1
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
2
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Marvanová S, Pěnčíková K, Pálková L, Ciganek M, Petráš J, Lněničková A, Vondráček J, Machala M. Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162924. [PMID: 36933742 DOI: 10.1016/j.scitotenv.2023.162924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM2.5) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM2.5 and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.
Collapse
Affiliation(s)
- Soňa Marvanová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Lenka Pálková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Miroslav Ciganek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Anna Lněničková
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
4
|
Yeo JH, Choi EJ, Lee J. Inhibition of gap junctional intercellular communication by an anti-migraine agent, flunarizine. PLoS One 2019; 14:e0222326. [PMID: 31513635 PMCID: PMC6742374 DOI: 10.1371/journal.pone.0222326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels that allow the passage of ions, second messengers, and small molecules. GJs and connexins are considered as emerging therapeutic targets for various diseases. Previously, we screened numerous compounds using our recently developed iodide yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunarizine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phosphorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial effects of FNZ on migraines and epilepsy might be related to GJ inhibition.
Collapse
Affiliation(s)
- Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| |
Collapse
|
5
|
Kanlaya R, Thongboonkerd V. Protective Effects of Epigallocatechin-3-Gallate from Green Tea in Various Kidney Diseases. Adv Nutr 2019; 10:112-121. [PMID: 30615092 PMCID: PMC6370267 DOI: 10.1093/advances/nmy077] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases are common health problems worldwide. Various etiologies (e.g., diabetes, hypertension, drug-induced nephrotoxicity, infection, cancers) can affect renal function and ultimately lead to development of chronic kidney disease (CKD) and end-stage renal disease (ESRD). The global rise in number of CKD/ESRD patients during recent years has led to tremendous concern to look for effective strategies to prevent or slow progression of CKD and ESRD. Natural compounds derived from herbs or medicinal plants have gained wide attention for scientific scrutiny to achieve such goals. One of such natural compounds that has been extensively investigated is epigallocatechin-3-gallate (EGCG), a major polyphenol found in the tea plant (Camellia sinensis). A growing body of recent evidence has shown that EGCG may be a promising therapeutic or protective agent in various kidney diseases. This article thus highlights recent progress in medical research on beneficial effects of EGCG against a broad spectrum of kidney diseases, including acute kidney injury, cisplatin-induced nephrotoxicity, kidney stone disease, glomerulonephritis, lupus nephritis, renal cell carcinoma, diabetic nephropathy, CKD, and renal fibrosis. The renoprotective mechanisms are also detailed. Finally, future perspectives of medical research on EGCG and its potential use in clinical practice for treatment and prevention of kidney diseases are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Address correspondence to VT (e-mail: or )
| |
Collapse
|
6
|
Sarkar D, Singh SK. Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring. Toxicology 2017; 386:103-119. [DOI: 10.1016/j.tox.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/12/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
|
7
|
Leithe E. Regulation of connexins by the ubiquitin system: Implications for intercellular communication and cancer. Biochim Biophys Acta Rev Cancer 2016; 1865:133-46. [DOI: 10.1016/j.bbcan.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
8
|
IGARASHI I, MAKINO T, KAI K, TERANISHI M, TAKASAKI W, SATOH H, FURUHAMA K. Localization of connexin 32 in spontaneous liver lesions of mice. J Vet Med Sci 2016; 78:113-6. [PMID: 26268664 PMCID: PMC4751127 DOI: 10.1292/jvms.14-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 07/28/2015] [Indexed: 11/24/2022] Open
Abstract
We examined the localization of connexin 32 (Cx32), a component of gap junctions, in 24-month-old male B6C3F1 mice with spontaneously occurring hepatocellular altered foci or tumors. Immunohistochemically, Cx32-staining intensity in cell-to-cell membranes of altered hepatocytes was decreased in eosinophilic foci and increased in basophilic foci as compared to those in intact hepatocytes. These alterations were enhanced in adenomas and carcinomas with both eosinophilic and basophilic cytoplasm. In cell membranes facing on the sinusoidal portions, the intensities increased in all lesions. Image analyses confirmed that the spot areas of Cx32 were decreased in eosinophilic foci, but increased in basophilic foci, adenomas and carcinomas. These results demonstrate that Cx32 shows different expression in different types of hepatic lesions.
Collapse
Affiliation(s)
- Isao IGARASHI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co.,
Ltd., Kitakasai, Edogawa, Tokyo 134–8630, Japan
| | - Toshihiko MAKINO
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co.,
Ltd., Kitakasai, Edogawa, Tokyo 134–8630, Japan
| | - Kiyonori KAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co.,
Ltd., Kitakasai, Edogawa, Tokyo 134–8630, Japan
| | - Munehiro TERANISHI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co.,
Ltd., Kitakasai, Edogawa, Tokyo 134–8630, Japan
| | - Wataru TAKASAKI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co.,
Ltd., Kitakasai, Edogawa, Tokyo 134–8630, Japan
| | - Hiroshi SATOH
- Cooperative Department of Veterinary Medicine, Iwate
University, Morioka, Iwate 020–8550, Japan
| | - Kazuhisa FURUHAMA
- Cooperative Department of Veterinary Medicine, Iwate
University, Morioka, Iwate 020–8550, Japan
- United Graduate School of Veterinary Science, Gifu
University, Gifu 501–1193, Japan
| |
Collapse
|
9
|
Harada T, Takeda M, Kojima S, Tomiyama N. Toxicity and Carcinogenicity of Dichlorodiphenyltrichloroethane (DDT). Toxicol Res 2016; 32:21-33. [PMID: 26977256 PMCID: PMC4780236 DOI: 10.5487/tr.2016.32.1.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is still used in certain areas of tropics and subtropics to control malaria and other insect-transmitted diseases. DDT and its metabolites have been extensively studied for their toxicity and carcinogenicity in animals and humans and shown to have an endocrine disrupting potential affecting reproductive system although the effects may vary among animal species in correlation with exposure levels. Epidemiologic studies revealed either positive or negative associations between exposure to DDT and tumor development, but there has been no clear evidence that DDT causes cancer in humans. In experimental animals, tumor induction by DDT has been shown in the liver, lung, and adrenals. The mechanisms of hepatic tumor development by DDT have been studied in rats and mice. DDT is known as a non-genotoxic hepatocarcinogen and has been shown to induce microsomal enzymes through activation of constitutive androstane receptor (CAR) and to inhibit gap junctional intercellular communication (GJIC) in the rodent liver. The results from our previously conducted 4-week and 2-year feeding studies of p,p'-DDT in F344 rats indicate that DDT may induce hepatocellular eosinophilic foci as a result of oxidative DNA damage and leads them to hepatic neoplasia in combination with its mitogenic activity and inhibitory effect on GJIC. Oxidative stress could be a key factor in hepatocarcinogenesis by DDT.
Collapse
Affiliation(s)
- Takanori Harada
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043,
Japan
| | - Makio Takeda
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043,
Japan
| | - Sayuri Kojima
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043,
Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043,
Japan
| |
Collapse
|
10
|
Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 2015; 36 Suppl 1:S2-18. [PMID: 26106139 DOI: 10.1093/carcin/bgv028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
Collapse
Affiliation(s)
- Rita Nahta
- Departments of Pharmacology and Hematology & Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA, Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile, Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA, Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontari
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Gary S Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Harini Krishnan
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 60503, USA
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Richard Ponce-Cusi
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Hosni K Salem
- Urology Dept., kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, UP 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics AS CR, Brno 612 65, Czech Republic
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 16163, Italy and
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Cogliati B, Vinken M, Silva TC, Araújo CMM, Aloia TPA, Chaible LM, Mori CMC, Dagli MLZ. Connexin 43 deficiency accelerates skin wound healing and extracellular matrix remodeling in mice. J Dermatol Sci 2015; 79:50-56. [PMID: 25900674 DOI: 10.1016/j.jdermsci.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cellular channels composed of connexin 43 are known to act as key players in the life cycle of the skin and consequently to underlie skin repair. OBJECTIVE This study was specifically set up to investigate the suite of molecular mechanisms driven by connexin 43-based channels on wound healing. METHODS To this end, a battery of parameters, including re-epithelialization, neovascularization, collagen deposition and extracellular matrix remodeling, was monitored over time during experimentally induced skin repair in heterozygous connexin 43 knockout mice. RESULTS It was found that connexin 43 deficiency accelerates re-epithelialization and wound closure, increases proliferation and activation of dermal fibroblasts, and enhances the expression of extracellular matrix remodeling mediators. CONCLUSION These data substantiate the notion that connexin 43 may represent an interesting therapeutic target in dermal wound healing.
Collapse
Affiliation(s)
- Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tereza C Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Cintia M M Araújo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Thiago P A Aloia
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Lucas M Chaible
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Cláudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| | - Maria L Z Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Brazil
| |
Collapse
|
12
|
Igarashi I, Maejima T, Kai K, Arakawa S, Teranishi M, Sanbuissho A. Role of connexin 32 in acetaminophen toxicity in a knockout mice model. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2014; 66:103-10. [PMID: 24263089 DOI: 10.1016/j.etp.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/03/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.
Collapse
Affiliation(s)
- Isao Igarashi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan.
| | - Takanori Maejima
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Kiyonori Kai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Shingo Arakawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Munehiro Teranishi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Atsushi Sanbuissho
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| |
Collapse
|
13
|
Vinken M, de Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli MLZ, Vanhaecke T, Rogiers V. Modifications in Connexin Expression in Liver Development and Cancer. ACTA ACUST UNITED AC 2012; 19:55-62. [DOI: 10.3109/15419061.2012.712576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Scientific Opinion on the re‐evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2588] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Pointis G, Gilleron J, Carette D, Segretain D. Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. SPERMATOGENESIS 2011; 1:303-317. [PMID: 22332114 DOI: 10.4161/spmg.1.4.18392] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
Abstract
Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified. Recent studies showed that a family of transmembranous proteins, named connexins, regulates numerous physiological processes involved in testicular development and function, such as Sertoli and germ cell proliferation, differentiation, germ cell migration and apoptosis. In the testis, knockout strategy revealed that connexin 43, the predominant connexin in this organ, is essential for spermatogenesis. In addition, there is evidence that many environmental toxicants could alter testicular connexin 43 by dysregulation of numerous mechanisms controlling its function. In the present work, we propose first to give an overview of connexin expression and intercellular gap junction coupling in the developing fetal and neonatal testes. Second, we underline the impact of maternally chemical exposure on connexin 43 expression in the perinatal developing testis. Lastly, we attempt to link this precocious effect to male offspring fertility.
Collapse
|
16
|
Upham BL. Role of integrative signaling through gap junctions in toxicology. ACTA ACUST UNITED AC 2011; Chapter 2:Unit2.18. [PMID: 21400682 DOI: 10.1002/0471140856.tx0218s47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gap junctional intercellular communication (GJIC) plays a central role in coordinating signal-transduction pathways that control gene expression inside of cells with those of neighboring cells in maintaining the homeostasis of a tissue. The normal homeostatic set point of gap junctions within tissues is in an open state, and although transient closure of gap junctions in response to mitogenic effectors is normal, chronic closure of channels by continuous exposure to environmental and food-borne contaminants can result in adverse health effects such as cancer, teratogenesis, reproductive dysfunction, neuropathies, and cardiac arrhythmias. GJIC is the primary means of integrating signal transduction pathways controlling gene expression between contiguous cells. Thus, bioassay systems that can measure GJIC offer a central, more biosystems approach to assessing the potential for toxicants to epigenetically alter gene expression.
Collapse
Affiliation(s)
- Brad L Upham
- Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Fukumasu H, Sanches DS, da Silva TC, Ward JM, Dagli MLZ. Transient disruption of liver gap junctional intercellular communication and induction of apoptosis after administration of 1,4-bis[2-(3,5 dichloropyridyloxy)]benzene in mice. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2010; 62:525-31. [PMID: 19651500 DOI: 10.1016/j.etp.2009.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57Bl/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p<0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48 h and sustained after 72 h, though to a lesser extent (p<0.0001). In addition, TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72 h (p<0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p=0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver.
Collapse
Affiliation(s)
- Heidge Fukumasu
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
18
|
Liu CL, Huang YS, Hosokawa M, Miyashita K, Hu ML. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem Biol Interact 2009; 182:165-72. [PMID: 19737546 DOI: 10.1016/j.cbi.2009.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/12/2009] [Accepted: 08/31/2009] [Indexed: 12/18/2022]
Abstract
Fucoxanthin is one of the most abundant carotenoids found in Undaria pinnatifida and has been shown to inhibit tumor proliferation in vitro. However, the mechanisms underlying the anti-cancer effects of fucoxanthin are unclear. In this study, we hypothesized that fucoxanthin may cause cell cycle arrest and enhance gap junctional intercellular communication (GJIC) in SK-Hep-1 human hepatoma cells. Data revealed that fucoxanthin (1-20microM) strongly and concentration-dependently inhibited the proliferation of SK-Hep-1 cells at 24h of incubation, whereas fucoxanthin facilitated the growth of a murine embryonic hepatic (BNL CL.2) cells at 24h of incubation and only slightly slowed the cell proliferation at 48h. In SK-Hep-1 cells, fucoxanthin caused cell cycle arrest at G0/G1 phase and induced cell apoptosis, as evidenced by increased subG1 cells and induction of DNA strand breaks. Using scrape loading-dye-transfer assay, fucoxanthin was found to significantly enhance GJIC of SK-Hep-1 cells without affecting that of BNL CL.2 cells. In addition, fucoxanthin significantly increased protein and mRNA expressions of connexin 43 (Cx43) and connexin 32 (Cx32) in SK-Hep-1 cells. Moreover, fucoxanthin markedly increased the concentration of intracellular calcium levels in SK-Hep-1 cells. Thus, fucoxanthin is specifically antiproliferative against SK-Hep-1 cells, and the effect is associated with upregulation of Cx32 and Cx43, which enhances GJIC of SK-Hep-1 cells. The enhanced GJIC may be responsible for the increase of the intracellular calcium level, which then causes cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Cheng-Ling Liu
- Department of Food Science, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Šimečková P, Vondráček J, Andrysík Z, Zatloukalová J, Krčmář P, Kozubík A, Machala M. The 2,2′,4,4′,5,5′-Hexachlorobiphenyl–Enhanced Degradation of Connexin 43 Involves Both Proteasomal and Lysosomal Activities. Toxicol Sci 2008; 107:9-18. [DOI: 10.1093/toxsci/kfn202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Tao R, Hu MF, Lou JT, Lei YL. Effects of H pylori infection on gap-junctional intercellular communication and proliferation of gastric epithelial cells in vitro. World J Gastroenterol 2007; 13:5497-500. [PMID: 17907295 PMCID: PMC4171286 DOI: 10.3748/wjg.v13.i41.5497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of H pylori infection on gap-junctional intercellular communication (GJIC) and proliferation of gastric epithelial cells in vitro.
METHODS: A human gastric epithelial cell line (SGC-7901) cultured on coverslips was exposed overnight to intact H pylori (CagA+ or CagA- strains) and sonicated extracts, respectively. GJIC between the cells was detected by fluorescence redistribution after photobleaching (FRAP) technique. Proliferation of SGC cells was determined by methylthiazolyl tetrazolium (MTT) assay.
RESULTS: When compared with control in which cells were cultured with simple medium alone, both CagA+ and CagA-H pylori isolates could inhibit GJIC (CagA+: F = 57.98, P < 0.01; CagA-: F = 29.59, P < 0.01) and proliferation (CagA+: F = 42.65, P < 0.01; CagA-: F = 58.14, P < 0.01) of SGC-7901 cells. Compared with CagA- strains, CagA+H pylori more significantly down-regulated GJIC of gastric cells (intact H pylori: t = 13.86, P < 0.01; sonicated extracts: t = 11.87, P < 0.01) and inhibited proliferation gastric cells to a lesser extent in vitro (intact H pylori: t = 3.06, P < 0.05; sonicated extracts: t = 3.94, P < 0.01).
CONCLUSION: Compared with CagA-H pylori strains, CagA+ strains down-regulate GJIC of gastric epithelial cells more significantly and inhibit proliferation of gastric cells to a lesser extent in vitro. H pylori, especially CagA+ strains, may play an important role in gastric carcinogenesis.
Collapse
Affiliation(s)
- Ran Tao
- Central Laboratory, Children's Hospital, School of Medicine, Zhejiang University, 57 Zhugan Lane, Hangzhou 310003, Zhejiang Province, China.
| | | | | | | |
Collapse
|
21
|
Nakaoka R, Hsiong SX, Mooney DJ. Regulation of chondrocyte differentiation level via co-culture with osteoblasts. TISSUE ENGINEERING 2006; 12:2425-33. [PMID: 16995776 DOI: 10.1089/ten.2006.12.2425] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The close apposition of osteoblasts and chondrocytes in bone and their interaction during bone development and regeneration suggest that they may each regulate the other's growth and differentiation. In these studies, osteoblasts and chondrocytes were co-cultured in vitro, with both direct and indirect contact. Proliferation of the co-cultured chondrocytes was enhanced using soluble factors produced from the osteoblasts, and the differentiation level of the osteoblasts influenced the differentiation level of the chondrocytes. In addition, the chondrocytes regulated differentiation of the co-cultured osteoblasts using soluble factors and direct contact. These data support the possibility of direct, reciprocal instructive interactions between chondrocytes and osteoblasts in a variety of normal processes and further suggest that it may be necessary to account for this signaling in the regeneration of complex tissues comprising cartilage and mineralized tissue.
Collapse
Affiliation(s)
- Ryusuke Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, Tokyo, Japan.
| | | | | |
Collapse
|
22
|
Nakaoka R, Ahmed S, Tsuchiya T. Hydroxy apatite microspheres enhance gap junctional intercellular communication of human osteoblasts composed of connexin 43 and 45. J Biomed Mater Res A 2005; 74:181-6. [PMID: 15965909 DOI: 10.1002/jbm.a.30328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aseptic loosening of artificial joints with associated periprosthetic bone resorption may be partly due to the suppression of osteoblast function to form new bone by wear debris from the joint. To assess the effect of wear debris on osteoblasts, effects of model wear debris on gap junctional intercellular communication (GJIC) of normal human osteoblasts were estimated. The GJIC activity of the osteoblasts after a 1-day incubation with the microspheres was similar to that of normal osteoblasts. However, hydroxy apatite particles, which have been reported to enhance the differentiation of osteoblasts in contact with them, enhanced the GJIC function of the osteoblasts. From RT-PCR studies, not only connexin 43 but also connexin 45 is suggested to play a role in the GJIC of the osteoblasts in an early stage of coculture with the microspheres, although it is still unclear how these connexins work and are regulated in the GJIC and differentiation. However, this study suggests that there is a relationship between the early levels of GJIC and the differentiation of the cells. Therefore, estimating the effect of biomaterials, even in the microsphere form, on the GJIC of model cells, with which the biomaterials may be in contact in vivo, can provide important information about their biocompatibility.
Collapse
Affiliation(s)
- Ryusuke Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | |
Collapse
|
23
|
Rivedal E, Leithe E. Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells. Exp Cell Res 2005; 302:143-52. [PMID: 15561096 DOI: 10.1016/j.yexcr.2004.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 09/09/2004] [Indexed: 11/27/2022]
Abstract
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces transient inhibition of gap junction intercellular communication (GJIC) in several cell types. The initial block in GJIC has been attributed to protein kinase C (PKC) mediated phosphorylation of connexin gap junction proteins, including connexin43 (Cx43). Restoration of GJIC, associated with normalization of the Cx43 phosphorylation status, has been ascribed to different events, including dephosphorylation of Cx43 and de novo synthesis of Cx43 or other, non-gap junctional, proteins. The data presented suggest that restoration of GJIC during continuous TPA exposure in normal and transformed rat liver epithelial cells is dependent on synthesis of Cx43 protein, as well as the transport of already synthesized Cx43 from intracellular pools to the plasma membrane. Reactivation of inactivated Cx43 by dephosphorylation does not appear to be involved in the recovery of GJIC. Both PKC and MAP kinase is involved in TPA-induced degradation of Cx43 and inhibition of GJIC. We show that coincubation of TPA with the protein synthesis inhibitor cycloheximide or the transcription inhibitor actinomycin D results in synergistic enhancement of the level of activated ERK1/2. Together, the present data highlight Cx43 degradation and synthesis as critical determinants in TPA-induced modifications of cell-cell communication via gap junctions.
Collapse
Affiliation(s)
- Edgar Rivedal
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
24
|
Yoon BI, Hirabayashi Y, Kawasaki Y, Tsuboi I, Ott T, Kodama Y, Kanno J, Kim DY, Willecke K, Inoue T. Exacerbation of benzene pneumotoxicity in connexin 32 knockout mice: enhanced proliferation of CYP2E1-immunoreactive alveolar epithelial cells. Toxicology 2004; 195:19-29. [PMID: 14698565 DOI: 10.1016/j.tox.2003.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small.
Collapse
Affiliation(s)
- Byung-Il Yoon
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagayaku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nakaoka R, Tsuchiya T, Nakamura A. Neural differentiation of midbrain cells on various protein-immobilized polyethylene films. J Biomed Mater Res A 2003; 64:439-46. [PMID: 12579557 DOI: 10.1002/jbm.a.10430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of surface modification of polyethylene (PE) film on differentiation of midbrain (MB) cells obtained from rat embryos was determined by their micromass culture system. When cultured on untreated PE film, cell differentiation was suppressed to approximately two-thirds of that observed in a control culture dish. On the contrary, type I collagen-immobilized PE film increased differentiated foci of the MB cells more than did the untreated PE film. RGDS (Arg-Gly-Asp-Ser) peptide immobilization onto PE film resulted in almost the same differentiation activity as the collagen immobilized PE film. Bovine serum albumin (BSA) immobilization onto PE film enhance the differentiation activity more than did the untreated PE film, but not up to the levels of collagen- and RGDS-immobilized PE. The number of differentiated foci of the MB cells on untreated PE film were increased by the addition of the condition medium prepared from the collagen-immobilized PE film. However, the number of foci was not increased by the addition of other condition media obtained from control dish, untreated, BSA-, and RGDS-immobilized PE. On the other hand, none of these condition media enhanced a differentiation of the neuronal cell line of PC12 cells, suggesting that some factors effectively differentiate midbrain cells, composed of neuronal epithelial and mesenchymal cells, but not the PC12 cells secreted in the condition media prepared from collagen-immobilized PE. In addition, it is probable that neural growth factor was not secreted in these condition media, which could not induce the differentiation of PC12 cells.
Collapse
Affiliation(s)
- Ryusuke Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| | | | | |
Collapse
|
26
|
Sumide T, Tsuchiya T. Effects of multipurpose solutions (MPS) for hydrogel contact lenses on gap-junctional intercellular communication (GJIC) in rabbit corneal keratocytes. J Biomed Mater Res B Appl Biomater 2003; 64:57-64. [PMID: 12516079 DOI: 10.1002/jbm.b.10510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To ensure the effects of multipurpose solutions (MPS) for hydrogel contact lenses on the cornea, the inhibitory activity of three types of MPS on corneal cells has been evaluated with the use of scrape loading and dye transfer assay (SLDT assay) and Western blotting on rabbit corneal keratocytes (RC4). In SLDT assay, MPS-A and poloxamine showed dose-dependent inhibitory activity, suggesting the inhibitory action of MPS-A and poloxamine to gap junctional intercellular communication (GJIC) in the tested cells. Moreover, after treatment with MPS-A, the GJIC was initially inhibited within 4 h, and thereafter gradually turned to an approximately 60% level of the initial value. When MPS-A was removed from the incubation media after exposure of the cells, the recovery of GJIC was time dependent and returned to approximately initial levels at 8 h. Complete recovery was established after approximately 24 h. These findings suggested that the inhibitory action of MPS-A on corneal keratocytes was reversible. This inhibition was accompanied by a decrease in the quantity of connexin-43, which is a major protein constituting the gap junctional channel of these cells, and its change in the phosphorylation state. Taken together, it was suggested that MPS-A interacts with connexin-43, inducing an inhibitory action on GJIC.
Collapse
Affiliation(s)
- Taizo Sumide
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | |
Collapse
|
27
|
Dommels YEM, Alink GM, Linssen JPH, van Ommen B. Effects of n-6 and n-3 polyunsaturated fatty acids on gap junctional intercellular communication during spontaneous differentiation of the human colon adenocarcinoma cell line Caco-2. Nutr Cancer 2003; 42:125-30. [PMID: 12235644 DOI: 10.1207/s15327914nc421_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Gap junctional intercellular communication (GJIC), which modulates cell growth and differentiation, may play an important role in tumor growth. Cancer cells have dysfunctional GJIC, but it is not known whether GJIC is mechanistically involved in the carcinogenic and anti-carcinogenic effects of n-6 and n-3 polyunsaturated fatty acids (PUFAs) on colon tumor cells. Caco-2 cells were used as an in vitro model to study the effects of PUFAs on differentiated as well as undifferentiated human colon cells. The GJIC capacity of this cell line increased during spontaneous differentiation. However, no differential effects between n-6 and n-3 PUFAs on GJIC were observed. Short-term incubation with linoleic acid (18:2n-6), alpha-linolenic acid (18:3n-3), arachidonic acid (AA, 20:4n-6), and eicosapentaenoic acid (EPA, 20:5n-3) did not influence GJIC, while long-term incubation (> 10 days) with linoleic acid and alpha-linolenic acid inhibited GJIC of these colon cells. Long-chain metabolites such as AA and EPA were not formed after incubation with linoleic acid and alpha-linolenic acid, thus excluding the involvement of prostaglandins in the observed effects. Although the exact mechanism of GJIC inhibition is unclear, cytotoxicity probably mediated by lipid peroxidation products seems to be related, because incubation with more PUFAs (AA and EPA) completely abolished GJIC.
Collapse
Affiliation(s)
- Yvonne E M Dommels
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter wave exposure reverses TPA suppression of gap junction intercellular communication in HaCaT human keratinocytes. Bioelectromagnetics 2003; 25:1-4. [PMID: 14696047 DOI: 10.1002/bem.10140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of 30.16 GHz millimeter wave (MMW) exposure at 1.0 and 3.5 mW/cm2 on gap junction intercellular communication (GJIC) was studied in cultured HaCaT keratinocytes, using the fluorescence recovery after photobleaching (FRAP) technique and laser confocal scanning microscopy to follow the intracellular movement of 5,6-carboxyfluorescein diacetate dye. While MMW exposure alone for 1 h at either 1.0 or 3.5 mW/cm2 did not affect GJIC, MMW exposure in combination with 5 ng/ml TPA treatment reversed TPA induced suppression of GJIC. Exposure at 1.0 mW/cm2 resulted in a partial reversal, and exposure at 3.5 mW/cm2 resulted in essentially full reversal of the TPA suppression.
Collapse
Affiliation(s)
- Q Chen
- Bioelectromagnetics Laboratory, Institute of Industrial and Environmental Hygiene, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
29
|
Harada T, Yamaguchi S, Ohtsuka R, Takeda M, Fujisawa H, Yoshida T, Enomoto A, Chiba Y, Fukumori J, Kojima S, Tomiyama N, Saka M, Ozaki M, Maita K. Mechanisms of promotion and progression of preneoplastic lesions in hepatocarcinogenesis by DDT in F344 rats. Toxicol Pathol 2003; 31:87-98. [PMID: 12597452 DOI: 10.1080/01926230390173941] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Time-related changes in potential factors involved in hepatocarcinogenesis by DDT were investigated in a 4-week and a 2-year feeding studies of p,p'-DDT with F344 rats. In the 4-week study with males at doses of 50, 160, and 500 ppm, cell proliferation and gap junctional intercellular communication (GJIC) were examined after 1, 2, 3, 7, 14, and 28 days. Cell proliferation was enhanced within 3 days at any dose level, but returned to normal after 7 days, whereas GJIC was inhibited throughout the study. In the 2-year study with both sexes at doses of 5, 50, and 500 ppm, cell proliferation, GJIC, enzyme induction, and oxidative stress were investigated after 26, 52, 78, and 104 weeks. Males and females showed an inhibition of GJIC and increases in P450 isozymes (CYP2B1 and CYP3A2) in a dose-dependent manner at all time points, but no significant change in cell proliferation. Lipid peroxide for males at 50 and 500 ppm and 8-hydroxydeoxyguanosine for both sexes at 500 ppm were elevated throughout the study. Histologically, eosinophilic foci and hepatocellular adenomas increased in males at 50 ppm and both sexes at 500 ppm. Hepatocellular carcinomas also developed in males at 500 ppm. These results indicate that DDT may induce eosinophilic foci as a result of oxidative DNA damage and leads them to neoplasms in combination with its mitogenic activity and inhibitory effect on GJIC. Oxidative stress could be a key factor in hepatocarcinogenesis by DDT.
Collapse
Affiliation(s)
- Takanori Harada
- Institute of Environmental Toxicology, Mitsukaido-shi, Ibaraki 303-0043, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koffler LD, Fernstrom MJ, Akiyama TE, Gonzalez FJ, Ruch RJ. Positive regulation of connexin32 transcription by hepatocyte nuclear factor-1alpha. Arch Biochem Biophys 2002; 407:160-7. [PMID: 12413486 DOI: 10.1016/s0003-9861(02)00488-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Connexin32 (Cx32) encodes the predominant gap junction protein expressed by hepatocytes. We investigated the transcriptional control of Cx32 in expressing and nonexpressing rat liver cell lines and hypothesized that a putative hepatocyte nuclear factor-1 (HNF-1) binding site (centered at mp -187) in the liver-active, P1 promoter is essential for transcription of Cx32. HNF-1alpha was expressed by Cx32-expressing rat liver cell lines and bound the promoter at the -187 site, but was not expressed by non-Cx32-expressing hepatic lines. Stable transfection of non-Cx32-expressing WB-F344 rat liver epithelial cells with HNF-1alpha stimulated a transfected Cx32 promoter element (mp -244 to -33), binding of HNF-1alpha to the -187 site, and expression of endogenous Cx32. Site-directed mutagenesis of this HNF-1 binding site abolished HNF-1alpha binding and proximal promoter activity. Hepatic Cx32 expression was also significantly decreased in HNF-1alpha(-/-) mice. These data indicate that HNF-1alpha is a positive regulator of Cx32 expression in hepatic cells.
Collapse
Affiliation(s)
- Lucas D Koffler
- Department of Pathology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Currently, the majority of substances tested in lifetime bioassays in rodents are not mutagenic and, therefore, at the most weakly carcinogenic, generally by epigenetic mechanisms. It thus appears obvious that only marginal increases of tumour incidences can be expected in lifetime bioassays and that, therefore, every aspect of a potential carcinogenic effect must be thoroughly evaluated. This paper describes a series of key factors, which should be looked at in order to exclude that the lifetime bioassay in question is flawed for design, technical or qualification reasons. It also provides some hints whether there is indeed a real effect and not just a variation of the spontaneous tumour incidences. Tumour findings must be seen in the context of the animal model, the pharmcokinetics and pharmcodynamics of the test substance, as well as any other observation in the present or other studies with the test substance, including non-tumour findings and--in particular--potential precursor lesions and effects on feed intake and survival. The possibility that the observed carcinogenic effects may be species-specific and not relevant for man is discussed. It is also important to check what findings are reported with similar substances or substances with the same pharmacological effect. Data from additional investigations on material of the same study and/or mechanistic studies are often needed to support the final risk assessment.
Collapse
Affiliation(s)
- R A Ettlin
- Novartis Pharma AG, WKL-125.1514, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
32
|
Nakaoka R, Tsuchiya T, Nakamura A. The inhibitory mechanism of gap junctional intercellular communication induced by polyethylene and the restorative effects by surface modification with various proteins. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:567-74. [PMID: 11553887 DOI: 10.1002/1097-4636(20011215)57:4<567::aid-jbm1203>3.0.co;2-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gap junctional intercellular communication (GJIC) is a function that plays an important role in maintaining cell and tissue homeostasis and in regulating cell growth, development, and differentiation. Change in this function of V79 fibroblasts cultured on polyethylene films modified with albumin or collagen was estimated using fluorescence redistribution after photobleaching (FRAP) analysis. The GJIC function of V79 cells on nontreated polyethylene was strongly inhibited in comparison with those on a glass coverslip. When the cells were culture on collagen-immobilized polyethylene film, this function was recovered to about 70% of the cells cultured on the coverslip. However, albumin immobilization did not recover the function as much as collagen immobilization. Western blotting analysis and immunostaining of connexin 43, which is a major protein constituting gap junctional channel of these cells, revealed its abnormal expression and distribution in the cells on nontreated polyethylene, whereas its almost normal distribution was observed in the cells on collagen-immobilized polyethylene. This abnormal expression and distribution of connexin 43 induced by the surface of polyethylene may be ascribed to a strong inhibition of GJIC of V79 fibroblasts.
Collapse
Affiliation(s)
- R Nakaoka
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | |
Collapse
|
33
|
Nakaoka R, Tsuchiya T, Sakaguchi K, Nakamura A. Studies on in vitro evaluation for the biocompatibility of various biomaterials: inhibitory activity of various kinds of polymer microspheres on metabolic cooperation. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:279-84. [PMID: 11484191 DOI: 10.1002/1097-4636(200111)57:2<279::aid-jbm1168>3.0.co;2-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gap junctional intercellular communication is a function that plays an important role in maintaining cell and tissue homeostasis and in regulating cell growth, development, and differentiation. Change in this function when contacting fibroblasts with various polymer microspheres was estimated using the metabolic cooperation assay system. When the cells were in contact with the microspheres after their adhesion onto a substrate, the function did not alter. However, when they were in contact with precoated microspheres on test dishes, the function was inhibited as the quantity of microspheres increased. Moreover, the inhibition level increased as the diameters of polyethylene and polystyrene microspheres decreased. However, no inhibition was observed if precoated microspheres were composed from poly(L-lactic acid). These findings suggest that the size and the material of microspheres, and how cells recognize the microspheres, are factors affecting cell function of gap junctional intercellular communication. Therefore, estimating this function may provide valuable information about the biocompatibility of many kinds of materials even in the form of particles.
Collapse
Affiliation(s)
- R Nakaoka
- National Institute of Health Sciences, Division of Medical Devices, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | |
Collapse
|
34
|
Satyamoorthy K, Muyrers J, Meier F, Patel D, Herlyn M. Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication. Oncogene 2001; 20:4676-84. [PMID: 11498790 DOI: 10.1038/sj.onc.1204616] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Revised: 05/03/2001] [Accepted: 05/09/2001] [Indexed: 11/08/2022]
Abstract
Normal human melanocytes are interspersed singly among keratinocytes along the basement membrane of the epidermis, whereas melanoma cells readily adhere to each other during invasion of the dermis or distant organs. The tumorigenic and metastatic phenotype of melanoma cells often correlates with increased expression of cell-cell and cell-matrix adhesion receptors. Mel-CAM (MCAM, MUC 18, CD146) is a cell-cell adhesion receptor highly expressed by melanoma cells but not normal melanocytes. We show here that inhibition of Mel-CAM expression in metastatic melanoma cells using genetic suppressor elements of Mel-CAM cDNA leads to inhibition of adhesion between melanoma cells and to downregulation of the tumorigenic phenotype. Growth was not inhibited in genetic suppressor elements-transduced melanoma cells cultured in monolayers but was inhibited when cells were maintained anchorage-independently in soft agar and greatly reduced in immunodeficient mice. A three-dimensional epidermal skin equivalent model demonstrated that Mel-CAM allows melanoma cells to separate from the epidermis and invade the basement membrane zone and dermis. However, melanoma cells with little or no Mel-CAM were poorly invasive, possibly due to their loss of gap junctional communication. These results suggest the multifunctional role of a melanoma-associated cell-cell adhesion receptor in tumor progression.
Collapse
Affiliation(s)
- K Satyamoorthy
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania, PA 19104 USA
| | | | | | | | | |
Collapse
|
35
|
Saito T, Nishimura M, Kudo R, Yamasaki H. Suppressed gap junctional intercellular communication in carcinogenesis of endometrium. Int J Cancer 2001; 93:317-23. [PMID: 11433394 DOI: 10.1002/ijc.1350] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To examine whether and at which stage of endometrial carcinogenesis decreased connexin expression occurs, we investigated changes in the expression of the gap junction proteins, connexin 26 (Cx26), Cx32 and Cx43, in human endometrial hyperplasia and cancer samples. Forty-eight endometrial tissue samples (15 endometrial hyperplasias and 33 endometrial cancers) were subjected to immunofluorescence and RT-PCR analysis. In endometrial hyperplasia, Cx26 was aberrantly expressed in all samples as revealed immunohistochemically. There was weak or negative expression in 12 samples (80.0%) and diffuse expression in cytoplasm in 3 samples (20.0%). Cx32 expression in those samples was similar to that of Cx26; there was weak or negative expression in 11 samples (73.3%) and diffuse expression in 4 samples (26.7%). In endometrial cancer, Cx26 was expressed weakly or negatively in 25 samples (75.8%), diffusely in 6 samples (18.2%) and normally in 2 samples (6.1%), while Cx32 was expressed weakly or negatively in 26 samples (78.8%), diffusely in 5 samples (15.2%) and normally in 2 samples (6.1%). It was confirmed that weak staining of Cx26 and Cx32 was due to poor expression of their mRNA. All samples showed weak Cx43 protein expression as revealed by immunohistochemical analysis. In the majority of samples, concomitant expression levels of Cx26 and Cx32 protein were observed, confirming our long-term hypothesis that Cx26 and Cx32 are both abnormally regulated in a coordinated fashion in the endometrium. Our results indicate that during endometrial carcinogenesis, loss of gap junctional intercellular communication (GJIC) may occur due to the suppressed expression and the aberrant localization of connexin at relatively early stages.
Collapse
Affiliation(s)
- T Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan.
| | | | | | | |
Collapse
|
36
|
Kang KS, Yun JW, Yoon B, Lim YK, Lee YS. Preventive effect of germanium dioxide on the inhibition of gap junctional intercellular communication by TPA. Cancer Lett 2001; 166:147-53. [PMID: 11311487 DOI: 10.1016/s0304-3835(01)00446-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gap junctional intercellular communication (GJIC) is thought to be essential for maintaining cellular homeostasis and growth control. In order to detect any protective agent against tumor formation, we examined the anticarcinogenic effect of a germanium dioxide (GeO(2)) using a model system of GJIC in F344 rat liver epithelial cells, named WB cells. 12-O-tetradecanoylphorbol-13-acetate (TPA), known as tumor promoters, inhibited GJIC in the epithelial cells as determined by the scrape loading/dye transfer (SL/DT) assay. And GeO(2) recovered this inhibition of GJIC. Immunostaining of connexin 43 (Cx43) protein in WB cells indicated that TPA caused a loss of Cx43 protein from the cell membranes. However, GeO(2) treatment showed re-appearance of Cx43 protein on the membrane. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blots were analyzed to determine whether the test compounds might have altered the steady-state levels of gap junction mRNA and/or connexin protein levels or phosphorylation. The inhibition of GJIC by TPA in WB cells was correlated with the hyperphosphorylation of Cx43 as measured by mobility shifts of the western blot bands of Cx43. TPA induced hyperphosphorylation of Cx43 protein, while GeO(2) appeared to partially block this hyperphosphorylation. Here, we showed that pre- and co-incubation with GeO(2) in TPA-treated WB-cells abolished down-regulation of GJIC by TPA. These data suggest that GeO(2) may inhibit tumor promotion by enhancing GJIC.
Collapse
Affiliation(s)
- K S Kang
- Department of Veterinary Public Health, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, 103 Seodun-dong, Kwonsun-ku, 441-744, Suwon, South Korea
| | | | | | | | | |
Collapse
|
37
|
Gramsch B, Gabriel HD, Wiemann M, Grümmer R, Winterhager E, Bingmann D, Schirrmacher K. Enhancement of connexin 43 expression increases proliferation and differentiation of an osteoblast-like cell line. Exp Cell Res 2001; 264:397-407. [PMID: 11262196 DOI: 10.1006/excr.2000.5145] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone cells form a functional syncytium as they are coupled by gap junctions composed mainly of connexin 43 (Cx43). To further understand the role of Cx43 in bone cell growth and differentiation, we stably transfected Cx45-expressing UMR 106-01 cells with Cx43 using an expression vector containing rat Cx43 cDNA. Three stably transfected clones were analyzed, all of which showed altered expression of Cx43 and/or Cx45 as was obvious from immunocytochemistry and Northern blotting. Double whole-cell patch clamping revealed single-channel conductances of 20 (Cx45) and 60 pS (Cx43). The overexpression of Cx43 led to an increase in dye coupling concomitant with elevated gap-junctional conductance. The phenotype of the transfected clones was characterized by an increased proliferation (4- to 7-fold) compared to controls. Moreover, a transfectant clone with 10- to 12-fold enhanced Cx43 expression showed a significantly increased calcium content of the extracellular matrix and enlarged mineralization nodules, while alkaline phosphatase was moderately increased. We conclude that enhanced gap-junctional coupling via Cx43 significantly promotes proliferation and differentiation of UMR cells.
Collapse
Affiliation(s)
- B Gramsch
- Department of Physiology, University of Essen, Essen, D-45122, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Gulumian M. The ability of mineral dusts and fibres to initiate lipid peroxidation. Part II: relationship to different particle-induced pathological effects. Redox Rep 2001; 5:325-51. [PMID: 11140744 DOI: 10.1179/135100000101535906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Exposure to pathogenic mineral dusts and fibres is associated with pulmonary changes including fibrosis and cancer. Investigations into aetiological mechanisms of these diseases have identified modifications in specific macromolecules as well as changes in certain early processes, which have preceded fibrosis and cancer. Peroxidation of lipids is one such modification, which is observed following exposure to mineral dusts and fibres. Their ability to initiate lipid peroxidation and the parameters that determine this ability have recently been reviewed. Part II of this review examines the relationship between the capacity of mineral dusts and fibres to initiate lipid peroxidation and a number of pathological changes they produce. The oxidative modification of polyunsaturated fatty acids is a major contributor to membrane damage in cells and has been implicated in a great variety of pathological processes. In most pathological conditions where an induction of lipid peroxidation is observed it is assumed to be the consequence of disease, without further establishing if the induction of lipid peroxidation may have preceded or accompanied the disease. In the great majority of instances, however, despite the difficulty in proving this association, a causal relationship between lipid peroxidation and disease cannot be ruled out.
Collapse
Affiliation(s)
- M Gulumian
- National Centre for Occupational Health and Department of Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
39
|
Juul MH, Rivedal E, Stokke T, Sanner T. Quantitative determination of gap junction intercellular communication using flow cytometric measurement of fluorescent dye transfer. CELL ADHESION AND COMMUNICATION 2001; 7:501-12. [PMID: 11051460 DOI: 10.3109/15419060009040307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gap junction intercellular communication (GJIC) is involved in several aspects of normal cell behaviour, and disturbances in this type of communication have been associated with many pathological conditions. Reliable and accurate methods for the determination of GJIC are therefore important in studies of cell biology. (Tomasetto, C., Neveu, M.J., Daley, J., Horan, P.K. and Sager, R. (1993) Journal of Cell Biology, 122, 157-167) reported some years ago the use of flow cytometer to determine transfer between cells of a mobile dye, calcein, as a measure of cell communication through gap junctions. In spite of this being a method with potential for quantitative and reliable determination of GJIC, it has been modestly used, possibly due to technical difficulties. In the present work we have illustrated several ways to use flow cytometric data to express cell communication through gap junctions. The recipient cells were pre-stained with the permanent lipophilic dye PKH26, and the donor cell population were loaded with the gap junction permeable dye, calcein. We show that the method may be used to measure the effect of chemicals on GJIC, and that the information is reliable, objective and reproducible due to the large number of cells studied. The data may give additional information to that obtained with other methods, since the effect observed will be on the establishment of cell communication as compared to what is observed for microinjection or scrape loading, where the effect is on already established communication. This is probably the reason for the more potent effects of DMSO on GJIC measured by the present method than on already existing GJIC measured by microinjection or quantitative scrape loading. We also show that the problem related to the mobile dye calcein not being fixable with aldehydes will not affect the results as long as the cells are kept on ice in the dark and analysed by flow cytometer within the first hours after formalin cell fixation.
Collapse
Affiliation(s)
- M H Juul
- Department for Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo
| | | | | | | |
Collapse
|
40
|
Hossain MZ, Boynton AL. Regulation of Cx43 gap junctions: the gatekeeper and the password. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752614 DOI: 10.1126/stke.2000.54.pe1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gap junctions are regulatable pores that connect the cytoplasms of neighboring cells. Hossain and Boynton focus on connexin 43 gap junctions and their regulation by changing the phosphorylation status of the COOH-terminal domain of connexin 43 or by altering protein-protein interactions in this region. The COOH-terminal domain of connexin 43 appears to be a key player in regulating gap junctional communication (GJC) because many divergent signals in many different cell types modify this domain to inhibit GJC.
Collapse
Affiliation(s)
- M Z Hossain
- Molecular Medicine, Northwest Hospital, Seattle, WA, USA.
| | | |
Collapse
|
41
|
Rosenkranz HS, Cunningham AR. The high production volume chemical challenge program: the relevance of the in vivo micronucleus assay. Regul Toxicol Pharmacol 2000; 31:182-9. [PMID: 10854124 DOI: 10.1006/rtph.1999.1370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The in vivo rodent bone marrow micronucleus assay (Mnt) has assumed a pivotal role in screening strategies for the identification of substances potentially carcinogenic to humans. The analysis of the results of the current international 5-year effort to provide toxicological data for high production volume chemicals will play a crucial role in developing future strategies for identifying health hazards. As part of that program, consideration is being given to accepting either in vitro genotoxicity data or results of the Mnt. The present analyses indicate that for hazard identification purposes that, in fact, in vitro genotoxicity test results, such as those derived from the Salmonella mutagenicity assay, may be an acceptable alternative.
Collapse
Affiliation(s)
- H S Rosenkranz
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
42
|
Yamakage K, Omori Y, Zaidan-Dagli ML, Cros MP, Yamasaki H. Induction of skin papillomas, carcinomas, and sarcomas in mice in which the connexin 43 gene is heterologously deleted. J Invest Dermatol 2000; 114:289-94. [PMID: 10651988 DOI: 10.1046/j.1523-1747.2000.00873.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It has been suggested that blocked gap junctional intercellular communication plays a crucial part in multistage carcinogenesis. The mouse skin tumor-promoting phorbol esters are potent inhibitors of gap junctional intercellular communication and this inhibition is considered to be a mechanism by which clonal expansion of "initiated" cells is promoted. We examined whether mice in which the gene for a gap junction protein, connexin 43, is heterozygously deleted are more susceptible to chemical carcinogenesis; connexin 43 is expressed in the basal cell layer and the dermis of the skin. When the back skin was painted with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol 13-acetate, the incidence and yields of both papillomas and carcinomas were similar in connexin 43+/- and connexin 43+/+ mice; for this experiment, the original mice with C57BL/6 genetic background was crossed with CD1 strain for three generations. Subcutaneous injection of 7, 12-dimethylbenz[a]anthracene resulted in induction of fibrosarcomas in connexin 43+/- and connexin 43+/+ mice to a similar extent. All papillomas and carcinomas induced with 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol 13-acetate contained the 7,12-dimethylbenz[a] anthracene-specific mutation in the ras gene (A to T transversion at the 61st codon). About 50% of fibrosarcomas also contained this mutation, but in the Ki-ras gene; there was no difference in the prevalence of this mutation in tumors from connexin 43+/- and connexin 43+/+ mice. None of the tumors examined, however, showed any mutation in the connexin 43 gene. These results suggest that the deletion of one allele of the connexin 43 gene does not significantly contribute to, nor alter, the molecular events involved in skin carcinogenesis. These results are compatible with previous observations that nongenetic disruption of function rather than mutations of connexins, commonly occurs in cancer cells.
Collapse
Affiliation(s)
- K Yamakage
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
43
|
Marconi P, Tamura M, Moriuchi S, Krisky DM, Niranjan A, Goins WF, Cohen JB, Glorioso JC. Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol Ther 2000; 1:71-81. [PMID: 10933914 DOI: 10.1006/mthe.1999.0008] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor cell transduction with the herpes simplex virus (HSV) thymidine kinase (tk) gene and treatment with ganciclovir (GCV) is a widely studied cancer gene therapy. Connexin (Cx)-dependent gap junctions between cells facilitate the intercellular spread of TK-activated GCV, thereby creating a bystander effect that improves tumor cell killing. However, tumor cells often have reduced connexin expression, thus thwarting bystander killing and the effectiveness of TK/GCV gene therapy. To improve the effectiveness of this therapy, we compared an HSV vector (TOCX) expressing Cx43 in addition to TK with an isogenic tk vector (TOZ.1) for their abilities to induce bystander killing of Cx-positive U-87 MG human glioblastoma cells and Cx-negative L929 fibrosarcoma cells in vitro and in vivo. The results showed that low-multiplicity infection of U-87 MG cells with TOCX only minimally increased GCV-mediated cell death compared with infection by TOZ.1, consistent with the endogenous level of Cx in these cells. In contrast, bystander killing of L929 cells was markedly enhanced by vector-mediated expression of Cx. In vivo experiments in which U-87 MG cells were preinfected at low multiplicity and injected into the flanks of nude mice showed complete cures of all animals in the TOCX group following GCV treatment, whereas untreated animals uniformly formed fatal tumors. TOCX injection into U-87 MG intradermal and intracranial tumors resulted in prolonged survival of the host animals in a GCV-dependent manner. Together, these results suggest that the combination of TK and Cx may be beneficial for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- P Marconi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Williams GM, Iatropoulos MJ, Whysner J. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem Toxicol 1999; 37:1027-38. [PMID: 10541460 DOI: 10.1016/s0278-6915(99)00085-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are widely used antioxidant food additives. They have been extensively studied for potential toxicities. This review details experimental studies of genotoxicity and carcinogenicity which bear on cancer hazard assessment of exposure to humans. We conclude that BHA and BHT pose no cancer hazard and, to the contrary, may be anticarcinogenic at current levels of food additive use.
Collapse
Affiliation(s)
- G M Williams
- Department of Pathology, New York Medical College, American Health Foundation Valhalla, 10595, USA
| | | | | |
Collapse
|
45
|
Yamasaki H, Omori Y, Zaidan-Dagli ML, Mironov N, Mesnil M, Krutovskikh V. Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. CANCER DETECTION AND PREVENTION 1999; 23:273-9. [PMID: 10403898 DOI: 10.1046/j.1525-1500.1999.99037.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During multistage carcinogenesis, the functions of several key genes involved in cell growth control must be damaged. Such genes include not only those involved in cell cycle control of individual cells, but also those involved in the coordination of cell growth throughout a given tissue through cell-cell communication. The most intimate form of intercellular communication is mediated by gap junctions. Gap junctional intercellular communication (GJIC) is known to transfer small water soluble molecules, including cAMP and IP3, from the cytoplasm of one cell to that of its neighbors; the growth of a given GJIC-associated cell is thus kept in check by other GJIC-connected cells. Most tumor cells have a reduced ability to communicate among themselves and/or with surrounding normal cells, confirming the importance of intact GJIC in growth control. When connexin (gap junction protein) genes are transfected into such cells, normal cell growth control is often recovered. Certain dominant-negative mutant connexin genes can reverse such tumor suppression. While these results suggest that connexin genes form a family of tumor suppressor genes, so far we have found no connexin gene mutations in human tumors; only two connexin gene mutations were found in chemically induced rat tumors. On the other hand, our recent studies suggest that connexin genes may be inactivated by hypermethylation of their promoter regions, suggesting that epigenetic inactivation of connexin genes may be a mechanism of GJIC disturbance in certain tumors. However, in many tumor cells connexins are normally expressed but aberrantly localized. The mechanisms of aberrant localization of connexins include lack of an appropriate cell-cell recognition apparatus and aberrant phosphorylation of connexins. These results suggest that GJIC disorders may occur not only because of aberrant expression of connexin genes themselves, but also as a result of disruption of various control mechanisms of the protein functions.
Collapse
Affiliation(s)
- H Yamasaki
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | |
Collapse
|
46
|
Watanabe J, Nomata K, Noguchi M, Satoh H, Kanda S, Kanetake H, Saito Y. All-trans retinoic acid enhances gap junctional intercellular communication among renal epithelial cells in vitro treated with renal carcinogens. Eur J Cancer 1999; 35:1003-8. [PMID: 10533485 DOI: 10.1016/s0959-8049(99)00032-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epidemiological and clinical studies imply that retinoids have a chemopreventative action against cancer and can suppress the growth of cancer cells. The regulation of connexin (Cx) expression by retinoids varies among tissues and organs. In this study, we investigated whether all-trans retinoic acid (ATRA) upregulates gap junctional intercellular communication (GJIC) in renal epithelial cells exposed to renal carcinogens. Madin Darby canine kidney (MDCK) cells were incubated with ATRA for 3 days, then briefly exposed to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or renal carcinogens potassium bromate (KBrO3) and dimethylnitrosamine (DMN). ATRA increased the expression of connexin 43 mRNA and protein without affecting Cx 43 phosphorylation and prevented inadequate Cx 43 localisation caused by TPA/KBrO3 or DMN. Consequently, ATRA prevented the disruption of GJIC in MDCK cells. These data suggest that ATRA enhanced GJIC by upregulating Cx 43 expression and that ATRA might be useful for prevention of renal cell carcinoma.
Collapse
Affiliation(s)
- J Watanabe
- Department of Urology, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Yamasaki H, Omori Y, Krutovskikh V, Zhu W, Mironov N, Yamakage K, Mesnil M. Connexins in tumour suppression and cancer therapy. NOVARTIS FOUNDATION SYMPOSIUM 1999; 219:241-54; discussion 254-60. [PMID: 10207908 DOI: 10.1002/9780470515587.ch15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Malignant cells usually show altered gap junctional intercellular communication and are often associated with aberrant expression or localization of connexins. Transfection of connexin genes into tumorigenic cells restores normal cell growth, suggesting that connexins form a family of tumour suppressor genes. Some studies have also shown that specific connexins may be necessary to control growth of specific cell types. Although we have found that genes encoding connexin32 (Cx32; beta 1), Cx37 (alpha 4) and Cx43 (alpha 1) are rarely mutated in tumours, our recent studies suggest that methylation of the connexin gene promoter may be a mechanism by which connexin gene expression is down-regulated in certain tumors. We have produced various dominant negative mutants of the genes encoding Cx26 (beta 2), Cx32 and Cx43, some of which prevent the growth control exerted by the corresponding wild-type genes. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through gap junctions. Recently, we and others have shown that gap junctional intercellular communication is responsible for the bystander effect seen in herpes simplex virus thymidine kinase/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.
Collapse
Affiliation(s)
- H Yamasaki
- Multistage Carcinogenesis Unit, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
During the formation of the eye, high levels of connexin alpha1 (connexin 43) are expressed within the tissues of the cornea, lens, and neural retina. In order to determine whether connexin alpha1 plays a role in the regulation of cell proliferation we have used a novel antisense technique to reduce its expression early in development (embryonic days 2-4). Application of Pluronic gel, containing antisense oligodeoxynucleotides (ODNs) to connexin alpha1, to one eye of early chick embryos results in a rapid and significant reduction of alpha1 protein which lasts for 24-48 h. Embryos grown for 48 h, after ODN application to one eye, showed a marked reduction in the diameter of the treated, compared to that of the contralateral untreated, eye. Sections cut from the treated eyes showed that the retina was also reduced in size. TUNEL labeling and staining with propidium iodide showed that apoptosis within the retinae of both treated and untreated eyes was rare and thus that the reduction in the area of the retina brought about by antisense ODNs directed at connexin alpha1 was unlikely to be the result of increased cell death. However, the number of mitotic figures in the ventricular zone of the antisense-treated retinae revealed by propidium iodide staining was significantly reduced (P < 0.0001) to 53 +/- 3.5% (n = 5) of that in the contralateral untreated control eyes. Embryos in which one eye was sham operated, treated with pluronic gel, or treated with sense ODN showed no significant changes in eye size or in the number of mitotic figures within the neural retina. These results point to a role for connexin alpha1-mediated gap-junctional communication in controlling the early wave of neurogenesis in the chick retina.
Collapse
Affiliation(s)
- D L Becker
- Department of Anatomy and Developmental Biology, Department of Physiology, University College London, Gower Street, WC1E 6BT, London, UK
| | | |
Collapse
|
49
|
Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:151-9. [PMID: 10196667 DOI: 10.1016/s0764-4469(99)80038-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.
Collapse
Affiliation(s)
- H Yamasaki
- Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France.
| | | | | | | | | | | |
Collapse
|
50
|
Lake BG, Renwick AB, Cunninghame ME, Price RJ, Surry D, Evans DC. Comparison of the effects of some CYP3A and other enzyme inducers on replicative DNA synthesis and cytochrome P450 isoforms in rat liver. Toxicology 1998; 131:9-20. [PMID: 9881931 DOI: 10.1016/s0300-483x(98)00085-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the mitogenic effects of some inducers of cytochrome P450 (CYP) isoforms in rat liver. Female Sprague-Dawley CD rats were treated with 100 mg/kg per day of either sodium phenobarbitone (NaPB), barbituric acid (BA), isoniazid (ISN), beta-naphthoflavone (BNF), pregnenolone-16alpha-carbonitrile (PCN), miconazole (MIC) or clotrimazole (CLOT), 75 mg/kg per day methylclofenapate (MCP), 50 mg/kg per day dexamethasone (DEX) and 500 mg/kg per day troleandomycin (TAO) by daily oral gavage for four days. Treatment with all compounds except BA, ISN and MIC, significantly increased relative liver weight. Administration of NaPB, PCN, DEX, MIC, CLOT and TAO all induced total CYP content, and by Western immunoblotting, levels of CYP3A isoforms in hepatic microsomal fractions. Apart from CLOT, all these compounds induced microsomal testosterone 6beta-hydroxylase activity. By measurement of marker enzyme activities and Western immunoblotting with antibodies to CYP1A2, CYP2B1/2 and CYP2E1, BNF, NaPB, ISN and MCP were shown to induce CYP1A2, CYP2B1/2, CYP2E and CYP4A isoforms, respectively. Replicative DNA synthesis was studied by implanting osmotic pumps containing 5-bromo-2'-deoxyuridine 1 day before the commencement of treatment with the enzyme inducers. Hepatocyte labelling index values were significantly increased by treatment with NaPB, PCN, MCP, CLOT and TAO, but not by BA, ISN, BNF, DEX and MIC. These studies demonstrate that while CYP2B and CYP4A enzyme inducers may stimulate replicative DNA synthesis, only some CYP3A enzyme inducers are mitogenic agents in rat liver.
Collapse
Affiliation(s)
- B G Lake
- BIBRA International, Carshalton, Surrey, UK.
| | | | | | | | | | | |
Collapse
|