1
|
Qian F, Zhong Q, Chen Z. Role of mitochondrial dysfunction in acute traumatic brain injury: Evidence from bioinformatics analysis. Heliyon 2024; 10:e31121. [PMID: 38803920 PMCID: PMC11128910 DOI: 10.1016/j.heliyon.2024.e31121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background The intricate regulatory relationship between mitochondrial dysfunction, apoptosis, and immune cells remains largely elusive following traumatic brain injury (TBI). Methods The GSE45997 dataset from the Gene Expression Omnibus database and utilized GEO2R to screen for differentially expressed genes (DEGs). Functional enrichment analyses were performed. Mitochondrial gene data from the MitoCarta3.0 database were combined with the DEGs to identify mitochondria-related DEGs (MitoDEGs). The hub MitoDEGs related to apoptosis were further screened. Animal models of TBI were established to investigate the mechanisms underlying mitochondrial dysfunction regulation of apoptosis. Furthermore, we explored the relationship between MitoDEGs/hub MitoDEGs and immune cells using the Spearman correlation method. Results Fifty-seven MitoDEGs were significantly enriched in pathways related to fatty acid degradation and metabolism. We identified three upregulated hub MitoDEGs, namely Dnm1l, Mcl1 and Casp3, were associated with apoptosis. In the animal experiments, we observed significant expression levels of microtubule-associated protein 1 light chain 3 beta (LC3B) surrounding the injury site. Most LC3B-expressing cells exhibited positive staining for Beclin 1 and colocalization analysis revealed the simultaneous presence of Beclin 1 and caspase-3. The Western blot analysis further unveiled a significant upregulation of cleaved caspase-3 levels and LC3B II/LC3B I ratio after TBI. Moreover, the quantity of myeloid cell leukaemia-1 immunoreactive cells was notably higher than that in the control group. Spearman correlation analysis demonstrated strong associations between plasma cells, marginal zone B cells, native CD4 T cells, monocytes, and MitoDEGs/hub MitoDEGs. Conclusions This study sheds light on enhanced fatty acid metabolism following mitochondrial dysfunction and its potential association with apoptosis and immune cell activation, thereby providing new mechanistic insights into the acute phase of TBI.
Collapse
Affiliation(s)
- Fangfang Qian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qi Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Jiang W, Liu X, Chen Y, Liu M, Yuan J, Nie M, Fan Y, Wu D, Qian Y, Sha Z, Dong S, Wu C, Liu T, Huang J, Zhang J, Gao C, Jiang R. CD4 + CD11b + T cells infiltrate and aggravate the traumatic brain injury depending on brain-to-cervical lymph node signaling. CNS Neurosci Ther 2024; 30:e14673. [PMID: 38468459 PMCID: PMC10928342 DOI: 10.1111/cns.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
AIM We aim to identify the specific CD4+ T-cell subtype influenced by brain-to-CLN signaling and explore their role during the acute phase of traumatic brain injury (TBI). METHOD Cervical lymphadenectomy or cervical afferent lymphatic ligation was performed before TBI. Cytokine array and western blot were used to detect cytokines, while the motor function was assessed using mNss and rotarod test. CD4+ T-cell subtypes in blood, brain, and CLNs were analyzed with Cytometry by time-of-flight analysis (CyTOF) or fluorescence-activated cell sorting (FACS). Brain edema and volume changes were measured by 9.4T MRI. Neuronal apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS Cervical lymphadenectomy and ligation of cervical lymphatic vessels resulted in a decreased infiltration of CD4+ T cells, specifically CD11b-positive CD4+ T cells, within the affected region. The population of CD4+ CD11b+ T cells increased in ligated CLNs, accompanied by a decrease in the average fluorescence intensity of sphingosine-1-phosphate receptor-1 (S1PR1) on these cells. Administration of CD4+ CD11b+ T cells sorted from CLNs into the lateral ventricle reversed the attenuated neurologic deficits, brain edema, and lesion volume following cervical lymphadenectomy. CONCLUSION The infiltration of CD4+ CD11b+ T cells exacerbates secondary brain damage in TBI, and this process is modulated by brain-to-CLN signaling.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Xuanhui Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yupeng Chen
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Mingqi Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Meng Nie
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yibing Fan
- Department of NeurosurgeryTianjin First Central HospitalTianjinChina
| | - Di Wu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Yu Qian
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Zhuang Sha
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Shiying Dong
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Chenrui Wu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Tao Liu
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Jianning Zhang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Chuang Gao
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryGeneral Hospital of Tianjin Medical UniversityTianjinChina
- State Key Laboratory of Experimental HematologyTianjinChina
- Tianjin Neurological Institute, Key Laboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous SystemTianjin Medical University General Hospital, Ministry of EducationTianjinChina
| |
Collapse
|
3
|
Liu S, Liu B, Li Q, Zheng T, Liu B, Li M, Chen Z. Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment. Neural Regen Res 2024; 19:440-446. [PMID: 37488909 PMCID: PMC10503599 DOI: 10.4103/1673-5374.379049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord, with the expectation that differentiated neurons facilitate recovery. Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment. Here, we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury. Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells, and/or thrombin plus fibrinogen, were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model. Basso, Beattie and Bresnahan score, electrophysiological function, and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function, reduces lesion volume, and promotes axonal neurofilament expression at the lesion core. Examination of the graft and niche components revealed that although the graft only survived for a relatively short period (up to 15 days), it still had a crucial impact on the microenvironment. Altogether, induced neural stem cells and human fibrin reduced the number of infiltrated immune cells, biased microglia towards a regenerative M2 phenotype, and changed the cytokine expression profile at the lesion site. Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions, which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
4
|
Gold L, Barci E, Brendel M, Orth M, Cheng J, Kirchleitner SV, Bartos LM, Pötter D, Kirchner MA, Unterrainer LM, Kaiser L, Ziegler S, Weidner L, Riemenschneider MJ, Unterrainer M, Belka C, Tonn JC, Bartenstein P, Niyazi M, von Baumgarten L, Kälin RE, Glass R, Lauber K, Albert NL, Holzgreve A. The Traumatic Inoculation Process Affects TSPO Radioligand Uptake in Experimental Orthotopic Glioblastoma. Biomedicines 2024; 12:188. [PMID: 38255293 PMCID: PMC10813339 DOI: 10.3390/biomedicines12010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.
Collapse
Affiliation(s)
- Lukas Gold
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Enio Barci
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Munich Cluster for Systems Neurology (SyNergy), LMU Munich, 81377 Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jiying Cheng
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sabrina V. Kirchleitner
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
| | - Laura M. Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Dennis Pötter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Maximilian A. Kirchner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lena Kaiser
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | | | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- Munich Cluster for Systems Neurology (SyNergy), LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 81377 Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (L.G.)
| |
Collapse
|
5
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Hansson MJ, Elmér E. Cyclosporine as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1482-1495. [PMID: 37561274 PMCID: PMC10684836 DOI: 10.1007/s13311-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical models of TBI. Moreover, the cyclosporine formulation NeuroSTAT® displayed positive effects on injury biomarker levels in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based biomarkers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical power and allow for more accurate assessment of long-term outcomes.
Collapse
Affiliation(s)
- Magnus J Hansson
- Abliva AB, Lund, Sweden.
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden.
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Timaru-Kast R, Coronel-Castello SP, Krämer TJ, Hugonnet AV, Schäfer MKE, Sebastiani A, Thal SC. AT 1 inhibition mediated neuroprotection after experimental traumatic brain injury is dependent on neutrophils in male mice. Sci Rep 2023; 13:7413. [PMID: 37150755 PMCID: PMC10164737 DOI: 10.1038/s41598-023-33797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
After traumatic brain injury (TBI) cerebral inflammation with invasion of neutrophils and lymphocytes is a crucial factor in the process of secondary brain damage. In TBI the intrinsic renin-angiotensin system is an important mediator of cerebral inflammation, as inhibition of the angiotensin II receptor type 1 (AT1) reduces secondary brain damage and the invasion of neutrophil granulocytes into injured cerebral tissue. The current study explored the involvement of immune cells in neuroprotection mediated by AT1 inhibition following experimental TBI. Four different cohorts of male mice were examined, investigating the effects of neutropenia (anti-Ly6G antibody mediated neutrophil depletion; C57BL/6), lymphopenia (RAG1 deficiency, RAG1-/-), and their combination with candesartan-mediated AT1 inhibition. The present results showed that reduction of neutrophils and lymphocytes, as well as AT1 inhibition in wild type and RAG1-/- mice, reduced brain damage and neuroinflammation after TBI. However, in neutropenic mice, candesartan did not have an effect. Interestingly, AT1 inhibition was found to be neuroprotective in RAG1-/- mice but not in neutropenic mice. The findings suggest that AT1 inhibition may exert neuroprotection by reducing the inflammation caused by neutrophils, ultimately leading to a decrease in their invasion into cerebral tissue.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Shila P Coronel-Castello
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Faculty of Health, University of Witten/Herdecke, Alfred-Herrhausen-Strasse 50, 58455, Witten, Germany
| | - André V Hugonnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
8
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Manjili MH. The adaptation model of immunity: A new insight into aetiology and treatment of multiple sclerosis. Scand J Immunol 2023; 97:e13255. [PMID: 36680379 DOI: 10.1111/sji.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Current research and drug development for multiple sclerosis (MS) is fully influenced by the self-nonself (SNS) model of immunity, suggesting that breakage of immunological tolerance towards self-antigens expressed in the central nervous system (CNS) is responsible for pathogenesis of MS; thus, immune suppressive drugs are recommended for the management of the disease. However, this model provides incomplete understanding of the causes and pathways involved in the onset and progression of MS and limits our ability to effectively treat this neurological disease. Some pre-clinical and clinical reports have been misunderstood; some others have been underappreciated because of the lack of a theoretical model that can explain them. Also, current immunotherapies are guided according to the models that are not designed to explain the functional outcomes of an immune response. The adaptation model of immunity is proposed to offer a new understanding of the existing data and galvanize a new direction for the treatment of MS. According to this model, the immune system continuously communicates with the CNS through the adaptation receptors (AdRs) and adaptation ligands (AdLs) or co-receptors, signal IV, to support cell growth and neuroplasticity. Alterations in the expression of the neuronal AdRs results in MS by shifting the cerebral inflammatory immune responses from remyelination to demyelination. Therefore, novel therapeutics for MS should be focused on the discovery and targeting of the AdR/AdL axis in the CNS rather than carrying on with immune suppressive interventions.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
10
|
van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023; 20:284-303. [PMID: 36222978 PMCID: PMC10119357 DOI: 10.1007/s13311-022-01306-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wouter Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury. Nat Commun 2022; 13:2933. [PMID: 35614038 PMCID: PMC9133109 DOI: 10.1038/s41467-022-30467-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) act as potent inhibitors of axonal growth and neuroplasticity after spinal cord injury (SCI). Here we reveal that CSPGs also play a critical role in preventing inflammation resolution by blocking the conversion of pro-inflammatory immune cells to a pro-repair phenotype in rodent models of SCI. We demonstrate that enzymatic digestion of CSPG glycosaminoglycans enhances immune cell clearance and reduces pro-inflammatory protein and gene expression profiles at key resolution time points. Analysis of phenotypically distinct immune cell clusters revealed CSPG-mediated modulation of macrophage and microglial subtypes which, together with T lymphocyte infiltration and composition changes, suggests a role for CSPGs in modulating both innate and adaptive immune responses after SCI. Mechanistically, CSPG activation of a pro-inflammatory phenotype in pro-repair immune cells was found to be TLR4-dependent, identifying TLR4 signalling as a key driver of CSPG-mediated immune modulation. These findings establish CSPGs as critical mediators of inflammation resolution failure after SCI in rodents, which leads to prolonged inflammatory pathology and irreversible tissue destruction.
Collapse
|
12
|
Salvador AFM, Kipnis J. Immune response after central nervous system injury. Semin Immunol 2022; 59:101629. [PMID: 35753867 DOI: 10.1016/j.smim.2022.101629] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Traumatic injuries of the central nervous system (CNS) affect millions of people worldwide, and they can lead to severely damaging consequences such as permanent disability and paralysis. Multiple factors can obstruct recovery after CNS injury. One of the most significant is the progressive neuronal death that follows the initial mechanical impact, leading to the loss of undamaged cells via a process termed secondary neurodegeneration. Efforts to define treatments that limit the spread of damage, while important, have been largely ineffectual owing to gaps in the mechanistic understanding that underlies the persisting neuronal cell death. Inflammation, with its influx of immune cells that occurs shortly after injury, has been associated with secondary neurodegeneration. However, the role of the immune system after CNS injury is far more complex. Studies have indicated that the immune response after CNS injury is detrimental, owing to immune cell-produced factors (e.g., pro-inflammatory cytokines, free radicals, neurotoxic glutamate) that worsen tissue damage. Our lab and others have also demonstrated the beneficial immune response that occurs after CNS injury, with the release of growth factors such as brain-derived growth factor (BDNF) and interleukin (IL-10) and the clearance of apoptotic and myelin debris by immune cells1-4. In this review, we first discuss the multifaceted roles of the immune system after CNS injury. We then speculate on how advancements in single-cell RNA technologies can dramatically change our understanding of the immune response, how the spinal cord meninges serve as an important site for hosting immunological processes critical for recovery, and how the origin of peripherally recruited immune cells impacts their function in the injured CNS.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
14
|
Bao W, Lin Y, Chen Z. The Peripheral Immune System and Traumatic Brain Injury: Insight into the role of T-helper cells. Int J Med Sci 2021; 18:3644-3651. [PMID: 34790036 PMCID: PMC8579286 DOI: 10.7150/ijms.46834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests that immune-inflammatory processes are key elements in the physiopathological events associated with traumatic brain injury (TBI). TBI is followed by T-cell-specific immunological changes involving several subsets of T-helper cells and the cytokines they produce; these processes can have opposite effects depending on the disease course and cytokine concentrations. Efforts are underway to identify the T-helper cells and cytokine profiles associated with prognosis. These predictors may eventually serve as effective treatment targets to decrease morbidity and mortality and to improve the management of TBI patients. Here, we review the immunological response to TBI, the possible molecular mechanisms of this response, and therapeutic strategies to address it.
Collapse
Affiliation(s)
| | | | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Wojciechowski S, Virenque A, Vihma M, Galbardi B, Rooney EJ, Keuters MH, Antila S, Koistinaho J, Noe FM. Developmental Dysfunction of the Central Nervous System Lymphatics Modulates the Adaptive Neuro-Immune Response in the Perilesional Cortex in a Mouse Model of Traumatic Brain Injury. Front Immunol 2021; 11:559810. [PMID: 33584640 PMCID: PMC7873607 DOI: 10.3389/fimmu.2020.559810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/26/2020] [Indexed: 01/23/2023] Open
Abstract
Rationale The recently discovered meningeal lymphatic vessels (mLVs) have been proposed to be the missing link between the immune and the central nervous system. The role of mLVs in modulating the neuro-immune response following a traumatic brain injury (TBI), however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune response. The phenotype of these cells has remained mostly uncharacterized. In this study, we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the magnitude and the type of T cell response in the brain after TBI. Methods TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI, T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from the spleen, then characterized by flow cytometry. Lesion size in each animal was evaluated by MRI. Results In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a proper neuro-immune response. Extension of the lesion (measured as lesion volume from MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in peripheral circulating T cells, as assessed one month after injury. Conclusions Our results are consistent with the hypothesis that mLVs are involved in the neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as one of the main population activated within the brain after a traumatic injury.
Collapse
Affiliation(s)
- Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anaïs Virenque
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maria Vihma
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Barbara Galbardi
- Breast Cancer Unit, Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Erin Jane Rooney
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Francesco M. Noe
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Farr SA, Cuzzocrea S, Esposito E, Campolo M, Niehoff ML, Doyle TM, Salvemini D. Adenosine A 3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020; 17:339. [PMID: 33183330 PMCID: PMC7659122 DOI: 10.1186/s12974-020-02009-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. Methods Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. Results When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4–5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. Conclusion Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.
Collapse
Affiliation(s)
- Susan A Farr
- Veterans Affairs Medical Center, 915 N Grand Blvd, St. Louis, MO, 63106, USA.,Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michela Campolo
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michael L Niehoff
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
17
|
Khanh Vu TH, Chen H, Pan L, Cho KS, Doesburg D, Thee EF, Wu N, Arlotti E, Jager MJ, Chen DF. CD4 + T-Cell Responses Mediate Progressive Neurodegeneration in Experimental Ischemic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1723-1734. [PMID: 32389572 DOI: 10.1016/j.ajpath.2020.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Retinal ischemic events, which result from occlusion of the ocular vasculature share similar causes as those for central nervous system stroke and are among the most common cause of acute and irreversible vision loss in elderly patients. Currently, there is no established treatment, and the condition often leaves patients with seriously impaired vision or blindness. The immune system, particularly T-cell-mediated responses, is thought to be intricately involved, but the exact roles remain elusive. We found that acute ischemia-reperfusion injury to the retina induced a prolonged phase of retinal ganglion cell loss that continued to progress during 8 weeks after the procedure. This phase was accompanied by microglial activation and CD4+ T-cell infiltration into the retina. Adoptive transfer of CD4+ T cells isolated from diseased mice exacerbated retinal ganglion cell loss in mice with retinal reperfusion damage. On the other hand, T-cell deficiency or administration of T-cell or interferon-γ-neutralizing antibody attenuated retinal ganglion cell degeneration and retinal function loss after injury. These findings demonstrate a crucial role for T-cell-mediated responses in the pathogenesis of neural ischemia. These findings point to novel therapeutic targets of limiting or preventing neuron and function loss for currently untreatable conditions of optic neuropathy and/or central nervous system ischemic stroke.
Collapse
Affiliation(s)
- Thi Hong Khanh Vu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huihui Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts
| | - Djoeke Doesburg
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric F Thee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nan Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Elisa Arlotti
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
|
19
|
Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, Klein M, Thal SC, Bopp T, Schäfer MKE. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation 2019; 16:163. [PMID: 31383034 PMCID: PMC6683516 DOI: 10.1186/s12974-019-1550-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. T cells were shown to infiltrate the brain during the first days after injury and to exacerbate tissue damage. The objective of this study was to investigate the hitherto unresolved role of immunosuppressive, regulatory T cells (Tregs) in experimental TBI. Methods “Depletion of regulatory T cell” (DEREG) and wild type (WT) C57Bl/6 mice, treated with diphtheria toxin (DTx) to deplete Tregs or to serve as control, were subjected to the controlled cortical impact (CCI) model of TBI. Neurological and motor deficits were examined until 5 days post-injury (dpi). At the 5 dpi endpoint, (immuno-) histological, protein, and gene expression analyses were carried out to evaluate the consequences of Tregs depletion. Comparison of parametric or non-parametric data between two groups was done using Student’s t test or the Mann-Whitney U test. For multiple comparisons, p values were calculated by one-way or two-way ANOVA followed by specific post hoc tests. Results The overall neurological outcome at 5 dpi was not different between DEREG and WT mice but more severe motor deficits occurred transiently at 1 dpi in DEREG mice. DEREG and WT mice did not differ in the extent of brain damage, blood-brain barrier (BBB) disruption, or neuronal excitotoxicity, as examined by lesion volumetry, immunoglobulin G (IgG) extravasation, or calpain-generated αII-spectrin breakdown products (SBDPs), respectively. In contrast, increased protein levels of glial fibrillary acidic protein (GFAP) and GFAP+ astrocytes in the ipsilesional brain tissue indicated exaggerated reactive astrogliosis in DEREG mice. T cell counts following anti-CD3 immunohistochemistry and gene expression analyses of Cd247 (CD3 subunit zeta) and Cd8a (CD8a) further indicated an increased number of T cells infiltrating the brain injury sites of DEREG mice compared to WT. These changes coincided with increased gene expression of pro-inflammatory interferon-γ (Ifng) in DEREG mice compared to WT in the injured brain. Conclusions The results show that the depletion of Tregs attenuates T cell brain infiltration, reactive astrogliosis, interferon-γ gene expression, and transiently motor deficits in murine acute traumatic brain injury.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Nathalia Hack
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Till J Brühl
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany. .,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
The immunological response to traumatic brain injury. J Neuroimmunol 2019; 332:112-125. [DOI: 10.1016/j.jneuroim.2019.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
21
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
22
|
Cuzzocrea S, Doyle T, Campolo M, Paterniti I, Esposito E, Farr SA, Salvemini D. Sphingosine 1-Phosphate Receptor Subtype 1 as a Therapeutic Target for Brain Trauma. J Neurotrauma 2018; 35:1452-1466. [PMID: 29310513 DOI: 10.1089/neu.2017.5391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) provokes secondary pathological mechanisms, including ischemic and inflammatory processes. The new research in sphingosine 1-phosphate (S1P) receptor modulators has opened the door for an effective mechanism of reducing central nervous system (CNS) inflammatory lesion activity. Thus, the aim of this study was to characterize the immunomodulatory effect of the functional S1PR1 antagonist, siponimod, in phase III clinical trials for autoimmune disorders and of the competitive sphingosine 1-phosphate receptor subtype 1 (S1PR1) antagonist, TASP0277308, in pre-clinical development in an in vivo model of TBI in mice. We used the well-characterized model of TBI caused by controlled cortical impact. Mice were injected intraperitoneally with siponimod or TASP0277308 (1 mg/kg) at 1 and 4 h post-trauma. Our results demonstrated that these agents exerted significant beneficial effects on TBI pre-clinical scores in term of anti-inflammatory and immunomodulatory effects, in particular, attenuation of astrocytes and microglia activation, cytokines release, and rescue of the reduction of adhesion molecules (i.e., occludin and zonula occludens-1). Moreover, these compounds were able to decrease T-cell activation visible by reduction of CD4+ and CD8+, reduce the lesioned area (measured by 2,3,5-triphenyltetrazolium chloride staining), and to preserve tissue architecture, microtubule stability, and neural plasticity. Moreover, our findings provide pre-clinical evidence for the use of low-dose oral S1PR1 antagonists as neuroprotective strategies for TBI and broaden our understanding of the underlying S1PR1-driven neuroinflammatory processes in the pathophysiology of TBI. Altogether, our results showed that blocking the S1PR1 axis is an effective therapeutic strategy to mitigate neuropathological effects engaged in the CNS by TBI.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy .,2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| | - Timothy Doyle
- 2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| | - Michela Campolo
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Irene Paterniti
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Emanuela Esposito
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Susan A Farr
- 3 VA Medical Center Saint Louis , St. Louis, Missouri.,4 Division of Geriatric Medicine, Saint Louis University , St. Louis, Missouri
| | - Daniela Salvemini
- 2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| |
Collapse
|
23
|
Bao C, Wang B, Yang F, Chen L. Blockade of Interleukin-7 Receptor Shapes Macrophage Alternative Activation and Promotes Functional Recovery After Spinal Cord Injury. Neuroscience 2017; 371:518-527. [PMID: 29069618 DOI: 10.1016/j.neuroscience.2017.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Macrophages are implicated in the pathological processes and functional recovery of spinal cord injury (SCI). Macrophage activation following inflammation depends on networks of interferons and cytokines. Recent evidence indicate that IL-7 signaling can influence the release of proinflammatory factors, however, its roles in modulating macrophage phenotype and function and whether it could affect the functional recovery of SCI are poorly understood. Here, we show that, in a murine SCI model, IL-7 is promptly and vastly induced in injured spinal cord, and that blockade of IL-7 signaling with anti-IL-7Rα mAb (A7R34) favors the generation of M2 phenotype macrophages by affecting the cytokine productions in T helper (Th)1 and Th2 cells. Furthermore, IL-7 displays strong chemotactic property for macrophages and A7R34 treatment inhibits their infiltration into injured sites in vivo. More importantly, the A7R34 treatment promotes functional recovery after SCI, indicating its therapeutic effects on spinal cord repair. Hence, our study proposes a new therapeutic strategy to treat SCI by blocking IL-7 signaling.
Collapse
Affiliation(s)
- Changshun Bao
- Department of Neurosurgery, Southwest Medical University Affiliated Hospital, China
| | - Bin Wang
- Department of Neurosurgery, Southwest Medical University Affiliated Hospital, China
| | - Fubing Yang
- Department of Neurosurgery, Southwest Medical University Affiliated Hospital, China
| | - Ligang Chen
- Department of Neurosurgery, Southwest Medical University Affiliated Hospital, China.
| |
Collapse
|
24
|
Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflammation 2017; 14:167. [PMID: 28835272 PMCID: PMC5569493 DOI: 10.1186/s12974-017-0934-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022] Open
Abstract
Background Neuroinflammation is an important secondary injury mechanism that has dual beneficial and detrimental roles in the pathophysiology of traumatic brain injury (TBI). Compelling data indicate that statins, a group of lipid-lowering drugs, also have extensive immunomodulatory and anti-inflammatory properties. Among statins, atorvastatin has been demonstrated as a neuroprotective agent in experimental TBI; however, there is a lack of evidence regarding its effects on neuroinflammation during the acute phase of TBI. The current study aimed to evaluate the effects of atorvastatin therapy on modulating the immune reaction, and to explore the possible involvement of peripheral leukocyte invasion and microglia/macrophage polarization in the acute period post-TBI. Methods C57BL/6 mice were subjected to TBI using a controlled cortical impact (CCI) device. Either atorvastatin or vehicle saline was administered orally starting 1 h post-TBI for three consecutive days. Short-term neurological deficits were evaluated using the modified neurological severity score (mNSS) and Rota-rod. Brain-invading leukocyte subpopulations were analyzed by flow cytometry and immunohistochemistry. Pro- and anti-inflammatory cytokines and chemokines were examined using enzyme-linked immunosorbent assay (ELISA). Markers of classically activated (M1) and alternatively activated (M2) microglia/macrophages were then determined by quantitative real-time PCR (qRT-PCR) and flow cytometry. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) staining and immunofluorescence labeling for neuronal nuclei (NeuN). Results Acute treatment with atorvastatin at doses of 1 mg/kg/day significantly reduced neuronal apoptosis and improved behavioral deficits. Invasions of T cells, neutrophils and natural killer (NK) cells were attenuated profoundly after atorvastatin therapy, as was the production of pro-inflammatory cytokines (IFN-γ and IL-6) and chemokines (RANTES and IP-10). Notably, atorvastatin treatment significantly increased the proportion of regulatory T cells (Tregs) in both the peripheral spleen and brain, and at the same time, increased their main effector cytokines IL-10 and TGF-β1. We also found that atorvastatin significantly attenuated total microglia/macrophage activation but augmented the M2/M1 ratio by both inhibiting M1 polarization and enhancing M2 polarization. Conclusions Our data demonstrated that acute atorvastatin administration could modulate post-TBI neuroinflammation effectively, via a mechanism that involves altering peripheral leukocyte invasion and the alternative polarization of microglia/macrophages.
Collapse
|
25
|
Su W, Gao C, Wang P, Huang J, Qian Y, Guo L, Zhang J, Jiang R. Correlation of Circulating T Lymphocytes and Intracranial Hypertension in Intracerebral Hemorrhage. World Neurosurg 2017; 107:389-395. [PMID: 28797978 DOI: 10.1016/j.wneu.2017.07.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND The close correlation between intracerebral pressure (ICP) and immunologic responses has been well described, but the role of T lymphocytes in this process remains unknown. This study targeted the relationship of circulating T lymphocytes and ICP in patients with intracerebral hemorrhage (ICH). METHODS Between October 2015 and October 2016, consecutive patients age 18-65 years with ICH were enrolled. ICP values were recorded hourly for 5 days, and the screened patients were divided into 2 groups based on ICP: the elevated ICP group (ICP >20 mmHg) and normal ICP group (ICP ≤20 mmHg). Peripheral blood was collected on admission and T lymphocyte subpopulations were analyzed by flow cytometry. Glasgow Coma Scale score on admission and Glasgow Outcome Scale (GOS) score at 30 days after ICH were analyzed. RESULTS A total of 44 patients were enrolled, including 18 patients in the elevated ICP group and 26 in the normal ICP group. Both CD3+ and CD4+ T lymphocyte counts were higher in the elevated ICP group (P = 0.004 and 0.000, respectively). The CD8+ T lymphocyte count was not significantly different between the 2 groups (P = 0.751). There were correlation trends between the maximum ICP value and CD3+ lymphocyte count (P = 0.003), CD4+ T lymphocyte count (P = 0.000), and the CD4+/CD8+ T lymphocyte ratio (P = 0.000). The area under the curve (AUC) of CD4+/CD8+ T lymphocyte ratio was the largest among them (P = 0.011 and 0.033), with a significant cutoff value and good specificity and sensitivity. There was a close correlation between the CD4+/CD8+ T lymphocyte ratio and the 30-day GOS score (P = 0.003, AUC = 0.812). CONCLUSIONS The CD4+/CD8+ T lymphocyte ratio may be a valuable indicator for predicting postoperative ICP and the short-term prognosis after ICH.
Collapse
Affiliation(s)
- Wanqiang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China; Department of Neurosurgery, First Center Hospital of Baoding, Hebei, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China
| | - Peng Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China
| | - Linyue Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China.
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Key Laboratory of Postneurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations, and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
26
|
Gao C, Qian Y, Huang J, Wang D, Su W, Wang P, Guo L, Quan W, An S, Zhang J, Jiang R. A Three-Day Consecutive Fingolimod Administration Improves Neurological Functions and Modulates Multiple Immune Responses of CCI Mice. Mol Neurobiol 2016; 54:8348-8360. [PMID: 27924525 DOI: 10.1007/s12035-016-0318-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
Excessive inflammation after traumatic brain injury (TBI) is a major cause of secondary TBI. Though several inflammatory biomarkers have been postulated as the risk factors of TBI, there has not been any comprehensive description of them. Fingolimod, a new kind of immunomodulatory agent which can diminish various kinds of inflammatory responses, has shown additional therapeutic effects in the treatment of intracranial cerebral hematoma (ICH), ischemia, spinal cord injury (SCI), and many other CNS disorders. However, its therapeutic application has not been confirmed in TBI. Thus, we hypothesized that a 3-day consecutive fingolimod administration could broadly modulate the inflammatory reactions and improve the outcomes of TBI. The TBI models of C57/BL6 mice were established with the controlled cortical impact injury (CCI) system. A 3-day consecutive fingolimod therapy (given at 1, 24, and 48 h post injury) was performed at a dose of 1 mg/kg. The flow cytometry, immunoflourence, cytokine array, and ELISA were all applied to evaluate the immune cells and inflammatory markers in the injured brains. Immunohistochemical staining with anti-APP antibody was performed to assess the axonal damage. The neurological functions of these TBI models were assessed by mNSS/Rota-rod and Morris water maze (MWM). The brain water content and integrity of the blood-brain barrier (BBB) were also observed. On the 3rd day after TBI, the accumulation of inflammatory cytokines and chemokines reached the peak and administration of fingolimod reduced as many as 20 kinds of cytokines and chemokines. Fingolimod decreased infiltrated T lymphocytes and NK cells but increased the percentage of regulatory T (Treg) cells, and the concentration of IL-10 on the 3rd day after TBI. Fingolimod also notably attenuated the general activated microglia but augmented the M2/M1 ratio accompanied by decreased axonal damage. The neurological functions were improved after the fingolimod treatment accompanied with alleviation of the brain edema and BBB damage. This study suggests that the 3-day consecutive fingolimod administration extensively modulates multiple immuno-inflammatory responses and improves the neurological deficits after TBI, and therefore, it may be a new approach to the treatment of secondary TBI.
Collapse
Affiliation(s)
- Chuang Gao
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Wanqiang Su
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Peng Wang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Linyue Guo
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Shuo An
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China. .,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.
| |
Collapse
|
27
|
Psachoulia K, Chamberlain KA, Heo D, Davis SE, Paskus JD, Nanescu SE, Dupree JL, Wynn TA, Huang JK. IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation. Brain 2016; 139:3121-3136. [PMID: 27797811 PMCID: PMC5382940 DOI: 10.1093/brain/aww254] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
SEE PLUCHINO AND PERUZZOTTI-JAMETTI DOI101093/AWW266 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence indicates that alternatively activated macrophages in central nervous system lesions are required for oligodendrocyte progenitor differentiation into remyelinating oligodendrocytes. Here, we show that an alternatively activated macrophage secreted enzyme, interleukin-four induced one (IL4I1), is upregulated at the onset of inflammation resolution and remyelination in mouse central nervous system lesions after lysolecithin-induced focal demyelination. Focal demyelination in mice lacking IL4I1 or interleukin 4 receptor alpha (IL4Rα) results in increased proinflammatory macrophage density, remyelination impairment, and axonal injury in central nervous system lesions. Conversely, recombinant IL4I1 administration into central nervous system lesions reduces proinflammatory macrophage density, enhances remyelination, and rescues remyelination impairment in IL4Rα deficient mice. We find that IL4I1 does not directly affect oligodendrocyte differentiation, but modulates inflammation by reducing interferon gamma and IL17 expression in lesioned central nervous system tissues, and in activated T cells from splenocyte cultures. Remarkably, intravenous injection of IL4I1 into mice with experimental autoimmune encephalomyelitis at disease onset significantly reversed disease severity, resulting in recovery from hindlimb paralysis. Analysis of post-mortem tissues reveals reduced axonal dystrophy in spinal cord, and decreased CD4+ T cell populations in spinal cord and spleen tissues. These results indicate that IL4I1 modulates inflammation by regulating T cell expansion, thereby permitting the formation of a favourable environment in the central nervous system tissue for remyelination. Therefore, IL4I1 is a potentially novel therapeutic for promoting central nervous system repair in multiple sclerosis.
Collapse
Affiliation(s)
| | | | - Dongeun Heo
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Stephanie E Davis
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeremiah D Paskus
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Sonia E Nanescu
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeffrey L Dupree
- 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas A Wynn
- 3 Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey K Huang
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
28
|
Dong T, Zhi L, Bhayana B, Wu MX. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J Neuroinflammation 2016; 13:197. [PMID: 27561600 PMCID: PMC5000452 DOI: 10.1186/s12974-016-0663-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Background Acute traumatic brain injury (TBI) represents one of major causes of mortality and disability in the USA. Neuroinflammation has been regarded both beneficial and detrimental, probably in a time-dependent fashion. Methods To address a role for neuroinflammation in brain injury, C57BL/6 mice were subjected to a closed head mild TBI (mTBI) by a standard controlled cortical impact, along with or without treatment of sphingosine 1-phosphate (S1P) or rolipram, after which the brain tissue of the impact site was evaluated for cell morphology via histology, inflammation by qRT-PCR and T cell staining, and cell death with Caspase-3 and TUNEL staining. Circulating lymphocytes were quantified by flow cytometry, and plasma hydrocortisone was analyzed by LC-MS/MS. To investigate the mechanism whereby cortisol lowered the number of peripheral T cells, T cell egress was tracked in lymph nodes by intravital confocal microscopy after hydrocortisone administration. Results We detected a decreased number of circulating lymphocytes, in particular, T cells soon after mTBI, which was inversely correlated with a transient and robust increase of plasma cortisol. The transient lymphocytopenia might be caused by cortisol in part via a blockade of lymphocyte egress as demonstrated by the ability of cortisol to inhibit T cell egress from the secondary lymphoid tissues. Moreover, exogenous hydrocortisone severely suppressed periphery lymphocytes in uninjured mice, whereas administering an egress-promoting agent S1P normalized circulating T cells in mTBI mice and increased T cells in the injured brain. Likewise, rolipram, a cAMP phosphodiesterase inhibitor, was also able to elevate cAMP levels in T cells in the presence of hydrocortisone in vitro and abrogate the action of cortisol in mTBI mice. The investigation demonstrated that the number of circulating T cells in the early phase of TBI was positively correlated with T cell infiltration and inflammatory responses as well as cell death at the cerebral cortex and hippocampus beneath the impact site. Conclusions Decreases in intracellular cAMP might be part of the mechanism behind cortisol-mediated blockade of T cell egress. The study argues strongly for a protective role of cortisol-induced immune suppression in the early stage of TBI.
Collapse
Affiliation(s)
- Tingting Dong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Liang Zhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Hu J, Yang Z, Li X, Lu H. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. J Neuroinflammation 2016; 13:162. [PMID: 27334337 PMCID: PMC4918039 DOI: 10.1186/s12974-016-0630-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background Spinal cord injury (SCI) is a severe traumatic injury that often leads to paralysis. The neuroinflammation following SCI plays an important role during the secondary injury phase. C-C motif chemokine ligand 20 (CCL20) works like a magnet to attract inflammatory cells and subsequently regulate inflammation. However, the role and mechanisms of CCL20 in neuroinflammation following traumatic injury are poorly understood. Methods A modified Allen’s weight drop method was applied to induce a rat moderate contusion injury model. HE staining was used to assess spinal cord histopathology, and the water content test was used to estimate spinal cord edema. Motor function scores were quantified to evaluate locomotor ability, and leukocyte infiltration was observed by CD45 immunofluorescence and flow cytometry. Additionally, qRT-PCR and ELISA were used to determine inflammatory mediator gene expression. Th17 cell recruitment was identified by flow cytometry. Results Compared with the injury control groups, histological analysis of the lesion area and tissue edema revealed reduced spinal cord edema and decreased lesion volume in the group administrated with CCL20 neutralizing antibody. Locomotor activity, as assessed by Basso, Beattie, and Bresnahan (BBB) score, showed that CCL20 blockade was beneficial for motor function recovery. Results also showed that leukocyte infiltration was reduced by neutralizing CCL20 at 7 days post-injury. More importantly, expression levels of IL-1β, IL-6, and TNF-α at 24 h after SCI demonstrated that a reduced inflammatory reaction in the CCL20 antibody group compared with the injury controls. Although CCL20 altered the expression of IL-1β, IL-6, and TNF-α, it had no effect on anti-inflammatory IL-10 expression at 24 h after damage. Notably, tissue flow cytometry confirmed that Th17 cell recruitment in the CCL20 antibody group was decreased compared with the control groups at 14 days post-injury. Additionally, IL-17A expression, which is mainly secreted by Th17 cell, suggested that CCL20 blockade also reduced IL-17A levels at 14 days after SCI. Conclusions These results suggested that CCL20 aggravates neuroinflammation following SCI via regulation of Th17 cell recruitment and IL-17A level. Thus, CCL20-target therapy could be a promising clinical application for the treatment of SCI. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0630-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410000, People's Republic of China.
| |
Collapse
|
30
|
Plesnila N. The immune system in traumatic brain injury. Curr Opin Pharmacol 2015; 26:110-7. [PMID: 26613129 DOI: 10.1016/j.coph.2015.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/21/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of death in children and young adults and one of the major reasons for long-term disability worldwide, however, no specific clinical treatment option could be established so far. This is surprising since it is well known that following the initial mechanical damage to the brain a plethora of delayed processes are activated which ultimately result in additional brain damage. Among these secondary mechanisms, acute and chronic activation of the innate and adaptive immune system is increasingly believed to play an important role for the pathogenesis of TBI. Understanding these processes may results in new, clinically applicable therapeutic options for TBI patients.
Collapse
Affiliation(s)
- Nikolaus Plesnila
- Institute for Stroke and Dementia Research and Munich Cluster of System Neurology (Synergy), University of Munich Medical Center, Munich, Germany.
| |
Collapse
|
31
|
Satzer D, Miller C, Maxon J, Voth J, DiBartolomeo C, Mahoney R, Dutton JR, Low WC, Parr AM. T cell deficiency in spinal cord injury: altered locomotor recovery and whole-genome transcriptional analysis. BMC Neurosci 2015; 16:74. [PMID: 26546062 PMCID: PMC4635574 DOI: 10.1186/s12868-015-0212-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/23/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND T cells undergo autoimmunization following spinal cord injury (SCI) and play both protective and destructive roles during the recovery process. T cell-deficient athymic nude (AN) rats exhibit improved functional recovery when compared to immunocompetent Sprague-Dawley (SD) rats following spinal cord transection. METHODS In the present study, we evaluated locomotor recovery in SD and AN rats following moderate spinal cord contusion. To explain variable locomotor outcome, we assessed whole-genome expression using RNA sequencing, in the acute (1 week post-injury) and chronic (8 weeks post-injury) phases of recovery. RESULTS Athymic nude rats demonstrated greater locomotor function than SD rats only at 1 week post-injury, coinciding with peak T cell infiltration in immunocompetent rats. Genetic markers for T cells and helper T cells were acutely enriched in SD rats, while AN rats expressed genes for T(h)2 cells, cytotoxic T cells, NK cells, mast cells, IL-1a, and IL-6 at higher levels. Acute enrichment of cell death-related genes suggested that SD rats undergo secondary tissue damage from T cells. Additionally, SD rats exhibited increased acute expression of voltage-gated potassium (Kv) channel-related genes. However, AN rats demonstrated greater chronic expression of cell death-associated genes and less expression of axon-related genes. Immunostaining for macrophage markers revealed no T cell-dependent difference in the acute macrophage infiltrate. CONCLUSIONS We put forth a model in which T cells facilitate early tissue damage, demyelination, and Kv channel dysregulation in SD rats following contusion SCI. However, compensatory features of the immune response in AN rats cause delayed tissue death and limit long-term recovery. T cell inhibition combined with other neuroprotective treatment may thus be a promising therapeutic avenue.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Catherine Miller
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Jacob Maxon
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Joseph Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christina DiBartolomeo
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Rebecca Mahoney
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
32
|
Walsh JT, Hendrix S, Boato F, Smirnov I, Zheng J, Lukens JR, Gadani S, Hechler D, Gölz G, Rosenberger K, Kammertöns T, Vogt J, Vogelaar C, Siffrin V, Radjavi A, Fernandez-Castaneda A, Gaultier A, Gold R, Kanneganti TD, Nitsch R, Zipp F, Kipnis J. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J Clin Invest 2015; 125:699-714. [PMID: 25607842 PMCID: PMC4319416 DOI: 10.1172/jci76210] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.
Collapse
Affiliation(s)
- James T. Walsh
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience, and
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sven Hendrix
- Department of Morphology and BIOMED Institute, Hasselt University, Diepenbeek, Belgium
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Francesco Boato
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Igor Smirnov
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Jingjing Zheng
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Institute of Neurosciences, Fourth Military Medical University, Xi’an, China
| | - John R. Lukens
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sachin Gadani
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience, and
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Hechler
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Greta Gölz
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Rosenberger
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | | | - Johannes Vogt
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Vogelaar
- Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neuroscience and Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ali Radjavi
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Microbiology, Immunology and Infectious Diseases, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | - Alban Gaultier
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience, and
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital/Ruhr-University Bochum, Bochum, Germany
| | | | - Robert Nitsch
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité — Universitätsmedizin Berlin, Berlin, Germany
- Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience, and
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Graduate Program in Microbiology, Immunology and Infectious Diseases, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Mencl S, Hennig N, Hopp S, Schuhmann MK, Albert-Weissenberger C, Sirén AL, Kleinschnitz C. FTY720 does not protect from traumatic brain injury in mice despite reducing posttraumatic inflammation. J Neuroimmunol 2014; 274:125-31. [DOI: 10.1016/j.jneuroim.2014.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
|
34
|
Mazzon E, Bruscoli S, Galuppo M, Biagioli M, Sorcini D, Bereshchenko O, Fiorucci C, Migliorati G, Bramanti P, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ) controls inflammation and tissue damage after spinal cord injury. CNS Neurosci Ther 2014; 20:973-81. [PMID: 25146427 DOI: 10.1111/cns.12315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023] Open
Abstract
AIMS Spinal cord injury (SCI) occurs following damage to the spinal column. Following trauma, tissue damage is further exacerbated by a secondary damage due to a SCI-activated inflammatory process. Control of leukocytes activity is essential to therapeutic inhibition of the spinal cord damage to ameliorate the patient's conditions. The mechanisms that regulate neuroinflammation following SCI, including T-cell infiltration, have not been completely clarified. Glucocorticoids (GC) are antiinflammatory drugs widely used in therapy, including treatment of SCI. GC efficacy may be linked to many molecular mechanisms that are involved in regulation of leukocytes migration, activation, and differentiation. We have previously shown that the antiinflammatory activity of GC is in part mediated by glucocorticoid-induced leucine zipper (GILZ). Here, we investigated the role of GILZ in inflammation and spinal cord tissue damage following a spinal trauma. METHODS We address the role of GILZ in SCI-induced inflammation and tissue damage using a model of SCI in gilz knockout (gilz KO) and wild-type (WT) mice. RESULTS We found that GILZ deficiency is associated with a strong reduction of SCI-induced inflammation and a significantly reduced lesion area following SCI. CONCLUSION These results demonstrate that GILZ is involved in induction of neuroinflammation and functional outcomes of spinal cord trauma.
Collapse
Affiliation(s)
- Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mortazavi MM, Verma K, Harmon OA, Griessenauer CJ, Adeeb N, Theodore N, Tubbs RS. The microanatomy of spinal cord injury: A review. Clin Anat 2014; 28:27-36. [DOI: 10.1002/ca.22432] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ketan Verma
- Pediatric Neurosurgery; Children's of Alabama
| | | | | | - Nimer Adeeb
- Pediatric Neurosurgery; Children's of Alabama
| | | | | |
Collapse
|
36
|
Shrestha R, Millington O, Brewer J, Dev KK, Bushell TJ. Lymphocyte-mediated neuroprotection in in vitro models of excitotoxicity involves astrocytic activation and the inhibition of MAP kinase signalling pathways. Neuropharmacology 2014; 76 Pt A:184-93. [DOI: 10.1016/j.neuropharm.2013.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022]
|
37
|
Silva GAA, Pradella F, Moraes A, Farias A, dos Santos LMB, de Oliveira ALR. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav 2014; 4:925-35. [PMID: 25365796 PMCID: PMC4178248 DOI: 10.1002/brb3.276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. AIMS The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. METHODS AND RESULTS The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. CONCLUSIONS Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Collapse
Affiliation(s)
- Gleidy A A Silva
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Fernando Pradella
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Adriel Moraes
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Alessandro Farias
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Leonilda M B dos Santos
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Alexandre L R de Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP Campinas, SP, Brazil
| |
Collapse
|
38
|
Saltzman JW, Battaglino R, Stott H, Morse LR. Neurotoxic or Neuroprotective? Current Controversies in SCI-Induced Autoimmunity. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2013; 1. [PMID: 24416711 DOI: 10.1007/s40141-013-0021-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Controversy exists regarding the autoimmune response that has been observed following traumatic spinal cord injury (SCI). It is not clear if this represents a protective response by the immune system to prevent further tissue damage, a pathological reaction of the immune system to central nervous system antigens released by the injury, or a combination of both. Experimental evidence indicates that B cells produce auto-antibodies following SCI and that the presence of self-reactive antibodies is associated with tissue damage. Conversely, other studies suggest T cell activity at the site of the injury promotes tissue regeneration. Vaccination with dendritic cells exposed to central nervous system (CNS) antigens dramatically improves recovery of motor function in spinal cord injured rats. Further research is required to determine the nature of post-SCI B cell and T cell responses and to establish efficacy of dendritic cell vaccination therapy in clinical studies. This information is critical for the development of therapies to either suppress or promote immune responses following neurotrauma to improve neurological outcomes.
Collapse
|
39
|
CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury. Exp Eye Res 2013; 115:131-9. [PMID: 23792169 DOI: 10.1016/j.exer.2013.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
Neuron degeneration is a common pathological process associated with many disease conditions in the central nervous system including retina. Although immune responses have been proposed as one potential element in triggering neural damage, the mechanism of action of specific immune components underlying the pathogenesis is unclear. In this study we focus on adaptive immune activities to evaluate CD4 positive helper cells in the retinal ganglion cell (RGC) degeneration in response to transient retinal ischemic/reperfusion (I/R) injury. Transient retinal ischemia was induced in four mouse strains with different immune backgrounds, including wild type mice from C57BL/6 and BABL/c strains, severe combined immunodeficient (SCID) mice lacking T and B lymphocytes, SCID mice with transferred wild type CD4+ T cells, and the STAT6 deficient mice without T helper 2 (TH2) cells. In SCID mice RGCs showed a strong resistance to cell death in response to I/R injury (89% ± 3% of the survival cells in contralateral eye) compared with C57BL/6 (p = 0.018) and BALB/C (p = 0.038) wild types. By transferring the mature CD4+ T cells from matched wild type into SCID mice, the resistance of RGCs to injury was significantly compromised (p < 0.05). Furthermore a significant resistance of RGCs to cell death (p < 0.05) accompanied with an overexpression of STAT1 and STAT3 was confirmed in STAT6 deficient mice in response to I/R injury compared with the wild type controls, indicating that TH2 cells maturation might be involved in RGC damage. Adaptive immunity carried by CD4 T cells plays an essential role in RGC degeneration.
Collapse
|
40
|
Vaughn CN, Iafrate JL, Henley JB, Stevenson EK, Shlifer IG, Jones TB. Cellular Neuroinflammation in a Lateral Forceps Compression Model of Spinal Cord Injury. Anat Rec (Hoboken) 2013; 296:1229-46. [DOI: 10.1002/ar.22730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/31/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Chloe N. Vaughn
- Biomedical Sciences Program; Midwestern University; Glendale Arizona
| | - Julia L. Iafrate
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
| | | | | | - Igor G. Shlifer
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
| | - T. Bucky Jones
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
- Department of Anatomy; Midwestern University; Glendale Arizona
| |
Collapse
|
41
|
Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N. In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation 2013; 10:32. [PMID: 23448240 PMCID: PMC3610295 DOI: 10.1186/1742-2094-10-32] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/05/2013] [Indexed: 01/18/2023] Open
Abstract
Background Leukocytes are believed to be involved in delayed cell death following traumatic brain injury (TBI). However, data demonstrating that blood-borne inflammatory cells are present in the injured brain prior to the onset of secondary brain damage have been inconclusive. We therefore investigated both the interaction between leukocytes and the cerebrovascular endothelium using in vivo imaging and the accumulation of leukocytes in the penumbra following experimentally induced TBI. Methods Experimental TBI was induced in C57/Bl6 mice (n = 42) using the controlled cortical impact (CCI) injury model, and leukocyte-endothelium interactions (LEI) were quantified using both intravital fluorescence microscopy (IVM) of superficial vessels and 2-photon microscopy of cortical vessels for up to 14 h post-CCI. In a separate experimental group, leukocyte accumulation and secondary lesion expansion were analyzed in mice that were sacrificed 15 min, 2, 6, 12, 24, or 48 h after CCI (n = 48). Finally, leukocyte adhesion was blocked with anti-CD18 antibodies, and the effects on LEI and secondary lesion expansion were determined 16 (n = 12) and 24 h (n = 21), respectively, following TBI. Results One hour after TBI leukocytes and leukocyte-platelet aggregates started to roll on the endothelium of pial venules, whereas no significant LEI were observed in pial arterioles or in sham-operated mice. With a delay of >4 h, leukocytes and aggregates did also firmly adhere to the venular endothelium. In deep cortical vessels (250 μm) LEIs were much less pronounced. Transmigration of leukocytes into the brain parenchyma only became significant after the tissue became necrotic. Treatment with anti-CD18 antibodies reduced adhesion by 65%; however, this treatment had no effect on secondary lesion expansion. Conclusions LEI occurred primarily in pial venules, whereas little or no LEI occurred in arterioles or deep cortical vessels. Inhibiting LEI did not affect secondary lesion expansion. Importantly, the majority of migrating leukocytes entered the injured brain parenchyma only after the tissue became necrotic. Our results therefore suggest that neither intravascular leukocyte adhesion nor the migration of leukocytes into cerebral tissue play a significant role in the development of secondary lesion expansion following TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Institute for Surgical Research in the Walter-Brendel-Centre of Experimental Medicine, University of Munich Medical Center, Marchioninistr, 15, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Huang Y, Hu Z, Liu G, Zhou W, Zhang Y. Cytokines induced by long-term potentiation (LTP) recording: a potential explanation for the lack of correspondence between learning/memory performance and LTP. Neuroscience 2012. [PMID: 23201254 DOI: 10.1016/j.neuroscience.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relationship between learning/memory performance and long-term potentiation (LTP) induction is ambiguous. Although a large body of data supports a strong correspondence between learning/memory performance and LTP, many studies have also provided evidence to the contrary. In this study, we found that 2-month-old senescence-accelerated mice/prone 8 (SAMP8 mice) displayed both impaired performance in a Morris Water Maze (MWM) and enhanced LTP compared to senescence-accelerated mice/resistance 1 (SAMR1). BALB/c mice challenged with Complete Freund's Adjuvant (CFA) performed better in the shuttle-box test but displayed impaired LTP compared to intact animals. It is interesting that BALB/c mice challenged with Incomplete Freund's Adjuvant (IFA) performed better than intact animals, with no LTP impairment. Cytokine analysis showed no significant differences between the interleukin-6 (IL-6), interleukin-10 (IL-10) or TNF-α content in the intact hippocampal tissues of either the SAMR1 and SAMP8 mice or the immune-challenged BALB/c and intact animals. Further analysis demonstrated that the increase in cytokine content was higher in the hippocampal tissues used for LTP recording in the SAMR1 and CFA-challenged animals compared to the SAMP8 and intact BALB/c mice. A correlation analysis demonstrated that pro-inflammatory cytokines (IL-6 and TNF-α) displayed a negative correlation with LTP, while an anti-inflammatory cytokine (IL-10) displayed a positive correlation with LTP. These results suggest that pro-inflammatory cytokines induced by LTP manipulation in experiments (e.g., via tissue injury caused by electrode insertion) may be one of the factors contributing to the observed lack of correspondence between memory/learning ability and LTP.
Collapse
Affiliation(s)
- Y Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | |
Collapse
|
43
|
Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T. Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death Dis 2012; 3:e363. [PMID: 22875000 PMCID: PMC3434665 DOI: 10.1038/cddis.2012.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of T lymphocytes in central nervous system (CNS) injuries is controversial, with inconsistent results reported concerning the effects of T-lymphocyte transfer on spinal cord injury (SCI). Here, we demonstrate that a specific T-lymphocyte subset enhances functional recovery after contusion SCI in mice. Intraperitoneal adoptive transfer of type 1 helper T (Th1)-conditioned cells 4 days after SCI promoted recovery of locomotor activity and tactile sensation and concomitantly induced regrowth of corticospinal tract and serotonergic fibers. However, neither type 2 helper T (Th2)- nor IL-17-producing helper T (Th17)-conditioned cells had such effects. Activation of microglia and macrophages were observed in the spinal cords of Th1-transfered mice after SCI. Specifically, M2 subtype of microglia/macrophages was upregulated after Th1 cell transfer. Neutralization of interleukin 10 secreted by Th1-conditioned cells significantly attenuated the beneficial effects by Th1-conditioned lymphocytes after SCI. We also found that Th1-conditioned lymphocytes secreted significantly higher levels of neurotrophic factor, neurotrophin 3 (NT-3), than Th2- or Th17-conditioned cells. Thus, adoptive transfer of pro-inflammatory Th1-conditioned cells has neuroprotective effects after SCI, with prospective implications in immunomodulatory treatment of CNS injury.
Collapse
Affiliation(s)
- H Ishii
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu B, Matic D, Djogo N, Szpotowicz E, Schachner M, Jakovcevski I. Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 2012; 237:274-85. [PMID: 22868200 DOI: 10.1016/j.expneurol.2012.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/14/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
It is widely accepted that the immune system plays important functional roles in regeneration after injury to the spinal cord. Immune response towards injury involves a complex interplay of immune system cells, such as neutrophils, macrophages and microglia, T- and B-lymphocytes. We investigated the influence of the lymphocyte component of the immune system on the locomotor outcome of severe spinal cord injury in a genetic mouse model of immune suppression. Transgenic mice lacking mature T- and B-lymphocytes due to the recombination activating gene 2 gene deletion (RAG2-/- mice) were subjected to severe compression of the lower thoracic spinal cord, with the wild-type mice of the same inbred background serving as controls. According to both the Basso Mouse Scale score and single frame motion analysis, the RAG2-/- mice showed improved recovery in comparison to control mice at six weeks after injury. Better locomotor function was associated with enhanced catecholaminergic and cholinergic reinnervation of the spinal cord caudal to injury and increased axonal regrowth/sprouting at the site of injury. Myelination of axons in the ventral column measured as g-ratio was more extensive in RAG2-/- than in control mice 6weeks after injury. Additionally, the number of microglia/macrophages was decreased in the lumbar spinal cord of RAG2-/- mice after injury, whereas the number of astrocytes was increased compared with controls. We conclude that T- and B-lymphocytes restrict functional recovery from spinal cord injury by increasing numbers of microglia/macrophages as well as decreasing axonal sprouting and myelination.
Collapse
Affiliation(s)
- Bin Wu
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Weckbach S, Neher M, Losacco JT, Bolden AL, Kulik L, Flierl MA, Bell SE, Holers VM, Stahel PF. Challenging the role of adaptive immunity in neurotrauma: Rag1(-/-) mice lacking mature B and T cells do not show neuroprotection after closed head injury. J Neurotrauma 2012; 29:1233-42. [PMID: 22335783 DOI: 10.1089/neu.2011.2169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of adaptive immunity in contributing to post-traumatic neuroinflammation and neuropathology after head injury remains largely unexplored. The present study was designed to investigate the pathophysiological sequelae of closed head injury in Rag1(-/-) mice devoid of mature B and T lymphocytes. C57BL/6 wild-type and Rag1(-/-) mice were subjected to experimental closed head injury, using a standardized weight-drop device. Outcome parameters consisted of neurological scoring, quantification of blood-brain barrier (BBB) function, measurement of inflammatory markers and mediators of apoptosis in serum and brain tissue, and assessment of neuronal cell death, astrogliosis, and tissue destruction. There was no difference between wild-type and Rag1(-/-) mice with regard to injury severity and neurological impairment for up to 7 days after head injury. The extent of BBB dysfunction was in a similar range for both groups. Quantification of complement activation fragments in serum revealed significantly attenuated C3a levels in Rag1(-/-) mice compared to wild-type animals. In contrast, the levels of pro- and anti-inflammatory cytokines and pro-apoptotic and anti-apoptotic mediators remained in a similar range for both groups, and the histological analysis of brain sections did not reveal a difference in reactive astrogliosis, tissue destruction, and neuronal cell death in Rag1(-/-) compared to wild-type mice. These findings suggest that adaptive immunity is not of crucial importance for initiating and sustaining the inflammatory neuropathology after closed head injury. The attenuated extent of post-traumatic complement activation seen in Rag1(-/-) mice implies a cross-talk between innate and adaptive immune responses, which requires further investigation in future studies.
Collapse
Affiliation(s)
- Sebastian Weckbach
- Department of Orthopaedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado 80204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Al Nimer F, Beyeen AD, Lindblom R, Ström M, Aeinehband S, Lidman O, Piehl F. Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury. Brain Behav Immun 2011; 25:981-90. [PMID: 20974248 DOI: 10.1016/j.bbi.2010.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023] Open
Abstract
Genetic regulation of autoimmune neuroinflammation is a well known phenomenon, but genetic influences on inflammation following traumatic nerve injuries have received little attention. In this study we examined the inflammatory response in a rat traumatic brain injury (TBI) model, with a particular focus on major histocompatibility class II (MHC II) presentation, in two inbred rat strains that have been extensively characterized in experimental autoimmune encephalomyelitis (EAE); DA and PVG. In addition, MHC and Vra4 congenic strains on these backgrounds were studied to give information on MHC and non-MHC gene contribution. Thus, allelic differences in Vra4, harboring the Ciita gene, was found to regulate expression of the invariant chain at the mRNA level, with a much smaller effect exerted by the MHC locus itself. Notably, however, at the protein level the MHC congenic PVG-RT1(av1) strain displayed much stronger MHCII(+) presentation, as shown both by immunolabeling and flow cytometry, than the PVG strain, dwarfing the effect of Ciita. The PVG-RT1(av1) strain had significantly more T-cell influx than both DA and PVG, suggesting regulation both by MHC and non-MHC genes. Finally, in terms of outcome, the EAE susceptible DA strain displayed a significantly smaller resulting lesion volume than the resistant PVG-RT1(av1) strain. These results provide additional support for a role of adaptive immune response after neurotrauma and demonstrate that outcome is significantly affected by host genetic factors.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska University Hospital, S171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lulic D, Burns J, Bae EC, van Loveren H, Borlongan CV. A Review of Laboratory and Clinical Data Supporting the Safety and Efficacy of Cyclosporin A in Traumatic Brain Injury. Neurosurgery 2011; 68:1172-85; discussion 1185-6. [DOI: 10.1227/neu.0b013e31820c6cdc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
For decades, cyclosporin A (CsA) has proved to be safe and effective for use in transplantation. In the past 10 years, this agent has shown neuroprotective effects in animal models of traumatic brain injury (TBI). This review article provides a critical overview of the literature on CsA neuroprotective effects in animal studies and current findings of clinical trials in the treatment of TBI with an emphasis on the possible CsA molecular mechanism of action. Animal data provide compelling evidence of the therapeutic benefits of CsA in TBI, but the outcome indices are heterogeneous with respect to the animal model of TBI as well as the route, dose, and timing of CsA administration. Similarly, clinical studies (phase II trials) adapting almost identical patient inclusion criteria have demonstrated the safety of CsA use in TBI, but the clinical trials are also heterogeneous based on study design, especially with regard to the variable timing of CsA administration after TBI. In view of the translational shortcomings of the preclinical studies and the rather pilot nature of the limited clinical trials that recently reached phase III, we offer guidance on the future directions of laboratory investigations on CsA that could improve the safety and efficacy of this agent in subsequent larger clinical trials.
Collapse
Affiliation(s)
- Dzenan Lulic
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Jack Burns
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Eunkyung Cate Bae
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Harry van Loveren
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Cesar V. Borlongan
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
48
|
Ishii H, Kubo T, Kumanogoh A, Yamashita T. Th1 cells promote neurite outgrowth from cortical neurons via a mechanism dependent on semaphorins. Biochem Biophys Res Commun 2010; 402:168-72. [PMID: 20946887 DOI: 10.1016/j.bbrc.2010.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 12/11/2022]
Abstract
The roles of T lymphocytes in the central nervous system (CNS) are diverse; their roles in the injured CNS have been reported to be both detrimental and advantageous. Hence, an investigation of the effects of specific subsets of T cells on neurons may provide an insight into the interaction between the nervous system and the immune system. In the present study, we demonstrate that a specific subset of T lymphocytes enhanced neurite outgrowth in vitro. When cultured T helper type 1 (Th1) cells were co-cultured with cortical neurons, neurite outgrowth from neurons was enhanced; however, the same was not observed when Th2 or naïve T cells were used. We observed that the promotion of neurite outgrowth by Th1 cells was completely inhibited by anti-interferon γ (IFN-γ) neutralizing antibody, but that IFN-γ did not directly promote neurite growth. Furthermore, experiments using knockout mice revealed that semaphorin 4A (Sema4A) but not Sema7A was required for the effect produced by Th1 cells. These results demonstrate that Sema4A and IFN-γ expressed in Th1 cells play a critical role in enhancing neurite outgrowth from cortical neurons.
Collapse
Affiliation(s)
- Hiroshi Ishii
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
49
|
Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2009; 30:385-96. [PMID: 19614750 DOI: 10.1111/j.1460-9568.2009.06820.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-1beta (IL-1beta) may play a central role in the inflammatory response following traumatic brain injury (TBI). We subjected 91 mice to controlled cortical impact (CCI) brain injury or sham injury. Beginning 5 min post-injury, the IL-1beta neutralizing antibody IgG2a/k (1.5 microg/mL) or control antibody was infused at a rate of 0.25 microL/h into the contralateral ventricle for up to 14 days using osmotic minipumps. Neutrophil and T-cell infiltration and microglial activation was evaluated at days 1-7 post-injury. Cognition was assessed using Morris water maze, and motor function using rotarod and cylinder tests. Lesion volume and hemispheric tissue loss were evaluated at 18 days post-injury. Using this treatment strategy, cortical and hippocampal tissue levels of IgG2a/k reached 50 ng/mL, sufficient to effectively inhibit IL-1betain vitro. IL-1beta neutralization attenuated the CCI-induced cortical and hippocampal microglial activation (P < 0.05 at post-injury days 3 and 7), and cortical infiltration of neutrophils (P < 0.05 at post-injury day 7). There was only a minimal cortical infiltration of activated T-cells, attenuated by IL-1beta neutralization (P < 0.05 at post-injury day 7). CCI induced a significant deficit in neurological motor and cognitive function, and caused a loss of hemispheric tissue (P < 0.05). In brain-injured animals, IL-1beta neutralizing treatment resulted in reduced lesion volume, hemispheric tissue loss and attenuated cognitive deficits (P < 0.05) without influencing neurological motor function. Our results indicate that IL-1beta is a central component in the post-injury inflammatory response that, in view of the observed positive neuroprotective and cognitive effects, may be a suitable pharmacological target for the treatment of TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section for Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Arneth B, Birklein F. High sensitivity of free lambda and free kappa light chains for detection of intrathecal immunoglobulin synthesis in cerebrospinal fluid. Acta Neurol Scand 2009; 119:39-44. [PMID: 18573131 DOI: 10.1111/j.1600-0404.2008.01058.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND So far, an inflammation of the central nervous system (CNS) is diagnosed by immunoglobulin measurement in cerebrospinal fluid (CSF) and serum as well as by determination of the oligoclonal bands. With the free kappa and lambda light chains, new markers to diagnose intrathecal synthesis are available. METHODS In addition to routine diagnostic tests and the assessment of standard parameters, free immunoglobulin light chains were measured in the CSF of patients with neurological disorders. RESULTS A significant agreement was found between an increase in free kappa light chain CSF serum quotients and results of the currently widely applied method of oligoclonal band measurement for the detection of intrathecal immunoglobulin synthesis. A sensitivity of 95% and 100% specificity for free kappa light chain concentrations at a cut-off of 0.41 mg/l was determined for free kappa light chains compared with oligoclonal bands. However, the free lambda light chains in 20 out of the 110 investigated samples were characterized by inconsistent behaviour. These otherwise unremarkable samples yielded increased CSF quotients, leading to the assumption that free lambda light chains represent a highly sensitive measure of intrathecal immunologlobulin synthesis. Thirteen of the 20 samples described above were obtained from patients with cerebral infarction, 4 samples derived from patients with cerebral paresis (primarily facial paresis), one sample was from a patient with multisystem atrophy and two were obtained from patients with migraine and neuralgia. CONCLUSION These findings suggest that the high sensitivity of lambda light chains for the detection intrathecal immunoglobulin synthesis may be of benefit in establishing clinical diagnoses.
Collapse
Affiliation(s)
- B Arneth
- Institute of Clinical Chemistry, University of Mainz, Germany.
| | | |
Collapse
|