1
|
Fleming LM, Jaynes FJB, Thompson SL, Corlett PR, Taylor JR. Targeted effects of ketamine on perceptual expectation during mediated learning in rats. Psychopharmacology (Berl) 2022; 239:2395-2405. [PMID: 35389087 PMCID: PMC9296571 DOI: 10.1007/s00213-022-06128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE While neural correlates of hallucinations are known, the mechanisms have remained elusive. Mechanistic insight is more practicable in animal models, in which causal relationships can be established. Recent work developing animal models of hallucination susceptibility has focused on the genesis of perceptual expectations and perceptual decision-making. Both processes are encompassed within mediated learning, which involves inducing a strong perceptual expectation via associative learning, retrieving that memory representation, and deciding whether this internally generated percept is predictive of an external outcome. Mediated learning in rodents is sensitive to many psychotomimetic manipulations. However, we do not know if these manipulations selectively alter learning of perceptual expectations versus their retrieval because of their presence throughout all task phases. OBJECTIVES Here, we used mediated learning to study the targeted effect of a psychotomimetic agent on the retrieval of perceptual expectation. METHODS We administered (R,S)-ketamine to rats selectively during the devaluation phase of a mediated learning task, when the representation of the expected cue is retrieved, to test the hypothesis that internally generated perceptual experiences underlie this altered mediated learning. RESULTS We found that ketamine increased only mediated learning at a moderate dose in rats, but impaired direct learning at the high dose. CONCLUSIONS These results suggest that ketamine can augment retrieval of perceptual expectations and thus this may be how it induces hallucination-like experiences in humans. More broadly, mediated learning may unite the conditioning, perceptual decision-making, and even reality monitoring accounts of psychosis in a manner that translates across species.
Collapse
Affiliation(s)
- Leah M Fleming
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Frances-Julia B Jaynes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, University of New Haven, New Haven, CT, USA
- Department of Psychiatry, University of Connecticut Health, Farmington, CT, USA
| | - Summer L Thompson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Philip R Corlett
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Efficacy and safety of ketamine in the management of anxiety and anxiety spectrum disorders: a review of the literature. CNS Spectr 2020; 25:331-342. [PMID: 31339086 DOI: 10.1017/s1092852919001238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric conditions. Despite many proven pharmacological and non-pharmacological treatments available, high rates of partial response and low rates of long-term remission remain. Ketamine has been receiving increasing attention as an interventional treatment modality in psychiatry, especially among refractory conditions, including major depressive disorder. There is limited yet growing evidence to support the use of ketamine in anxiety disorders. In this review of the literature, we present case reports, case series, and controlled trials demonstrating proof-of-concept for its potential role in the treatment of anxiety and anxiety spectrum disorders. Its unique mechanism of action, rapid onset, and high rate of response have driven its use in clinical practice. Ketamine is generally well tolerated by patients and has a limited side effect profile; however, the effects of long-term use are unknown. While there is a growing body of research and increasing clinical experience to suggest ketamine may have clinical applications in the treatment of refractory anxiety disorders, further research to determine long-term safety and tolerability is indicated.
Collapse
|
3
|
Yung TKC, Lau JTF. Comparing nutrient intake and body weight status amongst adolescent substance users, institutionalised abstainers and never users. Food Nutr Res 2019; 63:3634. [PMID: 31903091 PMCID: PMC6925536 DOI: 10.29219/fnr.v63.3634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022] Open
Abstract
Background Improved nutrition intake in drug rehabilitation programmes enhances quality sobriety and prevents relapses. However, little is known about the nutritional status of substance users and institutionalised abstainers. Previous nutritional studies have mainly focused on methamphetamine, whereas ketamine has not been investigated despite its popularity amongst adolescents. Objectives To compare nutrient intake and underweight status amongst three groups of adolescents –current substance users, institutionalised abstainers and never users (controls) – and examine the association between ketamine use and nutrient intake. Design This is a cross-sectional questionnaire survey which was conducted using face-to-face interview. Substance users (n = 202) and never users (n = 100) were invited through the outreach social workers of three non-government organisations. Abstainers (n = 50) were recruited from three drug rehabilitation centres. Nutrient intake was assessed through two 24-h recalls. Other information collected included anthropometrics, socio-demographic characteristics and substance type used over the previous month. Results Only 20.8 and 15.9% of male and female substance users met the daily energy requirements. Male users were less likely to meet the recommended intake of energy [odds ratio (OR) = 0.37] and protein (OR = 0.10) than controls. Overall, abstainers had better intake of beneficial nutrients than substance users. However, abstainers were more likely to overconsume harmful nutrients, such as cholesterol and sodium. Regarding weight status, female substance users (56.1%) were more likely to be underweight than abstainers (14.8%) (OR = 8.85). Amongst underweight female substance users, 52.2% were still trying to lose more weight. Moreover, ketamine users tended to have lower intake of nutrients from animal sources than the users of other drugs. Conclusions Adolescent substance users are at risk of energy and nutrient inadequacy. Misconceptions about body weight are disseminating amongst them. The study findings provide valuable information for frontline workers taking care of young substance users and for institutions providing residential rehabilitation programmes.
Collapse
Affiliation(s)
- Tony Ka-Chun Yung
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Tak-Fai Lau
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
An examination of the roles of glutamate and sex in latent inhibition: Relevance to the glutamate hypothesis of schizophrenia? Psychiatry Res 2017. [PMID: 28623767 DOI: 10.1016/j.psychres.2017.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study examined the effects of the glutamate receptor antagonist MK-801, the glutamate receptor agonist N-methyl-D-aspartate (NMDA), and sexual dimorphism on latent inhibition to elucidate the glutamate hypothesis of schizophrenia. During the pre-exposure phase, 56 male and 65 female Wistar rats were intracerebroventricularly administered normal saline, MK-801 or NMDA, in the left ventricle and then exposed to a passive avoidance box (or a different context) in three trials over 3 days. Then, all of the rats were placed in the light compartment of the passive avoidance box and were allowed to enter the dark compartment, where they each received a footshock (1mA, 2s) in five trials over 5 days. Injections of the glutamate drugs NMDA and MK-801 did not affect latent inhibition. Sexual dimorphism did not occur in latent inhibition. The present data on the male rats indicated that the glutamate system did not affect latent inhibition, indicating that the glutamate system was not like the dopamine system in terms of mediating the positive symptoms of schizophrenia. The glutamate system might be involved in the negative and cognitive symptoms of schizophrenia. The results may provide information for novel treatments of the negative and cognitive symptoms of schizophrenia.
Collapse
|
5
|
Metzger MM, Flint RW, Riccio DC. Ketaset-Rompun anesthesia induces a conditioned taste aversion in rats. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Maple AM, Call T, Kimmel PC, Hammer RP. Effects of Repeated Ropinirole Treatment on Phencyclidine-Induced Hyperlocomotion, Prepulse Inhibition Deficits, and Social Avoidance in Rats. J Pharmacol Exp Ther 2017; 361:109-114. [PMID: 28167638 PMCID: PMC11047206 DOI: 10.1124/jpet.116.238634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Phencyclidine (PCP), a noncompetitive N-methyl d-aspartate (NMDA) receptor antagonist, provides the most complete pharmacologic model of schizophrenia in humans and animals. Acute PCP causes hyperlocomotion, disrupts prepulse inhibition (PPI), and increases social avoidance in rats. We have previously shown that repeated treatment with the dopamine (DA) D2-like receptor agonists, quinpirole or ropinirole, prevents agonist-induced PPI disruption. In the present study, we examined whether repeated ropinirole treatment similarly attenuates the effects of PCP in a more complete model of schizophrenia symptoms and examined the effect of repeated D2-like agonist treatment on locomotion, PPI, and social interaction after acute PCP challenge. The acute effect of PCP (3.0 or 6.0 mg/kg) on locomotor activity was examined to establish a minimum effective dose. Thereafter, the effect of PCP challenge (3.0 mg/kg) on locomotor activity, PPI, and social interaction was assessed in adult male rats before or 7-10 days after termination of repeated daily treatment with ropinirole (0.1 mg/kg) or saline vehicle (0.1 ml/kg) for 28 days. Repeated ropinirole treatment attenuates PCP-induced hyperlocomotion, PPI deficits, and social avoidance. These findings suggest that repeated ropinirole treatment might affect a final common pathway that is vulnerable to both PCP- and dopamine agonist-induced behavioral disruption, thereby providing an alternative approach to block the effects of PCP.
Collapse
Affiliation(s)
- Amanda M Maple
- Department of Basic Medical Sciences (A.M.M., P.C.K., R.P.H.), and Departments of Pharmacology and Psychiatry (R.P.H.), University of Arizona College of Medicine, Phoenix; and Department of Psychology (A.M.M., P.C.K., R.P.H.) and Interdisciplinary Graduate Program in Neuroscience (T.C., R.P.H.), Arizona State University, Tempe, Arizona
| | - Tanessa Call
- Department of Basic Medical Sciences (A.M.M., P.C.K., R.P.H.), and Departments of Pharmacology and Psychiatry (R.P.H.), University of Arizona College of Medicine, Phoenix; and Department of Psychology (A.M.M., P.C.K., R.P.H.) and Interdisciplinary Graduate Program in Neuroscience (T.C., R.P.H.), Arizona State University, Tempe, Arizona
| | - Phylicia C Kimmel
- Department of Basic Medical Sciences (A.M.M., P.C.K., R.P.H.), and Departments of Pharmacology and Psychiatry (R.P.H.), University of Arizona College of Medicine, Phoenix; and Department of Psychology (A.M.M., P.C.K., R.P.H.) and Interdisciplinary Graduate Program in Neuroscience (T.C., R.P.H.), Arizona State University, Tempe, Arizona
| | - Ronald P Hammer
- Department of Basic Medical Sciences (A.M.M., P.C.K., R.P.H.), and Departments of Pharmacology and Psychiatry (R.P.H.), University of Arizona College of Medicine, Phoenix; and Department of Psychology (A.M.M., P.C.K., R.P.H.) and Interdisciplinary Graduate Program in Neuroscience (T.C., R.P.H.), Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Gallo M, Ballesteros M, Molero A, Morón I. Taste Aversion Learning as a Tool for the Study of Hippocampal and Non-Hippocampal Brain Memory Circuits Regulating Diet Selection. Nutr Neurosci 2016; 2:277-302. [DOI: 10.1080/1028415x.1999.11747284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
The modulatory effect of CA1 GABAb receptors on ketamine-induced spatial and non-spatial novelty detection deficits with respect to Ca2+. Neuroscience 2015; 305:157-68. [DOI: 10.1016/j.neuroscience.2015.07.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
|
9
|
Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning. Neurobiol Learn Mem 2014; 116:112-6. [DOI: 10.1016/j.nlm.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
|
10
|
Mickley GA, Hoxha Z, DiSorbo A, Wilson GN, Remus JL, Biesan O, Ketchesin KD, Ramos L, Luchsinger JR, Prodan S, Rogers M, Wiles NR, Hoxha N. Latent inhibition of a conditioned taste aversion in fetal rats. Dev Psychobiol 2013; 56:435-47. [DOI: 10.1002/dev.21110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Affiliation(s)
- G. Andrew Mickley
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Zana Hoxha
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Anthony DiSorbo
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Gina N. Wilson
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Jennifer L. Remus
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Orion Biesan
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Kyle D. Ketchesin
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Linnet Ramos
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Joseph R. Luchsinger
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Suzanna Prodan
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Morgan Rogers
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Nathanael R. Wiles
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| | - Nita Hoxha
- The Neuroscience Program; Baldwin Wallace University; 275 Eastland Rd. Berea OH 44017
| |
Collapse
|
11
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Effect of the NMDA antagonist MK-801 on latent inhibition of fear conditioning. Pharmacol Biochem Behav 2012; 102:488-94. [PMID: 22735831 DOI: 10.1016/j.pbb.2012.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/22/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors seem to play a central role in learning and memory processes involved in Latent Inhibition (LI). In fact, MK-801, a non-competitive NMDA receptor antagonist, has proved its effectiveness as a drug for attenuating LI when administered before or after stimulus preexposure and conditioning stages. This paper presents three experiments designed to analyze the effect of MK-801 on LI when the drug is administered before (Experiment 1A) or after (Experiment 1B) preexposure and conditioning stages with a conditioned emotional response procedure. Additionally, we analyze the effect of the drug when it was administered before preexposure, before conditioning or before both phases (Experiment 2). The results show that the effect of the drug varied as a function of the dose (with only the highest dose being effective), the moment of administration (with only the drug administered before the experimental treatments being effective), and the phase of procedure (reducing LI when the drug was administered only at preexposure, and disrupting fear conditioning when administered at conditioning). These differences may be due to several factors ranging from the role played by NMDA receptors in the processing of stimuli of different sensorial modalities to the molecular processes triggered by drug administration.
Collapse
|
13
|
Zarate CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 2012; 71:939-46. [PMID: 22297150 PMCID: PMC3343177 DOI: 10.1016/j.biopsych.2011.12.010] [Citation(s) in RCA: 560] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Currently, no pharmacological treatments for bipolar depression exist that exert rapid (within hours) antidepressant or antisuicidal effects. We previously reported that intravenous administration of the N-methyl-D-aspartate antagonist ketamine produced rapid antidepressant effects in patients with treatment-resistant bipolar depression. The present study sought to replicate this finding in an independent sample. METHODS In this double-blind, randomized, crossover, placebo-controlled study, 15 subjects with DSM-IV bipolar I or II depression maintained on therapeutic levels of lithium or valproate received a single intravenous infusion of either ketamine hydrochloride (.5 mg/kg) or placebo on 2 test days 2 weeks apart. The primary outcome measure was the Montgomery-Asberg Depression Rating Scale, which was used to rate overall depressive symptoms at baseline; at 40, 80, 110, and 230 minutes postinfusion; and on days 1, 2, 3, 7, 10, and 14 postinfusion. RESULTS Within 40 minutes, depressive symptoms, as well as suicidal ideation, significantly improved in subjects receiving ketamine compared with placebo (d = .89, 95% confidence interval = .61-1.16, and .98, 95% confidence interval = .64-1.33, respectively); this improvement remained significant through day 3. Seventy-nine percent of subjects responded to ketamine and 0% responded to placebo at some point during the trial. The most common side effect was dissociative symptoms, which occurred only at the 40-minute time point. CONCLUSIONS This study replicated our previous finding that patients with bipolar depression who received a single ketamine infusion experienced a rapid and robust antidepressant response. In addition, we found that ketamine rapidly improved suicidal ideation in these patients.
Collapse
Affiliation(s)
- Carlos A Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Traverso LM, Ruiz G, la Casa LGD. MK-801 induces a low intensity conditioned taste aversion. Pharmacol Biochem Behav 2012; 100:645-51. [DOI: 10.1016/j.pbb.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 11/28/2022]
|
15
|
Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011; 33:658-67. [DOI: 10.1016/j.ntt.2011.05.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 05/27/2011] [Indexed: 01/27/2023]
|
16
|
Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K, Bear MF, Umbricht D, Hajos M, Potter WZ, Lee CM. Translating glutamate: from pathophysiology to treatment. Sci Transl Med 2011; 3:102mr2. [PMID: 21957170 PMCID: PMC3273336 DOI: 10.1126/scitranslmed.3002804] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neurotransmitter glutamate is the primary excitatory neurotransmitter in mammalian brain and is responsible for most corticocortical and corticofugal neurotransmission. Disturbances in glutamatergic function have been implicated in the pathophysiology of several neuropsychiatric disorders-including schizophrenia, drug abuse and addiction, autism, and depression-that were until recently poorly understood. Nevertheless, improvements in basic information regarding these disorders have yet to translate into Food and Drug Administration-approved treatments. Barriers to translation include the need not only for improved compounds but also for improved biomarkers sensitive to both structural and functional target engagement and for improved translational models. Overcoming these barriers will require unique collaborative arrangements between pharma, government, and academia. Here, we review a recent Institute of Medicine-sponsored meeting, highlighting advances in glutamatergic theories of neuropsychiatric illness as well as remaining barriers to treatment development.
Collapse
Affiliation(s)
- Daniel C Javitt
- Translational Schizophrenia Research Center, Nathan Kline Institute/Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Machado-Vieira R, Ibrahim L, Henter ID, Zarate CA. Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol Biochem Behav 2011; 100:678-87. [PMID: 21971560 DOI: 10.1016/j.pbb.2011.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BPD) are common, chronic, recurrent mental illnesses that affect the lives and functioning of millions of individuals worldwide. Growing evidence suggests that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of mood disorders as well as the efficacy of glutamatergic agents as novel therapeutics.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- LIM-27, Institute and Department of Psychiatry, University of Sao Paulo Medical School, USP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
19
|
van der Staay FJ, Rutten K, Erb C, Blokland A. Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behav Brain Res 2011; 220:215-29. [DOI: 10.1016/j.bbr.2011.01.052] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 12/28/2022]
|
20
|
Stehberg J, Moraga-Amaro R, Simon F. The role of the insular cortex in taste function. Neurobiol Learn Mem 2011; 96:130-5. [PMID: 21447397 DOI: 10.1016/j.nlm.2011.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/22/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
In spite of over 30 years of research, the role of the Insular Cortex (IC) in taste memory still remains elusive. To study the role of the IC in taste memory, we used conditioned taste aversion (CTA) for two different concentrations of saccharin; 0.1% which is highly preferred, and 0.5% which is non-preferred. Rats that had been IC lesioned bilaterally with ibotenic acid (15 mg/ml) before CTA showed significant learning impairments for saccharin 0.1% but not for saccharin 0.5%. To test CTA memory retention, rats lesioned a week after CTA training became completely amnesic for saccharin 0.1% yet only mildly impaired for saccharin 0.5%. Interestingly, the resulting preference for either concentration matched that of IC lesioned animals when exposed to either saccharin solution for the first time, but not those of sham animals, implying that IC lesions after CTA for either saccharin solution rendered complete amnesia, irrespective of the original preference. Our data indicate that an intact IC is essential for CTA learning and retention, as well as for an early neophobic response, but not for taste preference itself. Our data supports a model where the IC is involved in general taste rejection.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Laboratorio de Neurobiologia, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | |
Collapse
|
21
|
Machado-Vieira R, Zarate CA. Proof of concept trials in bipolar disorder and major depressive disorder: a translational perspective in the search for improved treatments. Depress Anxiety 2011; 28:267-81. [PMID: 21456037 PMCID: PMC3071576 DOI: 10.1002/da.20800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
A better understanding of the neurobiology of mood disorders, informed by preclinical research and bi-directionally translated to clinical research, is critical for the future development of new and effective treatments. Recently, diverse new targets/compounds have been specifically tested in preclinical models and in proof-of-concept studies, with potential relevance as treatments for mood disorders. Most of the evidence comes from case reports, case series, or controlled proof-of-concept studies, some with small sample sizes. These include (1) the opioid neuropeptide system, (2) the purinergic system, (3) the glutamatergic system, (4) the tachykinin neuropeptide system, (5) the cholinergic system (muscarinic system), and (6) intracellular signaling pathways. These targets may be of substantial interest in defining future directions in drug development, as well as in developing the next generation of therapeutic agents for the treatment of mood disorders. Overall, further study of these and similar drugs may lead to a better understanding of relevant and clinically useful drug targets in the treatment of these devastating illnesses.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Institute and Department of Psychiatry, LIM-27, University of Sao Paulo Medical School, USP, Sao Paulo, SP, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, CRC Unit 7 Southeast, Room 7-3445, Bethesda, Maryland, 20892, USA
| |
Collapse
|
22
|
Zarate C, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G. Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 2010; 18:293-303. [PMID: 20825266 PMCID: PMC3000412 DOI: 10.3109/10673229.2010.511059] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mood disorders such as bipolar disorder and major depressive disorder are common, chronic, and recurrent conditions affecting millions of individuals worldwide. Existing antidepressants and mood stabilizers used to treat these disorders are insufficient for many. Patients continue to have low remission rates, delayed onset of action, residual subsyndromal symptoms, and relapses. New therapeutic agents able to exert faster and sustained antidepressant or mood-stabilizing effects are urgently needed to treat these disorders. In this context, the glutamatergic system has been implicated in the pathophysiology of mood disorders in unique clinical and neurobiological ways. In addition to evidence confirming the role of the glutamatergic modulators riluzole and ketamine as proof-of-concept agents in this system, trials with diverse glutamatergic modulators are under way. Overall, this system holds considerable promise for developing the next generation of novel therapeutics for the treatment of bipolar disorder and major depressive disorder.
Collapse
Affiliation(s)
- Carlos Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Okamoto N, Nakai T, Sakamoto K, Nagafusa Y, Higuchi T, Nishikawa T. Rapid antidepressant effect of ketamine anesthesia during electroconvulsive therapy of treatment-resistant depression: comparing ketamine and propofol anesthesia. J ECT 2010; 26:223-7. [PMID: 19935085 DOI: 10.1097/yct.0b013e3181c3b0aa] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Reports of the superiority of the antidepressant effect of ketamine during the conduct of electroconvulsive therapy (ECT) have been limited. We conducted an open-label trial of ketamine to determine whether ketamine as the anesthetic during ECT would provide a greater antidepressant effect than the antidepressant effect obtained with propofol. METHODS Between April 2006 and April 2007, 31 inpatients with treatment-resistant depression gave written consent for ECT and to participate in this study. An anesthesiologist who was unaware of the mental symptoms of the subjects assigned them to receive propofol or ketamine anesthetic according to the preferences of the patients, and the patients underwent 8 ECT sessions for 4 weeks. The Hamilton Depression Rating Scale (HDRS) was valuated before ECT and after the completion of the second, fourth, sixth, and eighth ECT sessions. RESULTS The HDRS scores improved earlier in the ketamine group, with decreases in HDRS scores that were significantly greater in the ketamine group. CONCLUSIONS The results suggested that it is possible to improve symptoms of depression earlier by using ketamine anesthesia.
Collapse
Affiliation(s)
- Nagahisa Okamoto
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, Kodaira City, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Machado-Vieira R, Salvadore G, DiazGranados N, Ibrahim L, Latov D, Wheeler-Castillo C, Baumann J, Henter ID, Zarate CA. New therapeutic targets for mood disorders. ScientificWorldJournal 2010; 10:713-26. [PMID: 20419280 PMCID: PMC3035047 DOI: 10.1100/tsw.2010.65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Existing pharmacological treatments for bipolar disorder (BPD) and major depressive disorder (MDD) are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1) glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC), (2) the purinergic system, (3) histone deacetylases (HDACs), (4) the melatonergic system, (5) the tachykinin neuropeptides system, (6) the glutamatergic system, and (7) oxidative stress and bioenergetics. The paper reviews data on new compounds that have shown antimanic or antidepressant effects in subjects with mood disorders, or similar effects in preclinical animal models. Overall, an improved understanding of the neurobiological underpinnings of mood disorders is critical in order to develop targeted treatments that are more effective, act more rapidly, and are better tolerated than currently available therapies.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
N-methyl-D-aspartate receptor has been related to learning and memory processes. Its characteristics make it a key candidate in the modulation of associative processes at physiological level. Traditionally, the main efforts have been directed to show its role in excitatory conditioning. Nevertheless, the studies that have analyzed its implication in inhibitory learning are scarce. We present an experiment where a preexposure effect on the conditioning (latent inhibition) is disrupted by 2-amino-5-phosphonopentanoic acid administered in basolateral amygdala. This data shows interference on taste memory trace, and attenuation of the inhibition effect.
Collapse
|
26
|
Machado-Vieira R, Manji HK, Zarate CA. Potential novel therapeutics for bipolar disorders. Curr Top Behav Neurosci 2010; 5:303-29. [PMID: 25236562 DOI: 10.1007/7854_2010_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Existing pharmacological treatments for bipolar disorder (BPD), a severe recurrent mood disorder, are in general insufficient for many patients. Despite adequate doses and treatment duration, many individuals with this disease continue to experience mood episode relapses, residual symptoms, and functional impairment. This chapter reviews a number of targets/compounds that could result in putative novel treatments for BPD, including the dynorphin opioid neuropeptide system, the glutamatergic system, the purinergic system, the cholinergic system (muscarinic and nicotinic systems), the oxidative stress system, and the melatonergic system. The arachidonic acid cascade and intracellular signaling cascades (including glycogen synthase kinase 3 and protein kinase C) are also reviewed, as are agents that affect multiple targets (e.g., modafinil, Uridine RG2417). Further study of these and similar agents may improve our understanding of relevant drug targets and their clinical utility as potential therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Mark O. Hatfield CRC, Unit 7 SE, Rm. 7-3445, Bethesda, MD, 20892, USA,
| | | | | |
Collapse
|
27
|
Effects of anesthetic agents on socially transmitted olfactory memories in mice. Neurobiol Learn Mem 2009; 93:268-74. [PMID: 19879368 DOI: 10.1016/j.nlm.2009.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 11/23/2022]
Abstract
Mice can learn a food preference from odor cues transmitted on the breath of a conspecific, even if the "demonstrator" is anesthetized. To our knowledge there are no studies examining the effect of anesthetizing the "observer" on development of memory for socially transmitted food preferences (STFP). In Experiment 1 we found that 2-4 month-old F2 C57Bl/6x129sv male and female mice demonstrated a STFP after a 5min exposure to an anesthetized demonstrator mouse when tested 24h later. In Experiment 2, observer mice anesthetized with Sagatal (60 mg/kg) prior to the "social interaction" preferentially avoided the cued food when tested 24h later. This aversion was not due to any overt aversive effects of this dose of Sagatal because mice that ate the food and were then anesthetized, or could only smell the food for 5 min while anesthetized, showed no preference or aversion. In a third experiment we found that the Sagatal-induced aversion was not a general property of anesthesia because there were varied results produced by observer mice treated with anesthetic drugs with different mechanisms of action. Vetalar (200mg/kg) and Rompun (10 mg/kg) treated animals ate similar amounts of cued and non-cued food at test, indicating an absence of learning. Hypnorm (0.5 ml/kg) treated animals showed a preference for the cued food whereas those treated with Hypnovel (2.5 ml/kg) showed an aversion to the cued food. These results show that the food aversion observed with Sagatal is not a general property of anesthetic agents, but appears to be restricted to those acting primarily on the GABAergic system. Thus, we have shown that under certain conditions it is possible for an anesthetized observer mouse to learn a preference or aversion of a socially-linked olfactory cue.
Collapse
|
28
|
Machado-Vieira R, Salvadore G, Ibrahim LA, Diaz-Granados N, Zarate CA. Targeting glutamatergic signaling for the development of novel therapeutics for mood disorders. Curr Pharm Des 2009; 15:1595-611. [PMID: 19442176 DOI: 10.2174/138161209788168010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There have been no recent advances in drug development for mood disorders in terms of identifying drug targets that are mechanistically distinct from existing ones. As a result, existing antidepressants are based on decades-old notions of which targets are relevant to the mechanisms of antidepressant action. Low rates of remission, a delay of onset of therapeutic effects, continual residual depressive symptoms, relapses, and poor quality of life are unfortunately common in patients with mood disorders. Offering alternative options is requisite in order to reduce the individual and societal burden of these diseases. The glutamatergic system is a promising area of research in mood disorders, and likely to offer new possibilities in therapeutics. There is increasing evidence that mood disorders are associated with impairments in neuroplasticity and cellular resilience, and alterations of the glutamatergic system are known to play a major role in cellular plasticity and resilience. Existing antidepressants and mood stabilizers have prominent effects on the glutamate system, and modulating glutamatergic ionotropic or metabotropic receptors results in antidepressant-like properties in animal models. Several glutamatergic modulators targeting various glutamate components are currently being studied in the treatment of mood disorders, including release inhibitors of glutamate, N-methyl-D-aspartate (NMDA) antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) throughput enhancers, and glutamate transporter enhancers. This paper reviews the currently available knowledge regarding the role of the glutamatergic system in the etiopathogenesis of mood disorders and putative glutamate modulators.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health/NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Machado-Vieira R, Manji HK, Zarate CA. The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist 2009; 15:525-39. [PMID: 19471044 DOI: 10.1177/1073858409336093] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bipolar disorder and major depressive disorder are common, chronic, and recurrent mood disorders that affect the lives of millions of individuals worldwide. Growing evidence suggests that glutamatergic system dysfunction is directly involved in mood disorders. This article describes the role of the "tripartite glutamatergic synapse," comprising presynaptic and postsynaptic neurons and glial cells, in the pathophysiology and therapeutics of mood disorders. Glutamatergic neurons and glia directly control synaptic and extrasynaptic glutamate levels/ release through integrative effects that target glutamate excitatory amino acid transporters, postsynaptic density proteins, ionotropic receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid [AMPA], N-methyl-D-aspartate [NMDA], and kainate), and metabotropic receptors. This article also explores the glutamatergic modulators riluzole and ketamine, which are considered valuable proof-of-concept agents for developing the next generation of antidepressants and mood stabilizers. In therapeutically relevant paradigms, ketamine preferentially targets postsynaptic AMPA/NMDA receptors, and riluzole preferentially targets presynaptic voltage-operated channels and glia.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 2009; 123:143-50. [PMID: 19397926 DOI: 10.1016/j.pharmthera.2009.02.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/23/2009] [Indexed: 12/28/2022]
Abstract
Existing treatments for major depressive disorder (MDD) usually take weeks to months to achieve their antidepressant effects, and a significant number of patients do not have adequate improvement even after months of treatment. In addition, increased risk of suicide attempts is a major public health concern during the first month of standard antidepressant therapy. Thus, improved therapeutics that can exert their antidepressant effects within hours or a few days of their administration are urgently needed, as is a better understanding of the presumed mechanisms associated with these rapid antidepressant effects. In this context, the N-methyl-D-aspartate (NMDA) antagonist ketamine has consistently shown antidepressant effects within a few hours of its administration. This makes it a valuable research tool to identify biomarkers of response in order to develop the next generation of fast-acting antidepressants. In this review, we describe clinical, electrophysiological, biochemical, and imaging correlates as relevant targets in the study of the antidepressant response associated with ketamine, and their implications for the development of novel, fast-acting antidepressants. We also review evidence that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to NMDA throughput may represent a convergent mechanism for the rapid antidepressant actions of ketamine. Overall, understanding the molecular basis of this work will likely lead to the ultimate development of improved therapeutics for MDD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics Mood and Anxiety Disorders Program, National Institute of Mental Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
31
|
Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, Pichat P, Griebel G, Weiner I. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 2009; 202:385-96. [PMID: 18709358 DOI: 10.1007/s00213-008-1289-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/29/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia. OBJECTIVE The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia. MATERIALS AND METHODS LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor. RESULTS SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels. CONCLUSIONS These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.
Collapse
Affiliation(s)
- Mark D Black
- CNS Department, Sanofi-Aventis, 1041 Route 202/206, Bridgewater, NJ 08807, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Animal models of schizophrenia may increase the understanding of the neurological abnormalities associated with the disorder and aid in the development of rational pharmacological treatments. Rather than attempting to model the entire syndrome of schizophrenia, a more biologically oriented approach to animal models has been to focus on specific symptoms of schizophrenia that are more objectively measured in the clinical population and more directly translatable to animals (e.g., observables or endophenotypes). This overview focuses on behavioral measures that have been investigated in rodent models of schizophrenia with varying degrees of predictive, etiological, and construct validity. Because of the severity of cognitive deficits in schizophrenia and their resistance to current treatments, there is a need to develop animal models specific to the cognitive symptoms of schizophrenia. In light of this need, this overview discusses rodent models of cognition with relevance to the core cognitive deficits observed in schizophrenia.
Collapse
Affiliation(s)
- Susan B Powell
- University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
33
|
Traverso LM, Ruiz G, Camino G, De la Casa LG. Ketamine blocks the formation of a gustatory memory trace in rats. Pharmacol Biochem Behav 2008; 90:305-11. [PMID: 18433849 DOI: 10.1016/j.pbb.2008.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 11/30/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors appear to play a central role in learning and memory processes, as the administration of antagonistic substances of these receptors hinders learning acquisition by using different behavioral paradigms (e.g., Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behavioural Brain Research, 2003;140 (1-2):1-47.). In the specific case of conditioned taste aversion, the administration of ketamine seems to affect the acquisition of conditioning when the drugs are administered before the experimental treatment. In this paper we present three experiments designed to analyze the effect of different ketamine doses (25 mg/kg, 50 mg/kg, 75 mg/kg and 120 mg/kg), administered between exposure to a taste (the conditioned stimulus) and the administration of the unconditioned stimulus, on the acquisition of a taste aversion association. The results reveal that higher ketamine doses (75 mg/kg and 120 mg/kg) have a disruptive effect on conditioned taste aversion by impeding the formation of the gustatory trace.
Collapse
Affiliation(s)
- L M Traverso
- Department of Experimental Psychology, University of Seville, Spain
| | | | | | | |
Collapse
|
34
|
Gaisler-Salomon I, Diamant L, Rubin C, Weiner I. Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology (Berl) 2008; 196:255-67. [PMID: 17928997 DOI: 10.1007/s00213-007-0960-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE Latent inhibition (LI) is the poorer conditioning to a stimulus resulting from its nonreinforced preexposure. LI indexes the ability to ignore irrelevant stimuli and is used extensively to model attentional impairments in schizophrenia (SZ). We showed that rats and mice treated with the N-methyl-D-aspartic acid (NMDA) receptor antagonist MK801 expressed LI under conditions preventing LI expression in controls. This abnormally persistent LI was reversed by the atypical antipsychotic drug (APD) clozapine and by compounds enhancing NMDA transmission via the glycineB site, but not by the typical APD haloperidol, lending the MK801 LI model predictive validity for negative/cognitive symptoms. OBJECTIVE To test additional representatives from the two classes of drugs and show that the model can dissociate between atypical APDs and glycinergic drugs are the objectives of the study. MATERIALS AND METHODS LI was measured in a conditional emotional response procedure. Atypical APD risperidone, selective 5HT2A antagonist M100907, and three glycinergic drugs were administered in preexposure or conditioning. RESULTS Rats treated with MK801 (0.05 mg/kg) exhibited LI under conditions that disrupted LI in controls. This abnormality was reversed by risperidone (0.25 and 0.067 mg/kg) and M100907 (1 mg/kg) given in preexposure. Glycine (0.8 g/kg), D-cycloserine (DCS;15 and 30 mg/kg), and glycyldodecylamide (GDA; 0.05 and 0.1 g/kg.) counteracted MK801-induced LI persistence when given in conditioning. CONCLUSIONS These results support the validity of MK801-induced persistent LI as a model of negative/cognitive symptoms in SZ and indicate that this model may have a unique capacity to discriminate between typical APDs, atypical APDs, and glycinergic compounds, and thus, foster the identification of novel treatments for SZ.
Collapse
|
35
|
Razoux F, Garcia R, Léna I. Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 2007; 32:719-27. [PMID: 16525415 DOI: 10.1038/sj.npp.1301057] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) antagonists such as ketamine represent useful pharmacological tools to model, in both healthy humans and rodents, behavioral and cerebral abnormalities of schizophrenia. These compounds are thought to exert some of their disruptive effects by impairing glutamatergic transmission in corticolimbic circuits including the nucleus accumbens (NAc). In this study, we investigated in freely moving rats behavioral changes as well as electrophysiological and neurochemical alterations in the NAc following acute systemic injection of a subanesthetic dose (25 mg/kg) of ketamine. We found that ketamine induced an immediate behavioral activation, characterized by hyperlocomotion, stereotypies and ataxia, and abolished latent inhibition in a conditioned-fear paradigm when injected at the pre-exposure stage. We also observed that during expression of motor effects which are thought to be related to the positive symptoms of schizophrenia, ketamine potentiated synaptic efficacy in the prefrontal-accumbens pathway and increased the extracellular levels of glutamate in the NAc. These results, taken together with previous findings, suggest that the psychotic-like effects of noncompetitive NMDA antagonists may be, in part, mediated by an increase in glutamate release in the NAc associated with synaptic changes in accumbens glutamatergic inputs including enhancement of synaptic efficacy in the prefrontal input.
Collapse
Affiliation(s)
- Florence Razoux
- INSERM Equipe Avenir, Laboratoire de Neurobiologie et Psychopathologie, Université de Nice-Sophia Antipolis, Parc Valrose, Nice cedex 2, France
| | | | | |
Collapse
|
36
|
Wang JH, Fu Y, Wilson FAW, Ma YY. Ketamine affects memory consolidation: Differential effects in T-maze and passive avoidance paradigms in mice. Neuroscience 2006; 140:993-1002. [PMID: 16600517 DOI: 10.1016/j.neuroscience.2006.02.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/16/2006] [Accepted: 02/24/2006] [Indexed: 11/29/2022]
Abstract
The effects of ketamine, an N-methyl-D-aspartate (NMDA) antagonist, on memory in animals have been limited to the sub-anesthetic dose given prior to training in previous studies. We evaluated the effects of post-training anesthetic doses of ketamine to selectively manipulate memory consolidation, and the effect of pre-retention sub-anesthetic doses of ketamine on memory retrieval in passive avoidance and T-maze tasks in mice. Repeated post-training anesthetic doses of ketamine impaired the consolidation of memory in the T-maze but not in passive avoidance paradigms. This impairment was not permanent but diminished 1-2 days after ketamine withdrawal. Sub-anesthetic post-training doses of ketamine (5 mg/kg) had no effect on memory consolidation, and larger doses (10, 20 and 50 mg/kg) did not influence the retrieval of memory in the T-maze. The data suggest that repeated anesthetic doses of ketamine block NMDA receptors and affect memory consolidation. Moreover, NMDA mechanisms antagonized by ketamine appear to be selectively involved in spatial (T-maze) memory mechanisms but may not be necessary for non-spatial (passive avoidance) memory consolidation.
Collapse
Affiliation(s)
- J H Wang
- Section of Cognitive Brain Research and Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | |
Collapse
|
37
|
Mathew SJ, Keegan K, Smith L. Glutamate modulators as novel interventions for mood disorders. BRAZILIAN JOURNAL OF PSYCHIATRY 2005; 27:243-8. [PMID: 16224615 DOI: 10.1590/s1516-44462005000300016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Recent evidence suggests that critical molecules in neurotrophic signaling cascades are long-term targets for currently available monoaminergic antidepressants. As chronic and severe mood disorders are characterized by impairments in neuronal resilience, pharmacological strategies that subserve a neuroprotective function might alter disorder pathophysiology and modify disease progression. Several promising approaches involve modulation of the glutamate neurotransmitter system, via post-synaptic receptor blockade or potentiation and presynaptic vesicular release inhibition. A focused review of the extant scientific literature was conducted, with a discussion of 3 compounds or classes of drugs currently undergoing clinical investigation: ketamine, riluzole, and AMPA receptor potentiators. Recent investigations in mood disordered patients suggest that the NMDA receptor antagonist ketamine might demonstrate rapid antidepressant properties. Riluzole has been shown to reverse glutamate-mediated impairments in neuronal plasticity and to stimulate the synthesis of brain derived neurotrophic factor. Open-label trials in treatment-resistant depression have yielded promising results. Likewise, AMPA receptor potentiators favorably impact neurotrophic factors as well as enhance cognition. CONCLUSIONS Pharmacological approaches that modulate components of the glutamate system offer novel targets for severe, recurrent mood disorders. Controlled studies are necessary.
Collapse
Affiliation(s)
- Sanjay J Mathew
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
38
|
Abstract
Latent inhibition is used to examine attention and study cognitive deficits associated with schizophrenia. Research using MK-801, an N-methyl-D-aspartate (NMDA) open channel blocker, implicates glutamate receptors in acquisition of latent inhibition of cued fear conditioning. Evidence suggests an important relationship between NMDA-induced increases in cyclic adenosine monophosphate (cAMP) and learning and memory. The authors examine whether amplification of the cAMP signaling pathway by rolipram, a selective Type 4 cAMP phosphodiesterase inhibitor, reverses MK-801-induced impairments in latent inhibition. One day before training, mice were injected with MK-801, rolipram, MK-801 and rolipram, or vehicle and received 20 preexposures or no preexposures to an auditory conditioned stimulus (CS). Training consisted of 2 CS-footshock unconditioned stimulus pairings. Rolipram attenuated the disruptive effect of MK-801 on latent inhibition, which suggests a role for the cAMP signaling pathway in the task and implicates phosphodiesterase inhibition as a target for treating cognitive impairments associated with schizophrenia.
Collapse
Affiliation(s)
- Jennifer A Davis
- Temple University, Department of Psychology, Philadelphia, PA 19122, USA
| | | |
Collapse
|
39
|
Bills C, Schachtman TR, Serfozo P, Spooren WPJM, Gasparini F, Simonyi A. Effects of metabotropic glutamate receptor 5 on latent inhibition in conditioned taste aversion. Behav Brain Res 2005; 157:71-8. [PMID: 15617773 DOI: 10.1016/j.bbr.2004.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/22/2004] [Accepted: 06/11/2004] [Indexed: 11/19/2022]
Abstract
Latent inhibition (LI) is a phenomenon by which pre-exposure of a conditioned stimulus (CS) prior to the CS-unconditioned stimulus (US) pairings retards conditioned responding (CR). LI has been demonstrated in a variety of learning tasks including conditioned taste aversion (CTA). Earlier work has shown that systemic administration of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 (mGlu5) antagonist, is able to disrupt classical conditioning in CTA. The present study investigated the involvement of mGlu5 receptors in LI using a CTA procedure. In the first experiment, rats received either water (non-pre-exposed, NPE) or a saccharin solution (pre-exposed, PE) on 2 consecutive days. The animals then received conditioning in which a fixed amount of saccharin was paired with lithium chloride and then the CR to the taste was tested. Either MPEP (3, 6, 12 mg/kg) or vehicle was injected intraperitoneally prior to taste pre-exposure or testing. Animals in the vehicle control groups displayed LI. MPEP injections before pre-exposure trials attenuated LI but also reduced consumption during pre-exposure, which obscured interpretation of the LI effect. The second experiment used four pre-exposure trials and controlled access to fixed amount of the solutions during the pre-exposure as well as the conditioning trials. Rats were injected before pre-exposure trials but not before the test trial. The results found that MPEP attenuates latent inhibition suggesting that the mGlu5 receptor exerts an influence on the processes that underlie the effects of taste pre-exposure on conditioning.
Collapse
Affiliation(s)
- Carla Bills
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pålsson E, Klamer D, Wass C, Archer T, Engel JA, Svensson L. The effects of phencyclidine on latent inhibition in taste aversion conditioning: differential effects of preexposure and conditioning. Behav Brain Res 2005; 157:139-46. [PMID: 15617780 DOI: 10.1016/j.bbr.2004.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 06/14/2004] [Accepted: 06/23/2004] [Indexed: 11/26/2022]
Abstract
Latent inhibition (LI) is a behavioural procedure in which preexposure to a stimulus not followed by reinforcement retards subsequent conditioning to this stimulus when it is paired with reinforcement. Changes in LI thus reflect greater or lesser retardation of learning which essentially implies a potentiation or an attenuation of the LI effect. LI has proved sensitive to psychotomimetic and antipsychotic treatment, which has encouraged its use to model learning and attention deficits in schizophrenia. In the present study, experiments were conducted to evaluate the effects of the psychotomimetic drug, phencyclidine (PCP, 2 mg/kg), and compare it with D-amphetamine (D-AMP, 0.33 and 1 mg/kg), on LI using a conditioned taste aversion procedure. PCP was found to potentiate LI when administered acutely prior to the conditioning trails, while no such effect was observed when administered prior to the preexposure trials. D-AMP, on the other hand, disrupted LI possibly due to a failure to induce a persistent taste aversion conditioning.
Collapse
Affiliation(s)
- Erik Pålsson
- Department of Pharmacology, The Sahlgrenska Academy at Göteborg University, Göteborg University, P.O. Box 431, SE 40530 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Meyer U, Feldon J, Schedlowski M, Yee BK. Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 2005; 29:913-47. [PMID: 15964075 DOI: 10.1016/j.neubiorev.2004.10.012] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 01/18/2023]
Abstract
Epidemiological studies have indicated an association between maternal bacterial and viral infections during pregnancy and the higher incidence of schizophrenia in the resultant offspring post-puberty. One hypothesis asserts that the reported epidemiological link is mediated by prenatal activation of the foetal immune system in response to the elevation of maternal cytokine level due to infection. Here, we report that pregnant mouse dams receiving a single exposure to the cytokine-releasing agent, polyriboinosinic-polyribocytidilic acid (PolyI:C; at 2.5, 5.0, or 10.0 mg/kg) on gestation day 9 produced offspring that subsequently exhibited multiple schizophrenia-related behavioural deficits in adulthood, in comparison to offspring from vehicle injected or non-injected control dams. The efficacy of the PolyI:C challenge to induce cytokine responses in naïve non-pregnant adult female mice and in foetal brain tissue when injected to pregnant mice were further ascertained in separate subjects: (i) a dose-dependent elevation of interleukin-10 was detected in the adult female mice at 1 and 6h post-injection, (ii) 12 h following prenatal PolyI:C challenge, the foetal levels of interleukin-1beta were elevated. The spectrum of abnormalities included impairments in exploratory behaviour, prepulse inhibition, latent inhibition, the US-pre-exposure effect, spatial working memory; and enhancement in the locomotor response to systemic amphetamine (2.5 mg/kg, i.p.) as well as in discrimination reversal learning. The neuropsychological parallels between prenatal PolyI:C treatment in mice and psychosis in humans, demonstrated here, leads us to conclude that prenatal PolyI:C treatment represents one of the most powerful environmental-developmental models of schizophrenia to date. The uniqueness of this model lies in its epidemiological and immunological relevance. It is, sui generis, ideally suited for the investigation of the neuropsychoimmunological mechanisms implicated in the developmental aetiology and disease processes of schizophrenia.
Collapse
Affiliation(s)
- Urs Meyer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | | | | | | |
Collapse
|
42
|
Lewis MC, Gould TJ. Latent inhibition of cued fear conditioning: an NMDA receptor-dependent process that can be established in the presence of anisomycin. Eur J Neurosci 2004; 20:818-26. [PMID: 15255992 DOI: 10.1111/j.1460-9568.2004.03531.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.
Collapse
Affiliation(s)
- Michael C Lewis
- Temple University Neuroscience Program, Department of Psychology, Weiss Hall, Temple University, 1701 N 13th St., Philadelphia, PA 19122, USA
| | | |
Collapse
|
43
|
Gutiérrez R, Rodriguez-Ortiz CJ, De La Cruz V, Núñez-Jaramillo L, Bermudez-Rattoni F. Cholinergic dependence of taste memory formation: Evidence of two distinct processes. Neurobiol Learn Mem 2003; 80:323-31. [PMID: 14521874 DOI: 10.1016/s1074-7427(03)00066-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.
Collapse
Affiliation(s)
- Ranier Gutiérrez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510 Cd., México, DF, México
| | | | | | | | | |
Collapse
|
44
|
Traverso LM, Ruiz G, De la Casa LG. Latent inhibition disruption by MK-801 in a conditioned taste-aversion paradigm. Neurobiol Learn Mem 2003; 80:140-6. [PMID: 12932429 DOI: 10.1016/s1074-7427(03)00059-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptors appear to be involved in CS processing and memory consolidation. The present paper analyzed the effect of the non-competitive NMDA receptor antagonist Dizocilpine maleate (MK-801) on Latent Inhibition (LI)-retarded learning of a CS-US association after to-be-CS preexposures at time of testing, using Wistar rats as experimental subjects. If NMDA receptors are involved in CS processing, MK-801 administration should affect LI. In fact, previous experiments revealed that a 2.0mg/kg MK-801 dose, administered 20 h before preexposure and conditioning, abolished LI in a conditioned taste-aversion paradigm. In the present paper, MK-801 (0.2 mg/kg) was either injected after preexposure, after conditioning, or after both preexposure and conditioning stages. LI was abolished when MK-801 was injected after preexposure, but not when it was injected after conditioning. These results support the role of NMDA receptors in CS processing and memory consolidation.
Collapse
Affiliation(s)
- L M Traverso
- Facultad de Psicologia, University of Seville, C/Camilo Jose Cela, s/n, 41018 Sevilla, Spain
| | | | | |
Collapse
|
45
|
Weiner I. The "two-headed" latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 2003; 169:257-97. [PMID: 12601500 DOI: 10.1007/s00213-002-1313-x] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 10/16/2002] [Indexed: 01/24/2023]
Abstract
RATIONALE Latent inhibition (LI), namely, poorer performance on a learning task involving a previously pre-exposed non-reinforced stimulus, is disrupted in the rat by the dopamine (DA) releaser amphetamine which produces and exacerbates psychotic (positive) symptoms, and this is reversed by treatment with typical and atypical antipsychotic drugs (APDs) which on their own potentiate LI. These phenomena are paralleled by disrupted LI in normal amphetamine-treated humans, in high schizotypal humans, and in schizophrenia patients in the acute stages of the disorder, as well as by potentiated LI in normal humans treated with APDs. Consequently, disrupted LI is considered to provide an animal model of positive symptoms of schizophrenia with face, construct and predictive validity. OBJECTIVES To review most of the rodent data on the neural substrates of LI as well as on the effects of APDs on this phenomenon with an attempt to interpret and integrate these data within the framework of the switching model of LI; to show that there are two distinct LI models, disrupted and abnormally persistent LI; to relate these findings to the clinical condition. RESULTS The nucleus accumbens (NAC) and its DA innervation form a crucial component of the neural circuitry of LI, and are involved at the conditioning stage. There is a clear functional differentiation between the NAC shell and core subregions whereby damage to the shell disrupts LI and damage to the core renders LI abnormally persistent under conditions that disrupt LI in normal rats. The effects of shell and core lesions parallel those produced by lesions to the major sources of input to the NAC: entorhinal cortex lesion, like shell lesion, disrupts LI, whereas hippocampal lesion, like core lesion, produces persistent LI with changes in context, and basolateral amygdala (BLA) lesion, like core lesion, produces persistent LI with extended conditioning. Systemically induced blockade of glutamatergic as well as DA transmission produce persistent LI via effects exerted at the conditioning stage, whereas enhancement of DA transmission disrupts LI via effects at the conditioning stage. Serotonergic manipulations can disrupt or potentiate LI via effects at the pre-exposure stage. Both typical and atypical APDs potentiate LI via effects at conditioning whereas atypical APDs in addition disrupt LI via effects at pre-exposure. Schizophrenia patients can exhibit disrupted or normal LI as a function of the state of the disorder (acute versus chronic), as well as persistent LI. CONCLUSIONS Different drug and lesion manipulations produce two poles of abnormality in LI, namely, disrupted LI under conditions which lead to LI in normal rats, and abnormally persistent LI under conditions which disrupt it in normal rats. Disrupted and persistent LI are differentially responsive to APDs, with the former reversed by both typical and atypical APDs and the latter selectively reversed by atypical APDs. It is suggested that this "two-headed LI model" mimics two extremes of deficient cognitive switching seen in schizophrenia, excessive and retarded switching between associations, mediated by dysfunction of different brain circuitries, and can serve to model positive symptoms of schizophrenia and typical antipsychotic action, as well as negative symptoms of schizophrenia and atypical antipsychotic action.
Collapse
Affiliation(s)
- Ina Weiner
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
46
|
Gutiérrez R, Téllez LA, Bermúdez-Rattoni F. Blockade of cortical muscarinic but not NMDA receptors prevents a novel taste from becoming familiar. Eur J Neurosci 2003; 17:1556-62. [PMID: 12752373 DOI: 10.1046/j.1460-9568.2003.02608.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure to a novel taste solution in the rat is followed by a decrease in its intake known as neophobia. This effect gradually disappears, and consumption increases from the second presentation of the taste (attenuation of neophobia), reflecting that the animal learned that it is safe to drink it. Conversely, if gastric malaise is induced after first intake, the rat will develop a long-lasting aversion (conditioned taste aversion). Previous attempts to elucidate the physiological nature of taste memory trace stems only from procedures that require malaise to measure taste memory. Here we assess the relevance of both muscarinic and N-methyl-d-aspartate receptors, known to be involved in conditioned taste aversion, on taste memory using a nonaversive procedure (attenuation of neophobia learning). Attenuation of neophobia was impaired by the muscarinic receptor antagonist, scopolamine, microinjected 20 min before, immediately after or up to 2 h after the first taste experience, suggesting that muscarinic receptors are involved in the acquisition and consolidation of attenuation of neophobia learning. However, the N-methyl-d-aspartate receptor antagonist, d,l-2-amino-5-phosphonovaleric acid, did not affect attenuation of neophobia even when the same dose of the drug was able to disrupt conditioned taste aversion learning, which suggests that attenuation of neophobia learning would be independent of N-methyl-d-aspartate receptors activity in the insular cortex. The neophobic response induced by strong saccharin presentation was not affected by either of the treatments given, which rules out any impairment in taste perception. These results indicate that while cortical muscarinic receptors are important in the formation and consolidation of safe memory trace, N-methyl-d-aspartate receptor activity appears to be noncritical.
Collapse
Affiliation(s)
- Ranier Gutiérrez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, A.P. 70-253, 04510 Cd. México, D.F., México
| | | | | |
Collapse
|
47
|
Mickley GA, Remmers-Roeber DR, Dengler CM, McMullen CA, Kenmuir CL, Girdler B, Crouse C, Walker C. Simple behavioral methods to assess the effect of drugs or toxins on sensory experience. J Neurosci Methods 2002; 115:85-92. [PMID: 11897367 DOI: 10.1016/s0165-0270(02)00005-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When behavioral pharmacologists/toxicologists study conditioned taste aversions (CTAs), or other conditioned responses, as a means to investigate the effects of various drugs or toxins on a learned response, failure to discover a CTA is frequently attributed to the treatment's influence on the associative process. This kind of analysis may fail to identify drug-induced sensory changes that may influence conditioned stimulus (CS) or unconditioned stimulus (US) saliency. The current paper outlines a simple method by which a drug's influence on CS or US sensation may be determined. Further, illustrative data are provided regarding how N-methyl-D-aspartate (NMDA) receptor blockade modulates taste and the sensation of malaise. Ketamine (an NMDA receptor antagonist) has been reported to block CTAs in both neonatal and adult rats. The current experiments evaluated ketamine's ability to modulate the taste of a frequently employed CS (saccharin HCl=SAC) or the aversive aspects of a common US (Lithium Chloride=LiCl). Rats normally exhibit a preference for 0.3% SAC over 0.6% SAC and will suppress consumption of these liquids following an injection of LiCl. We report that ketamine did not markedly antagonize these consummatory patterns nor did it disrupt spontaneous locomotor movements. Taken together, these findings point to ketamine's limited ability to change the sensory capacities required for CTA formation. Investigators interested in determining the underlying causes of drug-induced CTA blockade may choose to employ paradigms similar to the one used here.
Collapse
Affiliation(s)
- G Andrew Mickley
- Department of Psychology and the Neuroscience Program, Carnegie Hall, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yilmaz A, Schulz D, Aksoy A, Canbeyli R. Prolonged effect of an anesthetic dose of ketamine on behavioral despair. Pharmacol Biochem Behav 2002; 71:341-4. [PMID: 11812542 DOI: 10.1016/s0091-3057(01)00693-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effect of a single, anesthetic dose of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, on behavioral despair, an animal model of depression. Separate groups of male Wistar rats injected with an anesthetic dose of ketamine (160 mg/kg ip) and tested 3, 7, or 10 days later showed significantly less immobility in the second of two forced-swim tests compared to saline-injected controls. Ketamine- and saline-treated animals did not differ significantly in the swim tests with respect to other behavioral measures, namely diving, jumping, and head shakes. The present findings point to an ameliorative effect of ketamine on behavioral despair and support the view that NMDA antagonists may have a beneficial effect on depression.
Collapse
Affiliation(s)
- A Yilmaz
- Psychobiology Laboratory, Department of Psychology, Bogazici University, 80815 Bebek, Istanbul, Turkey
| | | | | | | |
Collapse
|
49
|
Abstract
Conditioned taste aversion (CTA) is a well established learning and memory paradigm in rats and mice that is considered to be a special form of classical conditioning. Rodents--as well as many other species including man--learn to associate a novel taste (CS) with nausea (US), and as a consequence avoid drinking fluid with this specific taste. In contrast to other types of classical conditioning, even CS-US intervals lasting several hours lead to an aversion to the gustatory CS. With increasing CS-US delay duration, however, the aversion against the CS gradually decreases. Mice differ from rats in their reaction to the CS as well as the US. They tolerate a much higher concentration of saccharin and they do not show any clear signs of nausea when injected with the US. Advantages of this task are its relative independence of motor behavior, well described pathways for the CS and partly the US, and the wealth of available anatomical and pharmacological data implying several brain structures (e.g. parabrachial nucleus, amygdala, insular cortex), neurotransmitters and their receptors (e.g. cholinergic system, NMDA-receptors), and cellular processes (e.g. expression of immediate early genes, Ras-MAP kinase signaling pathway, CREB phosphorilation, protein tyrosine phosphorilation, protein synthesis) in CTA. The CTA paradigm has also been successfully used to phenotype mouse mutants.
Collapse
Affiliation(s)
- H Welzl
- Division of Neuroanatomy and Behavior, Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
50
|
Mickley GA, Remmers-Roeber DR, Dengler CM, Kenmuir CL, Crouse C. Paradoxical effects of ketamine on the memory of fetuses of different ages. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:71-6. [PMID: 11287066 DOI: 10.1016/s0165-3806(01)00119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain N-methyl-D-aspartate (NMDA) glutamate receptors have been implicated as important mediators of both learning and neuronal development. The current study investigated how ketamine (a well-known NMDA-receptor blocking drug) influences taste-mediated conditioned motor responses (CMRs) in perinatal rats. Dams pregnant with either embryonic day 18 (E18) or E19 rat fetuses were injected with 0 or 100 mg/kg ketamine HCl (i.p.). One-half hour later, a reversible spinal block was performed on the dam and fetuses received oral lavage with 10 microl, 0.3% saccharin (SAC) or water (control) in utero. After the oral injection, fetuses received either a saline (control) or lithium chloride (LiCl) injection (81 mg/kg, i.p.). The uterus was replaced and, 2 days later (E20 or E21), some rats received oral lavage with SAC. Other litters were born via normal vaginal delivery or Cesarean section and orally exposed to SAC on post-natal day 3 (P3). Motor responses were observed immediately after the oral lavage of SAC. If SAC had been paired with LiCl in utero, pups generally exhibited conditioned suppression of orofacial movements (as compared to controls). Ketamine significantly attenuated this taste-mediated CMR of animals conditioned on E19. However, the same treatments did not disrupt CMRs of rats treated with ketamine before CS-US pairing on E18. Our findings indicate an age-dependent role for NMDA receptors in the formation of CMRs in perinatal rats.
Collapse
Affiliation(s)
- G A Mickley
- Department of Psychology and Neuroscience Program, Carnegie Hall, Baldwin-Wallace College, 275 Eastland Road, Berea, OH 44017-2088, USA.
| | | | | | | | | |
Collapse
|