Ginger D Blonde
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alan C Spector
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
32
|
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1275-91. [PMID: 25253084 DOI: 10.1152/ajpregu.00185.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity and its related comorbidities can be detrimental for the affected individual and challenge public health systems worldwide. Currently, the only available treatment options leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality are based on surgical interventions. This review will focus on two main clinical effects of Roux-en-Y gastric bypass (RYGB), namely body weight loss and change in eating behavior. Animal experiments designed to understand the underlying physiological mechanisms of these post-gastric bypass effects will be discussed. Where appropriate, reference will also be made to vertical sleeve gastrectomy. While caloric malabsorption and mechanical restriction seem not to be major factors in this respect, alterations in gut hormone levels are invariably found after RYGB. However, their causal role in RYGB effects on eating and body weight has recently been challenged. Other potential factors contributing to the RYGB effects include increased bile acid concentrations and an altered composition of gut microbiota. RYGB is further associated with remarkable changes in preference for different dietary components, such as a decrease in the preference for high fat or sugar. It needs to be noted, however, that in many cases, the question about the necessity of these alterations for the success of bariatric surgery procedures remains unanswered.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland; Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; and
| | - Marco Bueter
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
le Roux CW, Bueter M. The physiology of altered eating behaviour after Roux-en-Y gastric bypass. Exp Physiol 2014; 99:1128-32. [DOI: 10.1113/expphysiol.2014.078378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carel W. le Roux
- Diabetes Complications Research Centre; Conway Institute; School of Medicine and Medical Sciences; University College Dublin; Dublin Ireland
- Gastrosurgical Laboratory; University of Gothenburg; Gothenburg Sweden
- Investigative Science; Imperial College London; London UK
| | - Marco Bueter
- Department of Surgery; Division of Visceral and Transplantation Surgery; University Hospital Zurich; Zurich Switzerland
- Center of Integrative Human Physiology; University of Zurich; Zurich Switzerland
| |
Collapse
|
34
|
Aydın MD, Aydın N, Dane Ş, Gündoğdu C, Gürsan N, Akçay F, Serarslan Y. Taste bud-like structures in penile tissues and a predictive neural mechanism of male orgasm: A preliminary hypothesis based on histological evidence. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.npbr.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Irune E, Dwivedi RC, Nutting CM, Harrington KJ. Treatment-related dysgeusia in head and neck cancer patients. Cancer Treat Rev 2014; 40:1106-17. [PMID: 25064135 DOI: 10.1016/j.ctrv.2014.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Head and neck cancer patients treated with radiotherapy and/or chemotherapy agents may develop altered taste acuity. This, together with radiation induced xerostomia and dysphagia, is a major contributory factor to the anorexia and concomitant morbidity often seen in this group of patients. This paper examines the existing literature in order to assess the prevalence of clinician and patient-reported dysgeusia in HNC patients undergoing oncological treatment. We also describe the temporal manifestations of the same and its reported impact on QOL.
Collapse
Affiliation(s)
- Ekpemi Irune
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Raghav C Dwivedi
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Christopher M Nutting
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Kevin J Harrington
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
36
|
Li X, Treesukosol Y, Moghadam A, Smith M, Ofeldt E, Yang D, Li T, Tamashiro K, Choi P, Moran TH, Smith WW. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice. PLoS One 2014; 9:e91449. [PMID: 24829096 PMCID: PMC4020742 DOI: 10.1371/journal.pone.0091449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/12/2014] [Indexed: 01/06/2023] Open
Abstract
Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference (“pre-obese”) and when SP1 mice were heavier (“obese”). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both “pre-obese” and “obese“ SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.
Collapse
Affiliation(s)
- Xueping Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Yada Treesukosol
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander Moghadam
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erica Ofeldt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Kellie Tamashiro
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pique Choi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy H. Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (WWS); (THM)
| | - Wanli W. Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
- * E-mail: (WWS); (THM)
| |
Collapse
|
37
|
Treesukosol Y, Boersma GJ, Oros H, Choi P, Tamashiro KL, Moran TH. Similarities and differences between "proactive" and "passive" stress-coping rats in responses to sucrose, NaCl, citric acid, and quinine. Chem Senses 2014; 39:333-42. [PMID: 24510916 DOI: 10.1093/chemse/bju002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A stress-coping style describes a set of behavioral and physiological measures that characterize an individual's response to stressful stimuli. It would follow that different stress-coping styles are associated with differential sensitivity for taste stimuli. Animals with stress-coping characteristics better suited to an environment in which new foods are more frequently encountered may show enhanced orosensitivity to cues that signal toxins and/or nutritional value. Here, rats were categorized as "proactive" or "passive" based on results from a defensive burying test. Next, the brief-access taste procedure was used to compare unconditioned licking responses to a concentration array of compounds that humans describe as "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine) across the 2 groups. Both groups displayed concentration-dependent lick responses to sucrose, NaCl, citric acid, and quinine. The passive group initiated significantly fewer trials to sucrose than the proactive rats, but the groups did not significantly differ in trial initiation for the other 3 test compounds. Thus, differences in food intake, body weight, and glucose homeostasis between the stress-coping styles are not likely driven by alterations in orosensory responsivity. However, the current findings lend support to the hypothesis that the 2 groups differ in reward-related signaling mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Ross 615, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 2014; 306:R499-509. [PMID: 24500433 DOI: 10.1152/ajpregu.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore Maryland
| | | | | | | | | | | |
Collapse
|
39
|
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 2013; 35:1225-46. [PMID: 23886820 DOI: 10.1016/j.clinthera.2013.06.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many active pharmaceutical ingredients taste bitter and thus are aversive to children as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dose forms. OBJECTIVE This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors as well as the cascade of events that leads to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. RESULTS Medicine often tastes bitter, and because children are more bitter-sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands-in animal models through human psychophysics or with "electronic tongues"-have limitations. CONCLUSIONS Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations.
Collapse
Affiliation(s)
- Julie A Mennella
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA.
| | | | | | | |
Collapse
|
40
|
Meillon S, Miras AD, Roux CWL. Gastric bypass surgery alters food preferences through changes in the perception of taste. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/cpr.13.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Papamargaritis D, Panteliou E, Miras AD, le Roux CW. Mechanisms of weight loss, diabetes control and changes in food choices after gastrointestinal surgery. Curr Atheroscler Rep 2013; 14:616-23. [PMID: 23001746 DOI: 10.1007/s11883-012-0283-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The long-term effects of lifestyle changes, diet and medical therapy on obesity are limited. Bariatric surgery is the most effective long-term treatment with the greatest chances for amelioration of obesity-associated complications, including type 2 diabetes mellitus (T2DM). There is increasing evidence in the literature that bariatric operations have a profound effect on human physiology, by reducing hunger, increasing satiety, paradoxically increasing energy expenditure, and even promoting healthy food preferences. Some of these operations improve glucose homeostasis in patients with T2DM independently of weight loss. Changes in the gut hormone levels of glucagon-like peptide 1, peptide YY and ghrelin have been proposed as some of the mediators implicated in changing physiology. The aim of this review is to critically explore the current knowledge on the putative mechanisms of the change in weight and improvement in T2DM glycaemic control after the most commonly performed bariatric operations.
Collapse
|
42
|
Treesukosol Y, Bi S, Moran TH. Overexpression of neuropeptide Y in the dorsomedial hypothalamus increases trial initiation but does not significantly alter concentration-dependent licking to sucrose in a brief-access taste test. Physiol Behav 2013; 110-111:109-14. [PMID: 23313404 DOI: 10.1016/j.physbeh.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/13/2012] [Accepted: 01/06/2013] [Indexed: 01/29/2023]
Abstract
Evidence in the literature raises the possibility that alterations in neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) may contribute to hyperphagia leading to body weight gain. Previously, we have shown that compared to AAVGFP controls, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH of lean rats resulted in significantly higher body weight gain that was attributed to increased food intake, and this was further exacerbated by a high-fat diet. Here, we tested AAVNPY and AAVGFP control rats in a brief-access taste procedure (10-s trials, 30-min sessions) to an array of sucrose concentrations under ad libitum and partial food and water access conditions. The test allows for some segregation of the behavioral components by providing a measure of trial initiation (appetitive) and unconditioned licks at each concentration (consummatory). Consistent with previous findings suggesting that NPY has a primary effect on appetitive function, overexpression of DMH NPY did not significantly alter concentration-dependent licking response to sucrose but when tested in a non-restricted food and water schedule, AAVNPY rats initiated significantly more sucrose trials compared to AAVGFP controls in a brief-access taste test.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Ross 615, 720 Rutland Ave, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
43
|
Toronchuk JA, Ellis GFR. Affective neuronal selection: the nature of the primordial emotion systems. Front Psychol 2013; 3:589. [PMID: 23316177 PMCID: PMC3540967 DOI: 10.3389/fpsyg.2012.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/12/2012] [Indexed: 11/13/2022] Open
Abstract
Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested.
Collapse
Affiliation(s)
- Judith A Toronchuk
- Department of Psychology, Trinity Western University Langley, BC, Canada ; Department of Biology, Trinity Western University Langley, BC, Canada
| | | |
Collapse
|
44
|
Miras AD, Jackson RN, Jackson SN, Goldstone AP, Olbers T, Hackenberg T, Spector AC, le Roux CW. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am J Clin Nutr 2012; 96:467-73. [PMID: 22836034 DOI: 10.3945/ajcn.112.036921] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Obesity is among the leading causes of disease and death. Bariatric surgery is the most effective treatment of obesity. There is increasing evidence that after gastric bypass surgery, patients and animal models show a decreased preference for sweet and fatty foods. The underlying mechanism may include alterations in taste function. OBJECTIVE We hypothesize that a gastric bypass reduces the reward value of sweet and fat tastes. DESIGN In this prospective case-control study, 11 obese patients who were scheduled to undergo a gastric bypass and 11 normal-weight control subjects in the fed state clicked a computer mouse to receive a sweet and fatty candy on a progressive ratio schedule 10 wk apart (in patients, testing took place 2 wk before and 8 wk after gastric bypass surgery). Subjects worked progressively harder to obtain a food reward (reinforcer) until they stopped clicking (ie, the breakpoint), which was a measure of the reinforcer value. Breakpoints were assessed by the number of mouse clicks in the last completed ratio. The experiment was repeated in a different cohort by using vegetable pieces as the reinforcer. RESULTS Breakpoints in the test sessions of control subjects correlated highly for both reinforcers. The median breakpoint for candies, but not vegetables, was reduced by 50% in the obese group after gastric bypass. Patients with the largest reduction in the breakpoint had the largest decrease in BMI. CONCLUSIONS Gastric bypass surgery resulted in the selective reduction of the reward value of a sweet and fat tastant. This application of the progressive ratio task provided an objective and reliable evaluation of taste-driven motivated behavior for food stimuli after obesity surgery.
Collapse
|
45
|
Abstract
Bariatric surgery provides substantial, sustained weight loss and major improvements in glycaemic control in severely obese individuals with type 2 diabetes. However, uptake of surgery in eligible patients is poor, and the barriers are difficult to surmount. We examine the indications for and efficacy and safety of conventional bariatric surgical procedures and their effect on glycaemic control in type 2 diabetes. How surgical gastrointestinal interventions achieve these changes is of great research interest, and is evolving rapidly. Old classifications about restriction and malabsorption are inadequate, and we explore understanding of putative mechanisms. Some bariatric procedures improve glycaemic control in people with diabetes beyond that expected for weight loss, and understanding this additional effect could provide insights into the pathogenesis of type 2 diabetes and assist in the development of new procedures, devices, and drugs both for obese and non-obese patients.
Collapse
Affiliation(s)
- John B Dixon
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
46
|
Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav 2011; 104:709-21. [DOI: 10.1016/j.physbeh.2011.07.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/24/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
|
47
|
Mathes CM, Spector AC. The selective serotonin reuptake inhibitor paroxetine does not alter consummatory concentration-dependent licking of prototypical taste stimuli by rats. Chem Senses 2011; 36:515-26. [PMID: 21422376 DOI: 10.1093/chemse/bjr011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Serotonin and the 5HT(1A) receptor are expressed in a subset of taste receptor cells, and the 5HT(3) receptor is expressed on afferent fibers innervating taste buds. Exogenous administration of the selective serotonin reuptake inhibitor, paroxetine, has been shown to increase taste sensitivity to stimuli described by humans as sweet and bitter. Serotonergic agonists also decrease food and fluid intake, and it is possible that modulations of serotonin may alter taste-based hedonic responsiveness; alternatively, or in combination, serotonin may interact with physiological state to impact ingestive behavior. In this study, the unconditioned licking of prototypical taste stimuli by rats in brief-access taste tests was assessed following paroxetine administration (0.3-10 mg/kg intraperitoneal). We also measured sucrose licking by rats in different deprivation states after paroxetine (5 mg/kg). In neither experiment did we find any evidence of an effect of paroxetine on licking relative to water to any of the taste stimuli in the brief-access test at doses that decreased food intake. However, in some conditions, paroxetine decreased trials initiated to tastants. Therefore, a systemic increase in serotonin via paroxetine administration can decrease appetitive behavior in brief-access tests but is insufficient to alter taste-guided consummatory behavior.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology, Florida State University, 1107 West Call Street, PO Box 30634301, Tallahassee, FL 32306-4301, USA.
| | | |
Collapse
|
48
|
Shires CB, Saputra JM, Stocks RMS, Sebelik ME, Boughter JD. Effects of sensory or motor nerve deafferentation on oromotor function in mice. Otolaryngol Head Neck Surg 2011; 144:915-20. [PMID: 21493323 DOI: 10.1177/0194599811399722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effect of sensory or motor nerve damage to the tongue using a mouse model. STUDY DESIGN Animal study. SETTING Research laboratory. SUBJECTS AND METHODS Adult male and female mice from inbred strains B6 (n = 19) and D2 (n = 25). Following lick training, bilateral lingual-chorda tympani nerve cuts (LX) (n = 6 B6, n = 7 D2), unilateral hypoglossal nerve cuts (HX) (n = 7 B6, n = 9 D2), or sham surgery (n = 6 B6, n = 9 D2) was performed. Mice were lick tested postsurgically with both water and sucrose (4 days total). Following testing, post mortem dissections and microscopic analysis of tongue papillae were performed. RESULTS In both strains, HX and LX mice demonstrated a significant reduction in volume per lick (VPL) in the surgical groups relative to shams. Neither motor nor sensory nerve transection affected local lick rate. In most LX mice in both strains, taste papillae were reduced compared with HX or sham mice. CONCLUSION Mice of either strain with either a sensory or a motor nerve injury have a significant loss of VPL during ingestion of either a neutral (water) or preferred (sucrose) stimulus. This reduction in VPL reflects a deficit in licking. Lick rate was not affected by deafferentation. A reduction in fungiform papillae following LX but not HX mice was noted.
Collapse
Affiliation(s)
- Courtney B Shires
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
49
|
Domínguez PR. The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: An update. Brain Res Bull 2011; 84:118-24. [DOI: 10.1016/j.brainresbull.2010.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
|
50
|
Abstract
PURPOSE OF REVIEW The mechanisms by which obesity surgery and in particular gastric bypass cause weight loss are unclear. The review will focus on the concept of alterations in the sense of taste after obesity surgery. RECENT FINDINGS Patients after obesity surgery and gastric bypass in particular change their eating behaviour and adopt healthier food preferences by avoiding high-calorie and high-fat foods. Patients find sweet and fatty meals less pleasant not due to postingestive side effects but through changes in the sense of taste. The acuity for sweet taste increases after gastric bypass potentially leading to increased intensity of perception. Obese patients experience higher activation of their brain taste reward and addiction centres in response to high calorie and fat tasting. Gastric bypass may reverse these taste hedonics, perhaps through the influence on gustatory pathways caused by enhanced gut hormone responses after surgery. SUMMARY Elucidation of the metabolic mechanism behind the alterations in taste after obesity surgery could lead to the development of novel surgical and nonsurgical procedures for the treatment of obesity.
Collapse
|