1
|
Dubrof S, Zukaitis JG, Ahmed I, Sun W, Scheulin KM, Fang X, Jeon J, West FD, Zhao Q, Park HJ. Maternal supplementation of egg yolk modulates brain functional organization and functional outcomes of offspring. Nutr Res 2024; 131:147-158. [PMID: 39395250 DOI: 10.1016/j.nutres.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 10/14/2024]
Abstract
Maternal nutrition during the perinatal stage is critical to offspring brain development. Egg yolks are a balanced and nutrient-dense food that is rich in bioactive components crucial to optimal neurodevelopment early in life. Egg consumption is often recommended to pregnant women to enhance both maternal and fetal health. We hypothesized that maternal intake of egg yolk from late gestation and throughout lactation would enhance functional organization and cognitive developmental outcomes in offspring using a pig model. Sows were fed a control diet (n = 6) or a diet containing egg yolks (n = 5, 350 mg egg yolk powder/kg BW/day, equivalent to ∼3 eggs/day for humans) from late gestation through lactation. At weaning, piglet offspring (n = 2/sow, total n = 22) underwent structural magnetic resonance imaging (MRI) and resting-state-functional MRI. Piglets underwent novel object recognition testing to assess hippocampal-dependent learning and memory. Functional MRI results demonstrated that egg yolk significantly increased functional activation in the executive network (p = 0.0343) and cerebellar network (p = 0.0253) in piglets when compared to control. Diffusion tensor imaging analysis showed that perinatal intake of egg yolks significantly increased white matter fiber length in the hippocampus (p = 0.0363) and cerebellum (p = 0.0287) in piglet offspring compared to control piglets. Furthermore, piglets from egg yolk-fed sows spent significantly more proportional frequency exploring the novel object than the familiar object in novel object recognition testing (p = 0.0370). The findings from this study support egg yolk-altered activation of specific brain networks may be associated with functional cognitive outcomes in weaning piglets.
Collapse
Affiliation(s)
- Stephanie Dubrof
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jillien G Zukaitis
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Ishfaque Ahmed
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Wenwu Sun
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Xi Fang
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Julie Jeon
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Qun Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
2
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540428. [PMID: 37214805 PMCID: PMC10197642 DOI: 10.1101/2023.05.12.540428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes; IIS). IIS also are common in other mouse models and occur in AD patients. Im mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore we studied ΔFosB expression in GCs. We also studied the the neuronal marker NeuN within hilar neurons of the DG because other studies have reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address:Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27510
| | - Karim S. Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Psychology, University of Maine, Orono, ME 04469
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Anatomy, Physiology, & Pharmacology, College of Medicine, Saskatoon, SK S7N 5E5
| | - Stephen D. Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
4
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
5
|
Freij K, Cleveland B, Biga P. Maternal dietary choline levels cause transcriptome shift due to genotype-by-diet interactions in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101193. [PMID: 38309055 DOI: 10.1016/j.cbd.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
The objective of this study was to identify metabolic regulatory mechanisms affected by choline availability in rainbow trout (Oncorhynchus mykiss) broodstock diets associated with increased offspring growth performance. Three customized diets were formulated to have different levels of choline: (a) 0 % choline supplementation (Low Choline: 2065 ppm choline), (b) 0.6 % choline supplementation (Medium Choline: 5657 ppm choline), and (c) 1.2 % choline supplementation (High Choline: 9248 ppm choline). Six all-female rainbow trout families were fed experimental diets beginning 18 months post-hatch until spawning at 22 months post-hatch; their offspring were fed a commercial diet. Experimental broodstock diet did not affect overall choline, fatty acid, or amino acid content in the oocytes (p > 0.05), apart from tyrosine (p ≤ 0.05). Offspring body weights from the High and Low Choline diets did not differ from those in the Medium Choline diet (p > 0.05); however, family-by-diet and sire-by-diet interactions on offspring growth were detected (p ≤ 0.05). The High Choline diet did not improve growth performance in the six broodstock families at final harvest (520-days post-hatch, or dph). Numerous genes associated with muscle development and lipid metabolism were identified as affected by broodstock diet, including myosin, troponin C, and fatty acid binding proteins, which were associated with key signaling pathways of lipid metabolism, muscle cell development, muscle cell proliferation, and muscle cell differentiation. These findings indicate that supplementing broodstock diets with choline does regulate expression of genes related to growth and nutrient partitioning but does not lead to growth benefits in rainbow trout families selected for disease resistance.
Collapse
Affiliation(s)
- Khalid Freij
- Department of Biology, The University of Alabama at Birmingham, Birmingham 35294, AL, USA. https://twitter.com/FreijKhalid
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville 25430, WV, USA
| | - Peggy Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham 35294, AL, USA.
| |
Collapse
|
6
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Bellio TA, Laguna-Torres JY, Campion MS, Chou J, Yee S, Blusztajn JK, Mellott TJ. Perinatal choline supplementation prevents learning and memory deficits and reduces brain amyloid Aβ42 deposition in AppNL-G-F Alzheimer's disease model mice. PLoS One 2024; 19:e0297289. [PMID: 38315685 PMCID: PMC10843108 DOI: 10.1371/journal.pone.0297289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aβ42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aβ42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.
Collapse
Affiliation(s)
- Thomas A. Bellio
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jessenia Y. Laguna-Torres
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Mary S. Campion
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jay Chou
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sheila Yee
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Jan K. Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Tiffany J. Mellott
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Irvine N, England-Mason G, Field CJ, Letourneau N, Bell RC, Giesbrecht GF, Kinniburgh DW, MacDonald AM, Martin JW, Dewey D. Associations between maternal folate status and choline intake during pregnancy and neurodevelopment at 3-4 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) study. J Dev Orig Health Dis 2023; 14:402-414. [PMID: 36939090 PMCID: PMC10202845 DOI: 10.1017/s2040174423000041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Folate and choline are methyl donor nutrients that may play a role in fetal brain development. Animal studies have reported that prenatal folate and choline supplementation are associated with better cognitive outcomes in offspring and that these nutrients may interact and affect brain development. Human studies that have investigated associations between maternal prenatal folate or choline levels and neurodevelopmental outcomes have reported contradictory findings and no human studies have examined the potential interactive effect of folate and choline on children's neurodevelopment. During the second trimester of pregnancy, maternal red blood cell folate was measured from blood samples and choline intake was estimated using a 24-h dietary recall in 309 women in the APrON cohort. At 3-5 years of age, their children's neurodevelopment was assessed using the Wechsler Preschool and Primary Scales of Intelligence - Fourth EditionCND, NEPSY-II language and memory subtests, four behavioral executive function tasks, and the Movement Assessment Battery for Children - Second Edition. Adjusted regressions revealed no associations between maternal folate and choline levels during pregnancy and most of the child outcomes. On the Dimensional Change Card Sort, an executive function task, there was an interaction effect; at high levels of choline intake (i.e., 1 SD above the mean; 223.03 mg/day), higher maternal folate status was associated with decreased odds of receiving a passing score (β = -0.44; 95%CI -0.81, -0.06). In conclusion, maternal folate status and choline intake during the second trimester of pregnancy were not associated with children's intelligence, language, memory, or motor outcomes at 3-4 years of age; however, their interaction may have an influence children's executive functions.
Collapse
Affiliation(s)
- Nathalie Irvine
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Adeyemo T, Jaiyesimi A, Bumgardner JG, Lohr C, Banerjee A, McKenna MC, Waddell J. Choline Improves Neonatal Hypoxia-Ischemia Induced Changes in Male but Not Female Rats. Int J Mol Sci 2022; 23:13983. [PMID: 36430459 PMCID: PMC9694200 DOI: 10.3390/ijms232213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Choline is an essential nutrient with many roles in brain development and function. Supplementation of choline in early development can have long-lasting benefits. Our experiments aimed to determine the efficacy of choline supplementation in a postnatal day (PND) 10 rat model of neonatal hypoxia ischemia (HI) at term using both male and female rat pups. Choline (100 mg/kg) or saline administration was initiated the day after birth and given daily for 10 or 14 consecutive days. We determined choline's effects on neurite outgrowth of sex-specific cultured cerebellar granule cells after HI with and without choline. The magnitude of tissue loss in the cerebrum was determined at 72 h after HI and in adult rats. The efficacy of choline supplementation in improving motor ability and learning, tested using eyeblink conditioning, were assessed in young adult male and female rats. Overall, we find that choline improves neurite outgrowth, short-term histological measures and learning ability in males. Surprisingly, choline did not benefit females, and appears to exacerbate HI-induced changes.
Collapse
Affiliation(s)
- Tayo Adeyemo
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jill G. Bumgardner
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Charity Lohr
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Impact of different dietary regimens on the lipidomic profile of mare’s milk. Food Res Int 2022; 156:111305. [DOI: 10.1016/j.foodres.2022.111305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
|
12
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
13
|
Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients 2022; 14:nu14020364. [PMID: 35057545 PMCID: PMC8778665 DOI: 10.3390/nu14020364] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Women’s nutritional status during pregnancy can have long-term effects on children’s brains and cognitive development. Folate and choline are methyl-donor nutrients and are important for closure of the neural tube during fetal development. They have also been associated with brain and cognitive development in children. Animal studies have observed that prenatal folate and choline supplementation is associated with better cognitive outcomes in offspring and that these nutrients may have interactive effects on brain development. Although some human studies have reported associations between maternal folate and choline levels and child cognitive outcomes, results are not consistent, and no human studies have investigated the potential interactive effects of folate and choline. This lack of consistency could be due to differences in the methods used to assess folate and choline levels, the gestational trimester at which they were measured, and lack of consideration of potential confounding variables. This narrative review discusses and critically reviews current research examining the associations between maternal levels of folate and choline during pregnancy and brain and cognitive development in children. Directions for future research that will increase our understanding of the effects of these nutrients on children’s neurodevelopment are discussed.
Collapse
Affiliation(s)
- Nathalie Irvine
- O’Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Gillian England-Mason
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (G.E.-M.); (D.D.)
- Department of Pediatrics, Cumming School of Medicine, Alberta Children’s Hospital, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-126C Li Ka Shing Centre for Research, 11203-87th Ave NW, Edmonton, AB T6G 2H5, Canada;
| | - Deborah Dewey
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; (G.E.-M.); (D.D.)
- Department of Pediatrics, Cumming School of Medicine, Alberta Children’s Hospital, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
- Hotchkiss Brain Institute, Health Research Innovation Centre, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Fariba Aghajafari
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, G012, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
14
|
Maurer SV, Kong C, Terrando N, Williams CL. Dietary Choline Protects Against Cognitive Decline After Surgery in Mice. Front Cell Neurosci 2022; 15:671506. [PMID: 34970119 PMCID: PMC8712952 DOI: 10.3389/fncel.2021.671506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cuicui Kong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Christina L Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Shahraki S, Esmaeilpour K, Shabani M, Sepehri G, Rajizadeh MA, Maneshian M, Joushi S, Sheibani V. Choline chloride modulates learning, memory, and synaptic plasticity impairments in maternally separated adolescent male rats. Int J Dev Neurosci 2021; 82:19-38. [PMID: 34727391 DOI: 10.1002/jdn.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022] Open
Abstract
Maternal separation (MS) is a model to induce permanent alternations in the central nervous system (CNS) and is associated with increased levels of anxiety and cognitive deficiencies. Since Methyl donor choline (Ch) has been shown to play a significant role in learning and memory and enhances synaptic plasticity, the authors hypothesized that Ch may attenuate MS-induced impairments in synaptic plasticity and cognitive performance. Rat pups underwent a MS protocol for 180 min/day from postnatal day (PND) 1 to 21. Ch was administered subcutaneously (100 mg/kg, 21 days) to the Choline chloride and MS + Choline chloride groups from PND 29 to 49. Anxiety-like behavior, recognition memory, spatial and passive avoidance learning and memory were measured in the adolescent rats. In addition, evoked field excitatory postsynaptic potentials (fEPSP) were recorded from the CA1 region of the hippocampus. MS induced higher anxiety-like behavior in the animals. It also impaired learning and memory. However, MS had no effect on locomotor activity. Subcutaneous administration of Ch attenuated MS-induced cognitive deficits and enhanced the learning and memory of MS rats. Ch also decreased anxiety-like behavior in the open field test. The present results showed that long-term potentiation (LTP) was induced in all groups except MS and MS + saline animals. However, Ch injection induced LTP and had maintenance in MS + choline chloride, but it was not statistically significant compared with the MS group. In summary, the present findings indicate that MS can interfere with normal animal's cognition and subcutaneous of Ch may be considered an appropriate therapeutic strategy for promoting cognitive dysfunctions in MS animals.
Collapse
Affiliation(s)
- Sarieh Shahraki
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology & pharmacology, school of medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Ozawa H, Miyazawa T, Miyazawa T. Effects of Dietary Food Components on Cognitive Functions in Older Adults. Nutrients 2021; 13:2804. [PMID: 34444965 PMCID: PMC8398286 DOI: 10.3390/nu13082804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Population aging has recently been an important issue as the number of elderly people is growing worldwide every year, and the extension of social security costs is financially costly. The increase in the number of elderly people with cognitive decline is a serious problem related to the aging of populations. Therefore, it is necessary to consider not only physical care but also cognitive patterns in the future care of older adults. Since food contains a variety of bioactive substances, dietary patterns may help improve age-related cognitive decline. However, the relationship between cognitive function and individual food components remains ambiguous as no clear efficacy or mechanism has been confirmed. Against this background, this review summarizes previous reports on the biological process of cognitive decline in the elderly and the relationship between individual compounds in foods and cognitive function, as well as the role of individual components of food in cognitive function, in the following order: lipids, carotenoids, vitamins, phenolic compounds, amino acids, peptides, and proteins. Based on the research presented in this review, a proper diet that preserves cognitive function has the potential to improve age-related cognitive decline, Alzheimer's disease, and Parkinson's disease. Hopefully, this review will help to trigger the development of new foods and technologies that improve aging and cognitive functions and extend the healthy life span.
Collapse
Affiliation(s)
| | | | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (H.O.); (T.M.)
| |
Collapse
|
17
|
Valorization of Spent Coffee by Caffeine Extraction Using Aqueous Solutions of Cholinium-Based Ionic Liquids. SUSTAINABILITY 2021. [DOI: 10.3390/su13137509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spent coffee grounds (SCGs) are a waste product with no relevant commercial value. However, SCGs are rich in extractable compounds with biological activity. To add value to this coffee byproduct, water and aqueous solutions of cholinium-based ionic liquids (ILs) were studied to extract caffeine from SCGs. In general, all IL aqueous solutions lead to higher extraction efficiencies of caffeine than pure water, with aqueous solutions of cholinium bicarbonate being the most efficient. A factorial planning was applied to optimize operational conditions. Aqueous solutions of cholinium bicarbonate, at a temperature of 80 °C for 30 min of extraction, a biomass–solvent weight ratio of 0.05 and at an IL concentration of 1.5 M, made it possible to extract 3.29 wt% of caffeine (against 1.50 wt% obtained at the best conditions obtained with pure water). Furthermore, to improve the sustainability of the process, the same IL aqueous solution was consecutively applied to extract caffeine from six samples of fresh biomass, where an increase in the extraction yield from 3.29 to 13.10 wt% was achieved. Finally, the cholinium bicarbonate was converted to cholinium chloride by titration with hydrochloric acid envisioning the direct application of the IL-caffeine extract in food, cosmetic and nutraceutical products. The results obtained prove that aqueous solutions of cholinium-based ILs are improved solvents for the extraction of caffeine from SCGs, paving the way for their use in the valorization of other waste rich in high-value compounds.
Collapse
|
18
|
Hermer E, Murphy B, Chaine AS, Morand-Ferron J. Great tits who remember more accurately have difficulty forgetting, but variation is not driven by environmental harshness. Sci Rep 2021; 11:10083. [PMID: 33980907 PMCID: PMC8114932 DOI: 10.1038/s41598-021-89125-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
The causes of individual variation in memory are poorly understood in wild animals. Harsh environments with sparse or rapidly changing food resources are hypothesized to favour more accurate spatial memory to allow animals to return to previously visited patches when current patches are depleted. A potential cost of more accurate spatial memory is proactive interference, where accurate memories block the formation of new memories. This relationship between spatial memory, proactive interference, and harsh environments has only been studied in scatter-hoarding animals. We compare spatial memory accuracy and proactive interference performance of non-scatter hoarding great tits (Parus major) from high and low elevations where harshness increases with elevation. In contrast to studies of scatter-hoarders, we did not find a significant difference between high and low elevation birds in their spatial memory accuracy or proactive interference performance. Using a variance partitioning approach, we report the first among-individual trade-off between spatial memory and proactive interference, uncovering variation in memory at the individual level where selection may act. Although we have no evidence of harsh habitats affecting spatial memory, our results suggest that if elevation produced differences in spatial memory between elevations, we could see concurrent changes in how quickly birds can forget.
Collapse
Affiliation(s)
- Ethan Hermer
- grid.28046.380000 0001 2182 2255University of Ottawa, Ottawa, ON Canada
| | - Ben Murphy
- grid.7836.a0000 0004 1937 1151University of Cape Town, Cape Town, South Africa
| | - Alexis S. Chaine
- Station d’Ecologie Théorique et Expérimentale du CNRS, Moulis, France ,grid.424401.70000 0004 0384 0611Institute for Advanced Studies in Toulouse, Toulouse School of Economics, Toulouse, France
| | | |
Collapse
|
19
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
20
|
Waddell J, Hill E, Tang S, Jiang L, Xu S, Mooney SM. Choline Plus Working Memory Training Improves Prenatal Alcohol-Induced Deficits in Cognitive Flexibility and Functional Connectivity in Adulthood in Rats. Nutrients 2020; 12:E3513. [PMID: 33202683 PMCID: PMC7696837 DOI: 10.3390/nu12113513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the leading known cause of intellectual disability, and may manifest as deficits in cognitive function, including working memory. Working memory capacity and accuracy increases during adolescence when neurons in the prefrontal cortex undergo refinement. Rats exposed to low doses of ethanol prenatally show deficits in working memory during adolescence, and in cognitive flexibility in young adulthood. The cholinergic system plays a crucial role in learning and memory processes. Here we report that the combination of choline and training on a working memory task during adolescence significantly improved cognitive flexibility (performance on an attentional set shifting task) in young adulthood: 92% of all females and 81% of control males formed an attentional set, but only 36% of ethanol-exposed males did. Resting state functional magnetic resonance imaging showed that functional connectivity among brain regions was different between the sexes, and was altered by prenatal ethanol exposure and by choline + training. Connectivity, particularly between prefrontal cortex and striatum, was also different in males that formed a set compared with those that did not. Together, these findings indicate that prenatal exposure to low doses of ethanol has persistent effects on brain functional connectivity and behavior, that these effects are sex-dependent, and that an adolescent intervention could mitigate some of the effects of prenatal ethanol exposure.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Elizabeth Hill
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Li Jiang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.T.); (L.J.); (S.X.)
| | - Sandra M. Mooney
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.H.); (S.M.M.)
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
21
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Wallace TC, Blusztajn JK, Caudill MA, Klatt KC, Zeisel SH. Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. J Diet Suppl 2019; 17:733-752. [DOI: 10.1080/19390211.2019.1639875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Taylor C. Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
- Think Healthy Group, Inc, Washington, DC, USA
| | - Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marie A. Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kevin C. Klatt
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven H. Zeisel
- Research Institute, University of North Carolina, Kannapolis, NC, USA
| |
Collapse
|
23
|
Kelley CM, Ginsberg SD, Alldred MJ, Strupp BJ, Mufson EJ. Maternal Choline Supplementation Alters Basal Forebrain Cholinergic Neuron Gene Expression in the Ts65Dn Mouse Model of Down Syndrome. Dev Neurobiol 2019; 79:664-683. [PMID: 31120189 PMCID: PMC6756931 DOI: 10.1002/dneu.22700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022]
Abstract
Down syndrome (DS), trisomy 21, is marked by intellectual disability and a premature aging profile including degeneration of the basal forebrain cholinergic neuron (BFCN) projection system, similar to Alzheimer's disease (AD). Although data indicate that perinatal maternal choline supplementation (MCS) alters the structure and function of these neurons in the Ts65Dn mouse model of DS and AD (Ts), whether MCS affects the molecular profile of vulnerable BFCNs remains unknown. We investigated the genetic signature of BFCNs obtained from Ts and disomic (2N) offspring of Ts65Dn dams maintained on a MCS diet (Ts+, 2N+) or a choline normal diet (ND) from mating until weaning, then maintained on ND until 4.4-7.5 months of age. Brains were then collected and prepared for choline acetyltransferase (ChAT) immunohistochemistry and laser capture microdissection followed by RNA extraction and custom-designed microarray analysis. Findings revealed upregulation of select transcripts in classes of genes related to the cytoskeleton (Tubb4b), AD (Cav1), cell death (Bcl2), presynaptic (Syngr1), immediate early (Fosb, Arc), G protein signaling (Gabarap, Rgs10), and cholinergic neurotransmission (Chrnb3) in Ts compared to 2N mice, which were normalized with MCS. Moreover, significant downregulation was seen in select transcripts associated with the cytoskeleton (Dync1h1), intracellular signaling (Itpka, Gng3, and Mlst8), and cell death (Ccng1) in Ts compared to 2N mice that was normalized with MCS. This study provides insight into genotype-dependent differences and the effects of MCS at the molecular level within a key vulnerable cell type in DS and AD.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Langone School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
24
|
Belchior DCV, Almeida MR, Sintra TE, Ventura SPM, Duarte IF, Freire MG. Odd–Even Effect in the Formation and Extraction Performance of Ionic-Liquid-Based Aqueous Biphasic Systems. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Diana C. V. Belchior
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mafalda R. Almeida
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia E. Sintra
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia P. M. Ventura
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F. Duarte
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Ahern GJ, Hennessy A, Ryan CA, Ross RP, Stanton C. Advances in Infant Formula Science. Annu Rev Food Sci Technol 2019; 10:75-102. [DOI: 10.1146/annurev-food-081318-104308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human milk contains a plethora of nutrients and bioactive components to help nourish the developing neonate and is considered the “gold standard” for early life nutrition—as befits the only food “designed” by evolution to feed human infants. Over the past decade, there is considerable evidence that highlights the “intelligence” contained in milk components that contribute to infant health beyond basic nutrition—in areas such as programming the developing microbiome and immune system and protecting against infection. Such discoveries have led to new opportunities for infant milk formula (IMF) manufacturers to refine nutritional content in order to simulate the functionality of breast milk. These include the addition of specialized protein fractions as well as fatty acid and complex carbohydrate components—all of which have mechanistic supporting evidence in terms of improving the health and nutrition of the infant. Moreover, IMF is the single most important dietary intervention whereby the human microbiome can be influenced at a crucial early stage of development. In this respect, it is expected that the complexity of IMF will continue to increase as we get a greater understanding of how it can modulate microbiota development (including the development of probiotics, prebiotics, and synbiotics) and influence long-term health. This review provides a scientific evaluation of key features of importance to infant nutrition, including differences in milk composition and emerging “humanized” ingredients.
Collapse
Affiliation(s)
- Grace J. Ahern
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - A.A. Hennessy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - C. Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork T12 K8AF, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| |
Collapse
|
26
|
Moreno H, Hall G, Gallo M, de Brugada I. Dietary choline supplementation in adult rats improves performance on a test of recognition memory. Behav Brain Res 2018; 353:210-217. [PMID: 29694911 DOI: 10.1016/j.bbr.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/27/2022]
Abstract
In two experiments adult rats (aged at least 6 months at the start of the procedure) received a diet enriched with added choline for a period of 10 weeks; control subjects were maintained on a standard diet during this time. All rats then underwent the spontaneous object recognition (SOR) procedure in which they were exposed to a pair of objects and then tested, after a retention interval, to a display with one object changed. Exploration of the changed object indicates retention and use of information acquired during the exposure phase. All subjects showed retention with a 24-h interval (Experiments 1 and 2) and when retested after a further 24 h (Experiment 1). But when tested for the first time after a 48-h interval (Experiment 2), control subjects showed no evidence of retention, exploring both objects equally, whereas those given the dietary supplement continued to show a preference for the changed object. This supports the conclusion that dietary choline supplementation can enhance performance on a task regarded as a test of declarative memory, and will do so even when the supplementations is given in adulthood.
Collapse
Affiliation(s)
- Hayarelis Moreno
- Department of Psychology of Education and Psychobiology, International University of La Rioja, Spain.
| | - Geoffrey Hall
- Department of Psychology, University of York, York, UK; School of Psychology, University of New South Wales, Sydney, Australia
| | - Milagros Gallo
- Department of Experimental Psychology, University of Granada, Spain; Institute of Neurosciences, Center for Biomedical Research, University of Granada, Spain
| | - Isabel de Brugada
- Department of Experimental Psychology, University of Granada, Spain; CIMCYC (University of Granada), Spain
| |
Collapse
|
27
|
Wallace TC. A Comprehensive Review of Eggs, Choline, and Lutein on Cognition Across the Life-span. J Am Coll Nutr 2018; 37:269-285. [DOI: 10.1080/07315724.2017.1423248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Taylor C. Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia; Think Healthy Group, Inc., Washington, DC
| |
Collapse
|
28
|
Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J 2018; 32:2172-2180. [PMID: 29217669 DOI: 10.1096/fj.201700692rr] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.
Collapse
Affiliation(s)
- Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA; and
| | - Laura Muscalu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Ithaca College, Ithaca, New York, USA
| | - Julie E H Nevins
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Richard L Canfield
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
29
|
Dayon L, Guiraud SP, Corthésy J, Da Silva L, Migliavacca E, Tautvydaitė D, Oikonomidi A, Moullet B, Henry H, Métairon S, Marquis J, Descombes P, Collino S, Martin FPJ, Montoliu I, Kussmann M, Wojcik J, Bowman GL, Popp J. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. ALZHEIMERS RESEARCH & THERAPY 2017. [PMID: 28623948 PMCID: PMC5473969 DOI: 10.1186/s13195-017-0270-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Methods Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1–42 peptide chain [Aβ1–42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. Results The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ1–42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. Conclusions We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0270-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loïc Dayon
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland.
| | - Seu Ping Guiraud
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - John Corthésy
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Laeticia Da Silva
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Domilė Tautvydaitė
- Old Age Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Aikaterini Oikonomidi
- Old Age Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Barbara Moullet
- Old Age Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Hugues Henry
- Department of Laboratories, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Julien Marquis
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Sebastiano Collino
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - François-Pierre J Martin
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Martin Kussmann
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland.,Present address: Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Gene L Bowman
- Nestlé Institute of Health Sciences, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Bâtiment H, 1015, Lausanne, Switzerland
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
30
|
Zeisel S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017; 9:nu9050445. [PMID: 28468239 PMCID: PMC5452175 DOI: 10.3390/nu9050445] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.
Collapse
Affiliation(s)
- Steven Zeisel
- UNC Nutrition Research Institute, Departments of Nutrition and Pediatrics, University of North Carolina at Chapel Hill, 500 Laureate Drive, Kannapolis, NC 28081, USA.
| |
Collapse
|
31
|
Powers BE, Kelley CM, Velazquez R, Ash JA, Strawderman MS, Alldred MJ, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience 2017; 340:501-514. [PMID: 27840230 PMCID: PMC5177989 DOI: 10.1016/j.neuroscience.2016.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023]
Abstract
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.
Collapse
Affiliation(s)
- Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Christy M Kelley
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ramon Velazquez
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A Ash
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Myla S Strawderman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Elliott J Mufson
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Idrus NM, Breit KR, Thomas JD. Dietary choline levels modify the effects of prenatal alcohol exposure in rats. Neurotoxicol Teratol 2017; 59:43-52. [PMID: 27888055 PMCID: PMC5770193 DOI: 10.1016/j.ntt.2016.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Kristen R Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA.
| |
Collapse
|
33
|
|
34
|
Kelley CM, Ash JA, Powers BE, Velazquez R, Alldred MJ, Ikonomovic MD, Ginsberg SD, Strupp BJ, Mufson EJ. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome. Curr Alzheimer Res 2016; 13:84-96. [PMID: 26391045 DOI: 10.2174/1567205012666150921100515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer's disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elliott J Mufson
- Barrow Neurological Institute, Dept. Neurobiology, Phoenix, AZ 85031, USA.
| |
Collapse
|
35
|
Strupp BJ, Powers BE, Velazquez R, Ash JA, Kelley CM, Alldred MJ, Strawderman M, Caudill MA, Mufson EJ, Ginsberg SD. Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 2016; 13:97-106. [PMID: 26391046 DOI: 10.2174/1567205012666150921100311] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 01/17/2023]
Abstract
Although Down syndrome (DS) can be diagnosed prenatally, currently there are no effective treatments to lessen the intellectual disability (ID) which is a hallmark of this disorder. Furthermore, starting as early as the third decade of life, DS individuals exhibit the neuropathological hallmarks of Alzheimer's disease (AD) with subsequent dementia, adding substantial emotional and financial burden to their families and society at large. A potential therapeutic strategy emerging from the study of trisomic mouse models of DS is to supplement the maternal diet with additional choline during pregnancy and lactation. Studies demonstrate that maternal choline supplementation (MCS) markedly improves spatial cognition and attentional function, as well as normalizes adult hippocampal neurogenesis and offers protection to basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model of DS. These effects on neurogenesis and BFCNs correlate significantly with spatial cognition, suggesting functional relationships. In this review, we highlight some of these provocative findings, which suggest that supplementing the maternal diet with additional choline may serve as an effective and safe prenatal strategy for improving cognitive, affective, and neural functioning in DS. In light of growing evidence that all pregnancies would benefit from increased maternal choline intake, this type of recommendation could be given to all pregnant women, thereby providing a very early intervention for individuals with DS, and include babies born to mothers unaware that they are carrying a fetus with DS.
Collapse
Affiliation(s)
- Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sommer IE, Bearden CE, van Dellen E, Breetvelt EJ, Duijff SN, Maijer K, van Amelsvoort T, de Haan L, Gur RE, Arango C, Díaz-Caneja CM, Vinkers CH, Vorstman JA. Early interventions in risk groups for schizophrenia: what are we waiting for? NPJ SCHIZOPHRENIA 2016; 2:16003. [PMID: 27336054 PMCID: PMC4849435 DOI: 10.1038/npjschz.2016.3] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
Intervention strategies in adolescents at ultra high-risk (UHR) for psychosis are promising for reducing conversion to overt illness, but have only limited impact on functional outcome. Recent studies suggest that cognition does not further decline during the UHR stage. As social and cognitive impairments typically develop before the first psychotic episode and even years before the UHR stage, prevention should also start much earlier in the groups at risk for schizophrenia and other psychiatric disorders. Early intervention strategies could aim to improve stress resilience, optimize brain maturation, and prevent or alleviate adverse environmental circumstances. These strategies should urgently be tested for efficacy: the prevalence of ~1% implies that yearly ~22 in every 100,000 people develop overt symptoms of this illness, despite the fact that for many of them—e.g., children with an affected first-degree family member or carriers of specific genetic variants—increased risk was already identifiable early in life. Our current ability to recognize several risk groups at an early age not only provides an opportunity, but also implies a clinical imperative to act. Time is pressing to investigate preventive interventions in high-risk children to mitigate or prevent the development of schizophrenia and related psychiatric disorders.
Collapse
Affiliation(s)
- Iris E Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California , Los Angeles, CA, USA
| | - Edwin van Dellen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Elemi J Breetvelt
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Sasja N Duijff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Kim Maijer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University , Maastricht, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Psychiatric Centre, AMC , Amsterdam, The Netherlands
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, School of Medicine, Universidad Complutense , Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, School of Medicine, Universidad Complutense , Madrid, Spain
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Jacob As Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
37
|
|
38
|
Wang Y, Surzenko N, Friday WB, Zeisel SH. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J 2015; 30:1566-78. [PMID: 26700730 DOI: 10.1096/fj.15-282426] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 11/11/2022]
Abstract
Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.
Collapse
Affiliation(s)
- Yanyan Wang
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalia Surzenko
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Walter B Friday
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Cheatham CL, Sheppard KW. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients 2015; 7:9079-95. [PMID: 26540073 PMCID: PMC4663580 DOI: 10.3390/nu7115452] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70-30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively). Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively). Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.
Collapse
Affiliation(s)
- Carol L Cheatham
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kelly Will Sheppard
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Souza RL, Lima RA, Coutinho JA, Soares CM, Lima ÁS. Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.05.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Castro-Gómez P, Garcia-Serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot Essent Fatty Acids 2015; 101:41-51. [PMID: 26242691 DOI: 10.1016/j.plefa.2015.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023]
Abstract
Glycerophospholipids and sphingolipids participate in a variety of indispensable metabolic, neurological, and intracellular signaling processes. In this didactic paper we review the biological roles of phospholipids and try to unravel the precise nature of their putative healthful activities. We conclude that the biological actions of phospholipids activities potentially be nutraceutically exploited in the adjunct therapy of widely diffused pathologies such as neurodegeneration or the metabolic syndrome. As phospholipids can be recovered from inexpensive sources such as food processing by-products, ad-hoc investigation is warranted.
Collapse
Affiliation(s)
- P Castro-Gómez
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - A Garcia-Serrano
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - F Visioli
- Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - J Fontecha
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain.
| |
Collapse
|
42
|
Hoeijmakers L, Lucassen PJ, Korosi A. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function. Front Mol Neurosci 2015; 7:103. [PMID: 25620909 PMCID: PMC4288131 DOI: 10.3389/fnmol.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
43
|
Abstract
BACKGROUND Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. METHODS We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). RESULTS Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. CONCLUSIONS These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder.
Collapse
Affiliation(s)
- Meagan L Auger
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver BC, Canada (Drs Auger and Floresco)
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver BC, Canada (Drs Auger and Floresco).
| |
Collapse
|
44
|
Domańska U, Papis P, Szydłowski J, Królikowska M, Królikowski M. Excess Enthalpies of Mixing, Effect of Temperature and Composition on the Density, and Viscosity and Thermodynamic Properties of Binary Systems of {Ammonium-Based Ionic Liquid + Alkanediol}. J Phys Chem B 2014; 118:12692-705. [DOI: 10.1021/jp5065243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Urszula Domańska
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Thermodynamic
Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001, South Africa
| | - Paulina Papis
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jerzy Szydłowski
- Faculty
of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Marta Królikowska
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marek Królikowski
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
45
|
Yan J, Ginsberg SD, Powers B, Alldred MJ, Saltzman A, Strupp BJ, Caudill MA. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. FASEB J 2014; 28:4312-23. [PMID: 24963152 DOI: 10.1096/fj.14-251736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.
Collapse
Affiliation(s)
- Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and Department of Psychiatry and Department of Physiology and Neuroscience, New York University Langone Medical Center, New York, New York, USA
| | - Brian Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and Department of Psychiatry and
| | - Arthur Saltzman
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
46
|
Ash JA, Velazquez R, Kelley CM, Powers BE, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis 2014; 70:32-42. [PMID: 24932939 DOI: 10.1016/j.nbd.2014.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022] Open
Abstract
Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large.
Collapse
Affiliation(s)
- Jessica A Ash
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ramon Velazquez
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Christy M Kelley
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Departments of Psychiatry and Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10962, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Kelley CM, Powers BE, Velazquez R, Ash JA, Ginsberg SD, Strupp BJ, Mufson EJ. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice. J Comp Neurol 2014; 522:1390-410. [PMID: 24178831 PMCID: PMC3959592 DOI: 10.1002/cne.23492] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022]
Abstract
Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer's disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3-7.5 months of age. Ts65Dn dams were maintained on a choline-supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75(NTR) ). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn-unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Brian E. Powers
- Div. Nutritional Sciences and Dept. of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Ramon Velazquez
- Div. Nutritional Sciences and Dept. of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A. Ash
- Div. Nutritional Sciences and Dept. of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA, and Depts. of Psychiatry, and Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10962, USA
| | - Barbara J. Strupp
- Div. Nutritional Sciences and Dept. of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Ventura SPM, e Silva FA, Gonçalves AMM, Pereira JL, Gonçalves F, Coutinho JAP. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 102:48-54. [PMID: 24580821 DOI: 10.1016/j.ecoenv.2014.01.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 05/20/2023]
Abstract
Cholinium-based ionic liquids are quaternary ammonium salts with a wide range of potential industrial applications. Based on the fact that the cholinium is a complex B vitamin and widely used as food additive, the cholinium-based ionic liquids are generically regarded as environmentally "harmless" and thus, accepted as "non-toxic", although their ecotoxicological profile is poorly known. This work provides new ecotoxicological data for ten cholinium-based salts and ionic liquids, aiming to extend the surprisingly restricted body of knowledge about the ecotoxicity of this particular family and to gain insight on the toxicity mechanism of these compounds. The results reported here show that not all the cholinium tested can be considered harmless towards the test organism adopted. Moreover, the results suggest that the cholinium family exhibits a different mechanism of toxicity as compared to the imidazolium ionic liquids previously described in the literature.
Collapse
Affiliation(s)
- Sónia P M Ventura
- CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Francisca A e Silva
- CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro, Portugal; IMAR-CMA (Instituto do Mar), Departamento das Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - Joana L Pereira
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando Gonçalves
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João A P Coutinho
- CICECO, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
49
|
Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2013; 58:92-101. [PMID: 23643842 PMCID: PMC4029409 DOI: 10.1016/j.nbd.2013.04.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.
Collapse
Affiliation(s)
- Ramon Velazquez
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Jessica A. Ash
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Brian E. Powers
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Christy M. Kelley
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Myla Strawderman
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Zoe I. Luscher
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, and Departments of Psychiatry, and Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10962
| | - Elliott J. Mufson
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Barbara J. Strupp
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
50
|
Blusztajn JK, Mellott TJ. Neuroprotective actions of perinatal choline nutrition. Clin Chem Lab Med 2013; 51:591-9. [PMID: 23314544 DOI: 10.1515/cclm-2012-0635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/15/2022]
Abstract
Choline is an essential nutrient for humans. Studies in rats and mice have shown that high choline intake during gestation or the perinatal period improves cognitive function in adulthood, prevents memory decline of old age, and protects the brain from damage and cognitive and neurological deterioration associated with epilepsy and hereditary conditions such as Down's and Rett syndromes. These behavioral changes are accompanied by modified patterns of expression of hundreds of cortical and hippocampal genes including those encoding proteins central for learning and memory processing. The effects of choline correlate with cerebral cortical changes in DNA and histone methylation, thus suggesting an epigenomic mechanism of action of perinatal choline.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|