1
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Pietrantonio F, Serreqi A, Zerbe H, Svenningsson P, Aigner L. The leukotriene receptor antagonist montelukast as a potential therapeutic adjuvant in multiple sclerosis - a review. Front Pharmacol 2024; 15:1450493. [PMID: 39346564 PMCID: PMC11427386 DOI: 10.3389/fphar.2024.1450493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.
Collapse
Affiliation(s)
| | | | | | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Stojkovic L, Jovanovic I, Dincic E, Djordjevic A, Kuveljic J, Djuric T, Stankovic A, Vojinovic S, Zivkovic M. Targeted RNAseq Revealed the Gene Expression Signature of Ferroptosis-Related Processes Associated with Disease Severity in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:3016. [PMID: 38474262 DOI: 10.3390/ijms25053016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Detrimental molecular processes in multiple sclerosis (MS) lead to the cellular accumulation of lipid peroxidation products and iron in the CNS, which represents the main driving force for ferroptosis. Ferroptosis is an iron-dependent form of regulated cell death, with proposed roles in neurodegeneration, oligodendrocyte loss and neuroinflammation in the pathogenesis of MS. Ferroptosis-related gene expression signature and molecular markers, which could reflect MS severity and progression, are currently understudied in humans. To tackle these challenges, we have applied a curated approach to create and experimentally analyze a comprehensive panel of ferroptosis-related genes covering a wide range of biological processes associated with ferroptosis. We performed the first ferroptosis-related targeted RNAseq on PBMCs from highly distinctive MS phenotype groups: mild relapsing-remitting (RR) (n = 24) and severe secondary progressive (SP) (n = 24), along with protein detection of GPX4 and products of lipid peroxidation (MDA and 4-HNE). Out of 138 genes, 26 were differentially expressed genes (DEGs), indicating changes in both pro- and anti-ferroptotic genes, representing a molecular signature associated with MS severity. The top three DEGs, as non-core ferroptosis genes, CDKN1A, MAP1B and EGLN2, were replicated by qPCR to validate findings in independent patient groups (16 RR and 16 SP MS). Co-expression and interactions of DEGs were presented as additional valuable assets for deeper understanding of molecular mechanisms and key targets related to MS severity. Our study integrates a wide genetic signature and biochemical markers related to ferroptosis in easily obtainable PBMCs of MS patients with clinical data and disease severity, thus providing novel molecular markers which can complement disease-related changes in the brain and undergo further research as potential therapeutic targets.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty, University of Defense in Belgrade, 11042 Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Slobodan Vojinovic
- Department of Neurology, Medical Faculty, University of Nis, 18000 Nis, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Broos JY, van der Burgt RTM, Konings J, Rijnsburger M, Werz O, de Vries HE, Giera M, Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: fueling or dampening disease progression? J Neuroinflammation 2024; 21:21. [PMID: 38233951 PMCID: PMC10792915 DOI: 10.1186/s12974-023-02981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.
Collapse
Affiliation(s)
- Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne T M van der Burgt
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | - Julia Konings
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gudi V, Grieb P, Linker RA, Skripuletz T. CDP-choline to promote remyelination in multiple sclerosis: the need for a clinical trial. Neural Regen Res 2023; 18:2599-2605. [PMID: 37449595 DOI: 10.4103/1673-5374.373671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
6
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Elkjaer ML, Röttger R, Baumbach J, Illes Z. A Systematic Review of Tissue and Single Cell Transcriptome/Proteome Studies of the Brain in Multiple Sclerosis. Front Immunol 2022; 13:761225. [PMID: 35309325 PMCID: PMC8924618 DOI: 10.3389/fimmu.2022.761225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating and degenerative disease of the central nervous system (CNS). Although inflammatory responses are efficiently treated, therapies for progression are scarce and suboptimal, and biomarkers to predict the disease course are insufficient. Cure or preventive measures for MS require knowledge of core pathological events at the site of the tissue damage. Novelties in systems biology have emerged and paved the way for a more fine-grained understanding of key pathological pathways within the CNS, but they have also raised questions still without answers. Here, we systemically review the power of tissue and single-cell/nucleus CNS omics and discuss major gaps of integration into the clinical practice. Systemic search identified 49 transcriptome and 11 proteome studies of the CNS from 1997 till October 2021. Pioneering molecular discoveries indicate that MS affects the whole brain and all resident cell types. Despite inconsistency of results, studies imply increase in transcripts/proteins of semaphorins, heat shock proteins, myelin proteins, apolipoproteins and HLAs. Different lesions are characterized by distinct astrocytic and microglial polarization, altered oligodendrogenesis, and changes in specific neuronal subtypes. In all white matter lesion types, CXCL12, SCD, CD163 are highly expressed, and STAT6- and TGFβ-signaling are increased. In the grey matter lesions, TNF-signaling seems to drive cell death, and especially CUX2-expressing neurons may be susceptible to neurodegeneration. The vast heterogeneity at both cellular and lesional levels may underlie the clinical heterogeneity of MS, and it may be more complex than the current disease phenotyping in the clinical practice. Systems biology has not solved the mystery of MS, but it has discovered multiple molecules and networks potentially contributing to the pathogenesis. However, these results are mostly descriptive; focused functional studies of the molecular changes may open up for a better interpretation. Guidelines for acceptable quality or awareness of results from low quality data, and standardized computational and biological pipelines may help to overcome limited tissue availability and the “snap shot” problem of omics. These may help in identifying core pathological events and point in directions for focus in clinical prevention.
Collapse
Affiliation(s)
- Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys 2021; 712:109030. [PMID: 34517010 DOI: 10.1016/j.abb.2021.109030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) is a complicated autoimmune disease characterized by inflammatory and demyelinating events in the central nervous system. The exact etiology and pathogenesis of MS have not been elucidated. However, a set of metabolic changes and their effects on immune cells and neural functions have been explained. This review highlights the contribution of carbohydrates and lipids metabolism to the etiology and pathogenesis of MS. Then, we have proposed a hypothetical relationship between such metabolic changes and the immune system in patients with MS. Finally, the potential clinical implications of these metabolic changes in diagnosis, prognosis, and discovering therapeutic targets have been discussed. It is concluded that research on the pathophysiological alterations of carbohydrate and lipid metabolism may be a potential strategy for paving the way toward MS treatment.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark; Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5-/- Mice. Metabolites 2021; 11:metabo11100698. [PMID: 34677413 PMCID: PMC8538363 DOI: 10.3390/metabo11100698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5−/− mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5−/− animals tested previously in similar experimental setups.
Collapse
|
10
|
Doroshenko ER, Drohomyrecky PC, Gower A, Whetstone H, Cahill LS, Ganguly M, Spring S, Yi TJ, Sled JG, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Deficiency in Microglia Results in Exacerbated Axonal Injury and Tissue Loss in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:570425. [PMID: 33732230 PMCID: PMC7959796 DOI: 10.3389/fimmu.2021.570425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear receptor that functions to maintain metabolic homeostasis, regulate cell growth, and limit the development of excessive inflammation during immune responses. Previously, we reported that PPAR-δ-deficient mice develop a more severe clinical course of experimental autoimmune encephalomyelitis (EAE); however, it was difficult to delineate the role that microglia played in this disease phenotype since PPAR-δ-deficient mice exhibited a number of immune defects that enhanced CNS inflammation upstream of microglia activation. Here, we specifically investigated the role of PPAR-δ in microglia during EAE by using mice where excision of a floxed Ppard allele was driven by expression of a tamoxifen (TAM)-inducible CX3C chemokine receptor 1 promoter-Cre recombinase transgene (Cx3cr1CreERT2: Ppardfl/fl). We observed that by 30 days of TAM treatment, Cx3cr1CreERT2: Ppardfl/fl mice exhibited Cre-mediated deletion primarily in microglia and this was accompanied by efficient knockdown of Ppard expression in these cells. Upon induction of EAE, TAM-treated Cx3cr1CreERT2: Ppardfl/fl mice presented with an exacerbated course of disease compared to TAM-treated Ppardfl/fl controls. Histopathological and magnetic resonance (MR) studies on the spinal cord and brains of EAE mice revealed increased Iba-1 immunoreactivity, axonal injury and CNS tissue loss in the TAM-treated Cx3cr1CreERT2: Ppardfl/fl group compared to controls. In early EAE, a time when clinical scores and the infiltration of CD45+ leukocytes was equivalent between Cx3cr1CreERT2: Ppardfl/fl and Ppardfl/fl mice, Ppard-deficient microglia exhibited a more reactive phenotype as evidenced by a shorter maximum process length and lower expression of genes associated with a homeostatic microglia gene signature. In addition, Ppard-deficient microglia exhibited increased expression of genes associated with reactive oxygen species generation, phagocytosis and lipid clearance, M2-activation, and promotion of inflammation. Our results therefore suggest that PPAR-δ has an important role in microglia in limiting bystander tissue damage during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Annette Gower
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Heather Whetstone
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Milan Ganguly
- Histology Core, The Centre for Phenogenomics, Toronto, ON, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Gorica E, Calderone V. Arachidonic Acid Derivatives and Neuroinflammation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:118-129. [PMID: 33557740 DOI: 10.2174/1871527320666210208130412] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.
Collapse
Affiliation(s)
- Era Gorica
- Department of Pharmacy, University of Pisa, Pisa. Italy
| | | |
Collapse
|
12
|
Saco A, Rey-Campos M, Novoa B, Figueras A. Transcriptomic Response of Mussel Gills After a Vibrio splendidus Infection Demonstrates Their Role in the Immune Response. Front Immunol 2020; 11:615580. [PMID: 33391288 PMCID: PMC7772429 DOI: 10.3389/fimmu.2020.615580] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mussels (Mytilus galloprovincialis) are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with Vibrio splendidus identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
13
|
Hoxha M, Spahiu E, Prendi E, Zappacosta B. A Systematic Review on the Role of Arachidonic Acid Pathway in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:160-187. [PMID: 32842948 DOI: 10.2174/1871527319666200825164123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by destruction of oligodendrocytes, immune cell infiltration and demyelination. Inflammation plays a significant role in MS, and the inflammatory mediators such as eicosanoids, leukotrienes, superoxide radicals are involved in pro-inflammatory responses in MS. In this systematic review we tried to define and discuss all the findings of in vivo animal studies and human clinical trials on the potential association between arachidonic acid (AA) pathway and multiple sclerosis. METHODS A systematic literature search across Pubmed, Scopus, Embase and Cochrane database was conducted. This systematic review was performed according to PRISMA guidelines. RESULTS A total of 146 studies were included, of which 34 were conducted in animals, 58 in humans, and 60 studies reported the role of different compounds that target AA mediators or their corresponding enzymes/ receptors, and can have a therapeutic effect in MS. These results suggest that eicosanoids have significant roles in experimental autoimmune encephalomyelitis (EAE) and MS. The data from animal and human studies elucidated that PGI2, PGF2α, PGD2, isoprostanes, PGE2, PLA2, LTs are increased in MS. PLA2 inhibition modulates the progression of the disease. PGE1 analogues can be a useful option in the treatment of MS. CONCLUSIONS All studies reported the beneficial effects of COX and LOX inhibitors in MS. The hybrid compounds, such as COX-2 inhibitors/TP antagonists and 5-LOX inhibitors can be an innovative approach for multiple sclerosis treatment. Future work in MS should shed light in synthesizing new compounds targeting arachidonic acid pathway.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| | | | - Emanuela Prendi
- Catholic University Our Lady of Good Counsel, Department of Biomedical Sciences, Rruga Dritan Hoxha, Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| |
Collapse
|
14
|
Jäkel S, Williams A. What Have Advances in Transcriptomic Technologies Taught us About Human White Matter Pathologies? Front Cell Neurosci 2020; 14:238. [PMID: 32848627 PMCID: PMC7418269 DOI: 10.3389/fncel.2020.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting insight into the pathological mechanisms. However, starting in the early 2000s, next-generation sequencing (NGS) and the routine application of bulk RNA-sequencing and microarray technologies have revolutionized the usefulness of post-mortem human brain tissue. This has allowed many studies to provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying resolution, with masking of lowly expressed genes and regulatory elements in different cell types. The recent rapid evolution of single-cell technologies has now allowed researchers to shed light on human pathologies at a previously unreached resolution revealing further insights into pathological mechanisms that will open the way for the development of new strategies for therapies. In this review article, we will give an overview of the incremental information that single-cell technologies have given us for human white matter (WM) pathologies, summarize which single-cell technologies are available, and speculate where these novel approaches may lead us for pathological assessment in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
15
|
Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer's disease. Brain Behav Immun 2020; 88:844-855. [PMID: 32222525 DOI: 10.1016/j.bbi.2020.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
5-lipoxygenase (ALOX5) is an enzyme involved in arachidonic acid (AA) metabolism, a metabolic pathway in which cysteinyl leukotrienes (CysLTs) are the resultant metabolites. Both ALOX5 and CysLTs are clinically significant in a number of inflammatory diseases, such as in asthma and allergic rhinitis, and drugs antagonizing the effect of these molecules have long been successfully used to counter these diseases. Interestingly, recent advances in 'neuroinflammation' research has led to the discovery of several novel inflammatory pathways regulating many cerebral pathologies, including the ALOX5 pathway. By means of pharmacological and genetic studies, both ALOX5 and CysLTs receptors have been shown to be involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative/neurological diseases, such as in Parkinson's disease, multiple sclerosis, and epilepsy. In both transgenic and sporadic models of AD, it has been shown that the levels of ALOX5/CysLTs are elevated, and that genetic/pharmacological interventions of these molecules can alleviate AD-related behavioral and pathological conditions. Clinical relevance of these molecules has also been found in AD brain samples. In this review, we aim to summarize such important findings on the role of ALOX5/CysLTs in AD pathophysiology, from both the cellular and the molecular aspects, and also discuss the potential of their blockers as possible therapeutic choices to curb AD-related conditions.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Arijit Ghosh
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jingran Lin
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Chunteng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yining Pan
- Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Hao Hong
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| | - Susu Tang
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
16
|
Kharati M, Foroutanparsa S, Rabiee M, Salarian R, Rabiee N, Rabiee G. Early Diagnosis of Multiple Sclerosis Based on Optical and Electrochemical Biosensors: Comprehensive Perspective. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180829111004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background:
Multiple Sclerosis (MS) involves an immune-mediated response in which
body’s immune system destructs the protective sheath (myelin). Part of the known MS biomarkers are
discovered in cerebrospinal fluid like oligoclonal lgG (OCGB), and also in blood like myelin Oligodendrocyte
Glycoprotein (MOG). The conventional MS diagnostic methods often fail to detect the
disease in early stages such as Clinically Isolated Syndrome (CIS), which considered as a concerning
issue since CIS highlighted as a prognostic factor of MS development in most cases.
Methods:
MS diagnostic techniques include Magnetic Resonance Imaging (MRI) of the brain and spinal
cord, lumbar puncture (or spinal tap) that evaluate cerebrospinal fluid, evoked potential testing revealing
abnormalities in the brain and spinal cord. These conventional diagnostic methods have some
negative points such as extensive processing time as well as restriction in the quantity of samples that
can be analyzed concurrently. Scientists have focused on developing the detection methods especially
early detection which belongs to ultra-sensitive, non-invasive and needed for the Point of Care (POC)
diagnosis because the situation was complicated by false positive or negative results.
Results:
As a result, biosensors are utilized and investigated since they could be ultra-sensitive to specific
compounds, cost effective devices, body-friendly and easy to implement. In addition, it has been
proved that the biosensors on physiological fluids (blood, serum, urine, saliva, milk etc.) have quick
response in a non-invasive rout. In general form, a biosensor system for diagnosis and early detection
process usually involves; biomarker (target molecule), bio receptor (recognition element) and compatible
bio transducer.
Conclusion:
Studies underlined that early treatment of patients with high possibility of MS can be advantageous
by postponing further abnormalities on MRI and subsequent attacks.
:
This Review highlights variable disease diagnosis approaches such as Surface Plasmon Resonance
(SPR), electrochemical biosensors, Microarrays and microbeads based Microarrays, which are considered
as promising methods for detection and early detection of MS.
Collapse
Affiliation(s)
- Maryam Kharati
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sanam Foroutanparsa
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Noor, Royan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ghazal Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Lipid Mediator Profiles Predict Response to Therapy with an Oral Frankincense Extract in Relapsing-Remitting Multiple Sclerosis. Sci Rep 2020; 10:8776. [PMID: 32472007 PMCID: PMC7260364 DOI: 10.1038/s41598-020-65215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Lipid mediators (LMs) are a unique class of immunoregulatory signalling molecules and known to be affected by frankincense extracts. We performed LM profiling by metabololipidomics in plasma samples from 28 relapsing-remitting multiple sclerosis (RR-MS) patients who took a standardised frankincense extract (SFE) daily for eight months in a clinical phase IIa trial (NCT01450124) and in 28 age- and gender-matched healthy controls. Magnetic resonance imaging, immunological outcomes and serum neurofilament light chain levels were correlated to changes in the LM profiles of the RR-MS cohort. Eight out of 44 analysed LMs were significantly reduced during an eight-month treatment period by the SFE and seven of these eight significant LM derive from the 5-lipoxygenase (5-LO) pathway. Baseline levels of 12- and 15-LO products were elevated in patients who exhibited disease activity (EDA) during SFE treatment compared to no-evidence-of-disease-activity (NEDA) patients and could predict treatment response to the SFE in a prediction model at baseline. Oral treatment with an SFE significantly reduces 5-LO-derived LMs in RR-MS patients during an eight-month treatment period. Treatment response to an SFE, however, seems to be related to 12-,15-LO and cyclooxygenase product levels before SFE exposure. Further studies should confirm their biomarker potential in RR-MS and SFE treatment.
Collapse
|
18
|
Kihara Y. Systematic Understanding of Bioactive Lipids in Neuro-Immune Interactions: Lessons from an Animal Model of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:133-148. [PMID: 31562628 DOI: 10.1007/978-3-030-21735-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioactive lipids, or lipid mediators, are utilized for intercellular communications. They are rapidly produced in response to various stimuli and exported to extracellular spaces followed by binding to cell surface G protein-coupled receptors (GPCRs) or nuclear receptors. Many drugs targeting lipid signaling such as non-steroidal anti-inflammatory drugs (NSAIDs), prostaglandins, and antagonists for lipid GPCRs are in use. For example, the sphingolipid analog, fingolimod (also known as FTY720), was the first oral disease-modifying therapy (DMT) for relapsing-remitting multiple sclerosis (MS), whose mechanisms of action (MOA) includes sequestration of pathogenic lymphocytes into secondary lymphoid organs, as well as astrocytic modulation, via down-regulation of the sphingosine 1-phosphate (S1P) receptor, S1P1, by in vivo-phosphorylated fingolimod. Though the cause of MS is still under debate, MS is considered to be an autoimmune demyelinating and neurodegenerative disease. This review summarizes the involvement of bioactive lipids (prostaglandins, leukotrienes, platelet-activating factors, lysophosphatidic acid, and S1P) in MS and the animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation, along with pharmacological inhibition, of lipid metabolic enzymes and lipid GPCRs revealed that each bioactive lipid has a unique role in regulating immune and neural functions, including helper T cell (TH1 and TH17) differentiation and proliferation, immune cell migration, astrocyte responses, endothelium function, and microglial phagocytosis. A systematic understanding of bioactive lipids in MS and EAE dredges up information about understudied lipid signaling pathways, which should be clarified in the near future to better understand MS pathology and to develop novel DMTs.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Bock M, Karber M, Kuhn H. Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis. EBioMedicine 2018; 36:293-303. [PMID: 30292675 PMCID: PMC6197715 DOI: 10.1016/j.ebiom.2018.08.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Adapted ketogenic diet (AKD) and caloric restriction (CR) have been suggested as alternative therapeutic strategies for inflammatory, hyperproliferative and neurodegenerative diseases. Pro-inflammatory eicosanoids have been implicated in the pathogenesis of multiple sclerosis since they augment vascular permeability and induce leukocyte migration into the brain. We explored the impact of ketogenic diets on gene expression of biosynthetic enzymes for pro- (ALOX5, COX1, COX2) and anti-inflammatory (ALOX15) eicosanoids in patients with relapsing-remitting multiple sclerosis. Methods 60 adults were prospectively recruited for this six months randomized controlled trial and the impact of dietary treatment on the Multiple Sclerosis Quality of Life-54 index (ClinicalTrials.gov (NCT01538355) has previously been published. Here we explored 24 patients (8 controls, 5 on CR and 11 on AKD). For statistical analysis we combined the two diet groups to a single pooled treatment group. Findings Inter-group comparison indicated that expression of the pro-inflammatory ALOX5 in the pooled treatment group was significantly (p < 0.05) reduced when compared with the control group. Moreover, intra-group comparison (same individuals before and after dietary treatment) suggested significantly impaired expression of other pro-inflammatory enzymes, such as COX1 (p < 0.001) and COX2 (p < 0.05). Finally, pretreatment cross-group analysis revealed a significant positive correlation between expression of pro-inflammatory ALOX5 and COX2 and an inverse correlation of ALOX5 and COX1 expression with the MSQoL-54 index. Interpretation Ketogenic diets can reduce the expression of enzymes involved in the biosynthesis of pro-inflammatory eicosanoids. Pharmacological interference with eicosanoid biosynthesis might constitute a strategy supplementing current therapeutic approaches for MS.
Collapse
Affiliation(s)
- Markus Bock
- Institute of Biochemistry, University Medicine Berlin - Charité, Charitéplatz 1, D-10117, Berlin, Berlin, Germany; Experimental & Clinical Research Center (ECRC) A joint cooperation of Charité Medical Faculty and Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Berlin, Germany.
| | - Mirjam Karber
- Division of Gastroenterology and Hepatology, Department of Medicine,University Medicine Berlin - Charité, Augustenburger Platz 1, D-13353, Berlin, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charité, Charitéplatz 1, D-10117, Berlin, Berlin, Germany
| |
Collapse
|
20
|
Catani MV, Gasperi V, Bisogno T, Maccarrone M. Essential Dietary Bioactive Lipids in Neuroinflammatory Diseases. Antioxid Redox Signal 2018; 29:37-60. [PMID: 28637354 PMCID: PMC5984567 DOI: 10.1089/ars.2016.6958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Under physiological conditions, neurons and glia are in a healthy, redox-balanced environment; when injury perturbs this equilibrium, a neuroinflammatory state is established by activated microglia that triggers pro-inflammatory responses and alters the oxidant/antioxidant balance, thus leading to neuronal loss and neurodegeneration. In neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, amyothrophic lateral sclerosis, and multiple sclerosis), the brain is in a constitutively self-sustaining cycle of inflammation and oxidative stress that prompts and amplifies brain damage. Recent Advances: Recently, an increasing amount of scientific data highlight the ability of specific nutrients to cross the blood-brain barrier, and to modulate inflammatory and oxidative pathways. Therefore, nutritional approaches may contribute to restore the lost equilibrium among factors accounting for neurodegeneration. CRITICAL ISSUES Herein, we critically examine how essential lipids (including fatty acids, liposoluble vitamins and phytosterols) might contribute to accelerate or prevent the onset and progression of such pathologies. In particular, we highlight that experimental and clinical findings, although promising, are still inadequate to draw definitive conclusions. FUTURE DIRECTIONS More research is warranted in order to establish the real impact of lipid intake on brain health, especially when redox balance and inflammatory responses have been already compromised. In the future, it would be hoped to gain a detailed knowledge of chemical modifications and dynamic properties of such nutrients, before planning to exploit them as potential therapeutics. Antioxid. Redox Signal. 29, 37-60.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
21
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
22
|
Stürner KH, Stellmann JP, Dörr J, Paul F, Friede T, Schammler S, Reinhardt S, Gellissen S, Weissflog G, Faizy TD, Werz O, Fleischer S, Vaas LAI, Herrmann F, Pless O, Martin R, Heesen C. A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J Neurol Neurosurg Psychiatry 2018; 89:330-338. [PMID: 29248894 DOI: 10.1136/jnnp-2017-317101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/24/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate whether oral administration of a standardised frankincense extract (SFE) is safe and reduces disease activity in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS We performed an investigator-initiated, bicentric phase IIa, open-label, baseline-to-treatment pilot study with an oral SFE in patients with RRMS (NCT01450124). After a 4-month baseline observation phase, patients were treated for 8 months with an option to extend treatment for up to 36 months. The primary outcome measures were the number and volume of contrast-enhancing lesions (CEL) measured in MRI during the 4-month treatment period compared with the 4-month baseline period. Eighty patients were screened at two centres, 38 patients were included in the trial, 28 completed the 8-month treatment period and 18 of these participated in the extension period. RESULTS The SFE significantly reduced the median number of monthly CELs from 1.00 (IQR 0.75-3.38) to 0.50 (IQR 0.00-1.13; difference -0.625, 95% CI -1.25 to -0.50; P<0.0001) at months 5-8. We observed significantly less brain atrophy as assessed by parenchymal brain volume change (P=0.0081). Adverse events were generally mild (57.7%) or moderate (38.6%) and comprised mainly gastrointestinal symptoms and minor infections. Mechanistic studies showed a significant increase in regulatory CD4+ T cell markers and a significant decrease in interleukin-17A-producing CD8+ T cells indicating a distinct mechanism of action of the study drug. INTERPRETATION The oral SFE was safe, tolerated well and exhibited beneficial effects on RRMS disease activity warranting further investigation in a controlled phase IIb or III trial. CLINICAL TRIAL REGISTRATION NCT01450124; Results.
Collapse
Affiliation(s)
- Klarissa Hanja Stürner
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dörr
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin and Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin and Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Schammler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Reinhardt
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellissen
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Diagnostic and Interventional Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gainet Weissflog
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Diagnostic and Interventional Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Djamsched Faizy
- Department of Diagnostic and Interventional Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Sabine Fleischer
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ole Pless
- Fraunhofer IME Screening Port, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section, Department of Neurology, University Hospital Zürich, Switzerland, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Hendrickx DAE, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, Hol EM, Hamann J, Huitinga I. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. Front Immunol 2017; 8:1810. [PMID: 29312322 PMCID: PMC5742619 DOI: 10.3389/fimmu.2017.01810] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1, and ANO4. Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16, and OLR1, and lipid uptake, such as CHIT1, GPNMB, and CCL18. Except CCL18, these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion.
Collapse
Affiliation(s)
- Debbie A E Hendrickx
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Koen Bossers
- Neurodegeneration Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Corbert G van Eden
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Elly M Hol
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
24
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
25
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
26
|
|
27
|
Hasan M, Seo JE, Rahaman KA, Min H, Kim KH, Park JH, Sung C, Son J, Kang MJ, Jung BH, Park WS, Kwon OS. Novel genes in brain tissues of EAE-induced normal and obese mice: Upregulation of metal ion-binding protein genes in obese-EAE mice. Neuroscience 2016; 343:322-336. [PMID: 27956064 DOI: 10.1016/j.neuroscience.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the central nervous system resulting from degeneration of the myelin sheath. This study is aimed to identify differentially expressed genes (DEGs) in the brain of EAE-induced normal diet (ND) mice and high-fat diet (HFD)-induced obese mice, and to identify novel genes responsible for elucidating the mechanism of the disease. Purified mRNA samples from the brain tissue were analyzed for gene microarray and validated by real-time RT-PCR. DEGs were identified if significant changes greater than 1.5-fold or less than 0.66-fold were observed (p<0.05). Pathway construction and functional categorization were performed using the Kyoto encyclopedia of genes and genomes pathways and gene ontology (GO) analysis. HFD-EAE mice showed more severe disease symptoms than ND-EAE mice. From GO study, fold changes of HFD-EAE to ND-EAE genes indicated that the genes were significantly associated to the pathways related with the immune response, antigen presentation, and complement activation. The genes related with metal ion-binding proteins were upregulated in HFD-EAE and ND-EAE mice. Upregulation of Cul9, Mast2, and C4b expression is significantly higher in HFD-EAE mice than ND-EAE mice. Cul9, Mast2, C4b, Psmb8, Ly86, and Ms4a6d were significantly upregulated in both ND- and HFD-EAE mice. Fcgr4, S3-12, Gca, and Zdhhc4 were upregulated only in ND-EAE, and Xlr4b was upregulated only in HFD-EAE mice. And significant upregulated genes of metal ion-binding proteins (Cul9 and Mast2) were observed in HFD-EAE mice.
Collapse
Affiliation(s)
- Mahbub Hasan
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-Eun Seo
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju-Hyung Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Won Sang Park
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Oh-Seung Kwon
- Toxicology Lab., Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
28
|
An interferon-β-resistant and NLRP3 inflammasome-independent subtype of EAE with neuronal damage. Nat Neurosci 2016; 19:1599-1609. [PMID: 27820602 DOI: 10.1038/nn.4421] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammation induced by innate immunity influences the development of T cell-mediated autoimmunity in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We found that strong activation of innate immunity induced Nod-like receptor protein 3 (NLRP3) inflammasome-independent and interferon-β (IFNβ)-resistant EAE (termed type B EAE), whereas EAE induced by weak activation of innate immunity requires the NLRP3 inflammasome and is sensitive to IFNβ treatment. Instead, an alternative inflammatory mechanism, including membrane-bound lymphotoxin-β receptor (LTβR) and CXC chemokine receptor 2 (CXCR2), is involved in type B EAE development, and type B EAE is ameliorated by antagonizing these receptors. Relative expression of Ltbr and Cxcr2 genes was indeed enhanced in patients with IFNβ-resistant multiple sclerosis. Remission was minimal in type B EAE due to neuronal damages induced by semaphorin 6B upregulation on CD4+ T cells. Our data reveal a new inflammatory mechanism by which an IFNβ-resistant EAE subtype develops.
Collapse
|
29
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
30
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Catanzaro G, Pucci M, Viscomi MT, Lanuti M, Feole M, Angeletti S, Grasselli G, Mandolesi G, Bari M, Centonze D, D'Addario C, Maccarrone M. Epigenetic modifications of Dexras 1 along the nNOS pathway in an animal model of multiple sclerosis. J Neuroimmunol 2016; 294:32-40. [PMID: 27138096 DOI: 10.1016/j.jneuroim.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
The development of multiple sclerosis, a major neurodegenerative disease, is due to both genetic and environmental factors that might trigger aberrant epigenetic changes of the genome. In this study, we analysed global DNA methylation in the brain of mice upon induction of experimental autoimmune encephalomyelitis (EAE), and the effect of environmental enrichment (EE). We demonstrate that global DNA methylation decreased in the striatum, but not in the cortex, of EAE mice compared to healthy controls, in particular in neuronal nitric oxide synthase (nNOS)-positive interneurons of this brain area. Also, in the striatum but again not in the cortex, decreased DNA methylation of the nNOS downstream effector, dexamethasone-induced Ras protein 1 (Dexras 1), was observed in EAE mice, and was paralleled by an increase in its mRNA. Interestingly, EE was able to revert EAE effects on mRNA expression and DNA methylation levels of Dexras 1 and reduced gene expression of nNOS and 5-lipoxygenase (Alox5). Conversely, interleukin-1β (IL-1β) gene expression was found up-regulated in EAE mice compared to controls and was not affected by EE. Taken together, these data demonstrate an unprecedented epigenetic modulation of nNOS-signaling in the pathogenesis of multiple sclerosis, and show that EE can specifically revert EAE effects on Dexras 1 along this pathway.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - M T Viscomi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Lanuti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Feole
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - S Angeletti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - G Grasselli
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - G Mandolesi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Bari
- Department of Experimental Medicine and Biochemical Sciences, Tor Vergata University of Rome, Rome, Italy
| | - D Centonze
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy & IRCCS Neuromed, Pozzilli (IS), Italy
| | - C D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - M Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
32
|
The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation. Brain Behav Immun 2016; 53:59-71. [PMID: 26541818 DOI: 10.1016/j.bbi.2015.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients.
Collapse
|
33
|
CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 2015; 104:82-93. [PMID: 26453964 DOI: 10.1016/j.neuropharm.2015.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes are the myelin-forming cells in the CNS. They enwrap axons, thus permitting fast impulse transmission and exerting trophic actions on neurons. Demyelination accompanied by neurological deficit is a rather frequent condition that is not only associated with multiple sclerosis but has been also recognized in several other neurodegenerative diseases, including brain trauma and stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Recently, alterations of myelin function have been also reported in neuropsychiatric diseases, like depression and autism. Highly relevant for therapeutic purposes, oligodendrocyte precursor cells (OPCs) still persist in the adult brain and spinal cord. These cells are normally rather quiescent, but under specific circumstances, they can be stimulated to undergo differentiation and generate mature myelinating oligodendrocytes. Thus, approaches aimed at restoring myelin integrity and at fostering a correct oligodendrocyte function are now viewed as novel therapeutic opportunities for both neurodegenerative and neuropsychiatric diseases. Both OPCs and mature oligodendrocytes express purinergic receptors. For some of these receptors, expression is restricted at specific differentiation stages, suggesting key roles in OPCs maturation and myelination. Some of these receptors are altered under demyelinating conditions, suggesting that their dysregulation may contribute to disease development and could represent adequate new targets for remyelinating therapies. Here, we shall describe the current literature available on all these receptors, with special emphasis on the P2Y-like GPR17 receptor, that represents one of the most studied receptor subtypes in these cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2′-Deoxy-N(6)-methyladenosine 3′,5'-bisphosphate ammonium salt (MRS2179)
- 3-(2-carboxy-4,6-dichloro-indol-3-yl)propionic acid (MDL29,951)
- 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680)
- 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261)
- ADP
- ATP
- Adenosine
- Brilliant blue G (BBG)
- Leukotriene D4 (LTD(4))
- Montelukast
- N6-cyclohexyladenosine (CHA)
- Oligodendrocytes
- Oxidized ATP (oxATP)
- Purinergic receptors
- Rapamycin
- Remyelination
- UDP
- UDP-Glucose
Collapse
|
34
|
Wasseff SK, Scherer SS. Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions. Neurobiol Dis 2015; 82:86-98. [PMID: 26051537 PMCID: PMC4640986 DOI: 10.1016/j.nbd.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 01/11/2023] Open
Abstract
Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum--an affected brain region--in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to lymphocytes and microglia, and involved in leukotrienes/prostaglandins synthesis and chemokines/cytokines interactions and signaling pathways. In accord, immunostaining showed T- and B-cells in the cerebella of mutant mice as well as activated microglia and astrocytes. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32.
Collapse
Affiliation(s)
- Sameh K Wasseff
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 450 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA USA 19104-6077.
| |
Collapse
|
35
|
Mathur D, Urena-Peralta JR, Lopez-Rodas G, Casanova B, Coret-Ferrer F, Burgal-Marti M. Bypassing hazard of housekeeping genes: their evaluation in rat granule neurons treated with cerebrospinal fluid of multiple sclerosis subjects. Front Cell Neurosci 2015; 9:375. [PMID: 26441545 PMCID: PMC4585208 DOI: 10.3389/fncel.2015.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023] Open
Abstract
Gene expression studies employing real-time PCR has become an intrinsic part of biomedical research. Appropriate normalization of target gene transcript(s) based on stably expressed housekeeping genes is crucial in individual experimental conditions to obtain accurate results. In multiple sclerosis (MS), several gene expression studies have been undertaken, however, the suitability of housekeeping genes to express stably in this disease is not yet explored. Recent research suggests that their expression level may vary under different experimental conditions. Hence it is indispensible to evaluate their expression stability to accurately normalize target gene transcripts. The present study aims to evaluate the expression stability of seven housekeeping genes in rat granule neurons treated with cerebrospinal fluid of MS patients. The selected reference genes were quantified by real time PCR and their expression stability was assessed using GeNorm and NormFinder algorithms. GeNorm identified transferrin receptor (Tfrc) and microglobulin beta-2 (B2m) the most stable genes followed by ribosomal protein L19 (Rpl19) whereas β-actin (ActB) and glyceraldehyde-3-phosphate-dehydrogenase (Gapdh) the most fluctuated ones in these neurons. NormFinder identified Tfrc as the best invariable gene followed by B2m and Rpl19. ActB and Gapdh were the least stable genes as analyzed by NormFinder algorithm. Both methods reported Tfrc and B2m the most stably expressed genes and Gapdh the least stable one. Altogether our data demonstrate the significance of pre-validation of housekeeping genes for accurate normalization and indicates Tfrc and B2m as best endogenous controls in MS. ActB and Gapdh are not recommended in gene expression studies related to current one.
Collapse
Affiliation(s)
- Deepali Mathur
- Department of Functional Biology, University of Valencia Valencia, Spain ; Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| | - Juan R Urena-Peralta
- Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| | - Gerardo Lopez-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia and INCLIVA Biomedical Research Institute Valencia, Spain
| | - Bonaventura Casanova
- CSUR-Esclerosi Múltiple, Hospital Universitari i Politècnic La Fe, Unitat Mixta d'Esclerosi Múltiple i Neurorregeneració de l'IIS-La Fe València, Spain
| | | | - Maria Burgal-Marti
- Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| |
Collapse
|
36
|
Evangelidou M, Karamita M, Vamvakas SS, Szymkowski DE, Probert L. Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics. THE JOURNAL OF IMMUNOLOGY 2014; 192:4122-33. [PMID: 24683189 DOI: 10.4049/jimmunol.1300633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying immunopathology in multiple sclerosis (MS) and for exploring the interface between autoimmune responses and CNS tissue that ultimately leads to lesion development. In this study, we measured gene expression in mouse spinal cord during myelin oligodendrocyte gp35-55 peptide-induced EAE, using quantitative RT-PCR, to identify gene markers that monitor individual hallmark pathological processes. We defined a small panel of genes whose longitudinal expression patterns provided insight into the timing, interrelationships, and mechanisms of individual disease processes and the efficacy of therapeutics for the treatment of MS. Earliest transcriptional changes were upregulation of Il17a and sharp downregulation of neuronal and oligodendrocyte marker genes preceding clinical disease onset, whereas neuroinflammatory markers progressively increased as symptoms and tissue lesions developed. EAE-induced gene-expression changes were not altered in mice deficient in IKKβ in cells of the myeloid lineage compared with controls, but the administration of a selective inhibitor of soluble TNF to mice from the day of immunization delayed changes in the expression of innate inflammation, myelin, and neuron markers from the presymptomatic phase. Proof of principle that the gene panel shows drug screening potential was obtained using a well-established MS therapeutic, glatiramer acetate. Prophylactic treatment of mice with glatiramer acetate normalized gene marker expression, and this correlated with the level of therapeutic success. These results show that neurons and oligodendrocytes are highly sensitive to CNS-directed autoimmunity before the development of clinical symptoms and immunopathology and reveal a role for soluble TNF in mediating the earliest changes in gene expression.
Collapse
Affiliation(s)
- Maria Evangelidou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
37
|
Galimberti D, Bresolin N, Scarpini E. Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments. Expert Rev Neurother 2014; 4:439-53. [PMID: 15853541 DOI: 10.1586/14737175.4.3.439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis is the most common inflammatory disorder of the CNS. Evidence suggests that an immunomediated mechanism plays a crucial role during the development of the disease. Currently, two classes of immunomodulatory agents -- interferon-beta and glatiramer acetate (Copaxone, Teva Pharmaceutical Industries), have been approved for the long-term treatment of multiple sclerosis. New drugs which effectively target the immunological processes occurring in multiple sclerosis have been proposed. This review summarizes the immunological background that occurs during the pathogenesis of multiple sclerosis focusing on chemokines and related receptors. The effects of standard treatments on the immune system are analyzed along with the current knowledge of potential new immunomodulatory molecules, such as antiadhesion molecules, statins, estriol, cannabinoids, neurotrophic factors and chemokine antagonists.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Center and Center of Excellence for Neurodegenerative Diseases, University of Milan, IRCCS Ospedale Maggiore Policlinico, Via F Sforza 35, 20122, Milan, Italy.
| | | | | |
Collapse
|
38
|
Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:59-87. [PMID: 24507513 DOI: 10.1016/b978-0-444-52001-2.00003-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS). It is widely considered a T-cell mediated autoimmune disease that develops in genetically susceptible individuals, possibly under the influence of certain environmental trigger factors. The invasion of autoreactive CD4+ T-cells into the CNS is thought to be a central step that initiates the disease. Several other cell types, including CD8+ T-cells, B-cells and phagocytes appear to be involved in causing inflammation and eventually neurodegeneration. But inflammation is not entirely deleterious in MS. Evidence has accumulated in the recent years that show the importance of regulatory immune mechanisms which restrain tissue damage and initiate regeneration. More insight into the beneficial aspects of neuroinflammation might allow us to develop new treatment strategies for this enigmatic disease.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland.
| |
Collapse
|
39
|
Palumbo S, Bosetti F. Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelination: role of cyclooxygenase-2. Prostaglandins Leukot Essent Fatty Acids 2013; 89:273-8. [PMID: 24095587 DOI: 10.1016/j.plefa.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
Abstract
Inflammation is a physiological response to exogenous and endogenous stimuli and, together with demyelination and immune system activation, is one of the key features of multiple sclerosis (MS). Arachidonic acid (AA) metabolism by cyclooxygenase (COX) and lipoxygenase (LO) enzymes leads to the production of proinflammatory eicosanoids, and stimulates cytokine production and activation of microglia and astrocytes, thereby contributing to MS pathology. Current therapies target the immune system but do not specifically target AA-related inflammatory pathway. Corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) are frequently associated with immunomodulatory therapies to treat flu-like adverse effects. Few clinical and mounting preclinical data in MS show that AA metabolism contributes to immune system activation, demyelination and motor disabilities, and administration of NSAIDs reduces these symptoms. The beneficial effect of NSAIDs seems to be a prerogative of COX-2 selective inhibitors and suggests that NSAIDs selective for COX-2 may be more effective than mixed COX-1/2 inhibitors.
Collapse
Affiliation(s)
- Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 20892 Bethesda, MD, USA.
| | | |
Collapse
|
40
|
The involvement of 5-lipoxygenase activating protein in anxiety-like behavior. J Psychiatr Res 2013; 47:694-8. [PMID: 23357209 PMCID: PMC3594470 DOI: 10.1016/j.jpsychires.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/20/2022]
Abstract
The 5-lipoxygenase is an enzyme widely expressed in the central nervous system, where its activity is dependent on the presence the 5-lipoxygenase activating protein (FLAP) for the formation of leukotrienes, potent bioactive lipid mediators. Emerging evidence has shown that the FLAP/leukotriene pathway may play a role in neuropsychiatric disease contexts. In this study we investigated whether genetic deficiency of FLAP (FLAPKO) modulated some behavioral aspects in mice, and if this effect was age-dependent. While we observed that FLAPKO mice at 3 and 6 months of age did not different from wild type animals in the elevated plus maze, at 12 months of age they manifested a significant increase in anxiety-like behavior. By contrast, we observed no differences between FLAPKO mice and their controls at any of the three ages considered when they were tested for working memory in the Y maze paradigm. Additionally, while we found that cFOS protein and message levels were reduced in the brains of animals lacking FLAP, no changes for other transcription factors were detected. Taken together our findings suggest a novel role for FLAP in the pathogenesis of anxiety-like behavior. Future studies of FLAP neurobiology may be attractive for development of anxiolytic therapeutics.
Collapse
|
41
|
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22:1108-28. [PMID: 22664908 DOI: 10.1038/cr.2012.87] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.
Collapse
Affiliation(s)
- Changsheng Du
- Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
42
|
Sánchez-Pla A, Reverter F, Ruíz de Villa MC, Comabella M. Transcriptomics: mRNA and alternative splicing. J Neuroimmunol 2012; 248:23-31. [PMID: 22626445 DOI: 10.1016/j.jneuroim.2012.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/27/2022]
Abstract
Transcriptomics has emerged as a powerful approach for biomarker discovery. In the present review, the two main types of high throughput transcriptomic technologies - microarrays and next generation sequencing - that can be used to identify candidate biomarkers are briefly described. Microarrays, the mainstream technology of the last decade, have provided hundreds of valuable datasets in a wide variety of diseases including multiple sclerosis (MS), in which this approach has been used to disentangle different aspects of its complex pathogenesis. RNA-seq, the current next generation sequencing approach, is expected to provide similar power as microarrays but extending their capabilities to aspects up to now more difficult to analyse such as alternative splicing and discovery of novel transcripts.
Collapse
|
43
|
Dutta R, Trapp BD. Gene expression profiling in multiple sclerosis brain. Neurobiol Dis 2012; 45:108-14. [PMID: 21147224 PMCID: PMC3066282 DOI: 10.1016/j.nbd.2010.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of life. Microarray-based comparative gene profiling provides a snapshot of genes underlying a particular condition. Several large scale microarray studies have been conducted using brain tissue from MS patients. In this review, we summarize existing data from different gene expression profiling studies and how they relate to understand the pathogenesis of MS.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
44
|
Knockout of 5-lipoxygenase results in age-dependent anxiety-like behavior in female mice. PLoS One 2011; 6:e29448. [PMID: 22220211 PMCID: PMC3248425 DOI: 10.1371/journal.pone.0029448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background The enzyme 5-lipoxygenase (5LO) has been implicated in a variety of neurological and psychiatric disorders including anxiety. Knockout of 5LO has previously been shown to alter anxiety-like behavior in mice at a young age but the effect of 5LO knockout on older animals has not been characterized. Methodology/Principal Findings Here we used the elevated plus maze behavioral paradigm to measure anxiety-like behavior in female mice lacking 5LO (5LO-KO) at three different ages. Adolescent 5LO-KO animals did not significantly differ from wild-type (WT) animals in anxiety-like behavior. However, adult and older mice exhibited increased anxiety-like behavior compared to WT controls. Conclusions These results indicate that 5LO plays a role in the development of the anxiety-like phenotype in an age-dependent manner in female mice. Future work should further investigate this interaction as 5LO may prove to be an important molecular target for the development of novel anxiolytic therapies.
Collapse
|
45
|
Wang L, Du C, Lv J, Wei W, Cui Y, Xie X. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2336-45. [PMID: 21804021 DOI: 10.4049/jimmunol.1100333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators and are considered to play a key role in inflammatory diseases such as asthma. Antagonists targeting the receptor of CysLTs (CysLT1) are currently used as antiasthmatic drugs. CysLTs have also been implicated in other inflammatory reactions. In this study, we report that in experimental autoimmune encephalomyelitis animals, CysLT1 is upregulated in immune tissue and the spinal cord, and CysLT levels in the blood and cerebrospinal fluid are also higher than in normal mice. Two clinically used antiasthma drugs, montelukast and zafirlukast, both targeting CysLT1, effectively block the CNS infiltration of inflammatory cells and thus reduce the incidence, peak severity, and cumulative clinical scores. Further study indicated that CysLT1 signaling does not affect the differentiation of pathogenic T helper cells. It might affect the pathogenesis of experimental autoimmune encephalomyelitis by increasing the secretion of IL-17 from myelin oligodendrocyte glycoprotein-specific T cells, increasing the permeability of the blood-brain barrier and inducing chemotaxis of T cells. These effects can be blocked by CysLT1 antagonists. Our findings indicate that the antiasthmatic drugs against CysLT1 can also be used to treat multiple sclerosis.
Collapse
Affiliation(s)
- Liefeng Wang
- Laboratory of Receptor-Based BioMedicine, School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
46
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol Rev 2011; 63:539-84. [DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Tajouri L, Fernandez F, Griffiths LR. Gene expression studies in multiple sclerosis. Curr Genomics 2011; 8:181-9. [PMID: 18645602 DOI: 10.2174/138920207780833829] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/14/2007] [Accepted: 03/14/2007] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.
Collapse
Affiliation(s)
- Lotti Tajouri
- Genomics Research Centre, School of Medical Science, Griffith University Gold Coast, Southport, Queensland, 4215 Australia
| | | | | |
Collapse
|
48
|
Yoshikawa K, Palumbo S, Toscano CD, Bosetti F. Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fatty Acids 2011; 85:43-52. [PMID: 21555210 PMCID: PMC3109232 DOI: 10.1016/j.plefa.2011.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | - F. Bosetti
- Corresponding author: Francesca Bosetti, Pharm.D., Ph.D., 9 Memorial Drive, Rm. 1S126 MSC 0947, Bethesda MD 20892-0947, Phone: (301) 594-5077, Fax: (301) 402-0074,
| |
Collapse
|
49
|
Quest for new genomic and proteomic biomarkers in neurology. Transl Neurosci 2011. [DOI: 10.2478/s13380-011-0005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe possibility of identifying novel biomarkers for neurodegenerative diseases has been greatly enhanced with recent advances in genomics and proteomics. Novel technologies have the potential to hasten the development of new biomarkers useful as predictors of disease etiology and outcome, as well as responsiveness to therapy. Disease-modifying new therapies are very much needed in modern approaches to treatment of neurodegenerative diseases. Current progress in the field encounters a degree of skepticism about the reliability of genomic and proteomic data and its relevance for clinical applications. Standard operating procedures covering sample collection, methodology and statistical analysis need to be fully developed and strictly adhered to in order to assure reproducible and clinically relevant results. Previous studies involving patients with neurodegenerative diseases show promise in using genomic and proteomic approaches for development of new biomarkers. Confirmation of any novel biomarker in multiple independent patient cohorts and correlation of the improvement in biomarker endpoint with clinical improvement in longitudinal patient studies remains crucial for future successful application. We propose that a combination of approaches in biomarker discovery may in the end lead to identification of promising candidates at DNA, RNA, protein and small molecule level.
Collapse
|
50
|
Barr TL, Alexander S, Conley Y. Gene expression profiling for discovery of novel targets in human traumatic brain injury. Biol Res Nurs 2010; 13:140-53. [PMID: 21112922 DOI: 10.1177/1099800410385671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several clinical trials have failed to demonstrate a significant effect on outcome following human traumatic brain injury (TBI) despite promising results obtained in preclinical animal studies. These failures may be due in part to a misinterpretation of the findings obtained in preclinical animal models of TBI, a misunderstanding of the complexity of the human response to TBI, limited knowledge about the biological pathways that interact to contribute to good and bad outcomes after brain injury, and the effects of genomic variability and environment on individual recovery. Recent publications suggest that data obtained from gene expression profiling studies of complex neurological diseases such as stroke, multiple sclerosis (MS), Alzheimer's and Parkinson's may contribute to a more informed understanding of what affects outcome following TBI. These data may help to bridge the gap between successful preclinical studies and negative clinical trials in humans to reveal novel targets for therapy. Gene expression profiling has the capability to identify biomarkers associated with response to TBI, elucidate complex genetic interactions that may play a role in outcome following TBI, and reveal biological pathways related to brain health. This review highlights the current state of the literature on gene expression profiling for neurological disease and discusses its ability to aid in unraveling the variable human response to TBI and the potential for it to offer treatment strategies in an area where we currently have limited therapeutic options primarily based on supportive care.
Collapse
Affiliation(s)
- Taura L Barr
- West Virginia University School of Nursing & Center for Neuroscience, Morgantown, WV, USA.
| | | | | |
Collapse
|