1
|
Sharma T, Jomphe RY, Zhang D, Magalhaes AC, Loewen MC. Fusarium graminearum Ste2 and Ste3 receptors undergo peroxidase-induced heterodimerization when expressed heterologously in Saccharomyces cerevisiae. Biochem Cell Biol 2025; 103:1-12. [PMID: 39437438 DOI: 10.1139/bcb-2024-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Fusarium graminearum FgSte2 and FgSte3 are G-protein-coupled receptors (GPCRs) shown to play roles in hyphal chemotropism and fungal plant pathogenesis in response to activity arising from host-secreted peroxidases. Here, we follow up on the observation that chemotropism is dependent on both FgSte2 and FgSte3 being present; testing the possibility that this might be due to formation of an FgSte2-FgSte3 heterodimer. Bioluminescence resonance energy transfer (BRET) analyses were conducted in Saccharomyces cerevisiae, where the addition of horse radish peroxidase (HRP) was found to increase the transfer of energy from the inducibly expressed FgSte3-Nano luciferase donor, to the constitutively expressed FgSte2-yellow fluorescent protein (YFP) acceptor, compared to controls. A partial response was also detected when an HRP-derived ligand-containing extract was enriched from F. graminearum spores and applied instead of HRP. In contrast, substitution with pheromones or an unrelated bovine GPCR, rhodopsin-YFP used as acceptor, eliminated all BRET responses. Interaction results were validated by affinity pulldown and receptor expression was validated by confocal immunofluorescence microscopy. Taken together these findings demonstrate the formation of HRP and HRP-derived ligand stimulated heterodimers between FgSte2 and FgSte3. Outcomes are discussed from the context of the roles of ligands and reactive oxygen species in GPCR dimerization.
Collapse
Affiliation(s)
- Tanya Sharma
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
| | - Robert Y Jomphe
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - Dongling Zhang
- Human Health Therapeutics Research Center, National Research Council of Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
| | - Ana C Magalhaes
- Human Health Therapeutics Research Center, National Research Council of Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
| | - Michele C Loewen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 5A2, Canada
| |
Collapse
|
2
|
Amato S, Averna M, Farsetti E, Guidolin D, Pedrazzi M, Gatta E, Candiani S, Maura G, Agnati LF, Cervetto C, Marcoli M. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int J Mol Sci 2024; 25:8610. [PMID: 39201299 PMCID: PMC11354247 DOI: 10.3390/ijms25168610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
| | - Guido Maura
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
3
|
Osse AML, Pandey RS, Wirt RA, Ortiz AA, Salazar A, Kimmich M, Toledano Strom EN, Oblak A, Lamb B, Hyman JM, Carter GW, Kinney J. Reduction in GABAB on glia induce Alzheimer's disease related changes. Brain Behav Immun 2023; 110:260-275. [PMID: 36906075 PMCID: PMC10115139 DOI: 10.1016/j.bbi.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques (Aβ), neurofibrillary tangles (NFT), and neuroinflammation. Data have demonstrated that neuroinflammation contributes to Aβ and NFT onset and progression, indicating inflammation and glial signaling is vital to understanding AD. A previous investigation demonstrated a significant decrease of the GABAB receptor (GABABR) in APP/PS1 mice (Salazar et al., 2021). To determine if changes in GABABR restricted to glia serve a role in AD, we developed a mouse model with a reduction of GABABR restricted to macrophages, GAB/CX3ert. This model exhibits changes in gene expression and electrophysiological alterations similar to amyloid mouse models of AD. Crossing the GAB/CX3ert mouse with APP/PS1 resulted in significant increases in Aβ pathology. Our data demonstrates that decreased GABABR on macrophages leads to several changes observed in AD mouse models, as well as exacerbation of AD pathology when crossed with existing models. These data suggest a novel mechanism in AD pathogenesis.
Collapse
Affiliation(s)
- Amanda M Leisgang Osse
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States.
| | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Ryan A Wirt
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Andrew A Ortiz
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Arnold Salazar
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Michael Kimmich
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Erin N Toledano Strom
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Adrian Oblak
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - Bruce Lamb
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - James M Hyman
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Gregory W Carter
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Jefferson Kinney
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| |
Collapse
|
4
|
Liu H, Schaeffel F, Yang Z, Feldkaemper MP. GABAB Receptor Activation Affects Eye Growth in Chickens with Visually Induced Refractive Errors. Biomolecules 2023; 13:biom13030434. [PMID: 36979369 PMCID: PMC10046083 DOI: 10.3390/biom13030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
This study aims to explore the role of GABAB receptors in the development of deprivation myopia (DM), lens-induced myopia (LIM) and lens-induced hyperopia (LIH). Chicks were intravitreally injected with 25 µg baclofen (GABABR agonist) in one eye and saline into the fellow eye. Choroidal thickness (ChT) was measured via OCT before and 2, 4, 6, 8, 24 h after injection. ChT decreased strongly at 6 and 8 h after baclofen injection and returned back to baseline level after 24 h. Moreover, chicks were monocularly treated with translucent diffusers, −7D or +7D lenses and randomly assigned to baclofen or saline treatment. DM chicks were injected daily into both eyes, while LIM and LIH chicks were monocularly injected into the lens-wearing eyes, for 4 days. Refractive error, axial length and ChT were measured before and after treatment. Dopamine and its metabolites were analyzed via HPLC. Baclofen significantly reduced the myopic shift and eye growth in DM and LIM eyes. However, it did not change ChT compared to respective saline-injected eyes. On the other hand, baclofen inhibited the hyperopic shift and choroidal thickening in LIH eyes. All the baclofen-injected eyes showed significantly lower vitreal DOPAC content. Since GABA is an inhibitory ubiquitous neurotransmitter, interfering with its signaling affects spatial retinal processing and therefore refractive error development with both diffusers and lenses.
Collapse
Affiliation(s)
- Hong Liu
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha 410000, China
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland
| | - Zhikuan Yang
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha 410000, China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha 410000, China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha 410000, China
- Correspondence: (Z.Y.); (M.P.F.)
| | - Marita Pauline Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: (Z.Y.); (M.P.F.)
| |
Collapse
|
5
|
Akyuz E, Celik BR, Aslan FS, Sahin H, Angelopoulou E. Exploring the Role of Neurotransmitters in Multiple Sclerosis: An Expanded Review. ACS Chem Neurosci 2023; 14:527-553. [PMID: 36724132 DOI: 10.1021/acschemneuro.2c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Although emerging evidence has shown that changes in neurotransmitter levels in the synaptic gap may contribute to the pathophysiology of MS, their specific role has not been elucidated yet. In this review, we aim to analyze preclinical and clinical evidence on the structural and functional changes in neurotransmitters in MS and critically discuss their potential role in MS pathophysiology. Preclinical studies have demonstrated that alterations in glutamate metabolism may contribute to MS pathophysiology, by causing excitotoxic neuronal damage. Dysregulated interaction between glutamate and GABA results in synaptic loss. The GABAergic system also plays an important role, by regulating the activity and plasticity of neural networks. Targeting GABAergic/glutamatergic transmission may be effective in fatigue and cognitive impairment in MS. Acetylcholine (ACh) and dopamine can also affect the T-mediated inflammatory responses, thereby being implicated in MS-related neuroinflammation. Also, melatonin might affect the frequency of relapses in MS, by regulating the sleep-wake cycle. Increased levels of nitric oxide in inflammatory lesions of MS patients may be also associated with axonal neuronal degeneration. Therefore, neurotransmitter imbalance may be critically implicated in MS pathophysiology, and future studies are needed for our deeper understanding of their role in MS.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Betul Rana Celik
- Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Feyza Sule Aslan
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Humeyra Sahin
- School of Medicine, Bezmialem Vakif University, Istanbul, Turkey, 34093
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 115 27
| |
Collapse
|
6
|
Liu H, Li Y, Gao Y. Asymmetric activation of class C GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:77-87. [PMID: 36707156 DOI: 10.1016/bs.pmbts.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Class C G-protein-coupled receptors (GPCRs) comprise a unique GPCR subfamily with large ligand-binding extracellular domains and function as obligate dimers. The recently resolved cryo-EM structures of full-length GABAB, CaSR, and mGlus have revealed that these receptors are activated in an asymmetric manner, leading to G-protein-coupling on one protomer within the receptor dimer. In this review we discuss the mechanisms of asymmetric activation in class C GPCRs and the unique mode of interaction with the inhibitory Gi protein. Upon activation, the two seven-transmembrane domains (7TMs) of class C GPCRs rearrange to form a conserved asymmetric TM6-TM6 interface. In contrast to class A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6, but is facilitated through the coordination of intracellular loops. Furthermore, positive and negative allosteric modulators (PAMs and NAMs) adopt distinct conformations to regulate the activity of class C GPCRs. Taken together, these recent findings on the mechanism of asymmetric activation of class C GPCRs highlight a novel mechanism of G protein activation and provide new insights into the design of therapeutics targeting these receptors.
Collapse
Affiliation(s)
- Hongnan Liu
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yanjun Li
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yang Gao
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Dimerization of β 2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism. Cell Chem Biol 2022; 29:1532-1540.e5. [PMID: 36167077 DOI: 10.1016/j.chembiol.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR.
Collapse
|
8
|
Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022; 10:biomedicines10081772. [PMID: 35892672 PMCID: PMC9331517 DOI: 10.3390/biomedicines10081772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
Collapse
|
9
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
10
|
Hanson J. [G proteins: privileged transducers of 7-transmembrane spanning receptors]. Biol Aujourdhui 2022; 215:95-106. [PMID: 35275054 DOI: 10.1051/jbio/2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors or GPCR are the most abundant membrane receptors in our genome with around 800 members. They play an essential role in most physiological and pathophysiological phenomena. In addition, they constitute 30% of the targets of currently marketed drugs and remain an important reservoir for new innovative therapies. Their main effectors are heterotrimeric G proteins. These are composed of 3 subunits, α, β and γ, which, upon coupling with a GPCR, dissociate into Gα and Gβγ to activate numerous signaling pathways. This article describes some of the recent advances in understanding the function and role of heterotrimeric G proteins. After a short introduction to GPCRs, the history of the discovery of G proteins is briefly described. Then, the fundamental mechanisms of activation, signaling and regulation of G proteins are reviewed. New paradigms concerning intracellular signaling, specific recognition of G proteins by GPCRs as well as biased signaling are also discussed.
Collapse
Affiliation(s)
- Julien Hanson
- Laboratoire de Pharmacologie Moléculaire, GIGA-Molecular Biology of Diseases, Université de Liège, CHU, B34, Tour GIGA (+4), Avenue de l'Hôpital 11, B-4000 Liège, Belgique
| |
Collapse
|
11
|
Fritzius T, Stawarski M, Isogai S, Bettler B. Structural Basis of GABA B Receptor Regulation and Signaling. Curr Top Behav Neurosci 2022; 52:19-37. [PMID: 32812202 DOI: 10.1007/7854_2020_147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), activate Go/i-type G proteins that regulate adenylyl cyclase, Ca2+ channels, and K+ channels. GBR signaling to enzymes and ion channels influences neuronal activity, plasticity processes, and network activity throughout the brain. GBRs are obligatory heterodimers composed of GB1a or GB1b subunits with a GB2 subunit. Heterodimeric GB1a/2 and GB1b/2 receptors represent functional units that associate in a modular fashion with regulatory, trafficking, and effector proteins to generate receptors with distinct physiological functions. This review summarizes current knowledge on the structure, organization, and functions of multi-protein GBR complexes.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Shin Isogai
- Biozentrum, Focal Area Structural Biology and Biophysics, University of Basel, Basel, Switzerland.
- Microbial Downstream Process Development, Lonza AG, Visp, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:8656. [PMID: 34445362 PMCID: PMC8395429 DOI: 10.3390/ijms22168656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery that receptors from all families can establish allosteric receptor-receptor interactions and variably associate to form receptor complexes operating as integrative input units endowed with a high functional and structural plasticity has expanded our understanding of intercellular communication. Regarding the nervous system, most research in the field has focused on neuronal populations and has led to the identification of many receptor complexes representing an important mechanism to fine-tune synaptic efficiency. Receptor-receptor interactions, however, also modulate glia-neuron and glia-glia intercellular communication, with significant consequences on synaptic activity and brain network plasticity. The research on this topic is probably still at the beginning and, here, available evidence will be reviewed and discussed. It may also be of potential interest from a pharmacological standpoint, opening the possibility to explore, inter alia, glia-based neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
13
|
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021; 29:539-551. [PMID: 34194261 PMCID: PMC8233523 DOI: 10.1016/j.jsps.2021.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.
Collapse
Key Words
- AC, Adenylyl Cyclase
- Arrestin
- CCR, Chemokine Receptor
- COX, Cyclooxygenase
- DAG, Diacylglycerol
- Drugs
- ERK, Extracellular signal-Regulated Kinase
- G proteins
- GIP, Gastric Inhibitory Peptide
- GLP1R, Glucagon-Like Peptide-1 Receptor
- GPCR
- GRKs
- GRKs, G protein-coupled Receptor Kinases
- Heterodimerization
- IP3, Inositol 1,4,5-triphosphate
- MAPK, Mitogen-Activated Protein Kinase
- NMDA, N-Methyl D-Aspartate
- Nbs, Nanobodies
- PAR-1, Protease Activated Receptor 1
- PIP2, Phosphatidylinositol-4,5-bisphosphate
- PKA, Protein Kinase A
- Signaling
- cAMP, cyclic AMP
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, AMU Aligarh, UP, India
| | - Asma Alonazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - F Al-Zoghaibi
- Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, MBC:03, Riyadh 11211, Saudi Arabia
| |
Collapse
|
14
|
Sefah E, Mertz B. Bacterial Analogs to Cholesterol Affect Dimerization of Proteorhodopsin and Modulates Preferred Dimer Interface. J Chem Theory Comput 2021; 17:2502-2512. [PMID: 33788568 DOI: 10.1021/acs.jctc.0c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hopanoids, the bacterial analogues of sterols, are ubiquitous in bacteria and play a significant role in organismal survival under stressful environments. Unlike sterols, hopanoids have a high degree of variation in the size and chemical nature of the substituent attached to the ring moiety, leading to different effects on the structure and dynamics of biological membranes. While it is understood that hopanoids can indirectly tune membrane physical properties, little is known on the role that hopanoids may play in affecting the organization and behavior of bacterial membrane proteins. In this work we used coarse-grained molecular dynamics simulations to characterize the effects of two hopanoids, diploptene (DPT) and bacteriohopanetetrol (BHT), on the oligomerization of proteorhodopsin (PR) in a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phophoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-3-phosphoglycerol (POPG). PR is a bacterial membrane protein that functions as a light-activated proton pump. We chose PR based on its ability to adopt a distribution of oligomeric states in different membrane environments. Furthermore, the efficiency of proton pumping in PR is intimately linked to its organization into oligomers. Our results reveal that both BHT and DPT indirectly affect dimerization by tuning membrane properties in a fashion that is concentration-dependent. Variation in their interaction with PR in the membrane-embedded and the cytoplasmic regions leads to distinctly different effects on the plasticity of the dimer interface. BHT has the ability to intercalate between monomers in the dimeric interface, whereas DPT shifts dimerization interactions via packing of the interleaflet region of the membrane. Our results show a direct relationship between hopanoid structure and lateral organization of PR, providing a first glimpse at how these bacterial analogues to eukaryotic sterols produce very similar biophysical effects within the cell membrane.
Collapse
Affiliation(s)
- Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
15
|
Conradi Smith GD. Allostery in oligomeric receptor models. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2020; 37:313-333. [PMID: 31822901 DOI: 10.1093/imammb/dqz016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
We show how equilibrium binding curves of receptor homodimers can be expressed as rational polynomial functions of the equilibrium binding curves of the constituent monomers, without approximation and without assuming independence of receptor monomers. Using a distinguished spanning tree construction for reduced graph powers, the method properly accounts for thermodynamic constraints and allosteric interactions between receptor monomers (i.e. conformational coupling). The method is completely general; it begins with an arbitrary undirected graph representing the topology of a monomer state-transition diagram and ends with an algebraic expression for the equilibrium binding curve of a receptor oligomer composed of two or more identical and indistinguishable monomers. Several specific examples are analysed, including guanine nucleotide-binding protein-coupled receptor dimers and tetramers composed of multiple 'ternary complex' monomers.
Collapse
|
16
|
Abstract
Baclofen, β-(4-chlorophenyl)-γ-aminobutyric acid, holds a unique position in neuroscience, remaining the only U.S. Food and Drug Administration (FDA) approved GABAB agonist. While intended to be a more brain penetrant, i.e, ability to cross the blood-brain barrier (BBB), version of GABA (γ-aminobutyric acid) for the potential treatment of epilepsy, baclofen's highly efficacious muscle relaxant properties led to its approval, as a racemate, for the treatment of spasticity. Interestingly, baclofen received FDA approval before its receptor, GABAB, was discovered and its exact mechanism of action was known. In recent times, baclofen has a myriad of off-label uses, with the treatment for alcohol abuse and drug addiction garnering a great deal of attention. This Review aims to capture the >60 year legacy of baclofen by walking through the history, pharmacology, synthesis, drug metabolism, routes of administration, and societal impact of this Classic in chemical neuroscience.
Collapse
Affiliation(s)
- Caitlin N. Kent
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Charlotte Park
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Çomakli S, Özdemir S, Değirmençay Ş. Canine distemper virus induces downregulation of GABA A,GABA B, and GAT1 expression in brain tissue of dogs. Arch Virol 2020; 165:1321-1331. [PMID: 32253618 DOI: 10.1007/s00705-020-04617-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetic, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Sakairi H, Kamikubo Y, Abe M, Ikeda K, Ichiki A, Tabata T, Kano M, Sakurai T. G Protein-Coupled Glutamate and GABA Receptors Form Complexes and Mutually Modulate Their Signals. ACS Chem Neurosci 2020; 11:567-578. [PMID: 31977183 DOI: 10.1021/acschemneuro.9b00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular networks containing various proteins mediate many types of cellular processes. Elucidation of how the proteins interact will improve our understanding of the molecular integration and physiological and pharmacological propensities of the network. One of the most complicated and unexplained interactions between proteins is the inter-G protein-coupled receptor (GPCR) interaction. Recently, many studies have suggested that an interaction between neurotransmitter GPCRs may mediate diverse modalities of neural responses. The B-type gamma-aminobutyric acid (GABA) receptor (GBR) and type-1 metabotropic glutamate receptor (mGluR1) are GPCRs for GABA and glutamate, respectively, and each plays distinct roles in controlling neurotransmission. We have previously reported the possibility of their functional interaction in central neurons. Here, we examined the interaction of these GPCRs using stable cell lines and rat cerebella. Cell-surface imaging and coimmunoprecipitation analysis revealed that these GPCRs interact on the cell surface. Furthermore, fluorometry revealed that these GPCRs mutually modulate signal transduction. These findings provide solid evidence that mGluR1 and GBR have intrinsic abilities to form complexes and to mutually modulate signaling. These findings indicate that synaptic plasticity relies on a network of proteins far more complex than previously assumed.
Collapse
Affiliation(s)
- Hakushun Sakairi
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masayoshi Abe
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Arata Ichiki
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
19
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, de la Ossa L, Martínez-Hernández J, Buisson A, Früh S, Bettler B, Shigemoto R, Fukazawa Y, Luján R. Reduction in the neuronal surface of post and presynaptic GABA B receptors in the hippocampus in a mouse model of Alzheimer's disease. Brain Pathol 2019; 30:554-575. [PMID: 31729777 PMCID: PMC7317930 DOI: 10.1111/bpa.12802] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
The hippocampus plays key roles in learning and memory and is a main target of Alzheimer's disease (AD), which causes progressive memory impairments. Despite numerous investigations about the processes required for the normal hippocampal functions, the neurotransmitter receptors involved in the synaptic deficits by which AD disables the hippocampus are not yet characterized. By combining histoblots, western blots, immunohistochemistry and high-resolution immunoelectron microscopic methods for GABAB receptors, this study provides a quantitative description of the expression and the subcellular localization of GABAB1 in the hippocampus in a mouse model of AD at 1, 6 and 12 months of age. Western blots and histoblots showed that the total amount of protein and the laminar expression pattern of GABAB1 were similar in APP/PS1 mice and in age-matched wild-type mice. In contrast, immunoelectron microscopic techniques showed that the subcellular localization of GABAB1 subunit did not change significantly in APP/PS1 mice at 1 month of age, was significantly reduced in the stratum lacunosum-moleculare of CA1 pyramidal cells at 6 months of age and significantly reduced at the membrane surface of CA1 pyramidal cells at 12 months of age. This reduction of plasma membrane GABAB1 was paralleled by a significant increase of the subunit at the intracellular sites. We further observed a decrease of membrane-targeted GABAB receptors in axon terminals contacting CA1 pyramidal cells. Our data demonstrate compartment- and age-dependent reduction of plasma membrane-targeted GABAB receptors in the CA1 region of the hippocampus, suggesting that this decrease might be enough to alter the GABAB -mediated synaptic transmission taking place in AD.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, 02071, Albacete, Spain
| | - José Martínez-Hernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Alain Buisson
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, BP 170, Grenoble, France
| | - Simon Früh
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Ryuichi Shigemoto
- Institute of Science and Technology (IST Austria), Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| |
Collapse
|
21
|
Bhandage AK, Cunningham JL, Jin Z, Shen Q, Bongiovanni S, Korol SV, Syk M, Kamali-Moghaddam M, Ekselius L, Birnir B. Depression, GABA, and Age Correlate with Plasma Levels of Inflammatory Markers. Int J Mol Sci 2019; 20:ijms20246172. [PMID: 31817800 PMCID: PMC6941074 DOI: 10.3390/ijms20246172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Immunomodulation is increasingly being recognised as a part of mental diseases. Here, we examined whether levels of immunological protein markers changed with depression, age, or the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). An analysis of plasma samples from patients with a major depressive episode and control blood donors (CBD) revealed the expression of 67 inflammatory markers. Thirteen of these markers displayed augmented levels in patients compared to CBD. Twenty-one markers correlated with the age of the patients, whereas 10 markers correlated with the age of CBD. Interestingly, CST5 and CDCP1 showed the strongest correlation with age in the patients and CBD, respectively. IL-18 was the only marker that correlated with the MADRS-S scores of the patients. Neuronal growth factors (NGFs) were significantly enhanced in plasma from the patients, as was the average plasma GABA concentration. GABA modulated the release of seven cytokines in anti-CD3-stimulated peripheral blood mononuclear cells (PBMCs) from the patients. The study reveals significant changes in the plasma composition of small molecules during depression and identifies potential peripheral biomarkers of the disease.
Collapse
Affiliation(s)
- Amol K. Bhandage
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Janet L. Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Zhe Jin
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75108 Uppsala, Sweden; (Q.S.); (M.K.-M.)
| | - Santiago Bongiovanni
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Sergiy V. Korol
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
| | - Mikaela Syk
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75108 Uppsala, Sweden; (Q.S.); (M.K.-M.)
| | - Lisa Ekselius
- Department of Neuroscience, Psychiatry, Uppsala University, 75185 Uppsala, Sweden; (J.L.C.); (S.B.); (M.S.); (L.E.)
| | - Bryndis Birnir
- Department of Neuroscience, Physiology, Uppsala University, BMC, Box 593, 75124 Uppsala, Sweden; (A.K.B.); (Z.J.); (S.V.K.)
- Correspondence: ; Tel.: +46-18-471-4622
| |
Collapse
|
22
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
23
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 PMCID: PMC6742926 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
24
|
Serrano-Regal MP, Luengas-Escuza I, Bayón-Cordero L, Ibarra-Aizpurua N, Alberdi E, Pérez-Samartín A, Matute C, Sánchez-Gómez MV. Oligodendrocyte Differentiation and Myelination Is Potentiated via GABA B Receptor Activation. Neuroscience 2019; 439:163-180. [PMID: 31349008 DOI: 10.1016/j.neuroscience.2019.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the central nervous system (CNS). Several growth factors and neurotransmitters like GABA are postulated as important regulators of that process, and different protein kinases may also participate in OL differentiation and myelination. However, the molecular mechanisms underlying the regulation of myelination by neurotransmitters are only partially known. In the present study, we provide evidence showing that GABA receptors (GABARs) play an important role in OL differentiation. First, we observed that OPCs and OLs synthesize GABA and expressed GABAR and transporters, both in vitro and in vivo and, in contrast to GABAARs, the subunits GABAB1R and GABAB2R are expressed in OLs over time. Then, we found that exogenous GABA increases the number of myelin segments and MBP expression in DRG-OPC cocultures, indicating that GABA regulates myelination when OLs are in contact with axons. Notably, in purified rat OPC cultures, chronic treatment with GABA and baclofen, specific GABABR agonist, accelerates OPC differentiation by enhancing the processes branching and myelin protein expression, effects that are reverted in presence of GABABR specific antagonist CGP55845. Exposure of OPCs to baclofen promotes the Src-phosphorylation, and the baclofen-induced maturation is attenuated in presence of the Src-family kinases inhibitor PP2. None of these effects are mediated by the GABAAR agonist muscimol. Together, these results highlight the relevance of the GABAergic system in OL differentiation, and indicate that this functional role is mediated through GABABR involving the participation of Src-family kinases. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Irene Luengas-Escuza
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Bayón-Cordero
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naroa Ibarra-Aizpurua
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Elena Alberdi
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alberto Pérez-Samartín
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Victoria Sánchez-Gómez
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
25
|
Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2019; 439:301-318. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The dopaminergic system integrated by cell groups distributed in several brain regions exerts a modulatory role in brain. Particularly important for this task are the mesencephalic dopamine neurons, which from the substantia nigra and ventral tegmental area project to the dorsal striatum and the cortical/subcortical limbic systems, respectively. Dopamine released from these neurons operates mainly via the short distance extrasynaptic volume transmission and activates five different dopaminergic receptor subtypes modulating synaptic GABA and glutamate transmission. To accomplish this task dopaminergic neurons keep mutual modulating interactions with neurons of other neurotransmitter systems, including allosteric receptor-receptor interactions in heteroreceptor complexes. As a result of its modulatory role dopaminergic mechanisms are involved in either the etiology or physiopathology of many brain diseases such as Parkinsońs disease and schizophrenia. The aim of this work is to review some novel and conventional approaches that either have been used or are currently employed to treat these diseases. Particular attention is paid to the approaches derived from the knowledge recently acquired in the realm of receptor-receptor interactions taking place through multiple dopamine heteroreceptor complexes in the plasma membrane. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rejon-Orantes
- Pharmacobiology Experimental laboratory, Faculty of Medicine, Universidad Autónoma de Chiapas
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Structural basis for KCTD-mediated rapid desensitization of GABA B signalling. Nature 2019; 567:127-131. [PMID: 30814734 PMCID: PMC6405316 DOI: 10.1038/s41586-019-0990-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022]
Abstract
The GABAB receptor is one of the principal inhibitory neurotransmitter receptors in the brain, and it signals through heterotrimeric G proteins to activate a variety of effectors including G protein-coupled inwardly-rectifying potassium channels (GIRKs)1,2. GABAB receptor signaling is tightly regulated by auxiliary subunits called KCTDs, which control the kinetics of GIRK activation and desensitization3–5. However, the mechanistic basis for KCTD modulation of GABAB signaling remains incompletely understood. Here, using a combination of X-ray crystallography, electron microscopy, functional and biochemical experiments we reveal the molecular details of KCTD binding to both GABAB receptors and Gβγ subunits. KCTDs associate with the receptor by forming an asymmetric pentameric ring around a region of the receptor C-terminal tail, while a second KCTD domain, H1, engages in a symmetric interaction with five copies of Gβγ in which the G protein subunits also directly interact with one another. We further show that KCTD binding to Gβγ is highly cooperative, defining a model in which KCTDs cooperatively strip G proteins from GIRK channels to induce rapid desensitization following receptor activation. These results provide a framework for understanding the molecular basis for the precise temporal control of GABAB signaling by KCTD proteins.
Collapse
|
27
|
Pilipenko V, Narbute K, Amara I, Trovato A, Scuto M, Pupure J, Jansone B, Poikans J, Bisenieks E, Klusa V, Calabrese V. GABA-containing compound gammapyrone protects against brain impairments in Alzheimer's disease model male rats and prevents mitochondrial dysfunction in cell culture. J Neurosci Res 2019; 97:708-726. [PMID: 30742328 DOI: 10.1002/jnr.24396] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023]
Abstract
Neuroinflammation, oxidative stress, decreased glucose/energy metabolism, and disrupted neurotransmission are changes that occur early in sporadic Alzheimer's disease (AD), manifesting as mild cognitive impairment. Recently, the imbalanced function of the gamma-aminobutyric acid (GABA) system was identified as a critical factor in AD progression. Thus, maintaining balance among neurotransmitter systems, particularly the GABA system, can be considered a beneficial strategy to slow AD progression. The present study investigated the effects of the compound gammapyrone, a molecule containing three GABA moieties: "free" moiety attached to the position 4 of the 1,4-dihydropyridine (DHP) ring, and two "crypto" moieties as part of the DHP scaffold. The "free" and "crypto" GABA moieties are linked by a peptide bond (-CONH-), resulting in a peptide-mimicking structure. In a nontransgenic male rat AD model generated by intracerebroventricular (icv) streptozocin (STZ) administration, gammapyrone (0.1 and 0.5 mg/kg ip) mitigated the impairment of spatial learning and memory, prevented astroglial and microglial neuroinflammation, and normalized acetylcholine breakdown and GABA biosynthesis. In PC12 cells, gammapyrone protected against oxidative stress, mitochondrial dysfunction and apoptosis caused by the mitochondrial toxin di-2-ethylhexyl phthalate (DEHP). Gammapyrone did not bind to GABA-A and GABA-B receptors in vitro; therefore, we cannot attribute its neuroprotective action to a specific interaction with GABA receptors. Nevertheless, we suggest that the peptide-like regulatory mechanisms of gammapyrone or its allosteric modulatory properties are essential for the observed effects. Since, the icv STZ model resembles the early stages of AD, gammapyrone, and/or its congeners could be useful in the design of anti-dementia drugs.
Collapse
Affiliation(s)
- Vladimirs Pilipenko
- Faculty of Medicine, Department of Pharmacology, University of Latvia, Riga, Latvia
| | - Karina Narbute
- Faculty of Medicine, Department of Pharmacology, University of Latvia, Riga, Latvia
| | - Ines Amara
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Angela Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Jolanta Pupure
- Faculty of Medicine, Department of Pharmacology, University of Latvia, Riga, Latvia
| | - Baiba Jansone
- Faculty of Medicine, Department of Pharmacology, University of Latvia, Riga, Latvia
| | - Janis Poikans
- Laboratory of Membrane Active Compounds, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Egils Bisenieks
- Laboratory of Membrane Active Compounds, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Vija Klusa
- Faculty of Medicine, Department of Pharmacology, University of Latvia, Riga, Latvia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| |
Collapse
|
28
|
Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D 4 receptor modulates morphine-induced changes in the expression of GAD 65/67 and GABA B receptors in the basal ganglia. Neuropharmacology 2019; 152:22-29. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 11/27/2022]
Abstract
Dopamine D4 receptor (D4R) stimulation, in a putative D4R/μ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Guanajuato, Mexico (permanent address)
| | - Kirill Shumilov
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; German Center for Neurodegenerative Diseases (DZNE) Munich, German (permanent address)
| | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain.
| |
Collapse
|
29
|
Typical clinical and imaging manifestations of encephalitis with anti-γ-aminobutyric acid B receptor antibodies: clinical experience and a literature review. Neurol Sci 2019; 40:769-777. [PMID: 30671737 DOI: 10.1007/s10072-018-3679-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To explore the clinical, imaging, and electroencephalogram (EEG) findings, as well as the treatment and prognosis of five patients with anti-γ-aminobutyric acid B receptor (GABABR) encephalitis and review the current literature to gain a deeper understanding and improve the clinical diagnostic ability of the disease. METHODS Clinical data such as blood examination, imaging, computed tomography (CT), EEG, and magnetic resonance imaging (MRI) findings from five patients with anti-GABABR encephalitis were retrospectively analyzed. RESULTS Based on the imaging data, autoimmune encephalitis with anti-GABABR antibodies displayed subacute onset of episodic memory loss, seizures, and confusion, in addition to signal changes in the medial temporal lobe and/or hippocampus. Anti-GABABR antibodies were found in blood and cerebrospinal fluid (CSF) in all five patients, although the CSF leukocyte count and the levels of protein, sugar, and chloride showed no obvious abnormalities. On MRI, only two patients presented with abnormal signals in the medial temporal lobe and/or hippocampus. The EEG showed a slow wave rhythm in all five patients. After treatment with methylprednisolone pulse therapy combined with antiepileptic treatment, all five patients recovered well, without any complications. CONCLUSIONS Autoimmune encephalitis with anti-GABABR antibodies may be a severe and refractory disease. Anti-GABABR antibodies tested in CSF and serum play a crucial role in the definitive diagnosis and treatment of autoimmune encephalitis. Early treatment is of vital importance to avoid serious complications and neurological sequelae.
Collapse
|
30
|
Borroto-Escuela DO, Fuxe K. Can Allosteric Receptor-Protein Interactions in Receptor Complexes Be a Molecular Mechanism Involved in Cancer Immune Therapy? Front Endocrinol (Lausanne) 2019; 10:574. [PMID: 31481934 PMCID: PMC6710404 DOI: 10.3389/fendo.2019.00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Based on the work in the Central Nervous System with discoveries of allosteric receptor-receptor interactions in homo- and heteroreceptor complexes representing a major integrative mechanism in synapses and extrasynaptic regions, it is proposed that a similar mechanism may exist in the immunological synapses. We discuss a putative additional molecular mechanism for the ability of the inhibitory T cell signaling proteins CTLA-4 and PD-1 and the adenosine A2AR to diminish T cell activation leading to enhancement of cancer development. We suggest that in the same immunological synapse involving T cells and antigen presenting cells multiple heteroreceptor complexes may participate and be in balance with each other. Their composition can vary between functional states and among different types of T cells. The T cell receptor (TCR) and its accelerators, strongly enhancing T cell activation, can be under inhibitory control by T cell signaling proteins CTLA4 and PD-1 and also the adenosine A2AR through inhibitory allosteric receptor-receptor interactions in different types of heteroreceptor complexes. As a result, inhibitory tumor induced immunosuppression can develop due to a dominance of the inhibitory signaling causing a brake on the TCR and/or its accelerator and the cancer immunotherapy becomes blocked.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Kjell Fuxe
| |
Collapse
|
31
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Kulik Á, Booker SA, Vida I. Differential distribution and function of GABABRs in somato-dendritic and axonal compartments of principal cells and interneurons in cortical circuits. Neuropharmacology 2018; 136:80-91. [DOI: 10.1016/j.neuropharm.2017.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022]
|
33
|
Bhandage AK, Jin Z, Korol SV, Shen Q, Pei Y, Deng Q, Espes D, Carlsson PO, Kamali-Moghaddam M, Birnir B. GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4 + T Cells and Is Immunosuppressive in Type 1 Diabetes. EBioMedicine 2018; 30:283-294. [PMID: 29627388 PMCID: PMC5952354 DOI: 10.1016/j.ebiom.2018.03.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. In anti-CD3 stimulated PBMCs, GABA (100 nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals. CD4+ T cells from ND individuals were grouped into responder or non-responder T cells according to effects of GABA (100 nM, 500 nM) on the cell proliferation. In the responder T cells, GABA decreased proliferation, and inhibited secretion of 37 cytokines in a concentration-dependent manner. In the non-responder T cells, GABA modulated release of 8 cytokines. GABA concentrations in plasma from T1D patients and ND individuals were correlated with 10 cytokines where 7 were increased in plasma of T1D patients. GABA inhibited secretion of 5 of these cytokines from both T1D PBMCs and ND responder T cells. The results identify GABA as a potent regulator of both Th1- and Th2-type cytokine secretion from human PBMCs and CD4+ T cells where GABA generally decreases the secretion. GABA regulates cytokine secretion in anti-CD3-stimulated peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. GABA inhibits secretion of 47 cytokines in PBMCs from type 1 diabetes patients. GABA regulates secretion of pro- and anti-inflammatory cytokines in a concentration-dependent manner.
GABA is a signal molecule in the brain, blood and pancreatic islets where it is secreted by the insulin-producing β cells. GABA has many roles in human islets including optimizing function and survival of β cells. Bhandage et al. now show that GABA is a potent regulator of secretion of both pro- and anti-inflammatory cytokines in stimulated immune cells. In type 1 diabetes the β-cell mass is diminished and thus the protective effect of GABA in the islets although not in blood. Targeting GABA signaling in diabetes mellitus is likely to be a part of the solution when curing diabetes.
Collapse
Affiliation(s)
- Amol K Bhandage
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Yu Pei
- Department of Cell and Molecular Biology, Karolinska Institute, 17165 Stockholm, Sweden
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institute, 17165 Stockholm, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, 75124 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, 75124 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
34
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Rev Neurosci 2018; 29:703-726. [DOI: 10.1515/revneuro-2017-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/01/2018] [Indexed: 01/14/2023]
Abstract
Abstract
The proposal of receptor-receptor interactions (RRIs) in the early 1980s broadened the view on the role of G protein-coupled receptors (GPCR) in the dynamics of the intercellular communication. RRIs, indeed, allow GPCR to operate not only as monomers but also as receptor complexes, in which the integration of the incoming signals depends on the number, spatial arrangement, and order of activation of the protomers forming the complex. The main biochemical mechanisms controlling the functional interplay of GPCR in the receptor complexes are direct allosteric interactions between protomer domains. The formation of these macromolecular assemblies has several physiologic implications in terms of the modulation of the signaling pathways and interaction with other membrane proteins. It also impacts on the emerging field of connectomics, as it contributes to set and tune the synaptic strength. Furthermore, recent evidence suggests that the transfer of GPCR and GPCR complexes between cells via the exosome pathway could enable the target cells to recognize/decode transmitters and/or modulators for which they did not express the pertinent receptors. Thus, this process may also open the possibility of a new type of redeployment of neural circuits. The fundamental aspects of GPCR complex formation and function are the focus of the present review article.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Cinzia Tortorella
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences , University of Modena and Reggio Emilia , I-41121 Modena , Italy
- Department of Neuroscience , Karolinska Institutet , S-17177 Stockholm , Sweden
| |
Collapse
|
35
|
Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A. FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 2018; 9:760. [PMID: 30619090 PMCID: PMC6301190 DOI: 10.3389/fendo.2018.00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) plays a key role in human reproduction through, among others, induction of spermatogenesis in men and production of estrogen in women. The function FSH is performed upon binding to its cognate receptor-follicle-stimulating hormone receptor (FSHR) expressed on the surface of target cells (granulosa and Sertoli cells). FSHR belongs to the family of G protein-coupled receptors (GPCRs), a family of receptors distinguished by the presence of various signaling pathway activation as well as formation of cross-talking aggregates. Until recently, it was claimed that the FSHR occurred naturally as a monomer, however, the crystal structure as well as experimental evidence have shown that FSHR both self-associates and forms heterodimers with the luteinizing hormone/chorionic gonadotropin receptor-LHCGR. The tremendous gain of knowledge is also visible on the subject of receptor activation. It was once thought that activation occurs only as a result of ligand binding to a particular receptor, however there is mounting evidence of trans-activation as well as biased signaling between GPCRs. Herein, we describe the mechanisms of aforementioned phenomena as well as briefly describe important experiments that contributed to their better understanding.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Beata Paziewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- *Correspondence: Adolfo Rivero-Müller ;
| |
Collapse
|
36
|
Varani AP, Pedrón VT, Aon AJ, Höcht C, Acosta GB, Bettler B, Balerio GN. Nicotine-induced molecular alterations are modulated by GABA B receptor activity. Addict Biol 2018; 23:230-246. [PMID: 28419642 DOI: 10.1111/adb.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that GABAB receptors modulate nicotine (NIC) reward effect; nevertheless, the mechanism implicated is not well known. In this regard, we evaluated the involvement of GABAB receptors on the behavioral, neurochemical, biochemical and molecular alterations associated with the rewarding effects induced by NIC in mice, from a pharmacological and genetic approach. NIC-induced rewarding properties (0.5 mg/kg, subcutaneously, sc) were evaluated by conditioned place preference (CPP) paradigm. CPP has three phases: preconditioning, conditioning and postconditioning. GABAB receptor antagonist 2-hydroxysaclofen (0.25, 0.5 and 1 mg/kg; intraperitoneally, ip) or the GABAB receptor agonist baclofen (3 mg/kg; ip) was injected before NIC during the conditioning phase. GABAB1 knockout (GABAB1 KO) mice received NIC during the conditioning phase. Vehicle and wild-type controls were employed. Neurochemical (dopamine, serotonin and their metabolites), biochemical (nicotinic receptor α4β2, α4β2nAChRs) and molecular (c-Fos) alterations induced by NIC were analyzed after the postconditioning phase by high-performance liquid chromatography (HPLC), receptor-ligand binding assays and immunohistochemistry, respectively, in nucleus accumbens (Acb), prefrontal cortex (PFC) and ventral tegmental area (VTA). NIC induced rewarding effects in the CPP paradigm and increased dopamine levels in Acb and PFC, α4β2nAChRs density in VTA and c-Fos expression in Acb shell (AcbSh), VTA and PFC. We showed that behavioral, neurochemical, biochemical and molecular alterations induced by NIC were prevented by baclofen. However, in 2-hydroxysaclofen pretreated and GABAB1 KO mice, these alterations were potentiated, suggesting that GABAB receptor activity is necessary to control alterations induced by NIC-induced rewarding effects. Therefore, the present findings provided important contributions to the mechanisms implicated in NIC-induced rewarding effects.
Collapse
Affiliation(s)
- Andres P Varani
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Valeria T Pedrón
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Amira J Aon
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Gabriela B Acosta
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Switzerland
| | - Graciela N Balerio
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
37
|
Pilipenko V, Narbute K, Beitnere U, Rumaks J, Pupure J, Jansone B, Klusa V. Very low doses of muscimol and baclofen ameliorate cognitive deficits and regulate protein expression in the brain of a rat model of streptozocin-induced Alzheimer's disease. Eur J Pharmacol 2017; 818:381-399. [PMID: 29133125 DOI: 10.1016/j.ejphar.2017.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023]
Abstract
Recent studies devoted to neuroprotection have focused on the role of the gamma-aminobutyric acid (GABA) system in regulating neuroinflammatory processes which play a key role in the neurodegenerative processes observed in Alzheimer's disease (AD) by inducing glial cell overactivation and impairing neurotransmission. Data on the efficacy of classical GABA-A and GABA-B receptor agonists (muscimol and baclofen, respectively) in animal models of AD are not available. Moreover, no published studies have examined the ability of optimal doses of these compounds to prevent neuroinflammation, the alterations in neurotransmission and cognitive deficits. In the present study, we used a non-transgenic rat model of AD obtained by intracerebroventricular streptozocin (STZ) injection and assessed the effects of muscimol and baclofen at very low doses (0.01-0.05mg/kg) on spatial memory and the expression of cortical and hippocampal proteins related to neuroinflammation, namely proteins involved in astroglial functions (glial fibrillary acidic protein, GFAP), GABA synthesis (GABA synthesizing enzyme, glutamic acid decarboxylase 67, GAD67) and acetylcholine degradation (acetylcholine esterase). The presented study demonstrated that in a rat model of STZ-induced AD both muscimol and baclofen at the tested doses exerted memory-enhancing and anti-inflammatory effects, as well as normalization of acetylcholine esterase and GABA expression. We suggested that the function of very low doses of GABA receptor agonists differs from typical GABA-related inhibition and may be mediated by the allosteric sites of GABA receptors or other non-specific cell regulatory pathways.
Collapse
Affiliation(s)
- Vladimirs Pilipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia.
| | - Karina Narbute
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| | - Ulrika Beitnere
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| | - Juris Rumaks
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| | - Jolanta Pupure
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| | - Vija Klusa
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV-1004 Riga, Latvia
| |
Collapse
|
38
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
39
|
Moreno Delgado D, Møller TC, Ster J, Giraldo J, Maurel D, Rovira X, Scholler P, Zwier JM, Perroy J, Durroux T, Trinquet E, Prezeau L, Rondard P, Pin JP. Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. eLife 2017; 6. [PMID: 28661401 PMCID: PMC5540479 DOI: 10.7554/elife.25233] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are mandatory dimers playing important roles in regulating CNS function. Although assumed to form exclusive homodimers, 16 possible heterodimeric mGluRs have been proposed but their existence in native cells remains elusive. Here, we set up two assays to specifically identify the pharmacological properties of rat mGlu heterodimers composed of mGlu2 and 4 subunits. We used either a heterodimer-specific conformational LRET-based biosensor or a system that guarantees the cell surface targeting of the heterodimer only. We identified mGlu2-4 specific pharmacological fingerprints that were also observed in a neuronal cell line and in lateral perforant path terminals naturally expressing mGlu2 and mGlu4. These results bring strong evidence for the existence of mGlu2-4 heterodimers in native cells. In addition to reporting a general approach to characterize heterodimeric mGluRs, our study opens new avenues to understanding the pathophysiological roles of mGlu heterodimers. DOI:http://dx.doi.org/10.7554/eLife.25233.001
Collapse
Affiliation(s)
- David Moreno Delgado
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Thor C Møller
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jeanne Ster
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health, Madrid, Spain
| | - Damien Maurel
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | | | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | | | - Laurent Prezeau
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| |
Collapse
|
40
|
Pin JP, Bettler B. Organization and functions of mGlu and GABAB receptor complexes. Nature 2016; 540:60-68. [DOI: 10.1038/nature20566] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023]
|
41
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2016; 68:631-700. [PMID: 27343248 PMCID: PMC4931872 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
42
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
43
|
Nazari M, Komaki A, Karamian R, Shahidi S, Sarihi A, Asadbegi M. The interactive role of CB1 and GABAB receptors in hippocampal synaptic plasticity in rats. Brain Res Bull 2016; 120:123-30. [DOI: 10.1016/j.brainresbull.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023]
|
44
|
Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Sci Rep 2015; 5:18198. [PMID: 26657998 PMCID: PMC4676002 DOI: 10.1038/srep18198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma membrane upon coexpression with β2-adrenergic receptors (β2-ARs) through an interaction with the fifth and sixth helices of β2-AR. Coexpression of the two receptors in BE(2)-C neuroblastoma cells potentiates calcium responses to a 6TM-MOR ligand, and this calcium response is completely blocked by a selective β2-antagonist in BE(2)-C cells, and in trigeminal and dorsal root ganglia. Co-administration of 6TM-MOR and β2-AR ligands leads to substantial analgesic synergy and completely reverses opioid-induced hyperalgesia in rodent behavioral models. Together, our results provide evidence that the heterodimerization of 6TM-MOR with β2-AR underlies a molecular mechanism for 6TM cellular signaling, presenting a unique functional responses to opioids. This signaling pathway may contribute to the hyperalgesic effects of opioids that can be efficiently blocked by β2-AR antagonists, providing a new avenue for opioid therapy.
Collapse
|
45
|
Doly S, Marullo S. [PRAF2, an endoplasmic reticulum gatekeeper, controls the cell-surface export of the GABA(B) receptor in neurons]. Med Sci (Paris) 2015; 31:834-6. [PMID: 26481021 DOI: 10.1051/medsci/20153110008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Stéphane Doly
- Institut Cochin, Inserm U1016, CNRS UMR8104, université Paris Descartes, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U1016, CNRS UMR8104, université Paris Descartes, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
46
|
Lin TY, Huang WL, Lee WY, Luo CW. Identifying a Neuromedin U Receptor 2 Splice Variant and Determining Its Roles in the Regulation of Signaling and Tumorigenesis In Vitro. PLoS One 2015; 10:e0136836. [PMID: 26317338 PMCID: PMC4552561 DOI: 10.1371/journal.pone.0136836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Neuromedin U (NMU) activates two G protein-coupled receptors, NMUR1 and NMUR2; this signaling not only controls many physiological responses but also promotes tumorigenesis in diverse tissues. We recently identified a novel truncated NMUR2 derived by alternative splicing, namely NMUR2S, from human ovarian cancer cDNA. Sequence analysis, cell surface ELISA and immunocytochemical staining using 293T cells indicated that NMUR2S can be expressed well on the cell surface as a six-transmembrane protein. Receptor pull-down and fluorescent resonance energy transfer assays demonstrated that NMUR1, NMUR2 and this newly discovered NMUR2S can not only form homomeric complexes but also heteromeric complexes with each other. Although not activated by NMU itself, functional assay in combination with receptor quantification and radio-ligand binding in 293T cells indicated that NMUR2S does not alter the translocation and stability of NMUR1 or NMUR2, but rather effectively dampens their signaling by blocking their NMU binding capability through receptor heterodimerization. We further demonstrated that NMU signaling is significantly up-regulated in human ovarian cancers, whereas expression of NMUR2S can block endogenous NMU signaling and further lead to suppression of proliferation in SKOV-3 ovarian cancer cells. In contrast, in monocytic THP-1 cells that express comparable levels of NMUR1 and NMUR2S, depletion of NMUR2S restored both the signaling and effect of NMU. Thus, these results not only reveal the presence of previously uncharacterized heteromeric relationships among NMU receptors but also provide NMUR2S as a potential therapeutic target for the future treatment of NMU signaling-mediated cancers.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lin Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yu Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Kasten CR, Boehm SL. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015; 57:70-87. [PMID: 26283074 DOI: 10.1016/j.neubiorev.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States.
| | - Stephen L Boehm
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
48
|
Kantamneni S. Cross-talk and regulation between glutamate and GABAB receptors. Front Cell Neurosci 2015; 9:135. [PMID: 25914625 PMCID: PMC4392697 DOI: 10.3389/fncel.2015.00135] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Brain function depends on co-ordinated transmission of signals from both excitatory and inhibitory neurotransmitters acting upon target neurons. NMDA, AMPA and mGluR receptors are the major subclasses of glutamate receptors that are involved in excitatory transmission at synapses, mechanisms of activity dependent synaptic plasticity, brain development and many neurological diseases. In addition to canonical role of regulating presynaptic release and activating postsynaptic potassium channels, GABAB receptors also regulate glutamate receptors. There is increasing evidence that metabotropic GABAB receptors are now known to play an important role in modulating the excitability of circuits throughout the brain by directly influencing different types of postsynaptic glutamate receptors. Specifically, GABAB receptors affect the expression, activity and signaling of glutamate receptors under physiological and pathological conditions. Conversely, NMDA receptor activity differentially regulates GABAB receptor subunit expression, signaling and function. In this review I will describe how GABAB receptor activity influence glutamate receptor function and vice versa. Such a modulation has widespread implications for the control of neurotransmission, calcium-dependent neuronal function, pain pathways and in various psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- Bradford School of Pharmacy, School of Life Sciences, University of Bradford Bradford, West Yorkshire, UK
| |
Collapse
|
49
|
Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B. GABAergic signalling in the immune system. Acta Physiol (Oxf) 2015; 213:819-27. [PMID: 25677654 DOI: 10.1111/apha.12467] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research.
Collapse
Affiliation(s)
- A. Barragan
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - J. M. Weidner
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - Z. Jin
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - E. R. Korpi
- Department of Pharmacology; Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Neurobiology and Ageing Programme; Life Sciences Institute; National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology; Singapore
| | - B. Birnir
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
50
|
Wang XP, Cheng ZY, Schmid KL. GABAB receptors are expressed in human aortic smooth muscle cells and regulate the intracellular Ca(2+) concentration. Heart Vessels 2015; 30:249-57. [PMID: 24682435 DOI: 10.1007/s00380-014-0499-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 03/14/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway.
Collapse
MESH Headings
- Aorta/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Enzyme Activation
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Xu-Ping Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | |
Collapse
|