1
|
Wang Y, Wang Y, Jiang Y, Qin Q, Wei S. The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105278. [PMID: 39395685 DOI: 10.1016/j.dci.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
2
|
Zhang L, Xu L, Zhang X, Liao J, Kang S, Wu S, Qin Q, Wei J. Singapore grouper iridovirus VP12 evades the host antiviral immune response by targeting the cGAS-STING signalling pathway. J Gen Virol 2024; 105. [PMID: 39392059 DOI: 10.1099/jgv.0.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
| |
Collapse
|
3
|
Jiang Y, Zhu Z, Chen J, Qin Q, Wei S. Epinephelus coioides NLRP3 inhibits SGIV infection by upregulating Capspase-1 activity. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109837. [PMID: 39147179 DOI: 10.1016/j.fsi.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.
Collapse
Affiliation(s)
- Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhu Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
4
|
Zhan Z, Chen H, Liao X, Wu S, Lei X, Xu Q, Cao H, Qin Q, Wei J. Singapore grouper iridovirus VP128 inhibits STING-TBK1 mediated signaling to evade antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109774. [PMID: 39019127 DOI: 10.1016/j.fsi.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.
Collapse
Affiliation(s)
- Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xinyu Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China.
| |
Collapse
|
5
|
Lei YR, He JY, Fu XM, Huang CF, Lin YX, Dai LL, Chen ZA, Zhang ZP, Liu FM, Qin QW, Sun HY. Epinephelus coioides Sec3 promotes Singapore grouper iridovirus infection by negatively regulates immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109784. [PMID: 39067495 DOI: 10.1016/j.fsi.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.
Collapse
Affiliation(s)
- Yu-Rong Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xue-Mei Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Li-Ling Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zi-An Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ze-Peng Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Fu-Min Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
6
|
Wang Y, Jiang Y, Chen J, Gong H, Qin Q, Wei S. In vitro antiviral activity of eugenol on Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109748. [PMID: 38964434 DOI: 10.1016/j.fsi.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 μM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
7
|
Wang Y, Liu S, Wang W, Liu L, Zhao Y, Qin Q, Huang X, Huang Y. SGIV VP82 inhibits the interferon response by degradation of IRF3 and IRF7. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109611. [PMID: 38734119 DOI: 10.1016/j.fsi.2024.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.
Collapse
Affiliation(s)
- Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
8
|
Zheng Q, Liu L, Guo X, Zhu F, Huang Y, Qin Q, Huang X. Fish ELOVL7a is involved in virus replication via lipid metabolic reprogramming. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109530. [PMID: 38570120 DOI: 10.1016/j.fsi.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xixi Guo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fengyi Zhu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
9
|
Jiang Y, Han C, Gong H, Chen J, Tang B, Yang M, Qin Q, Wei S. Berberine inhibits SGIV replication by suppressing inflammatory response and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109522. [PMID: 38548190 DOI: 10.1016/j.fsi.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.
Collapse
Affiliation(s)
- Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Biao Tang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
10
|
Liu S, Wang Y, Wang W, Zhi L, Zhao Y, Qin Q, Huang Y, Huang X. Singapore grouper iridovirus VP20 interacts with grouper TBK1 and IRF3 to attenuate the interferon immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109349. [PMID: 38184183 DOI: 10.1016/j.fsi.2023.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, is a highly pathogenic agent and causes heavy economic losses in the global grouper aquaculture. Recent studies demonstrated that SGIV infection attenuated antiviral immune and inflammatory response induced by poly (I:C) in vitro. However, little was known about the potential functions of the immune regulatory proteins encoded by SGIV. Here, we identified the detailed roles of VP20 and clarified the potential mechanism underlying its immune regulatory function during SGIV infection. Our results showed that VP20 was an IE gene, and partially co-localized with Golgi apparatus and lysosomes in grouper cells. Overexpression of VP20 enhanced SGIV replication, demonstrated by the increase in the transcription levels of viral core genes and the protein synthesis of MCP. Reporter gene assays showed that SGIV VP20 overexpression significantly reduced the IFN promoter activity induced by poly (I:C), grouper stimulator of interferon genes (EcSTING) and TANK-binding kinase 1 (EcTBK1). Consistently, the transcription levels of IFN related genes were significantly decreased in VP20 overexpressing cells compared to those in control cells. Co-IP assay and confocal microscopy observations indicated that VP20 co-localized and interacted with EcTBK1 and EcIRF3, but not EcSTING. In addition, VP20 was able to degrade EcIRF3 and attenuate the antiviral action of EcIRF3, while had no effect on EcTBK1. Together, SGIV VP20 was speculated to promote viral replication through attenuating the IFN response mediated by TBK1-IRF3 in vitro. Our findings provided new insights into the immune regulatory function of SGIV encoded unknown proteins.
Collapse
Affiliation(s)
- Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenji Wang
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
11
|
Balestreri C, Schroeder DC, Sampedro F, Marqués G, Palowski A, Urriola PE, van de Ligt JLG, Yancy HF, Shurson GC. Unexpected thermal stability of two enveloped megaviruses, Emiliania huxleyi virus and African swine fever virus, as measured by viability PCR. Virol J 2024; 21:1. [PMID: 38172919 PMCID: PMC10765680 DOI: 10.1186/s12985-023-02272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The particle structure of Emiliania huxleyi virus (EhV), an algal infecting member of nucleocytoplasmic large DNA viruses (NCLDVs), contains an outer lipid membrane envelope similar to that found in animal viruses such as African swine fever virus (ASFV). Despite both being enveloped NCLDVs, EhV and ASFV are known for their stability outside their host environment. METHOD Here we report for the first time, the application of a viability qPCR (V-qPCR) method to describe the unprecedented and similar virion thermal stability of both EhV and ASFV. This result contradicts the cell culture-based assay method that suggests that virus "infectivity" is lost in a matter of seconds (for EhV) and minutes (for ASFV) at temperature greater than 50 °C. Confocal microscopy and analytical flow cytometry methods was used to validate the V-qPCR data for EhV. RESULTS We observed that both EhV and ASFV particles has unprecedented thermal tolerances. These two NCLDVs are exceptions to the rule that having an enveloped virion anatomy is a predicted weakness, as is often observed in enveloped RNA viruses (i.e., the viruses causing Porcine Reproductive and Respiratory Syndrome (PRRS), COVID-19, Ebola, or seasonal influenza). Using the V-qPCR method, we confirm that no PRRSV particles were detectable after 20 min of exposure to temperatures up to 100 °C. We also show that the EhV particles that remain after 50 °C 20 min exposure was in fact still infectious only after the three blind passages in bioassay experiments. CONCLUSIONS This study raises the possibility that ASFV is not always eliminated or contained after applying time and temperature inactivation treatments in current decontamination or biosecurity protocols. This observation has practical implications for industries involved in animal health and food security. Finally, we propose that EhV could be used as a surrogate for ASFV under certain circumstances.
Collapse
Affiliation(s)
- Cecilia Balestreri
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Fernando Sampedro
- Environmental Health Sciences Division, University of Minnesota, St. Paul, MN, 55455, USA
| | - Guillermo Marqués
- Department of Neuroscience, University Imaging Centers, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amanda Palowski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Pedro E Urriola
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Haile F Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, 20708, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
12
|
Wang L, Li Q, Wen X, Zhang X, Wang S, Qin Q. Dissecting the early and late endosomal pathways of Singapore grouper iridovirus by single-particle tracking in living cells. Int J Biol Macromol 2024; 256:128336. [PMID: 38013078 DOI: 10.1016/j.ijbiomac.2023.128336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Iridoviruses are large DNA viruses that infect a wide range of invertebrates and lower vertebrates, causing serious threats to ecological security and aquaculture industry worldwide. However, the mechanisms underlying intracellular transport of iridovirus remain unknown. In this study, the transport of Singapore grouper iridovirus (SGIV) in early endosomes (EEs) and late endosomes (LEs) was explored by single-particle tracking technology. SGIV employs EEs to move rapidly from the cell membrane to the nucleus, and this long-range transport is divided into "slow-fast-slow" stages. SGIV within LEs mainly underwent oscillatory movements near the nucleus. Furthermore, SGIV entered newly formed EEs and LEs, respectively, possibly based on the interaction between the viral major capsid protein and Rab5/Rab7. Importantly, interruption of EEs and LEs by the dominant negative mutants of Rab5 and Rab7 significantly inhibited the movement of SGIV, suggesting the important roles of Rab5 and Rab7 in virus transport. In addition, it seems that SGIV needs to enter clathrin-coated vesicles to move from actin to microtubules before EEs carry the virus moving along microtubules. Together, our results for the first time provide a model whereby iridovirus transport depending on EEs and LEs, helping to clarify the mechanism underlying iridovirus infection, and provide a convenient tactic to investigate the dynamic infection of large DNA virus.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Qiang Li
- College of Oceanology and meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaozhi Wen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|
13
|
Xu S, Wang Y, Wang Y, Jiang Y, Li H, Han C, Wei B, Qin Q, Wei S. Development and immune evaluation of LAMP1 chimeric DNA vaccine against Singapore grouper iridovirus in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109218. [PMID: 37977543 DOI: 10.1016/j.fsi.2023.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.
Collapse
Affiliation(s)
- SuiFeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YueXuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YeWen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - YunXiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huang Li
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - ChengZong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - BaoCan Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
14
|
Wang L, Zhang X, Zhang Z, Qin Q, Wang S. Rab32, a novel Rab small GTPase from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109229. [PMID: 37972745 DOI: 10.1016/j.fsi.2023.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Rab32 is a member of the Rab GTPase family that is involved in membrane trafficking and immune response, which are crucial for controlling pathogen infection. However, the role of Rab32 in virus infection is not well understood. In this study, we focused on the regulation of Rab32 on virus infection and the host immunity in orange-spotted grouper, Epinephelus coioides. EcRab32 encoded a 213-amino acid polypeptide, which shared a high sequence identity with other Rab32 proteins from fishes to mammals. In healthy orange-spotted grouper, the mRNA of EcRab32 was expressed in all the detected tissues, with the more expression levels in the head kidney, liver and gill. Upon SGIV infection, the expression of EcRab32 was significantly up-regulated in vitro, indicating its potential role in viral infection. EcRab32 was observed to be distributed in the cytoplasm as punctate and vesicle-like structures. EcRab32 overexpression was found to notably inhibit SGIV infection, while the interruption of EcRab32 significantly promoted SGIV infection. In addition, using single particle imaging analysis, we found that EcRab32 overexpression prominently reduced the attachment and internalization of SGIV particles. Furthermore, the results demonstrated that EcRab32 played a positive role in regulating the interferon immune and inflammatory responses. Taken together, these findings indicated that EcRab32 influenced SGIV infection by regulating the host immune response, providing an overall understanding of the interplay between the Rab32 and innate immunity.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zihan Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
15
|
Liu S, Lei X, Cao H, Xu Z, Wu S, Chen H, Xu L, Zhan Z, Xu Q, Wei J, Qin Q. Antiviral role of grouper FoxO1 against RGNNV and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109168. [PMID: 37844852 DOI: 10.1016/j.fsi.2023.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.
Collapse
Affiliation(s)
- Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
16
|
Xu L, Liu M, Chen H, Zhang L, Xu Q, Zhan Z, Xu Z, Liu S, Wu S, Zhang X, Qin Q, Wei J. Singapore grouper iridovirus VP122 targets grouper STING to evade the interferon immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108990. [PMID: 37558148 DOI: 10.1016/j.fsi.2023.108990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Singapore grouper iridovirus (SGIV) is a highly pathogenic Iridoviridae that causes hemorrhage and spleen enlargement in grouper. Despite previous genome annotation efforts, many open reading frames (ORFs) in SGIV remain uncharacterized, with largely unknown functions. In this study, we identified the protein encoded by SGIV ORF122, now referred to as VP122. Notably, overexpression of VP122 promoted SGIV replication. Moreover, VP122 exhibited antagonistic effects on the natural antiviral immune response through the cGAS-STING signaling pathway. It specifically inhibited the cGAS-STING-triggered transcription of various immune-related genes, including IFN1, IFN2, ISG15, ISG56, PKR, and TNF-α in GS cells. Additionally, VP122 significantly inhibited the activation of the ISRE promoter mediated by EccGAS and EcSTING but had no effect on EccGAS or EcSTING alone. Immunoprecipitation and Western blotting experiments revealed that VP122 specifically interacts with EcSTING but not EccGAS. Notably, this interaction between VP122 and EcSTING was independent of any specific domain of EcSTING. Furthermore, VP122 inhibited the self-interaction of EcSTING. Interestingly, VP122 did not affect the recruitment of EcTBK1 and EcIRF3 to the EcSTING complex. Collectively, our results demonstrate that SGIV VP122 targets EcSTING to evade the type I interferon immune response, revealing a crucial role for VP122 in modulating the host-virus interaction.
Collapse
Affiliation(s)
- Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mengke Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 528478, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| |
Collapse
|
17
|
He J, Cai Y, Huang W, Lin Y, Lei Y, Huang C, Cui Z, Qin Q, Sun H. The Role of Epinephelus coioides DUSP5 in Regulating Singapore Grouper Iridovirus Infection. Viruses 2023; 15:1807. [PMID: 37766214 PMCID: PMC10534539 DOI: 10.3390/v15091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
The dual-specificity phosphatase (DUSP) family plays an important role in response to adverse external factors. In this study, the DUSP5 from Epinephelus coioides, an important marine fish in Southeast Asia and China, was isolated and characterized. As expected, E. coioides DUSP5 contained four conserved domains: a rhodanese homology domain (RHOD); a dual-specificity phosphatase catalytic domain (DSPc); and two regions of low compositional complexity, indicating that E. coioides DUSP5 belongs to the DUSP family. E. coioides DUSP5 mRNA could be detected in all of the examined tissues, and was mainly distributed in the nucleus. Infection with Singapore grouper iridovirus (SGIV), one of the most important pathogens of marine fish, could inhibit the expression of E. coioides DUSP5. The overexpression of DUSP5 could significantly downregulate the expression of the key SGIV genes (MCP, ICP18, VP19, and LITAF), viral titers, the activity of NF-κB and AP-I, and the expression of pro-inflammatory factors (IL-6, IL-8, and TNF-α) of E. coioides, but could upregulate the expressions of caspase3 and p53, as well as SGIV-induced apoptosis. The results demonstrate that E. coioides DUSP5 could inhibit SGIV infection by regulating E. coioides immune-related factors, indicating that DUSP5 might be involved in viral infection.
Collapse
Affiliation(s)
- Jiayang He
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Yijie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Yunxiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Yurong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Cuifen Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Hongyan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (W.H.); (Y.L.); (Y.L.); (C.H.)
| |
Collapse
|
18
|
Qin P, Munang’andu HM, Xu C, Xie J. Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses 2023; 15:1359. [PMID: 37376659 PMCID: PMC10305399 DOI: 10.3390/v15061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Jianjun Xie
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China
| |
Collapse
|
19
|
Guo M, Wei J, Zhou Y, Qin Q. Antiviral immunity of grouper MAP kinase phosphatase 1 to Singapore grouper iridovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104674. [PMID: 36889370 DOI: 10.1016/j.dci.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Singapore grouper iridovirus (SGIV), with various mechanisms for evading and modulating host, has inflicted heavy economic losses in the grouper aquaculture. MAP kinase phosphatase 1 (MKP-1) regulates mitogen-activated protein kinases (MAPKs) to mediate the innate immune response. Here, we cloned EcMKP-1, an MKP-1 homolog from the orange-spotted grouper Epinephelus coioides, and investigated its role in the infection of SGIV. In juvenile grouper, EcMKP-1 was highly upregulated and peaked at different times after injection with lipopolysaccharide, polyriboinosinic polyribocytidylic acid and SGIV. EcMKP-1 expression in heterologous fathead minnow cells was able to suppress SGIV infection and replication. Furthermore, EcMKP-1 was a negative regulator of c-Jun N-terminal kinase (JNK) phosphorylation early in SGIV infection. EcMKP-1 decreased the apoptotic percentage and caspase-3 activity during the late stage of SGIV replication. Our results demonstrate critical functions of EcMKP-1 in antiviral immunity, JNK dephosphorylation and anti-apoptosis during SGIV infection.
Collapse
Affiliation(s)
- Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, 572000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, PR China.
| |
Collapse
|
20
|
Zhang X, Wu S, Liu Z, Chen H, Liao J, Wei J, Qin Q. Grouper RIP2 inhibits Singapore grouper iridovirus infection by modulating ASC-caspase-1 interaction. Front Immunol 2023; 14:1185907. [PMID: 37223098 PMCID: PMC10200930 DOI: 10.3389/fimmu.2023.1185907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Receptor interacting protein 2 (RIP2), serves as a vital sensor of cell stress, is able to respond to cell survival or inflammation, and is involved in antiviral pathways. However, studies on the property of RIP2 in viral infections in fish have not been reported. Methods In this paper, we cloned and characterized RIP2 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP2) and further discussed the relevance of EcRIP2 to EcASC, comparing the influences of EcRIP2 and EcASC on the modulation of inflammatory factors and the NF-κB activation to reveal the mechanism of EcRIP2 in fish DNA virus infection. Results Encoded a 602 amino acid protein, EcRIP2 contained two structural domains: S-TKc and CARD. Subcellular localization signified that EcRIP2 existed in cytoplasmic filaments and dot aggregation patterns. After SGIV infection, the EcRIP2 filaments aggregated into larger clusters near the nucleus. The infection of SGIV could notably up-regulate the transcription level of the EcRIP2 gene compared with lipopolysaccharide (LPS) and red grouper nerve necrosis virus (RGNNV). Overexpression of EcRIP2 impeded SGIV replication. The elevated expression levels of inflammatory cytokines induced by SGIV were remarkably hindered by EcRIP2 treatment in a concentration-dependent manner. In contrast, EcASC treatment could up-regulate SGIV-induced cytokine expression in the presence of EcCaspase-1. Enhancing amounts of EcRIP2 could overcome the down regulatory effect of EcASC on NF-κB. Nevertheless, increasing doses of EcASC failed to restrain the NF-κB activation in the existence of EcRIP2. Subsequently, it was validated by a co-immunoprecipitation assay that EcRIP2 dose-dependently competed with EcASC binding to EcCaspase-1. With increasing time to SGIV infection, EcCaspase-1 gradually combined with more EcRIP2 than EcASC. Discussion Collectively, this paper highlighted that EcRIP2 may impede SGIV-induced hyperinflammation by competing with EcASC for binding EcCaspase-1, thereby suppressing viral replication of SGIV. Our work supplies novel viewpoints into the modulatory mechanism of RIP2-associated pathway and offers a novel view of RIP2-mediated fish diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zetian Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaming Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jingguang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
21
|
Zhang L, Zhang X, Liao J, Xu L, Kang S, Chen H, Sun M, Wu S, Xu Z, Wei S, Qin Q, Wei J. Grouper cGAS is a negative regulator of STING-mediated interferon response. Front Immunol 2023; 14:1092824. [PMID: 36845102 PMCID: PMC9945316 DOI: 10.3389/fimmu.2023.1092824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is one of the classical pattern recognition receptors that recognizes mainly intracytoplasmic DNA. cGAS induces type I IFN responses to the cGAS-STING signaling pathway. To investigate the roles of cGAS-STING signaling pathway in grouper, a cGAS homolog (named EccGAS) was cloned and identified from orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EccGAS is 1695 bp, encodes 575 amino acids, and contains a Mab-21 typical structural domain. EccGAS is homologous to Sebastes umbrosus and humans at 71.8% and 41.49%, respectively. EccGAS mRNA is abundant in the blood, skin, and gills. It is uniformly distributed in the cytoplasm and colocalized in the endoplasmic reticulum and mitochondria. Silencing of EccGAS inhibited the replication of Singapore grouper iridovirus (SGIV) in grouper spleen (GS) cells and enhanced the expression of interferon-related factors. Furthermore, EccGAS inhibited EcSTING-mediated interferon response and interacted with EcSTING, EcTAK1, EcTBK1, and EcIRF3. These results suggest that EccGAS may be a negative regulator of the cGAS-STING signaling pathway of fish.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao, China,Pilot National Laboratory for Marine Science and Technology, Qingdao, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Department of Biological Sciences, National University of Singapore, Singapore, Singapore,*Correspondence: Qiwei Qin, ; Jingguang Wei,
| |
Collapse
|
22
|
He JY, Yang L, Huang W, Xu YM, Cui ZB, Liang JH, Sun JJ, Huang XH, Huang YH, Chen X, Qin QW, Sun HY. Identification and characterization of lncRNAs and the interaction of lncRNA-mRNA in Epinephelus coioides induced with Singapore grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:441-453. [PMID: 36202205 DOI: 10.1016/j.fsi.2022.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) is a highly pathogenic double-stranded DNA virus, and the fatality rate of SGIV-infected grouper is more than 90%. Up to now, there is no effective methods to control the disease. Long non-coding RNAs (lncRNAs) might play an important role in individual growth and development, immune regulation and other life processes. In this study, lncRNAs were identified in Epinephelus coioides, an important economic aquaculture marine fish in China and Southeast Asia, and the regulatory relationships of lncRNAs and mRNA response to SGIV infection were analyzed. A total of 11,678 lncRNAs were identified and classified from the spleen and GS (grouper spleen) cells. 105 differentially expressed lncRNAs (DElncRNAs) were detected during SGIV infection. The lncRNAs and the regulated mRNAs were analyzed using co-expression network, lncRNA target gene annotation and GO enrichment. At 24 and 48 h after SGIV infection, 118 and 339 lncRNA-mRNA pairs in GS cells were detected, and 728 and 688 differentially expressed lncRNA-mRNA pairs in spleen were obtained, respectively. GO and KEGG were used to predict the DE lncRNAs' target genes, and deduce the DE lncRNAs-affected signaling pathways. In GS cells, lncRNAs might participate in cell part, binding and catalytic activity; and lncRNAs might be involved in immune system process and transcription factor activity in spleen. These data demonstrated that lncRNAs could regulate the expression of immune-related genes response to viral infection, and providing a new insight into understanding the complexity of immune regulatory networks mediated by lncRNAs during viral infection in teleost fish.
Collapse
Affiliation(s)
- Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Liu Yang
- College of Humanities and Law, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Wei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Min Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zong-Bin Cui
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jun-Han Liang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ji-Jia Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Hong Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - You-Hua Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
23
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
24
|
Yu D, Weng T, Yang G, Xia H, Gan Z, Wang Z, Li Y, Xia L, Kwok KW, Chen J, Lu Y. Functional characterization of a grouper nklysin with antibacterial and antiviral activity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:862-871. [PMID: 36283596 DOI: 10.1016/j.fsi.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Natural killer lysin (Nklysin) is a small molecule antimicrobial peptide produced by natural killer cells and T lymphocytes and widely expressed in vertebrates. Homologues of Nklysin have been found in several fish, but only several of biological activity was identified. In this study, we characterized a Nklysin from grouper (Epinephelus coioides), and explored its expression pattern and biological function in bacterial infection. We also investigated the role of Nklysin in viral replication and maturation. The nklysin gene of grouper encodes a 169 amino acid, sharing 92.90% identity to H. septemfasciatus NKlysin protein, containing a saposin B domain and six well-conserved cysteine residues that necessary for antimicrobial activity by forming three intrachain disulfide bonds. Analysis of qRT-PCR revealed that nklysin gene widely expressed in all tested tissues with the higher expressions in spleen. After bacterial challenge, the nklysin gene expression significantly varied in different tissues. In addition, a large-scale of the recombinant Nklysin protein was secreted in Pichia pastoris strain GS115. The MIC assay showed that the Nklysin protein directly inhibited growth of several pathogens, including Proteus mirabilis, Bacillus subtilis, Salmonella typhi, Escherichia coli, Shigella sonnei and Streptococcus agalactiae. Further analysis showed the Nklysin protein over-expression might prevent viral genes transcriptions and replication in FHM cells. Our findings suggested that the Nklysin of grouper might be a potential agent for antibacterial and antiviral infection in the future.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanjian Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
25
|
Xu S, Wang Y, Jiang Y, Han C, Qin Q, Wei S. Functional analysis of the cystatin A gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104502. [PMID: 35940384 DOI: 10.1016/j.dci.2022.104502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Cystatin A (CyA), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyA and its potential molecular mechanism during virus infection in fish remain unknown. In our study, we cloned the open reading frame (ORF) of CyA homology from orange-spotted grouper (Ec-CyA) consisting of 303 nucleotides and encoding a 101-amino acid protein. Ec-CyA included two conserved sequences containing one N-terminal glycine fragment and one QXVXG sequence (48aa-52aa) without the signal peptide. Tissue distribution analysis showed that Ec-CyA was highly expressed in spleen and head kidney. Moreover, further analysis indicated that the expression of Ec-CyA increased during SGIV simulation in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyA was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyA promoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was facilitated, as well as the activation of caspase-3/7, caspase-9. In addition, Ec-CyA overexpression down-regulated the expression of interferon (IFN) related molecules including ISG15, IFN, IRF3, MAVS, MyD88, TRAF6 and up-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyA-overexpressing inhibited the activity of IFN and ISRE promoter, but induced NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyA was involved in innate immune response and played a key role in DNA virus infection.
Collapse
Affiliation(s)
- Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Xu S, Wang Y, Han C, Jiang Y, Qin Q, Wei S. Functional analysis of the Cystatin F gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 130:43-52. [PMID: 36084885 DOI: 10.1016/j.fsi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Cystatin F (CyF), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyF and its latent molecular mechanism during virus infection in fish remain vacant. In our research, we cloned the open reading frame (ORF) of CyF homology from orange-spotted grouper (Ec-CyF) consisting of 342 nucleotides and encoding a 114-amino acid protein. Ec-CyF included two cystatins family sequences containing one KXVXG sequence without the signal peptide, and a hairpin ring containing proline and tryptophan (PW). Tissue distribution analysis indicated that Ec-CyF was highly expressed in spleen and head kidney. Besides, further analysis showed that the expression of Ec-CyF increased during SGIV infection in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyF was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyF demoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was impeded, as well as the restraint of caspase 3/7 and caspase 8. In addition, Ec-CyF overexpression up-regulated the expression of IFN related molecules including ISG15, IFN, IFP35, IRF3, IRF7, MYD88 and down-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyF-overexpressing increased the activity of IFN3 and ISRE promoter, but impeded NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyF was involved in innate immunity response and played a key role in DNA virus infection.
Collapse
Affiliation(s)
- Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. J Virol 2022; 96:e0068222. [PMID: 36190239 PMCID: PMC9599571 DOI: 10.1128/jvi.00682-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.
Collapse
|
28
|
Guo X, Wang W, Zheng Q, Qin Q, Huang Y, Huang X. Comparative transcriptomic analysis reveals different host cell responses to Singapore grouper iridovirus and red-spotted grouper nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:136-147. [PMID: 35921938 DOI: 10.1016/j.fsi.2022.07.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) are important pathogens that cause high mortality and heavy economic losses in grouper aquaculture. Interestingly, SGIV infection in grouper cells induces paraptosis-like cell death, while RGNNV infection induces autophagy and necrosis characterized morphologically by vacuolation of lysosome. Here, a comparative transcriptomic analysis was carried out to identify the different molecular events during SGIV and RGNNV infection in grouper spleen (EAGS) cells. The functional enrichment analysis of DEGs suggested that several signaling pathways were involved in CPE progression and host immune response against SGIV or RGNNV. Most of DEGs featured in the KEGG "lysosome pathway" were up-regulated in RGNNV-infected cells, indicating that RGNNV induced lysosomal vacuolization and autophagy might be due to the disturbance of lysosomal function. More than 100 DEGs in cytoskeleton pathway and mitogen-activated protein kinase (MAPK) signal pathway were identified during SGIV infection, providing additional evidence for the roles of cytoskeleton remodeling in cell rounding during CPE progression and MAPK signaling in SGIV induced cell death. Of note, consistent with changes at the transcriptional levels, the post-translational modifications of MAPK signaling-related proteins were also detected during RGNNV infection, and the inhibitors of extracellular signal-regulated kinase (ERK) and p38 MAPK significantly suppressed viral replication and virus induced vacuoles formation. Moreover, the majority of DEGs in interferon and inflammation signaling were obviously up-regulated during RGNNV infection, but down-regulated during SGIV infection, suggesting that SGIV and RGNNV differently manipulated host immune response in vitro. In addition, purine and pyrimidine metabolism pathways were also differently regulated in SGIV and RGNNV-infection cells. Taken together, our data will provide new insights into understanding the potential mechanisms underlying different host cell responses against fish DNA and RNA virus.
Collapse
Affiliation(s)
- Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
29
|
Wang Y, Han H, Zhu K, Xu S, Han C, Jiang Y, Wei S, Qin Q. Functional Analysis of the Cathepsin D Gene Response to SGIV Infection in the Orange-Spotted Grouper, Epinephelus coioides. Viruses 2022; 14:v14081680. [PMID: 36016302 PMCID: PMC9413388 DOI: 10.3390/v14081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lysosomal aspartic protease Cathepsin D (CD) is a key regulator and signaling molecule in various biological processes including activation and degradation of intracellular proteins, the antigen process and programmed cell death. However, the function of fish CD in virus infection remains largely unknown. (2) Methods: The functions of the CD gene response to SGIV infection was determined with light microscopy, reverse transcription quantitative PCR, Western blot and flow cytometry. (3) Results: In this study, Ec-Cathepsin D (Ec-CD) was cloned and identified from the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of Ec-CD consisted of 1191 nucleotides encoding a 396 amino acid protein with a predicted molecular mass of 43.17 kDa. Ec-CD possessed typical CD structural features including an N-terminal signal peptide, a propeptide region and a mature domain including two glycosylation sites and two active sites, which were conserved in other CD sequences. Ec-CD was predominantly expressed in the spleen and kidneys of healthy groupers. A subcellular localization assay indicated that Ec-CD was mainly distributed in the cytoplasm. Ec-CD expression was suppressed by SGIV stimulation and Ec-CD-overexpressing inhibited SGIV replication, SGIV-induced apoptosis, caspase 3/8/9 activity and the activation of reporter gene p53 and activating protein-1 (AP-1) in vitro. Simultaneously, Ec-CD overexpression obviously restrained the activated mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, Ec-CD overexpression negatively regulated the transcription level of pro-inflammatory cytokines and activation of the NF-κB promotor. (4) Conclusions: Our findings revealed that the Ec-CD possibly served a function during SGIV infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Honglin Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Suifeng Xu
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Chengzong Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Yunxiang Jiang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Shina Wei
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| | - Qiwei Qin
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 528478, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| |
Collapse
|
30
|
Li PH, He JY, Cai YJ, Wei YS, Zhu XL, Yang JDH, Yang SQ, Zhou S, Qin QW, Sun HY. Molecular cloning, inducible expression and function analysis of Epinephelus coioides Sec6 response to SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:462-471. [PMID: 35483595 DOI: 10.1016/j.fsi.2022.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Exocyst complex component 3 Sec6 of mammals, one of the components of the exocyst complex, participates in numerous cellular functions, such as promoting cell migration and inhibiting apoptosis. In this study, the Sec6 was obtained from Epinephelus coioides, an economically important cultured fish. The full length of E. coioides Sec6 was 2655 bp including a 245 bp 5' UTR, a 154 bp 3' UTR, and a 2256 bp open reading frame (ORF) encoding 751 amino acids, with a molecular mass of 86.76 kDa and a theoretical pI of 5.57. Sec6 mRNA was detected in all the tissues examined, but the expression level is different in these tissues. Using fluorescence microscopy, Sec6 were distributed in both the nucleus and the cytoplasm. After SGIV infection, the expression of E. coioides Sec6 was significantly up-regulated in both trunk kidney and spleen response to Singapore grouper iridovirus (SGIV), an important pathogens of E. coioides. Sec6 could increase the SGIV-induced cytopathic effects (CPE), the expression of the SGIV genes VP19, LITAF, MCP, ICP18 and MCP, and the viral titers. Besides, E. coioides Sec6 significantly downregulated the promoter of NF-κB and AP-1, and inhibited the SGIV-induced apoptosis. The results demonstrated that E. coioides Sec6 might play important roles in SGIV infection.
Collapse
Affiliation(s)
- Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yi-Jie Cai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yu-Si Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiang-Long Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jia-Deng-Hui Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Qi Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sheng Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
31
|
Guo X, Zheng Q, Pan Z, Huang Y, Huang X, Qin Q. Singapore Grouper Iridovirus Induces Glucose Metabolism in Infected Cells by Activation of Mammalian Target of Rapamycin Signaling. Front Microbiol 2022; 13:827818. [PMID: 35432224 PMCID: PMC9006996 DOI: 10.3389/fmicb.2022.827818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), a member of the Iridoviridae family, is an important marine cultured fish pathogen worldwide. Our previous studies have demonstrated that lipid metabolism was essential for SGIV entry and replication, but the roles of glucose metabolism during SGIV infection still remains largely unknown. In this study, we found that the transcription levels of key enzymes involved in glycolysis were regulated in varying degrees during SGIV infection based on the transcriptomic analysis. Quantitative PCR and western blot analysis also indicated that the expression of both glucose transporters (GLUT1 and GLUT2) and the enzymes of glucose metabolism (hexokinase 2, HK2 and pyruvate dehydrogenase complex, PDHX) were upregulated during SGIV infection in vivo or in vitro, suggesting that glycolysis might be involved in SGIV infection. Exogenous glucose supplementation promoted the expression of viral genes and infectious virion production, while glutamine had no effect on SGIV infection, indicating that glucose was required for SGIV replication. Consistently, pharmacological inhibition of glycolysis dramatically reduced the protein synthesis of SGIV major capsid protein (MCP) and infectious virion production, and promotion of glycolysis significantly increased SGIV infection. Furthermore, knockdown of HK2, PDHX, or GLUT1 by siRNA decreased the transcription and protein synthesis of SGIV MCP and suppressed viral replication, indicating that those enzymes exerted essential roles in SGIV replication. In addition, inhibition of mTOR activity in SGIV-infected cells effectively reduced the expression of glycolysis key enzymes, including HK2, PDHX, GLUT1, and GLUT2, and finally inhibited SGIV replication, suggesting that mTOR was involved in SGIV-induced glycolysis. Thus, our results not only provided new insights into the mechanism of how SGIV infection affects host cell glycolysis, but also contributed to further understanding of the iridovirus pathogenesis.
Collapse
Affiliation(s)
- Xixi Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zanbin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Han H, Wang L, Xu S, Wang S, Yang M, Han C, Qin Q, Wei S. Characterization of scavenger receptor MARCO in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 122:446-454. [PMID: 35218969 DOI: 10.1016/j.fsi.2022.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Macrophage receptor with collagenous structure (MARCO) is a scavenger receptor that plays a crucial role in the immune response against microbial infections. To clarify the roles of fish MARCO in Singapore grouper iridovirus (SGIV) infection, we identified and characterized Ec-MARCO in the orange-spotted grouper (Epinephelus coioides). The Ec-MARCO encoded a 370-amino acid protein with transmembrane region, coiled coil region and SR domain, which shared high identities with reported MARCO. The abundant transcriptional level of Ec-MARCO was found in spleen, head kidney and blood. And the Ec-MARCO expression was significantly up-regulated in grouper spleen (GS) cells after infection with SGIV in vitro. Subcellular localization analysis revealed that Ec-MARCO was mainly distributed in the cytoplasm and on the cell membrane. Ec-MARCO knockdown in vitro significantly inhibited SGIV infection in GS cells, as evidenced by reduced decreased SGIV major capsid protein (MCP) transcription and MCP protein expression. Further studies showed that Ec-MARCO knockdown positively regulated proinflammatory cytokines and interferon-stimulated genes, and enhanced IFN and ISRE promoter activities. However, overexpression of Ec-MARCO did not affect SGIV entry into host cells. In summary, our results suggested that Ec-MARCO affected SGIV infection by regulating antiviral innate immune response.
Collapse
Affiliation(s)
- Honglin Han
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Yu Y, Yang Z, Wang L, Sun F, Lee M, Wen Y, Qin Q, Yue GH. LAMP for the rapid diagnosis of iridovirus in aquaculture. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Chen J, Wang L, Huang J, Li X, Guan L, Wang Q, Yang M, Qin Q. Functional analysis of a novel MHC-Iα genotype in orange-spotted grouper: Effects on Singapore grouper iridovirus (SGIV) replication and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:487-497. [PMID: 35077868 DOI: 10.1016/j.fsi.2022.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The classical major histocompatibility complex class I (MHC-Ⅰ) molecule plays a key role in vertebrate immune response for its important functions in antigen presentation and immune regulation. MHC pathway is closely related to many diseases involving autoimmunity, antigen intrusion and inflammation. However, rare literatures about the effect of MHC-I on fish cells apoptosis were reported. In this study, a novel type of MHC-Ⅰα genotype from orange-spotted grouper (named EcMHC-ⅠA*01) were cloned and characterized. It shared a 77% identity to its Epinephelus coioides MHC-Iα homology that has been uploaded to NCBI (ACZ97571.1). Molecular characterization analysis showed that EcMHC-ⅠA*01 encodes a 357-amino-acid protein, containing a signal peptide,α1,α2,α3, Cytoplasmic (Cyt) and Transmembrane (TM) domains. Tissue expression pattern showed that EcMHC-ⅠA*01 was extensively distributed in twelve selected tissues, with higher expression in the gill, intestine and skin. The expression of EcMHC-ⅠA*01 in grouper liver and spleen tissues were significantly induced by different stimuli (Zymosan A, LPS, Ploy I:C, RGNNV and SGIV). Comparing with the EcMHC-ⅠA*01 expression levels induced by Zymosan A, Ploy I:C and RGNNV, the effects induced by SGIV and LPS were more significant. Subcellular localization analysis showed that EcMHC-ⅠA*01 localizes throughout the cytoplasm appeared both diffuse and focal intracellular expression pattern. Overexpression of EcMHC-ⅠA*01 inhibited the CPE progression, the mRNA expression of the SGIV related genes (MCP, LITAF, ICP-18 and VP19) and the protein expression of MCP. Meanwhile, qRT-PCR result showed that EcMHC-ⅠA*01 overexpression upregulated the expression of interferon signaling molecules (IFN-γ, ISG56, MDA5 and MXI) and inflammatory cytokines (IL-1β, IL-6, TNF-α and TRAF6). In addition, our results showed that overexpression of EcMHC-ⅠA*01 promoted the apoptosis of normal fathead minnow (FHM) cells as well as the apoptosis of FHM cells induced by SGIV. However, there was no significant change in the activity of caspase 3 between control group and EcMHC-ⅠA*01 overexpression group, suggesting that EcMHC-ⅠA*01-induced apoptosis may not depend on the caspase 3 pathway. Taken together, these data in our study provide new insights into the role of MHC-I in antiviral immune response and apoptosis in fish.
Collapse
Affiliation(s)
- Jinpeng Chen
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liqun Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianling Huang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinshuai Li
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lingfeng Guan
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min Yang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| | - Qiwei Qin
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
35
|
Yang M, Chen J, Li X, Huang J, Wang Q, Wang S, Wei S, Qin Q. The transcription factor NFYC positively regulates expression of MHCIa in the red-spotted grouper (Epinephelus akaara). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104272. [PMID: 34600022 DOI: 10.1016/j.dci.2021.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Mammalian studies have shown that the nuclear transcription factor Y (NFYC) regulates the expression of major histocompatibility complex (MHC) by binding to CCAAT-box on promoters. However, few studies have focused on the regulatory mechanisms of NFYC in MHC pathway in fish. To explore the transcriptional regulatory mechanism of MHCIa in fish, we characterized NFYC and MHCIa of red-spotted grouper (Epinephelus akaara) (named EaNFYC and EaMHCIa, respectively). The EaNFYC genome sequence is 13,796 bp and contains 1,065 bp open reading frame. It is composed of ten exons and nine introns and encode a 354 amino acid sequence. The putative EaNFYC protein sequence shared 67.2-99.4% identity to vertebrate NFYC and possesses a typically conserved domain (histone- or haem-associated protein 5 domain (HAP5)) at the N-terminus. Transcripts of both EaNFYC and EaMHCIa were ubiquitously expressed in all detect tissues, and higher mRNA levels were detected in immune-relevant tissues (middle-kidney). EaNFYC expression increased after treatment with polyinosinic: polycytidylic acid, lipopolysaccharide, nervous necrosis virus, zymosan A, and Singapore grouper iridovirus. Analysis of subcellular localization indicated that EaNFYC was localized at the cell nucleus only. Furthermore, overexpression of EaNFYC significantly stimulated the expression of EaMHCIa, interferon signalling molecules and inflammatory cytokine. The region -878 bp to +82 bp of EaMHCIa promoter was identified to be the core promoter which EaNFYC take effect on. Additionally, point mutations and electrophoretic mobility shift assays verified that NFYC activate MHCIa expression by binding at the M1 and M2 binding sites that do not contain CCAAT-box. These results contribute to elucidating the function of fish NFYC on MHC transcriptional mechanisms, and provide the first evidence of positive regulation of MHCIa expression by NFYC in fish.
Collapse
Affiliation(s)
- Min Yang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jinpeng Chen
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinshuai Li
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianling Huang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaowen Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shina Wei
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
36
|
Li PH, Wang LQ, He JY, Zhu XL, Huang W, Wang SW, Qin QW, Sun HY. MicroRNA-124 Promotes Singapore Grouper Iridovirus Replication and Negatively Regulates Innate Immune Response. Front Immunol 2021; 12:767813. [PMID: 34858424 PMCID: PMC8631330 DOI: 10.3389/fimmu.2021.767813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Viral infections seriously affect the health of organisms including humans. Now, more and more researchers believe that microRNAs (miRNAs), one of the members of the non-coding RNA family, play significant roles in cell biological function, disease occurrence, and immunotherapy. However, the roles of miRNAs in virus infection (entry and replication) and cellular immune response remain poorly understood, especially in low vertebrate fish. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected cells were used to explore the roles of miR-124 of Epinephelus coioides, an economically mariculture fish in southern China and Southeast Asia, in viral infection and host immune responses. The expression level of E. coioides miR-124 was significantly upregulated after SGIV infection; miR-124 cannot significantly affect the entry of SGIV, but the upregulated miR-124 could significantly promote the SGIV-induced cytopathic effects (CPEs), the viral titer, and the expressions of viral genes. The target genes of miR-124 were JNK3/p38α mitogen-activated protein kinase (MAPK). Overexpression of miR-124 could dramatically inhibit the activation of NF-κB/activating protein-1 (AP-1), the transcription of proinflammatory factors, caspase-9/3, and the cell apoptosis. And opposite results happen when the expression of miR-124 was inhibited. The results suggest that E. coioides miR-124 could promote viral replication and negatively regulate host immune response by targeting JNK3/p38α MAPK, which furthers our understanding of virus and host immune interactions.
Collapse
Affiliation(s)
- Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Qun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiang-Long Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shao-Wen Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Singapore Grouper Iridovirus Disturbed Glycerophospholipids Homeostasis: Cytosolic Phospholipase A2 Was Essential for Virus Replication. Int J Mol Sci 2021; 22:ijms222212597. [PMID: 34830477 PMCID: PMC8618910 DOI: 10.3390/ijms222212597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, causes great economic losses in the aquaculture industry. Previous studies demonstrated the lipid composition of intracellular unenveloped viruses, but the changes in host-cell glyceophospholipids components and the roles of key enzymes during SGIV infection still remain largely unknown. Here, the whole cell lipidomic profiling during SGIV infection was analyzed using UPLC-Q-TOF-MS/MS. The lipidomic data showed that glycerophospholipids (GPs), including phosphatidylcholine (PC), phosphatidylserine (PS), glycerophosphoinositols (PI) and fatty acids (FAs) were significantly elevated in SGIV-infected cells, indicating that SGIV infection disturbed GPs homeostasis, and then affected the metabolism of FAs, especially arachidonic acid (AA). The roles of key enzymes, such as cytosolic phospholipase A2 (cPLA2), 5-Lipoxygenase (5-LOX), and cyclooxygenase (COX) in SGIV infection were further investigated using the corresponding specific inhibitors. The inhibition of cPLA2 by AACOCF3 decreased SGIV replication, suggesting that cPLA2 might play important roles in the process of SGIV infection. Consistent with this result, the ectopic expression of EccPLA2α or knockdown significantly enhanced or suppressed viral replication in vitro, respectively. In addition, the inhibition of both 5-LOX and COX significantly suppressed SGIV replication, indicating that AA metabolism was essential for SGIV infection. Taken together, our results demonstrated for the first time that SGIV infection in vitro disturbed GPs homeostasis and cPLA2 exerted crucial roles in SGIV replication.
Collapse
|
38
|
Wang Q, Duan X, Huang F, Cheng H, Zhang C, Li L, Ruan X, He Q, Yang H, Niu W, Qin Q, Zhao H. Polystyrene nanoplastics alter virus replication in orange-spotted grouper (Epinephelus coioides) spleen and brain tissues and spleen cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125918. [PMID: 34492850 DOI: 10.1016/j.jhazmat.2021.125918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are known to impair the function of the digestive system, intestinal flora, immune system, and nervous system of marine organisms. We tested whether PS-NPs influence viral infection of orange-spotted grouper (Epinephelus coioides). We found that grouper spleen (GS) cells took up PS-NPs at exposure concentrations of 5, 50, and 500 μg/mL and experienced cytotoxicity at 50 and 500 μg/mL concentrations. At 12 h after exposure to 50 μg/mL of PS-NPs, the replication of Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) increased in GS cells after their invasion. Juvenile fish exposed to 300 and 3000 μg/L of PS-NPs for 7 d showed PS-NPs uptake to the spleen and vacuole formation in brain tissue. Moreover, PS-NPs exposure accelerated SGIV replication in the spleen and RGNNV replication in the brain. PS-NP exposure also decreased the expression of toll-like receptor genes and interferon-related genes before and after virus invasion in vitro and in vivo, thus reducing the resistance of cells and tissues to viral replication. This is the first report that PS-NPs have toxic effects on GS cells and spleen and brain tissues, and it provides new insights into assessing the impact of PS-NPs on marine fish.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenbiao Niu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
39
|
Su YL, Jiang YF, Chen HJ, Ye S, Zhou WH, Liu HP, Dong JD, Wei JG, Qin QW, Sun H. Molecular characterization, expression and function analysis of Epinephelus coioides MKK4 response to SGIV and Vibrio alginolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104020. [PMID: 33476669 DOI: 10.1016/j.dci.2021.104020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinase 4 (MKK4), a member of the MAP kinase family, play important roles in response to many environmental and cellular stresses in mammals. In this study, three MKK4 subtypes, EcMKK4-1, EcMKK4-2 and EcMKK4-3, were obtained from grouper Epinephelus coioides. The open reading frame (ORF) of EcMKK4s are obtained and the EcMKK4s proteins contain highly conserved domains: a S_TKc domain, a canonical diphosphorylation group and two conserved MKKK ATP binding motifs, Asp-Phe-Gly (DFG) and Ala-Pro-Glu (APE). EcMKK4s could be found both in the cytoplasmic and nuclear. The EcMKK4s mRNA were detected in all E. coioides tissues examined with the different expression levels, and the expression were up-regulated during SGIV (Singapore grouper iridescent virus) or Vibrio alginolyticus infection. EcMKK4 could significantly reduce the activation of AP-1 reporter gene. The results suggested that EcMKK4s might play important roles in pathogen-caused inflammation.
Collapse
Affiliation(s)
- Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Yu-Feng Jiang
- Department of Laboratory, Jining No.1 People's Hospital; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Shandong, 272111, PR China
| | - He-Jia Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shi Ye
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Wei-Hua Zhou
- Hainan Key Laboratory of Tropical Marine Biotechnology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Hong-Ping Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jun-De Dong
- Hainan Key Laboratory of Tropical Marine Biotechnology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jing-Guang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| | - Hongyan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
40
|
Zhang Y, Wang L, Zheng J, Huang L, Wang S, Huang X, Qin Q, Huang Y. Grouper Interferon-Induced Transmembrane Protein 1 Inhibits Iridovirus and Nodavirus Replication by Regulating Virus Entry and Host Lipid Metabolism. Front Immunol 2021; 12:636806. [PMID: 33767703 PMCID: PMC7985356 DOI: 10.3389/fimmu.2021.636806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are novel viral restriction factors which inhibit numerous virus infections by impeding viral entry into target cells. To investigate the roles of IFITMs during fish virus infection, we cloned and characterized an IFITM1 homolog from orange spotted grouper (Epinephelus coioides) (EcIFITM1) in this study. EcIFITM1 encodes a 131-amino-acid polypeptide, which shares 64 and 43% identity with Seriola dumerili and Homo sapiens, respectively. The multiple sequence alignment showed that EcIFITM1 contained five domains, including NTD (aa 1–45), IMD (aa 46–67), CIL (aa 68–93), TMD (aa 94–119), and CTD (aa 120–131). In vitro, the level of EcIFITM1 mRNA expression was significantly up-regulated in response to Singapore grouper iridovirus (SGIV), or red-spotted grouper nervous necrosis virus (RGNNV) infection. EcIFITM1 encoded a cytoplasmic protein, which was partly colocalized with early endosomes, late endosomes, and lysosomes. The ectopic expression of EcIFITM1 significantly inhibited the replication of SGIV or RGNNV, which was demonstrated by the reduced virus production, as well as the levels of viral gene transcription and protein expression. In contrast, knockdown of EcIFITM1 using small interfering RNAs (siRNAs) promoted the replication of both viruses. Notably, EcIFITM1 exerted its antiviral activity in the step of viral entry into the host cells. Furthermore, the results of non-targeted lipometabolomics showed that EcIFITM1 overexpression induced lipid metabolism remodeling in vitro. All of the detected ceramides were significantly increased following EcIFITM1 overexpression, suggesting that EcIFITM1 may suppress SGIV entry by regulating the level of ceramide in the lysosomal system. In addition, EcIFITM1 overexpression positively regulated both interferon-related molecules and ceramide synthesis-related genes. Taken together, our results demonstrated that EcIFITM1 exerted a bi-functional role, including immune regulation and lipid metabolism in response to fish virus infections.
Collapse
Affiliation(s)
- Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
41
|
Yu Q, Liu M, Wu S, Xiao H, Qin X, Li P. Generation and characterization of aptamers against grass carp reovirus infection for the development of rapid detection assay. JOURNAL OF FISH DISEASES 2021; 44:33-44. [PMID: 32959408 DOI: 10.1111/jfd.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Grass carp reovirus (GCRV) causes devastating viral haemorrhagic disease in farmed grass carp (Ctenopharyngon idellus). As novel molecular probes, aptamers have been widely applied in rapid diagnosis and efficient therapies against virus or diseases. In this study, three single-stranded DNA (ssDNA) aptamers were selected against GCRV-infected CIK cells via SELEX (systematic evolution of ligands by exponential enrichment technology). Secondary structures predicted by MFOLD indicated that aptamers formed stem-loop structures, and GVI-11 had the lowest ΔG value of -30.84 KJ/mol. Three aptamers could specifically recognize GCRV-infected CIK cells, with calculated dissociation constants (Kd) of 220.86, 176.63 and 278.66 nM for aptamers GVI-1, GVI-7 and GVI-11, respectively, which indicated that they could serve as specific delivery system for antiviral therapies. The targets of aptamers GVI-1, GVI-7 and GVI-11 on the surface of GCRV-infected cells could be membrane proteins, which were trypsin-sensitive. Furthermore, FAM-labelled aptamer GVI-7 could be applied to detect GCRV infection in vivo. It is the first time to generate and characterize aptamers against GCRV-infected cells. These aptamers have great potentials in development of rapid diagnosis technology and antiviral agents against GCRV infection in aquaculture.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Siting Wu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Xinling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
42
|
Wirth W, Lesbarrères D, Ariel E. Ten years of ranavirus research (2010–2019): an analysis of global research trends. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ranaviruses are large nucleocytoplasmic DNA viruses that infect ectothermic vertebrates. Here we report the results of a scientometric analysis of the field of ranavirology for the last 10 years. Using bibliometric tools we analyse trends, identify top publications and journals, and visualise the ranavirus collaboration landscape. The Web of Science core collection contains 545 ranavirus-related publications from 2010 to 2019, with more publications produced every year and a total of 6830 citations. Research output is primarily driven by the United States and People’s Republic of China, who together account for more than 60% of ranavirus publications. We also observed a positive correlation between the average number of co-authors on ranavirus publications and the year of publication, indicating that overall collaboration is increasing. A keyword analysis of ranavirus publications from 2010 to 2019 reveals several areas of research interest including; ecology, immunology, virology/molecular biology, genetics, ichthyology, and herpetology. While ranavirus research is conducted globally, relatively few publications have co-authors from both European and Asian countries, possibly because closer countries (geographical distance) are more likely to share co-authors. To this end, efforts should be made to foster collaborations across geopolitical and cultural boundaries, especially between countries with shared research interests as ultimately, understanding global pathogens, like ranaviruses, will require global collaboration.
Collapse
Affiliation(s)
- Wytamma Wirth
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4810, Australia
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4810, Australia
| |
Collapse
|
43
|
Wu G, Lin Q, Lim TK, Zhang Y, Aweya JJ, Zhu J, Yao D. The interactome of Singapore grouper iridovirus protein ICP18 as revealed by proximity-dependent BioID approach. Virus Res 2020; 291:198218. [PMID: 33152380 DOI: 10.1016/j.virusres.2020.198218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that is a major threat to grouper aquaculture. The pathogenesis of SGIV is not well understood so far. Previous studies have revealed that ICP18, an immediate early protein encoded by SGIV ORF086R gene, promotes viral replication by regulating cell proliferation and virus assembly. In the present study, the potential functions of ICP18 were further explored by probing into its interactors using a proximity-dependent BioID method. Since our in-house grouper embryonic cells (a natural host cell of SGIV) could not be efficiently transfected with the plasmid DNA, and the grouper genome data for mass spectrometry-based protein identification is not currently available, we chosen a non-permissive cell (HEK293 T) as a substitute for this study. A total of 112 cellular proteins that potentially bind to ICP18 were identified by mass spectrometry analysis. Homology analysis showed that among these identified proteins, 110 candidate ICP18-interactors had homologous proteins in zebrafish (a host of SGIV), and shared high sequence identity. Further analysis revealed that the identified ICP18-interacting proteins modulate various cellular processes such as cell cycle and cell adhesion. In addition, the interaction between ICP18 and its candidate interactor, i.e., cyclin-dependent kinase1 (CDK1), was confirmed using Co-immunoprecipitation (Co-IP) and Pull-down assays. Collectively, our present data provides additional insight into the biological functions of ICP18 during viral infection, which could help in further unraveling the pathogenesis of SGIV.
Collapse
Affiliation(s)
- Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
44
|
Wang L, Li C, Zhang X, Yang M, Wei S, Huang Y, Qin Q, Wang S. The Small GTPase Rab5c Exerts Bi-Function in Singapore Grouper Iridovirus Infections and Cellular Responses in the Grouper, Epinephelus coioides. Front Immunol 2020; 11:2133. [PMID: 33013900 PMCID: PMC7495150 DOI: 10.3389/fimmu.2020.02133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Rab5 is one of the master regulators of vesicular trafficking that participates in early stages of the endocytic pathway, such as endocytosis and endosome maturation. Three Rab5 isoforms (a, b, and c) share high sequence identity, and exhibit complex functions. However, the role of Rab5c in virus infection and cellular immune responses remains poorly understood. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected grouper spleen (GS) cells, we investigated the role of Rab5c in virus infection and host immune responses. Rab5c was cloned from the orange-spotted grouper, Epinephelus coioides, and termed EcRab5c. EcRab5c encoded a 220-amino-acid polypeptide, showing 99% and 91% identity to Anabas testudineus, and Homo sapiens, respectively. Confocal imaging showed that EcRab5c localized as punctate structures in the cytoplasm. However, a constitutively active (CA) EcRab5c mutant led to enlarged vesicles, while a dominant negative (DN) EcRab5c mutant reduced vesicle structures. EcRab5c expression levels were significantly increased after SGIV infection. EcRab5c knockdown, or CA/DN EcRab5c overexpression significantly inhibited SGIV infection. Using single-particle imaging analysis, we further observed that EcRab5c disruption impaired crucial events at the early stage of SGIV infection, including virus binding, entry, and transport from early to late endosomes, at the single virus level. Furthermore, it is the first time to investigate that EcRab5c is required in autophagy. Equally, EcRab5c positively regulated interferon-related factors and pro-inflammatory cytokines. In summary, these data showed that EcRab5c exerted a bi-functional role on iridovirus infection and host immunity in fish, which furthers our understanding of virus and host immune interactions.
Collapse
Affiliation(s)
- Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
45
|
Zhang Y, Huang Y, Wang L, Huang L, Zheng J, Huang X, Qin Q. Grouper interferon-induced transmembrane protein 3 (IFITM3) inhibits the infectivity of iridovirus and nodavirus by restricting viral entry. FISH & SHELLFISH IMMUNOLOGY 2020; 104:172-181. [PMID: 32531330 PMCID: PMC7283088 DOI: 10.1016/j.fsi.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Interferon-induced transmembrane proteins (IFITMs) have been identified as important host restriction factors in mammals for the control of infection by multiple viruses. However, the antiviral functions of IFITMs against fish viruses remain largely uncertain. In this study, the IFITM3 homolog from orange spotted grouper (EcIFITM3) was cloned and its roles in grouper virus infection were investigated. The full-length cDNA of EcIFITM3 was 737 bp, which was composed of a 16 bp 5'-UTR, a 274 bp 3'-UTR, and a 447 bp ORF. EcIFITM3 encodes a 148-amino-acid polypeptide, which contains five domains, i.e., the N-terminal domain (aa 1-65), TM1 (aa 66-90), the cytoplasmic domain (aa 91-110), TM2 (aa 111-140), and the C-terminal domain (aa 141-148), and shares 78% and 47% identity with IFITM3 of gilthead seabream (Sparus aurata) and human (Homo sapiens), respectively. EcIFITM3 mRNA was detected in 12 tissues of healthy groupers, with the highest expression levels in the head kidney. Additionally, the in vitro mRNA levels of EcIFITM3 were significantly upregulated by infection with Singapore grouper iridovirus (SGIV) or red spotted grouper nervous necrosis virus (RGNNV), or treatment with polyinosinic-polycytidylic acid (poly I:C) or lipopolysaccharide (LPS). Subcellular localization analysis showed that EcIFITM3 was mainly distributed in the cell membrane of grouper cells. In vitro, the ectopic expression of EcIFITM3 inhibited SGIV and RGNNV infection, as demonstrated by the reduced severity of the cytopathic effect, decreased virus production, and low levels of viral mRNA and proteins. Consistently, knockdown of EcIFITM3 by small interfering RNAs (siRNAs) enhanced SGIV and RGNNV replication. EcIFITM3 overexpression and knockdown experiments both suggested that EcIFITM3 inhibits the infection of SGIV and RGNNV by restricting virus entry.
Collapse
Affiliation(s)
- Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
46
|
Yu Y, Li C, Liu J, Zhu F, Wei S, Huang Y, Huang X, Qin Q. Palmitic Acid Promotes Virus Replication in Fish Cell by Modulating Autophagy Flux and TBK1-IRF3/7 Pathway. Front Immunol 2020; 11:1764. [PMID: 32849631 PMCID: PMC7419653 DOI: 10.3389/fimmu.2020.01764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitic acid is the most common saturated fatty acid in animals, plants, and microorganisms. Studies highlighted that palmitic acid plays a significant role in diverse cellular processes and viral infections. Accumulation of palmitic acid was observed in fish cells (grouper spleen, GS) infected with Singapore grouper iridovirus (SGIV). The fluctuated content levels after viral infection suggested that palmitic acid was functional in virus-cell interactions. In order to investigate the roles of palmitic acid in SGIV infection, the effects of palmitic acid on SGIV induced cytopathic effect, expression levels of viral genes, viral proteins, as well as virus production were evaluated. The infection and replication of SGIV were increased after exogenous addition of palmitic acid but suppressed after knockdown of fatty acid synthase (FASN), of which the primary function was to catalyze palmitate synthesis. Besides, the promotion of virus replication was associated with the down-regulating of interferon-related molecules, and the reduction of IFN1 and ISRE promotor activities by palmitic acid. We also discovered that palmitic acid restricted TBK1, but not MDA5-induced interferon immune responses. On the other hand, palmitic acid decreased autophagy flux in GS cells via suppressing autophagic degradation, and subsequently enhanced viral replication. Together, our findings indicate that palmitic acid is not only a negative regulator of TBK1-IRF3/7 pathway, but also a suppressor of autophagic flux. Finally, palmitic acid promotes the replication of SGIV in fish cells.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fengyi Zhu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
47
|
Li C, Wang L, Liu J, Yu Y, Huang Y, Huang X, Wei J, Qin Q. Singapore Grouper Iridovirus (SGIV) Inhibited Autophagy for Efficient Viral Replication. Front Microbiol 2020; 11:1446. [PMID: 32676067 PMCID: PMC7333352 DOI: 10.3389/fmicb.2020.01446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a conserved catabolic process that occurs at basal levels to maintain cellular homeostasis. Most virus infections can alter the autophagy level, which functions as either a pro-viral or antiviral pathway, depending on the virus and host cells. Singapore grouper iridovirus (SGIV) is a novel fish DNA virus that has caused great economic losses for the marine aquaculture industry. In this study, we found that SGIV inhibited autophagy in grouper spleen (GS) cells which was evidenced by the changes of LC3-II, Beclin1 and p-mTOR levels. Further study showed that SGIV developed at least two strategies to inhibit autophagy: (1) increasing the cytoplasmic p53 level; and (2) encoding viral proteins (VP48, VP122, VP132) that competitively bind autophagy related gene 5 and mediately affect LC3 conversion. Moreover, activation of autophagy by rapamycin or overexpressing LC3 decreased SGIV replication. These results provide an antiviral strategy from the perspective of autophagy.
Collapse
Affiliation(s)
- Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
48
|
Yang M, Jinpeng C, Wang Y, Wang Q, Wang S, Wei S, Qin Q. Nuclear factor kappa B/p65 plays a positive role in peroxisome proliferator-activated receptor δ expression in orange-spotted grouper Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2020; 102:101-107. [PMID: 32259581 DOI: 10.1016/j.fsi.2020.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is a critical regulator of immune and inflammatory responses with crucial roles in various pathophysiologic conditions involving cell survival and death. Recent studies in mammals showed that NF-κB was also involved in peroxisome proliferator-activated receptors (PPARs)-mediated immune responses However, the mechanism by which NF-κB regulates PPARδ in teleosts remains unclear. In the present study, we analyzed the potential role of NF-κB/p65 (Ecp65) in the immune response stimulated by various pathogens in the grouper Epinephelus coioides. Ecp65 expression was significantly induced soon after infection with lipopolysaccharide, nervous necrosis virus, poly(I:C), and zymosan A. We also analyzed the promoter to determine the regulatory effect of Ecp65 on PPARδ expression, using progressive EcPPARδ promoter deletion mutations. Among the five truncated mutants, the luciferase reporter activity of the PPARδ-5 promoter region was highest in response to Ecp65, indicating that the core p65-binding region was located in the PPARδ-5 promoter region (+122 bp to +383 bp). Mutation analyses indicated that the luciferase reporter activity of the EcPPARδ promoter was dramatically decreased by mutation of the M3 (+305 bp to +324 bp) and M4 (+346 bp to +365 bp) binding sites, respectively. We further confirmed that Ecp65 bound to the M3 and M4 binding sites in the 5'-untranslated region of EcPPARδ by electrophoretic mobility shift assay. Finally, overexpression of Ecp65 in vitro notably promoted the transcription of EcPPARδ, interferon-related genes, and several inflammatory cytokines. This study demonstrated that Ecp65 plays an important role in modulating the innate immune responses in groupers. These results also further our understanding of the mechanisms involved in the transcriptional regulation of PPARs by p65 in bony fish.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chen Jinpeng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
49
|
Mo ZQ, Lai XL, Wang WT, Chen HP, He ZC, Han R, Wang JL, Luo XC, Li YW, Dan XM. Identification and characterization of c-raf from orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 96:311-318. [PMID: 31830568 DOI: 10.1016/j.fsi.2019.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
C-Raf proto-oncogene serine/threonine kinase is a mitogen-activated protein kinase (MAP) kinase kinase, which can initiate a mitogen-activated protein kinase (MAPK) cascade by phosphorylating the dual-specific MAP kinase kinases (MEK1/2), and in turn activate the extracellular signal-regulated kinases (ERK1/2). To study the function of c-Raf in teleost fish, a c-Raf cDNA sequence from orange-spotted grouper (Epinephelus coioides) was cloned. Ecc-Raf shared 81%-99% amino acid identity with other vertebrate c-Raf molecules, and shared the highest amino acid identity (99%) with Lates calcarifer c-Raf. Genomic structure analysis revealed that grouper c-Raf shared a conserved exon structure with other vertebrates. Tissue distribution showed that Ecc-Raf was mainly transcribed in systemic immune organs. Ecc-Raf was distributed throughout the cytoplasm of transfected GS cells and the overexpression of Ecc-Raf only slightly enhanced the activation of Activator protein 1. The phosphorylation levels of Ecc-Raf can be induced by PMA and H2O2 treatment, in contrast to DMSO or untreated HKLs. Moreover, the phosphorylation level of the Raf-MEK-ERK axis was downregulated after 24 h of SGIV infection. On the other hand, the total level and phosphorylation level of c-Raf significantly increased post C. irritans infection and showed an enhanced level post immunization. The results of this study suggested that the Raf-MEK-ERK cascade was involved in the response to viral or parasitic infections.
Collapse
Affiliation(s)
- Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Xue-Li Lai
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Wan-Tao Wang
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 305001, Fujian Province, China
| | - Hong-Ping Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Zhi-Chang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Jiu-Le Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
50
|
Xiao H, Liu M, Li S, Shi D, Zhu D, Ke K, Xu Y, Dong D, Zhu L, Yu Q, Li P. Isolation and Characterization of a Ranavirus Associated with Disease Outbreaks in Cultured Hybrid Grouper (♀ Tiger Grouper Epinephelus fuscoguttatus × ♂ Giant Grouper E. lanceolatus) in Guangxi, China. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:364-370. [PMID: 31519049 DOI: 10.1002/aah.10090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
An outbreak of suspected iridovirus disease in cultured hybrid grouper (♀Tiger Grouper Epinephelus fuscoguttatus × ♂ Giant Grouper Epinephelus lanceolatus) occurred in the Guangxi Province in July, 2018. In this study, grouper iridovirus Guangxi (SGIV-Gx) was isolated from diseased hybrid grouper that were collected from Guangxi. Cytopathic effects were observed and identified in grouper spleen cells that were incubated with diseased tissue homogenates after 24 h, and the effects increased at 48 h postinfection. The transmission electron microscopy results showed that viral particles that were about 200 nm in diameter with hexagonal profiles were present in the cell cytoplasm of suspected virus-infected cells. The presence of SGIV-Gx (accession number: MK107821) was identified by polymerase chain reaction (PCR) and amplicon sequencing, which showed that this strain was most closely related to Singapore grouper iridovirus (AY521625.1). The detection of SGIV-Gx infection was further supported by novel aptamer (Q2c)-based detection technology. The effects of temperature and pH on viral infectivity were analyzed by using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and cell culture. The results indicated that SGIV-Gx was resistant to exposure to pH levels 5, 7, and 7.5 for 1 h, but its infectivity was remarkably lower at pH levels 3 and 10 after 1 h. The analyses showed that SGIV-Gx was stable for 1 h at 4°C and 25°C but was inactivated after 1 h at 40, 50, and 60°C.
Collapse
Affiliation(s)
- Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Siqiao Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Donglin Zhu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Dexin Dong
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Libo Zhu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|