1
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Cao H, Mai J, Zhou Z, Li Z, Duan R, Watt J, Chen Z, Bandara RA, Li M, Ahn SK, Poon B, Christie-Holmes N, Gray-Owen SD, Banerjee A, Mossman K, Kozak R, Mubareka S, Rini JM, Hu J, Liu J. Intranasal HD-Ad vaccine protects the upper and lower respiratory tracts of hACE2 mice against SARS-CoV-2. Cell Biosci 2021; 11:202. [PMID: 34879865 PMCID: PMC8653804 DOI: 10.1186/s13578-021-00723-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Results Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. Conclusion Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00723-0.
Collapse
Affiliation(s)
- Huibi Cao
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Juntao Mai
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhichang Zhou
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rongqi Duan
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ziyan Chen
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ranmal Avinash Bandara
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ming Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Betty Poon
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Karen Mossman
- Department of Medicine Institute for Infectious Disease Research, McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
| | - Rob Kozak
- Sunnybrook Heath Sciences Centre, Toronto, ON, Canada
| | | | - James M Rini
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jim Hu
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jun Liu
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, Zhang H, Gao Z. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97:93-104. [PMID: 31386928 DOI: 10.1016/j.actbio.2019.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoqian Lv
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuo Li
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huimin Zhang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
5
|
De Carlo F, Thomas L, Brooke B, Varney ET, Nande R, Boskovic O, Marshall GD, Claudio PP, Howard CM. Microbubble-mediated delivery of human adenoviruses does not elicit innate and adaptive immunity response in an immunocompetent mouse model of prostate cancer. J Transl Med 2019; 17:19. [PMID: 30635014 PMCID: PMC6329087 DOI: 10.1186/s12967-019-1771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Gene transfer to malignant sites using human adenoviruses (hAds) has been limited because of their immunogenic nature and host specificity. Murine cells often lack some of the receptors needed for hAds attachment, thus murine cells are generally non-permissive for human adenoviral infection and replication, which limits translational studies. Methods We have developed a gene transfer method that uses a combination of lipid-encapsulated perfluorocarbon microbubbles and ultrasound to protect and deliver hAds to a target tissue, bypassing the requirement of specific receptors. Results In an in vitro model, we showed that murine TRAMP-C2 and human DU145 prostate cancer cells display a comparable expression pattern of receptors involved in hAds adhesion and internalization. We also demonstrated that murine and human cells showed a dose-dependent increase in the percentage of cells transduced by hAd-GFP (green fluorescent protein) after 24 h and that GFP transgene was efficiently expressed at 48 and 72 h post-transduction. To assess if our image-guided delivery system could effectively protect the hAds from the immune system in vivo, we injected healthy immunocompetent mice (C57BL/6) or mice bearing a syngeneic prostate tumor (TRAMP-C2) with hAd-GFP/MB complexes. Notably, we did not observe activation of innate (TNF-α and IL-6 cytokines), or adaptive immune response (neutralizing antibodies, INF-γ+ CD8+ T cells). Conclusions This study brings us a step closer to demonstrating the feasibility of murine cancer models to investigate the clinical translation of image guided site-specific adenoviral gene therapy mediated by ultrasound-targeted microbubble destruction. Electronic supplementary material The online version of this article (10.1186/s12967-019-1771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia De Carlo
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Litty Thomas
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Bell Brooke
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Elliot T Varney
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA
| | - Rounak Nande
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Olivia Boskovic
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Gailen D Marshall
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA. .,National Center for Natural Products Research, University of Mississippi, University, MS, USA. .,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA. .,Department of BioMolecular Sciences, Department of Radiation Oncology, University of Mississippi, Jackson, MS, 39126, USA.
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA.
| |
Collapse
|
6
|
Kaur G, Thompson LA, Babcock RL, Mueller K, Dufour JM. Sertoli Cells Engineered to Express Insulin to Lower Blood Glucose in Diabetic Mice. DNA Cell Biol 2018; 37:680-690. [PMID: 29927618 PMCID: PMC6080125 DOI: 10.1089/dna.2017.3937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long-term survival of allo- and xenotransplanted immune-privileged Sertoli cells (SCs) is well documented suggesting that SCs can be used to deliver foreign proteins for cell-based gene therapy. The aim of this study was to use a lentivirus carrying proinsulin cDNA to achieve stable expression and lowering of blood glucose levels (BGLs). A SC line transduced with the lentivirus (MSC-LV-mI) maintained stable insulin expression in vitro. These MSC-LV-mI cells were transplanted and grafts were analyzed for cell survival, continued proinsulin mRNA, and insulin protein expression. All grafts contained MSC-LV-mI cells that expressed proinsulin mRNA and insulin protein. Transplantation of MSC-LV-mI cells into diabetic mice significantly lowered BGLs for 4 days after transplantation. Interestingly, in three transplanted SCID mice and one transplanted BALB/c mouse, the BGLs again significantly lowered by day 50 and 70, respectively. This is the first time SC transduced with a lentiviral vector was able to stably express insulin and lower BGLs. In conclusion, a SC line can be modified to stably express therapeutic proteins (e.g., insulin), thus taking us one step further in the use of SCs as an immune-privileged vehicle for cell-based gene therapy.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Rachel L Babcock
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Karl Mueller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| |
Collapse
|
7
|
Hemmi M, Tachibana M, Fujimoto N, Shoji M, Sakurai F, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H. T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination. Front Immunol 2017; 8:1456. [PMID: 29163524 PMCID: PMC5681732 DOI: 10.3389/fimmu.2017.01456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 11/14/2022] Open
Abstract
Few current vaccines can establish antigen (Ag)-specific immune responses in both mucosal and systemic compartments. Therefore, development of vaccines providing defense against diverse infectious agents in both compartments is of high priority in global health. Intramuscular vaccination of an adenovirus vector (Adv) has been shown to induce Ag-specific cytotoxic T lymphocytes (CTLs) in both systemic and gut-mucosal compartments. We previously found that type I interferon (IFN) signaling is required for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, the molecular mechanism involving type I IFN signaling remains unknown. Here, we found that T helper 17 (Th17)-polarizing cytokine expression was down-regulated in the inguinal lymph nodes (iLNs) of Ifnar2−/− mice, resulting in the reduction of Ag-specific Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but not in systemic compartments, suggesting a gut mucosa-specific mechanism where Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal CTL response following vaccination, which could promote the development of promising Adv vaccines capable of establishing both systemic and gut-mucosal protective immunity.
Collapse
Affiliation(s)
- Masahisa Hemmi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Natsuki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kouji Kobiyama
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
8
|
Yin G, Chen J, Wei S, Wang H, Chen Q, Lin Y, Hu J, Luo E. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats. Gene Ther 2015; 22:636-44. [PMID: 25871826 DOI: 10.1038/gt.2015.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/27/2015] [Accepted: 03/31/2015] [Indexed: 02/05/2023]
Abstract
This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (P<0.01), compared with the control groups (Ad-EGFP or sterilized phosphate-buffered saline) 28 days after implantation. In conclusion, hOPG via direct adenovirus-mediated gene transfer could accelerate osteointegration of titanium implants in OVX rats. Osteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions.
Collapse
Affiliation(s)
- G Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Chen
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| | - S Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, China
| | - H Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - E Luo
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
9
|
MENG DU, LIU RUI, PEI LI, HOU LEI, NING QIAN, YU QING, FENG LU, ZHAO XINHAN. Lentivirus vector-mediated gene transduction of CNGRC peptide in rat adipose stem cells. Mol Med Rep 2015; 11:2555-61. [PMID: 25482186 PMCID: PMC4337508 DOI: 10.3892/mmr.2014.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/07/2014] [Indexed: 02/03/2023] Open
Abstract
The aim of the present study was to investigate the feasibility of lentiviral‑mediated Cys‑Asn‑Gly‑Arg‑Cys (CNGRC) peptide gene transduction in adipose stem cells. Adipose stem cells were prepared using enzymatic digestion and repeated adherence methods and identified in culture by immunofluorescence staining of surface markers. The pluripotency of the cultured adipose stem cells was confirmed by their induced differentiation into bone and fat cells. Following polymerase chain reaction amplification, the gene sequence for the CNGRC peptide was cloned into a lentiviral vector, which was then co‑transfected into 293T cells with packaging plasmids Helper 1.0 and Helper 2.0. The lentiviruses carrying the CNGRC peptide gene were then harvested and used to transfect adipose stem cells. Following transduction, expression of CNGRC in adipose stem cells was detected using western blot analysis. Adipose stem cells in culture were successfully induced to differentiate into adipocytes and osteoblasts and the lentiviral vector containing CNGRC‑3Flag‑EGFP was successfully constructed. Following transduction, western blot analysis and immunofluorescence staining demonstrated expression of the CNGRC protein in adipose stem cells. This suggested that adipose stem cell lines expressing the CNGRC peptide were successfully established.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - XINHAN ZHAO
- Correspondence to: Professor Xinhan Zhao, Department of Oncology, First Affiliated Hospital of Medical School of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi 710061, P.R. China, E-mail:
| |
Collapse
|
10
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Kaur G, Thompson LA, Pasham M, Tessanne K, Long CR, Dufour JM. Sustained expression of insulin by a genetically engineered sertoli cell line after allotransplantation in diabetic BALB/c mice. Biol Reprod 2014; 90:109. [PMID: 24695630 DOI: 10.1095/biolreprod.113.115600] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Immune-privileged Sertoli cells (SCs) exhibit long-term survival after allotransplantation or xenotransplantation, suggesting they can be used as a vehicle for cell-based gene therapy. Previously, we demonstrated that SCs engineered to secrete insulin by using an adenoviral vector normalized blood glucose levels in diabetic mice. However, the expression of insulin was transient, and the use of immunocompromised mice did not address the question of whether SCs can stably express insulin in immunocompetent animals. Thus, the objective of the current study was to use a lentiviral vector to achieve stable expression of insulin in SCs and test the ability of these cells to survive after allotransplantation. A mouse SC line transduced with a recombinant lentiviral vector containing furin-modified human proinsulin cDNA (MSC-EhI-Zs) maintained stable insulin expression in vitro. Allotransplantation of MSC-EhI-Zs cells into diabetic BALB/c mice demonstrated 88% and 75% graft survival rates at 20 and 50 days post-transplantation, respectively. Transplanted MSC-EhI-Zs cells continued to produce insulin mRNA throughout the study (i.e., 50 days); however, insulin protein was detected only in patches of cells within the grafts. Consistent with low insulin protein detection, there was no significant change in blood glucose levels in the transplant recipients. Nevertheless, MSC-EhI-Zs cells isolated from the grafts continued to express insulin protein in culture. Collectively, this demonstrates that MSC-EhI-Zs cells stably expressed insulin and survived allotransplantation without immunosuppression. This further strengthens the use of SCs as targets for cell-based gene therapy for the treatment of numerous chronic diseases, especially those that require basal protein expression.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lea Ann Thompson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mithun Pasham
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kim Tessanne
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Ditto AJ, Reho JJ, Shah KN, Smolen JA, Holda JH, Ramirez RJ, Yun YH. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles. Mol Pharm 2013; 10:1836-44. [PMID: 23510151 DOI: 10.1021/mp300623a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of gene therapy is promising; however, the perceived risks and side effects associated with this technology have severely dampened the researchers' enthusiasm. Thus, the development of a nonviral gene vector without immunological effects and with high transfection efficiency is necessary. Currently, most nonviral vectors have failed to achieve the in vivo transfection efficiencies of viral vectors due to their toxicity, rapid clearance, and/or inappropriate release rates. Although our previous studies have successfully demonstrated the controlled-release of plasmid DNA (pDNA) polyplexes encapsulated into nanoparticles formulated with l-tyrosine polyphosphate (LTP-pDNA nanoparticles), the in vivo transfection capabilities and immunogenicity of this delivery system have yet to be examined. Thus, we evaluate LTP-pDNA nanoparticles in an in vivo setting via injection into rodent uterine tissue. Our results demonstrate through X-gal staining and immunohistochemistry of uterine tissue that transfection has successfully occurred after a nine-day incubation. In contrast, the results for the control nanoparticles show results similar to those of shams. Furthermore, reverse transcriptase polymerase chain reaction (RT-PCR) from the injected tissues confirms the transfection in vivo. To examine the immunogenicity, the l-tyrosine polyphosphate (LTP) nanoparticles have been evaluated in a mouse model. No significant differences in the activation of the innate immune system are observed. These data provide the first report for the potential use of controlled-release nanoparticles formulated from an amino acid based polymer as an in vivo nonviral vector for gene therapy.
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325-0302, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Hsiao WK, Yew TL, Lai YL, Lee SY, Chen HL. Intramarrow Bone Morphogenetic Protein 4 Gene Delivery Improves Local Bone Quality in Femurs of Ovariectomized Rabbits. J Periodontol 2011; 82:854-62. [DOI: 10.1902/jop.2010.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
15
|
Salem ML, Demcheva M, Gillanders WE, Cole DJ, Vournakis JN. Poly-N-acetyl glucosamine gel matrix as a non-viral delivery vector for DNA-based vaccination. Anticancer Res 2010; 30:3889-94. [PMID: 21036699 PMCID: PMC3398836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intramuscular administration of plasmid DNA vaccines is one of the main delivery approaches that can generate antigen specific T cell responses. However, major limitations of the intramuscular delivery strategy are the low level of myocyte transfection, resulting in a minimal level of protein expression; the inability to directly target antigen presenting cells, in particular dendritic cells, which are critical for establishment of efficacious antigen-specific immune responses. Although several viral vectors have been designed to improve plasmid DNA delivery, they have limitations, including the generation of neutralizing antibodies in addition to lacking the simplicity and versatility required for universal clinical application. We have developed an inexpensive non-viral delivery vector based on the polysaccharide polymer poly-N-acetyl glucosamine with the capability to target dendritic cells. This vector is fully biocompatible, biodegradable, and nontoxic. The advantage of the application of this delivery system relative to other approaches is discussed.
Collapse
Affiliation(s)
- Mohamed L Salem
- Zoology Department, Faculty of Science, Tanta University, Egypt.
| | | | | | | | | |
Collapse
|
16
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Absence of systemic immune response to adenovectors after intraocular administration to children with retinoblastoma. Mol Ther 2010; 18:1885-90. [PMID: 20606647 DOI: 10.1038/mt.2010.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ocular environment has been shown to induce tolerance to locally administered antigens. We therefore investigated whether there was a systemic immune response against adenoviral vectors injected into the vitreous of retinoblastoma patients enrolled in a phase 1 clinical trial of adenoviral-mediated thymidine kinase gene transfer. Sections of enucleated eyes were immunostained with antibodies against inflammatory cells. A trend toward increasing numbers of plasma cells, T cells, macrophages, and antigen-presenting cells was observed in the injected subjects' eyes, but systemically, there was no significant increase in the number of adenovirus-specific cytotoxic T lymphocytes (CTLs) or in adenovirus neutralizing antibodies. Therefore, in contrast to studies showing significant immunogenicity of Ad-RSVtk following injection into extraocular tumors, injection into the eye produces only a mild local inflammatory response without evidence of systemic cellular or humoral immune responses to adenovirus.
Collapse
|
18
|
Abstract
Traumatic bone defects and nonunion represent a significant source of morbidity and socioeconomic burden in trauma patients. The treatment of these conditions is currently hampered by inadequate therapies. This has prompted a new era of investigation into biologic therapies for augmenting fracture healing. Within this body of research, gene therapy has arisen as a novel and effective method of delivering therapeutic proteins at a site of desired bone regeneration. Gene therapy has shown tremendous potential in preclinical studies of fracture healing, but to date, no clinical trials have occurred. This article reviews the scientific basis for gene therapy in fracture healing, provides an overview of important preclinical studies that have been performed to date, and discusses the current barriers and future directions of gene therapy as it applies to fracture healing.
Collapse
|
19
|
Wei L, Lu J, Feng L, Li S, Shan J, Li Y. Construction of recombinant adenovirus vector containing a modified gene that codes for human hypoxia-inducible factor-1alpha without oxygen-dependent degradation domain. Plasmid 2009; 63:20-6. [PMID: 19766670 DOI: 10.1016/j.plasmid.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 09/03/2009] [Accepted: 09/10/2009] [Indexed: 02/05/2023]
Abstract
The expression of hypoxia-inducible factor-1alpha (HIF-1alpha) in heart allografts is an important mechanism in response to ischemia/reperfusion (I/R) injury which represents the single major non-immunologic factor implicated in pathogenesis of chronic graft dysfunction (CGD). Adenoviral mediated overexpression of HIF-1alpha is a useful way to investigate the molecular mechanisms of I/R injury and the cardiac function during heart transplantation. The oxygen-dependent degradation (ODD) domain of HIF-1alpha can lead to degradation of the HIF-1alpha protein in normoxia. This will be an obstacle to steady expression of HIF-1alpha in heart allograft after transduction. In this study, we obtained the coding sequence of HIF-1alpha without ODD domain (HIF-1alphaDeltaODD) through a PCR-based method, and then generated the HIF-1alphaDeltaODD-expressing adenovirus. In normoxia, adenoviral mediated expression of HIF-1alphaDeltaODD shows constitutive activity in human cardiomyocytes, and can up-regulate heme oxygenase (HO)-1 mRNA levels significantly compared with the group transduced with HIF-1alpha-expressing adenovirus. The constructed HIF-1alphaDeltaODD-expressing adenovirus can be used to transduce allografts in animal studies to investigate the mechanism of CGD and provide a useful model to study the regulation mechanisms of genes regulated by HIF-1alpha alone.
Collapse
Affiliation(s)
- Liang Wei
- Key Laboratory of Transplant Engineering and Immunology of Health Ministry of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
20
|
Ditto AJ, Shah PN, Gump LR, Yun YH. Nanospheres formulated from L-tyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties. Mol Pharm 2009; 6:986-95. [PMID: 19341289 DOI: 10.1021/mp9000316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, viruses are utilized as vectors for gene therapy, since they transport across cellular membranes, escape endosomes, and effectively deliver genes to the nucleus. The disadvantage of using viruses for gene therapy is their immune response. Therefore, nanospheres have been formulated as a nonviral gene vector by blending l-tyrosine-polyphosphate (LTP) with polyethylene glycol grafted to chitosan (PEG-g-CHN) and linear polyethylenimine (LPEI) conjugated to plasmid DNA (pDNA). PEG-g-CHN stabilizes the emulsion and prevents nanosphere coalescence. LPEI protects pDNA degradation during nanosphere formation, provides endosomal escape, and enhances gene expression. Previous studies show that LTP degrades within seven days and is appropriate for intracellular gene delivery. These nanospheres prepared by water-oil emulsion by sonication and solvent evaporation show diameters between 100 and 600 nm. Also, dynamic laser light scattering shows that nanospheres completely degrade after seven days. The sustained release of pDNA and pDNA-LPEI polyplexes is confirmed through electrophoresis and PicoGreen assay. A LIVE/DEAD cell viability assay shows that nanosphere viability is comparable to that of buffers. X-Gal staining shows a sustained transfection for 11 days using human fibroblasts. This result is sustained longer than pDNA-LPEI and pDNA-FuGENE 6 complexes. Therefore, LTP-pDNA nanospheres exhibit controlled transfection and can be used as a nonviral gene delivery vector.
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325, USA
| | | | | | | |
Collapse
|
21
|
Greig JA, Buckley SM, Waddington SN, Parker AL, Bhella D, Pink R, Rahim AA, Morita T, Nicklin SA, McVey JH, Baker AH. Influence of coagulation factor x on in vitro and in vivo gene delivery by adenovirus (Ad) 5, Ad35, and chimeric Ad5/Ad35 vectors. Mol Ther 2009; 17:1683-91. [PMID: 19603000 DOI: 10.1038/mt.2009.152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The binding of coagulation factor X (FX) to the hexon of adenovirus (Ad) 5 is pivotal for hepatocyte transduction. However, vectors based on Ad35, a subspecies B Ad, are in development for cancer gene therapy, as Ad35 utilizes CD46 (which is upregulated in many cancers) for transduction. We investigated whether interaction of Ad35 with FX influenced vector tropism using Ad5, Ad35, and Ad5/Ad35 chimeras: Ad5/fiber(f)35, Ad5/penton(p)35/f35, and Ad35/f5. Surface plasmon resonance (SPR) revealed that Ad35 and Ad35/f5 bound FX with approximately tenfold lower affinities than Ad5 hexon-containing viruses, and electron cryomicroscopy (cryo-EM) demonstrated a direct Ad35 hexon:FX interaction. The presence of physiological levels of FX significantly inhibited transduction of vectors containing Ad35 fibers (Ad5/f35, Ad5/p35/f35, and Ad35) in CD46-positive cells. Vectors were intravenously administered to CD46 transgenic mice in the presence and absence of FX-binding protein (X-bp), resulting in reduced liver accumulation for all vectors. Moreover, Ad5/f35 and Ad5/p35/f35 efficiently accumulated in the lung, whereas Ad5 demonstrated poor lung targeting. Additionally, X-bp significantly reduced lung genome accumulation for Ad5/f35 and Ad5/p35/f35, whereas Ad35 was significantly enhanced. In summary, vectors based on the full Ad35 serotype will be useful vectors for selective gene transfer via CD46 due to a weaker FX interaction compared to Ad5.
Collapse
Affiliation(s)
- Jenny A Greig
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fujisawa Y, Nabekura T, Nakao T, Nakamura Y, Takahashi T, Kawachi Y, Otsuka F, Onodera M. The induction of tumor-specific CD4+ T cells via major histocompatibility complex class II is required to gain optimal anti-tumor immunity against B16 melanoma cell line in tumor immunotherapy using dendritic cells. Exp Dermatol 2009; 18:396-403. [DOI: 10.1111/j.1600-0625.2008.00802.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Effect of neutralizing sera on factor x-mediated adenovirus serotype 5 gene transfer. J Virol 2008; 83:479-83. [PMID: 18945780 DOI: 10.1128/jvi.01878-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deployment of adenovirus serotype 5 (Ad5)-based vectors is hampered by preexisting immunity. When such vectors are delivered intravenously, hepatocyte transduction is mediated by the hexon-coagulation factor X (FX) interaction. Here, we demonstrate that human sera efficiently block FX-mediated cellular binding and transduction of Ad5-based vectors in vitro. Neutralizing activity correlated well with the ability to inhibit Ad5-mediated liver transduction, suggesting that prescreening patient sera in this manner accurately predicts the efficacy of Ad5-based gene therapies. Neutralization in vitro can be partially bypassed by pseudotyping with Ad45 fiber protein, indicating that a proportion of neutralizing antibodies are directed against the Ad5 fiber.
Collapse
|
24
|
Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med (Berl) 2008; 86:1205-19. [PMID: 18607557 DOI: 10.1007/s00109-008-0381-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Collapse
Affiliation(s)
- Katrin Voigt
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092, Berlin, Germany
| | | | | |
Collapse
|
25
|
Abstract
Biologic therapies to promote fracture-healing such as use of bone morphogenetic proteins (BMPs) are being increasingly employed in multiple clinical scenarios. However, it has been challenging to design therapies that deliver sufficient quantities of protein over a sustained time period. A potential solution is the application of gene therapy that transfers genetic information to host cells at the fracture site, resulting in the continuous and localized production of the desired proteins. This approach has demonstrated tremendous potential in preclinical animal models of fracture-healing. This article will review the current state of gene therapy approaches to fracture-healing with an emphasis on potential clinical applications.
Collapse
|
26
|
Abstract
Gene therapy represents a potentially useful approach for the treatment of diseases refractory to conventional therapies. Various preclinical and clinical strategies have been explored for treatment of gynaecological diseases. Given the most severe unmet clinical need, much of the work has been performed with gynaecological cancers and ovarian cancer in particular. Although the safety of many treatment strategies has been demonstrated in early phase clinical trials, efficacy has been mostly limited heretofore. Major challenges include improving the vectors used with the aim of more effective and selective delivery. In addition, effective penetration into and spreading within advanced and complex tumour masses and metastases remains challenging. This review focuses on existing and developmental gene transfer applications for gynaecological diseases.
Collapse
Affiliation(s)
- Anna Kanerva
- University of Helsinki, Cancer Gene Therapy Group, Transplantation Laboratory and Haartman Institute, P.O. Box 63 (Haartmaninkatu 8, 00290 Helsinki), Biomedicum, Helsinki 00014, Finland
| | | | | |
Collapse
|
27
|
Fouletier-Dilling CM, Gannon FH, Olmsted-Davis EA, Lazard Z, Heggeness MH, Shafer JA, Hipp JA, Davis AR. Efficient and rapid osteoinduction in an immune-competent host. Hum Gene Ther 2007; 18:733-45. [PMID: 17691858 DOI: 10.1089/hum.2006.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteoinductive systems to induce targeted rapid bone formation hold clinical promise, but development of technologies for clinical use that must be tested in animal models is often a difficult challenge. We previously demonstrated that implantation of human cells transduced with Ad5F35BMP2 to express high levels of bone morphogenetic protein-2 (BMP2) resulted in rapid bone formation at targeted sites. Inclusion of human cells in this model precluded us from testing this system in an immune-competent animal model, thus limiting information about the efficacy of this approach. Here, for the first time we demonstrate the similarity between BMP2-induced endochondral bone formation in a system using human cells in an immune-incompetent mouse and a murine cell-based BMP2 gene therapy system in immune-competent animals. In both cases the delivery cells are rapidly cleared, within 5 days, and in neither case do they appear to contribute to any of the structures forming in the tissues. Endochondral bone formation progressed through a highly ordered series of stages that were both morphologically and temporally indistinguishable between the two models. Even longterm analysis of the heterotopic bone demonstrated similar bone volumes and the eventual remodeling to form similar structures. The results suggest that the ability of BMP2 to rapidly induce bone formation overrides contributions from either immune status or the nature of delivery cells.
Collapse
Affiliation(s)
- Christine M Fouletier-Dilling
- Center for Cell and Gene Therapy, Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 2007; 16:16-29. [PMID: 17912234 DOI: 10.1038/sj.mt.6300321] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chemical modification of adenovirus (Ad) gene transfer vectors with synthetic polymers is a promising strategy for overcoming typical in vivo hurdles associated with Ad-mediated gene delivery. Polymer-modified Ad vectors induce significantly reduced innate immune responses, can evade pre-existing anti-Ad antibodies, allow for repeated vector delivery, and have been used for developing novel retargeting strategies. The most widely used polymers for covalent chemical capsid surface modification are poly-N-(2-hydroxypropyl)methacrylamide (poly-HPMA) and polyethylene glycol (PEG), and the latter is in wide clinical use for modifying protein biopharmaceuticals. In this review, we critically compare the properties of various polymers with respect to Ad vector shielding and retargeting, and identify areas for future research on polymer-modified viral vectors. We describe the potential technical pitfalls of polymer modification of Ad vectors and provide a technical guide for avoiding these while establishing polymer modification techniques in the laboratory.
Collapse
|
29
|
Liu X, Liu M, Xue Z, Pan Q, Wu L, Long Z, Xia K, Liang D, Xia J. Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector. J Thromb Haemost 2007; 5:347-51. [PMID: 17155951 DOI: 10.1111/j.1538-7836.2007.02355.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In gene therapy, one of the most important issues is the choice of the vectors. pHrneo is a human-derived vector previously constructed by our group, which can target a foreign gene into a human ribosomal DNA (hrDNA) locus. METHODS AND RESULTS In this study, we inserted an expression cassette of reconstructive hFVIII (hFVIII-BDDAK39) to pHrneo to construct a targeting vector: pHrneo-BDDAK39. Through electroporation of pHrneo-BDDAK39 into HL7702 cells (human hepatocyte), we identified the homologous recombinants using polymerase chain reaction, and tested the expression of hFVIII-BDDAK39 located at the hrDNA locus. The hFVIII-BDDAK39 was successfully targeted into the hrDNA locus of HL7702 by pHrneo-BDDAK39, and the efficiency of site-specific integration was 1.1 x 10(-5). The hFVIII-BDDAK39 at the hrDNA locus of HL7702 was found to be able to express efficiently (4.3 +/- 0.9 ng 10(-6) cells 24 h(-1)). CONCLUSION It has been indicated that the targeting vector pHrneo-BDDAK39 can be used in gene therapy for hemophilia A.
Collapse
Affiliation(s)
- X Liu
- National Laboratory of Medical Genetics of China, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Luo P, Reed BD, Tsang TC, Harris DT, Flavell RA. A self-augmenting gene expression cassette for enhanced and sustained transgene expression in the presence of proinflammatory cytokines. DNA Cell Biol 2007; 25:659-67. [PMID: 17184167 DOI: 10.1089/dna.2006.25.659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viral promoters can yield high gene expression levels yet tend to be attenuated in vivo by host proinflammatory cytokines. Prolonged transgene expression can be obtained using constitutive cellular promoters. However, levels of transgene expression driven by cellular promoters are insufficient for effective therapy. We designed a novel self-augmenting gene expression cassette in which the transgene product can induce an endogenous transcription factor to enhance the activity of a weak cellular promoter driving its expression. Using the cellular major histocompatibility complex class I (H-2K(b)) promoter to drive the interferon (IFN-gamma) cytokine gene, we show that the H-2K(b) promoter, although exhibiting much lower basal activity, yields higher IFN-gamma production than the CMV promoter 2 days after transfection. IFN-gamma expression driven by the H-2K(b) promoter also lasts longer than that driven by the cytomegalovirus promoter. Our data demonstrate that the self-augmenting strategy provides a promising approach to achieve high and sustained transgene expression in vivo.
Collapse
Affiliation(s)
- P Luo
- Department of Immunology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
31
|
Phillips JE, Gersbach CA, García AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials 2007; 28:211-29. [PMID: 16928397 DOI: 10.1016/j.biomaterials.2006.07.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 07/18/2006] [Indexed: 12/31/2022]
Abstract
Gene therapy has emerged as a promising strategy for the repair and regeneration of damaged musculoskeletal tissues. Application of this paradigm to bone healing has shown enhanced efficacy in preclinical animal studies compared to conventional bone grafting approaches. This review discusses current and emerging virus-based genetic engineering strategies for the delivery of therapeutic molecules which promote skeletal regeneration. Viral gene delivery vectors are discussed in the context of bone repair in order to illustrate the challenges and applications of these methods with tissue-specific examples. Moreover the concepts discussed can be broadly applied to promote healing in a wide range of tissues. We also present important considerations involved in the application of these gene therapy techniques to a variety of osteogenic (e.g. bone marrow-derived cells) and non-osteogenic (e.g. fibroblasts and skeletal myoblasts) cell types. Criteria for the selection of regenerative molecules with soluble versus intracellular modes of action and emerging combinatorial approaches are also discussed. Overall, gene transfer technologies have the potential to overcome limitations associated with existing bone grafting approaches and may enable investigators to design therapies which more closely mimic the complex spatial and temporal cascade of proteins involved in endogenous bone development and repair.
Collapse
Affiliation(s)
- Jennifer E Phillips
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
32
|
Raki M, Rein DT, Kanerva A, Hemminki A. Gene Transfer Approaches for Gynecological Diseases. Mol Ther 2006; 14:154-63. [PMID: 16650808 DOI: 10.1016/j.ymthe.2006.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/13/2005] [Accepted: 02/06/2006] [Indexed: 11/25/2022] Open
Abstract
Gene transfer presents a potentially useful approach for the treatment of diseases refractory to conventional therapies. Various preclinical and clinical strategies have been explored for treatment of gynecological diseases. Given the direst need for novel treatments, much of the work has been performed with gynecological cancers and ovarian cancer in particular. Although the safety of many approaches has been demonstrated in early phase clinical trials, efficacy has been mostly limited so far. Major challenges include improving gene transfer vectors for enhanced and selective delivery and achieving effective penetration and spread within advanced and complex tumor masses. This review will focus on current and developmental gene transfer applications for gynecological diseases.
Collapse
Affiliation(s)
- Mari Raki
- Cancer Gene Therapy Group, Rational Drug Design Program, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Carlisle RC, Briggs SS, Hale AB, Green NK, Fisher KD, Etrych T, Ulbrich K, Mautner V, Seymour LW. Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA. Gene Ther 2006; 13:1579-86. [PMID: 16810196 DOI: 10.1038/sj.gt.3302814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of synthetic vectors to deliver genomes of conditionally replicating lytic viruses combines the strengths of viral and non-viral approaches by enabling neutralising antibody resistant deployment of cancer virotherapy. Adenovirus is particularly suitable for this application since all proteins essential for replication can be expressed from the input DNA, although the presence of terminal protein (TP) covalently linked to the 5' termini of the input virus genomes both improves expression of transgenes encoded in the input DNA and also enhances replication. These roles of TP were distinguished in experiments where E1-deleted Ad(GFP)DNA bearing TP (Ad(GFP)DNA-TP), delivered with DOTAP, gave a two-fold greater frequency of transduction than Ad(GFP)DNA(without TP) in non-complementing A549 cells, while in 293 cells (which support replication of E1-deleted viruses) the presence of TP mediated a much greater differential transgene expression, commensurate with its ability to promote replication. Subsequent studies using AdDNA for virotherapy, therefore, included covalently linked TP. AdDNA-TP delivered to A549 cells using a synthetic polyplex vector was shown to be resistant to levels of neutralising antisera that completely ablated infection by wild-type adenovirus, enabling polyplex/Ad(wild type)DNA-TP to mediate a powerful cytopathic effect. Similarly in vivo, direct injection of a polyplex/Ad(wild type)DNA-TP into A549 tumours was neutralising antibody-resistant and enabled virus replication, whereas intact virus was neutralised by the antibody and failed to infect. The delivery of adenovirus genomes-TP using synthetic vectors should provide a strategy to bypass neutralising antibodies and facilitate clinical application of replicating adenovirus for cancer virotherapy.
Collapse
Affiliation(s)
- R C Carlisle
- Department of Clinical Pharmacology, Oxford University, Radcliffe Infirmary, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen W, Li Y, Huard J. Musculoskeletal gene therapy and its potential use in the treatment of complicated musculoskeletal infection. Infect Dis Clin North Am 2006; 19:1007-22. [PMID: 16297745 DOI: 10.1016/j.idc.2005.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tissue repair is a major issue in orthopedics. Many musculoskeletal tissues, including cartilage, meniscus, and the anterior cruciate ligament, heal poorly after injury. Recent studies have led to the identification of numerous growth factors and other gene products that can promote the regeneration of damaged musculoskeletal tissues. In the last century, the discovery and evolving use of antibiotics has significantly decreased the prevalence and severity of infectious diseases. In many orthopedic scenarios, however, treatment of infections can be difficult, and often involves a prolonged course of antibiotics with concomitant surgical interventions and loss of tissue. Although studies have demonstrated the successful transfer of target genes and the associated manipulation of the musculoskeletal tissue environment, researchers have made few attempts designed to use gene therapy to treat infectious musculoskeletal diseases in animal models. Before it is possible to use gene-based approaches to treat such diseases effectively, researchers must perform more studies to investigate the potential problems that may arise when using gene therapy in an infectious environment.
Collapse
Affiliation(s)
- Wei Shen
- Growth and Development Laboratory of Children's Hospital of Pittsburgh, 4100 Rangos Research Center, Pittsburgh, PA 15213-2583, USA
| | | | | |
Collapse
|
35
|
Sellins K, Fradkin L, Liggitt D, Dow S. Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes. Mol Ther 2005; 12:451-9. [PMID: 15950543 DOI: 10.1016/j.ymthe.2005.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/20/2005] [Accepted: 04/24/2005] [Indexed: 01/22/2023] Open
Abstract
Gene delivery by intravenous injection of cationic liposome-DNA complexes (LDC) can generate efficient transgene expression in the lungs and other organs, but the duration of expression is typically short. Previous studies have suggested a major role for interferon-gamma (IFN-gamma) and TNF in this process. However, plasmid DNA is also capable of eliciting production of type I IFNs. Therefore, we assessed the ability of LDC to elicit production of type I IFNs in vivo and assessed the effects of type I IFNs on suppression of transgene expression following in vivo gene delivery with LDC. Injection of LDC was found to induce production of high levels of both IFN-alpha and IFN-beta in vivo. Moreover, the levels of transgene expression following in vivo gene delivery were markedly increased in mice lacking functional type I IFN receptor genes, compared to wild-type mice or mice lacking IFN-gamma or TNF receptors. Addition of recombinant IFN-alpha and IFN-beta inhibited transgene expression by in vitro-transfected endothelial cells, and incubation of macrophages with LDC in vitro triggered production of both IFN-alpha and IFN-beta. Therefore, type I IFNs appear to play a key role in suppressing transgene expression in vivo following systemic nonviral gene delivery using LDC.
Collapse
Affiliation(s)
- Karen Sellins
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses hyperthyroidism in different models, perhaps reflecting human disease heterogeneity; 2) the role of TSHR cleavage and A subunit shedding in immunity leading to thyroid-stimulating antibodies (TSAbs); and 3) epitope spreading away from TSAbs and toward TSH-blocking antibodies in association with increased TSHR antibody titers (as in rare hypothyroid patients). Major developments from the models include the isolation of high-affinity monoclonal TSAbs and analysis of antigen presentation, T cells, and immune tolerance to the TSHR. Studies of inbred mouse strains emphasize the contribution of non-MHC vs. MHC genes, as in humans, supporting the relevance of the models to human disease. Moreover, other findings suggest that the development of Graves' disease is affected by environmental factors, including infectious pathogens, regardless of modifications in the Th1/Th2 balance. Finally, developing immunospecific forms of therapy for Graves' disease will require painstaking dissection of immune recognition and responses to the TSHR.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
37
|
Li JZ, Holman D, Li H, Liu AH, Beres B, Hankins GR, Helm GA. Long-term tracing of adenoviral expression in rat and rabbit using luciferase imaging. J Gene Med 2005; 7:792-802. [PMID: 15712373 DOI: 10.1002/jgm.720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Luciferase optical imaging provides a novel method to monitor transgene expression in small living animals. As the genetic and immunological heritages of particular animals significantly affect the expression of adenovirus-delivered transgenes, it is essential to know the expression patterns specific to athymic nude and Sprague-Dawley rats, two strains commonly used in rodent models. In this study we set out to determine these patterns. At the same time, we tested luciferase optical imaging in a larger animal, the rabbit. METHODS A recombinant luciferase adenoviral vector was injected subcutaneously or intramuscularly into athymic nude rats, Sprague-Dawley rats, and Dutch Belted rabbits. The luciferase expression was assessed using a cooled charge-coupled device. RESULTS The luminescent signal was capable of passing through at least 1.3 cm of muscle tissue and proved to be much stronger when luciferin was delivered via a local injection than by an intraperitoneal injection. Although the types of immune cells differed between immunodeficient and immunocompetent rats, similar amounts and patterns of luciferase expression were observed in the musculature in two rat strains during the 1st month after a viral intramuscular injection. The duration of luciferase expression was longer than 15 months in athymic nude rats, 9 months in Sprague-Dawley rats, and 6 months in rabbits following a direct viral injection. CONCLUSIONS Luciferase expression after adenoviral gene delivery can persist for longer than 6 months, even in immunocompetent animals. Live imaging of luciferase expression can be performed not only in small animals, but also in larger animals such as rabbits.
Collapse
Affiliation(s)
- Jin Zhong Li
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Oberholzer C, Tschoeke SK, Bahjat K, LaFace D, Hutchins B, Clare-Salzler MJ, Moldawer LL, Oberholzer A. In vivo transduction of thymic dendritic cells with adenovirus and its potential use in acute inflammatory diseases. Scand J Immunol 2005; 61:309-15. [PMID: 15853912 DOI: 10.1111/j.1365-3083.2005.01574.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dendritic cells (DC) represent a potential target for gene therapy. In their ability to process antigens and present them to T cells, DC have been allocated a unique role as initiators of the immune response in both the innate and acquired immunity. Recent in vitro studies have showed the feasibility of DC transduction with adenoviral recombinants. In cancer therapy, targeting of DC with adenovirus has been proved to be effective in inhibiting tumour growth, as well as in reducing the number of tumour metastases. The aim of our study is to evaluate the feasibility of in vivo transduction of DC in a murine lymphocyte-rich compartment (thymus) as a potential treatment for acute inflammatory diseases. Nearly 50% of the total thymic DC were transduced with a first-generation adenoviral construct following intrathymic injection, and post-transductional inflammation was neglectable. Transduction of thymic cells with adenoviral recombinants was able to induce the expression of an intracellular protein (beta-galactosidase, green fluorescent protein), as well as the secretion of human interleukin-10, within the local compartment. Furthermore, this induction of the latter significantly decreased thymic apoptosis in the applied model of acute bacterial peritonitis (cecal ligation and puncture).
Collapse
Affiliation(s)
- C Oberholzer
- Department of Trauma and Reconstructive Surgery, CHARITE- University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Oberholzer C, Oberholzer A, Tschoeke SK, Minter RM, Bahjat FR, LaFace D, Hutchins B, Moldawer LL. Influence of recombinant adenovirus on liver injury in endotoxicosis and its modulation by IL-10 expression. ACTA ACUST UNITED AC 2005. [PMID: 15588421 DOI: 10.1177/09680519040100060301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adenovirus-based gene therapy offers a unique opportunity to target gene expression to the liver by systemic delivery. However, systemic administration of a first generation adenoviral construct elicits an inflammatory response leading to TNF-alpha-dependent liver injury. The aim of this study was to evaluate whether the systemic administration of recombinant adenovirus exacerbates a subsequent TNF-alpha-dependent liver injury induced by D-galactosamine and lipopolysaccharide. Surprisingly, low-dose adenovirus administration (10(5) particles) protects, while high-dose adenovirus (10(10) particles) is associated with an exaggerated hepatic inflammatory response from a subsequent D-galactosamine and lipopolysaccharide challenge. This exacerbation is TNF-alpha dependent, since treatment with a TNF inhibitor fully protects against the liver injury. Moreover, intravenous administration of an adenoviral construct expressing the anti-inflammatory protein interleukin-10 reduces TNF-alpha appearance and attenuates the increased hepatocyte injury. Taken together, this report demonstrates potential additive effects of TNF-alpha responses induced by adenovirus and other inflammatory signals, and suggests that the response can be mitigated by relative adenovirus particle dose or by inhibitors, such as TNF-binding protein or interleukin 10.
Collapse
Affiliation(s)
- Caroline Oberholzer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida 32610-0286, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Egermann M, Schneider E, Evans CH, Baltzer AW. The potential of gene therapy for fracture healing in osteoporosis. Osteoporos Int 2005; 16 Suppl 2:S120-8. [PMID: 15654580 DOI: 10.1007/s00198-004-1817-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Osteoporosis-associated fractures impair a patient's function and quality of life and represent one of the major public health burdens. Demographic changes predict a dramatic increase in osteoporotic fractures. Experimental data have shown that osteoporosis impairs fracture healing. Clinical observations demonstrate high failure rates of implant fixation in osteoporosis. The reduced healing capacity, including impaired bone formation, in osteoporotic humans might be due to defects in mesenchymal stem cells that lead to reduced proliferation and osteoblastic differentiation. Growth factors show remarkable promise as agents that can improve the healing of bone or increase the proliferation and differentiation capacities of mesenchymal stem cells. Their clinical utility is limited by delivery problems. The attraction of gene-transfer approaches is the unique ability to deliver authentically processed gene products to precise anatomical locations at therapeutic levels for sustained periods of time. Unlike the treatment of chronic diseases, it is neither necessary nor desirable for transgene expression to persist beyond the few weeks or months needed to achieve healing. This review presents different approaches of gene therapy to enhance fracture healing and summarizes the promising results of preclinical studies. It focuses on applications of this new technique to fracture healing in osteoporosis. In our opinion, these applications represent some of the few examples in which gene therapy has a good chance of early clinical success.
Collapse
Affiliation(s)
- M Egermann
- AO Research Institute, Davos, Switzerland.
| | | | | | | |
Collapse
|
41
|
Wysocki PJ, Karczewska-Dzionk A, Mackiewicz-Wysocka M, Mackiewicz A. Human cancer gene therapy with cytokine gene-modified cells. Expert Opin Biol Ther 2005; 4:1595-607. [PMID: 15461571 DOI: 10.1517/14712598.4.10.1595] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytokines can impede tumour growth and activate innate and adaptive immune responses, leading to elimination of cancer cells. For many years, it was believed that systemic administration of recombinant cytokines might become a standard treatment of different cancer types. However, due to a high toxicity of therapeutic doses and a low efficacy, even in combination with chemotherapy, this strategy is generally not accepted. On the other hand, cancer gene therapy approaches utilising cells modified with cytokine genes seem to represent a novel promising approach. For the last decade, numerous Phase I and II clinical trials evaluating different therapies based on cytokine gene-modified cells have been carried out. In the early studies, several strategies have been shown to improve clinical outcomes and induce strong antitumour immune responses. Recently, a few prospective, randomised, Phase III clinical trials have been initiated in order to finally determine the efficacy of particular cancer immunogene therapy strategies. This article reviews the present status and perspectives of clinical trials of cancer immunotherapies utilising cytokine gene-modified cells.
Collapse
Affiliation(s)
- Piotr J Wysocki
- University of Medical Sciences at GreatPoland Cancer Center, Department of Cancer Immunology, UL. Garbary 15, 61-866 Poznan, Poland
| | | | | | | |
Collapse
|
42
|
Worgall S. A realistic chance for gene therapy in the near future. Pediatr Nephrol 2005; 20:118-24. [PMID: 15549408 DOI: 10.1007/s00467-004-1680-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/18/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
The expanding knowledge of the genetic and cellular mechanisms of human diseases in the post-genomic era coupled with the development of different vector systems to efficiently transfer genes to a variety of cell types and organs in vivo gave rise to the concept of gene therapy as a promising therapeutic option for genetic and acquired diseases. Gene therapy has been the focus of both enthusiasm and critique in the past years. Major progress has been achieved in evaluating gene therapy in clinical trials. However, a number of hurdles must still be overcome to make gene therapy safe and applicable for human diseases. Increased knowledge of the interaction of the gene therapy vehicles with the host has resulted in modifications of existing and the development of new vector systems, as well as adjustments of future clinical applications. Adeno-associated virus vectors, retrovirus- and lentivirus-based vectors show great promise for the correction of monogenic diseases. Correction of the genetic defect can be attempted by either in vivo administration to directly target a diseased organ or by administration of ex vivo genetically modified cells, e.g., bone marrow stem cells. The lack of persistent expression and the immune responses of the host have limited the use of adenovirus vectors for the permanent correction of monogenic diseases. However, the ease of production and the number of cell types and organs that can be efficiently infected make adenovirus-based vectors a promising tool for applications where permanent gene expression is not the therapeutic goal or where the induction of immune responses is the desired response, as for genetic vaccines. Overall, gene therapy remains promising for the correction of genetic as well as acquired disorders, where permanent or transient expression of a gene product will be therapeutic.
Collapse
|
43
|
Schagen FHE, Ossevoort M, Toes REM, Hoeben RC. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2005; 50:51-70. [PMID: 15094159 DOI: 10.1016/s1040-8428(03)00172-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2003] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since they have a well-characterized genomic organization, can be grown to high titres and efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in most immunocompetent mice. This constituted a major limitation of this early vector type. In contrast, persistent transgene expression can be established in immunodeficient mice. This suggests that the immunogenicity of adenoviral vectors limits the effective period of adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent the limitations imposed onto gene therapy by the immune system. Improvements in vector design have significantly improved the performance of the adenovirus vectors. Based on these results it is reasonable to anticipate that new modifications of the vectors will overcome some of the immunological barriers and will further expand the applicability of adenovirus-derived vectors.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
44
|
Chan RCF, Pang XW, Wang YD, Chen WF, Xie Y. Transduction of dendritic cells with recombinant adenovirus encoding HCA661 activates autologous cytotoxic T lymphocytes to target hepatoma cells. Br J Cancer 2004; 90:1636-43. [PMID: 15083197 PMCID: PMC2409703 DOI: 10.1038/sj.bjc.6601706] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transduction of recombinant adenovirus into dendritic cells (DCs) is a promising new tool for cancer vaccine development. Here, we report that an adenovirus vector carrying hepatocellular carcinoma (HCC) antigen HCA661 and infected into DCs generates T-cell immunity against hepatoma cells. HCA661 is a novel cancer/testis (CT) antigen screened by SEREX from sera of an HCC patient. We constructed a recombinant adenovirus expressing the full-length cDNA of HCA661 gene and then transduced immature DCs, which had been generated with GM-CSF and IL-4 from peripheral blood mononuclear cell of HLA-A2+ healthy donors. The resulting adenovirus-transduced DCs differentiated in the presence of monocyte-conditioned medium and poly [I] : poly [C], expressing the surface markers of mature DCs, including CD83, CD80, CD86 and HLA-DR. After maturation, the transduced DCs transcribed HCA661 mRNA and were able to prime the naïve T cells to become cytotoxic T lymphocytes (CTLs). Intracellular flow cytometry and enzyme-linked immunospot assay showed that these CTLs were able to target a hepatoma cell line, HepG2, which is HLA-A2 and HCA661 positive. In summary, we found that this recombinant adenovirus can help to induce DC maturation and these mature DCs can activate T cells to target hepatoma cells. Therefore, this recombinant adenovirus may have potential for use in liver cancer immunotherapy.
Collapse
Affiliation(s)
- R C-F Chan
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - X-W Pang
- Department of Immunology, Peking University Health Science Centre, Beijing, 100083, China
| | - Y-D Wang
- Department of Immunology, Peking University Health Science Centre, Beijing, 100083, China
| | - W-F Chen
- Department of Immunology, Peking University Health Science Centre, Beijing, 100083, China
- Department of Immunology, Peking University Health Science Centre, Beijing, 100083, China. E-mail:
| | - Y Xie
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Immunology, Peking University Health Science Centre, Beijing, 100083, China. E-mail:
| |
Collapse
|
45
|
Abstract
Gene therapy presents a novel approach to the treatment of challenging bone loss problems. Recombinant, osteogenic growth factors are now available to enhance bone repair, particularly in those applications related to the treatment of fracture nonunions and the enhancement of fusion of the spine. However, there is concern that a single dose of an exogenous protein will not induce an adequate osteogenic signal in many patients, particularly in those cases where there is compromise of host bone and the surrounding soft tissue. Transfer of genes encoding osteogenic proteins has the potential to overcome the delivery problems associated with the use of the proteins themselves. Bone healing is an attractive application for gene therapy, because long-term protein production is not necessary for many bone repair problems. Therefore, the development of gene therapy strategies to treat bone repair problems promises to be easier than the application of gene therapy to treat chronic diseases. The purpose of this review is to highlight the advantages, disadvantages and clinical potential of various gene therapy strategies to enhance bone repair.
Collapse
Affiliation(s)
- A W A Baltzer
- Practice and Clinic for Orthopaedic Surgery, Centre for Molecular Orthopaedics, Düsseldorf, Germany
| | | |
Collapse
|
46
|
Jounaidi Y, Waxman DJ. Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res 2004; 64:292-303. [PMID: 14729637 DOI: 10.1158/0008-5472.can-03-1798] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 (CYP) gene transfer sensitizes tumor xenografts to anticancer prodrugs such as cyclophosphamide (CPA) without a detectable increase in host toxicity. Optimal prodrug activation is achieved when a suitable P450 gene (e.g., human CYP2B6) is delivered in combination with NADPH-cytochrome P450 reductase (P450R), which encodes the flavoenzyme P450 reductase. We sought to improve this gene therapy by coordinated delivery and expression of P450 and P450R on a single bicistronic vector using an internal ribosomal entry site (IRES) sequence. Retrovirus encoding a CYP2B6-IRES-P450R expression cassette was shown to induce strong P450-dependent CPA cytotoxicity in a population of infected 9L gliosarcoma cells. Adeno-P450, a replication-defective, E1/E3 region-deleted adenovirus engineered to express CYP2B6-IRES-P450R, induced intracellular CPA 4-hydroxylation, and CPA cytotoxicity, in a broad range of human cancer cell lines. However, limited Adeno-P450 gene transfer and CPA chemosensitization was seen with certain human tumor cells, notably PC-3 prostate and HT-29 colon cancer cells. Remarkable improvements could be obtained by coinfecting the tumor cells with Adeno-P450 in combination with Onyx-017, an E1b-55k gene-deleted adenovirus that selectively replicates in p53 pathway-deficient cells. Substantial increases in gene expression were observed during the early stages of viral infection, reflecting an apparent coamplification of the Adeno-P450 genome, followed by enhanced viral spread at later stages, as demonstrated in cultured tumor cells, and in A549 and PC-3 solid tumor xenografts grown in scid mice. This combination of the replication-defective Adeno-P450 with a replication-conditional and tumor cell-targeted helper adenovirus dramatically improved the low gene transfer observed with some human tumor cell lines and correspondingly increased tumor cell-catalyzed CPA 4-hydroxylation, CPA cytotoxicity, and in vivo antitumor activity in a PC-3 tumor xenograft model. The use of tumor-selective, replicating adenovirus to promote the spread of replication-defective gene therapy vectors, such as Adeno-P450, substantially increases the therapeutic potential of adenoviral delivery systems, and should lead to increased activity and enhanced tumor selectivity of cytochrome P450 and other gene-directed enzyme prodrug therapies.
Collapse
Affiliation(s)
- Youssef Jounaidi
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
47
|
Haegel-Kronenberger H, Haanstra K, Ziller-Remy C, Ortiz Buijsse AP, Vermeiren J, Stoeckel F, Van Gool SW, Ceuppens JL, Mehtali M, De Boer M, Jonker M, Boon L. Inhibition of costimulation allows for repeated systemic administration of adenoviral vector in rhesus monkeys. Gene Ther 2004; 11:241-52. [PMID: 14737083 DOI: 10.1038/sj.gt.3302152] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunogenicity of recombinant adenoviral (Ad) vectors severely hampers the clinical development of gene therapy protocols using repeated vector administrations. Inhibition of costimulation by APCs was explored as a strategy to circumvent the immune response against Ad particles. This strategy was tested in rhesus monkeys, treated transiently with chimeric anti-human CD40 and anti-human CD86 antagonist monoclonal antibodies (MAbs) at the time of systemic administration of a recombinant Ad vector. After Ad vector administration in the absence of immunosuppressive treatment, transgene expression in the serum lasted about 3-4 weeks. All control animals developed a strong neutralizing antibody (NAb) response to the Ad particles, which totally prevented efficient administration of a second vector, as shown by the lack of transgene expression. Treatment with anti-CD40 and anti-CD86 chimeric MAbs delayed or blocked the development of a humoral response against Ad and the infiltration of CD8(+) lymphocytes into the liver. This resulted in (i) increased persistence of Ad-transduced cells after injection of a first vector encoding a nonimmunogenic transgene, and (ii) the possibility of readministering a second Ad vector with significant efficacy. In both respects, the combined blockade of CD40 and CD86 was more efficient than treatment with anti-CD40 alone. This study shows for the first time in non-human primates that blocking CD40 and CD86 costimulatory molecules represents a promising strategy to inhibit immune responses against an Ad vector injected systemically.
Collapse
|
48
|
Cho HI, Kim HJ, Oh ST, Kim TG. In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2004; 22:224-36. [PMID: 14615150 DOI: 10.1016/s0264-410x(03)00569-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carcinoembryonic antigen (CEA), which is expressed in several cancer types, is a potential target for specific immunotherapy. In this study, the feasibility of using dendrite cells (DCs) for tumor immunotherapy after transduction with a recombinant adenovirus containing CEA gene (AdVCEA) was investigated. The recombinant AdV provided a highly efficient reproducible gene transfer into monocyte-derived DCs and its efficiency was increased in a multiplicity of infection (MOI)-dependent manner. As consequence of AdVCEA infection, the level of surface CEA on DCs was slightly increased and the dose (MOI) of AdVCEA had no effect on the surface CEA expression. However, the intracellular CEA expression was impressively increased in an MOI-dependent manner. Moreover, the AdVCEA infection had no appreciable effect on apoptosis of DCs compared with that of mock-infected and actinomycin D (AcD)-treated DCs. The AdVCEA-infected DCs-induced CEA-specific proliferative responses and it was higher than that of peptide-loaded DCs. The T-cell lines, primed by the recombinant AdVCEA-infected DCs in vitro, not only recognized CEA peptide-loaded target cells but also CEA-expressing tumor cell lines in a human leukocyte antigen (HLA) class I-restricted manner. Cytotoxic activity toward target cells was found to be mediated primarily by CD8(+) T-cells, although both CD8(+) cells and CD4(+) cells were able to lyse CEA peptide-loaded target cells. These preliminary results suggest that DCs, transduced with AdV encoding CEA, may be used for the development of adoptive cellular immunotherapy and DC-based cancer vaccine for the treatment of CEA-expressing tumors.
Collapse
Affiliation(s)
- Hyun-Il Cho
- Department of Microbiology and Immunology, College of Medicine, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, 137-701, Seoul, South Korea
| | | | | | | |
Collapse
|
49
|
Breckpot K, Heirman C, Neyns B, Thielemans K. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med 2004; 6:1175-88. [PMID: 15468193 DOI: 10.1002/jgm.615] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are pivotal regulators of immune reactivity and immune tolerance. The observation that DCs can recruit naive T cells has invigorated cancer immunology and led to the proposal of DCs as the basis for vaccines designed for the treatment of cancer. Designing effective strategies to load DCs with antigens is a challenging field of research. The successful realization of gene transfer to DCs will be highly dependent on the employed vector system. Here, we review various viral and non-viral gene transfer systems, and discuss their distinct characteristics and possible advantages and disadvantages in respect to their use in DC-based immunotherapy.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Li JZ, Li H, Dunford B, Holman D, Beres B, Pittman DD, Hankins GR, Helm GA. Rat strain differences in the ectopic osteogenic potential of recombinant human BMP adenoviruses. Mol Ther 2003; 8:822-9. [PMID: 14599816 DOI: 10.1016/j.ymthe.2003.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different animal strains have different genetic backgrounds that influence their physiological function and pathological process. The differences in genetic background may affect the efficiency of adenoviral infection and target gene expression and further cause different gene therapy results when target genes are delivered with adenoviral vectors. In this study, ectopic bone was not seen in ADCMVBMP4 injection sites, but was formed in ADCMVBMP9 injection sites in all rat strains. The mean volumes of bone induced with ADCMVBMP9 were 0.87 +/- 0.2 cm3 in Wistar, 0.26 +/- 0.1 cm3 in Long-Evans, 0.34 +/- 0.2 cm3 in Sprague-Dawley, 0.44 +/- 0.1 cm3 in ACI, 0.66 +/- 0.2 cm3 in PVG, and 0.58 +/- 0.1 cm3 in Fischer 344 rats. This indicates that ADCMVBMP9 has different bone formation potentials in different immunocompetent rat strains (P = 0.02). The basic levels of CD4+ and CD8+ T cells in blood before viral infection and titers of adenoviral neutralizing antibodies 30 days post-viral infection were significantly different among rat strains (P < 0.01). The efficiencies of target gene expression delivered with adenovirus were also significantly different in primary muscle cell cultures from different rat strains (P < 0.01). The different osteogenic potentials of ADCMVBMP9 among rat strains may be, in part, due to the differences in immune factors and target gene expression efficiency in muscle tissue.
Collapse
Affiliation(s)
- Jin Zhong Li
- Molecular Neurosurgery Lab, Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|