1
|
Giugliano R, Ferraro V, Chianese A, Della Marca R, Zannella C, Galdiero F, Fasciana TMA, Giammanco A, Salerno A, Cannillo J, Rotondo NP, Lentini G, Cavalluzzi MM, De Filippis A, Galdiero M. Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses. Viruses 2024; 16:1199. [PMID: 39205173 PMCID: PMC11359668 DOI: 10.3390/v16081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Valeria Ferraro
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Francesca Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Teresa M. A. Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (T.M.A.F.); (A.G.)
| | - Antonio Salerno
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Joseph Cannillo
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy; (A.S.); (J.C.)
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (A.C.); (R.D.M.); (C.Z.); (F.G.); (A.D.F.)
| |
Collapse
|
2
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
3
|
A Comprehensive Review with Updated Future Perspectives on the Ethnomedicinal and Pharmacological Aspects of Moringa oleifera. Molecules 2022; 27:molecules27185765. [PMID: 36144493 PMCID: PMC9504211 DOI: 10.3390/molecules27185765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera is an ancient remedy plant, known as the miraculous plant due to its many prominent uses and significant health benefits. It is a nutrient-rich plant, with exceptional bioactive compounds, such as polyphenols that possess several medicinal properties. Many significant studies have been carried out to evaluate the ethnomedicinal and pharmacological properties of M. oleifera in various applications. Therefore, this comprehensive review compiles and summarizes important findings from recent studies on the potential properties of different parts of M. oleifera. The pharmacological properties of M. oleifera have been studied for various potential biological properties, such as cardio-protective, anti-oxidative, antiviral, antibacterial, anti-diabetic and anti-carcinogenic effects. Therefore, the potential of this plant is even more anticipated. This review also highlights the safety and toxicity effects of M. oleifera treatment at various doses, including in vitro, in vivo and clinical trials from human studies.
Collapse
|
4
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
5
|
Metabolomic profile of medicinal plants with anti-RVFV activity. Heliyon 2022; 8:e08936. [PMID: 35243061 PMCID: PMC8857432 DOI: 10.1016/j.heliyon.2022.e08936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Twenty medicinal plants with previously established anti-viral activity against a wild-type RVFV were further investigated using bio-chemometric and analytical techniques. The aim being to identify compounds common in plants with anti-RVFV activity, potentially being the major contributors to the anti-viral effect. Proton nuclear magnetic resonance (1H NMR) spectroscopy coupled with multivariate data analysis (MVDA) was applied to characterize metabolite profiles of twenty antiviral medicinal plants. Discrimination and prediction of metabolome data of active anti-RVFV from the less-active samples was assessed using the multivariate statistical models by constructing a robust principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) regression model. Annotation of metabolites in the samples with higher activity were performed by Chenomx software and the compounds confirmed using Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-qTOF-MS). Both the PCA and OPLS-DA score plots showed clustering of samples; however, the OPLS-DA plot indicated a clear separation among active and less-active samples. Metabolic biomarkers were screened by p-value < 0.05 and variable importance in the projection (VIP) value >1 and S-plot. Among active samples, the most prominent metabolites putatively identified by NMR include trigonelline, vanillic acid, fumarate, chlorogenic acid, ferulate, and formate. The presence of the compounds were confirmed by UHPLC-qTOF-MS, and two hydroxylated fatty acids were additionally detected indicated by peaks at m/z 293.2116 and m/z 295.2274 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid and 13-Hydroxy-9Z,11E-octadecadienoic acid were annotated for the first time in all the antiviral active samples and are considered potential metabolites responsible for the antiviral activity. The study provides a metabolomic profile of anti-RVFV plant extracts and report for the first time the presence of hydroxylated fatty acids 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid and 13-Hydroxy-9Z,11E-octadecadienoic acid, present in all the tested medicinal plants with high anti-RVFV activity and is a potential target for the future development of antiviral therapeutic agents.
Collapse
|
6
|
Nocchi SR, Ferreira LDAO, Castro-Hoshino LVD, Truiti MDCT, Natali MRM, Mello JCPD, Baesso ML, Dias Filho BP, Nakamura CV, Ueda-Nakamura T. Development and evaluation of topical formulations that contain hydroethanolic extract from Schinus terebinthifolia against HSV-1 infection. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Julsrigival J, Sirisa-ard P, Julsrigival S, Akarchariya N. Antiviral medicinal plants found in Lanna traditional medicine. CHINESE HERBAL MEDICINES 2021; 13:494-501. [PMID: 34567096 PMCID: PMC8451407 DOI: 10.1016/j.chmed.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
Traditional medicine uses a multitude of plants to create medicinal formulations, some of which show antiviral properties that may be of benefit in treating emerging viral diseases, including Covid-19. Lanna, an ancient Kingdom in Northern Thailand, with a thriving culture that continues to this day and has a rich history of traditional medicine using local plants that is still practiced today. To find potential antiviral medicinal candidates, we examined ancient manuscripts, interviewed traditional healers practicing today, and inventoried current traditional medicines to catalogue 1400 medicinal formulations used in Lanna traditional medicine. We then narrowed this list to find those traditionally used to treat diseases that in their original use and descriptions most likely map to those we know today to be viral diseases. We identified the plants used in these formulations to create a list of 64 potential antiviral herbal candidates drawn from this ancient Lanna wisdom and matched these to the scientific literature to see which of these plants had already been shown to possess antiviral properties, generating a list of 64 potential antiviral medicinal candidates from Lanna traditional medicine worth further investigation for treating emerging viral diseases.
Collapse
Affiliation(s)
- Jakaphun Julsrigival
- Cluster of Excellence on Biodiversity Based Economics and Society (B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Corresponding author at:Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Panee Sirisa-ard
- Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarinya Julsrigival
- Drug Section, Regional Medical Sciences Center 1 Chiang Mai, Department of Medical Sciences, Ministry of Public Health, Chiang Mai 50180, Thailand
| | - Nararat Akarchariya
- Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Arora S, Arora S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant. J Food Biochem 2021; 45:e13933. [PMID: 34533234 DOI: 10.1111/jfbc.13933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Moringa oleifera is a multi-purpose plant and a comprehensive source of dietary components such as proteins, essential amino acids, vitamins, antioxidants, etc. The plant is also a rich source of other bioactive components, including flavonoids, glucosinolates, isothiocyanates, alkaloids, terpenoids, phenolics, etc. Incorporating M. oleifera in diet can improve the nutritional status of pregnant and nursing mothers and helps to combat malnutrition and iron deficiency anemia (IDA) among children. The phytochemicals and secondary metabolites, especially the polyphenolic compounds from Moringa, have a significant free-radical scavenging effect attributed to this plant's therapeutic potential. Investigations targeting to explore M. oleifera for its nutritional makeup, novel bioactive components, and analysis of their health-promoting attributes have received much attention. This review demonstrates an overview of recent (past ten years) advancements and patenting activity in discovering different parts of M. oleifera plant for providing adequate nutritive and bioactive components. The pharmacological potential and action mechanisms of M. oleifera in many diseases like diabetes mellitus, cancer, hypertension, ulcer, etc., are also discussed. PRACTICAL APPLICATIONS: Moringa oleifera is a vital plant that has a varied set of nutritional and therapeutic properties. The indigenous components of Moringa can treat humankind of its diseases and contribute to overall health. The qualitative and functional characteristics of its components indicate possible commercial exploitation of this high-value plant by utilizing its plant parts in many proprietary medicines and nutraceuticals. In conclusion, the Moringa plant needs to be used commercially. It can lead to tremendous economic development if the industries and researchers exploit its potential for highly nutritional super food and therapeutic application by undertaking further research to corroborate earlier studies.
Collapse
Affiliation(s)
- Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Saurabh Arora
- Biomedical Instruments and Devices HUB, A Centre for Innovation, Design and Clinical Validation, Post Graduate Institute of Medical Education and Research, Chandigarh, Haryana, India
| |
Collapse
|
10
|
Sen D, Bhaumik S, Debnath P, Debnath S. Potentiality of Moringa oleifera against SARS-CoV-2: identified by a rational computer aided drug design method. J Biomol Struct Dyn 2021; 40:7517-7534. [PMID: 33719855 DOI: 10.1080/07391102.2021.1898475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has created a global human health crisis and economic setbacks. Lack of specific therapeutics and limited treatment options against COVID-19 has become a new challenge to identify potential hits in order to develop new therapeutics. One of the crucial life cycle enzymes of SARS-CoV-2 is main protease (Mpro), which plays a major role in mediating viral replication, makes it an attractive drug target. Virtual screening and three times repeated 100 ns molecular dynamics simulation of the best hits were performed to identify potential SARS-CoV-2 Mpro inhibitors from the available compounds of an antiviral plant Moringa oleifera. Three flavonoids isorhamnetin (1), kaempferol (2) and apigenin (3) showed good binding affinity, stable protein-ligand complexes throughout the simulation time, high binding energy and similar binding poses in comparison with known SARS-CoV-2 Mpro inhibitor baicalein. Therefore, different parts of M. oleifera may be emerged as a potential preventive and therapeutic against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debanjan Sen
- Department of Pharmacy, BCDA College of Pharmacy & Technology, Kolkata, West Bengal, India
| | - Samhita Bhaumik
- Department of Chemistry, Women's College, Agartala, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| | - Sudhan Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
11
|
Garber A, Barnard L, Pickrell C. Review of Whole Plant Extracts With Activity Against Herpes Simplex Viruses In Vitro and In Vivo. J Evid Based Integr Med 2021; 26:2515690X20978394. [PMID: 33593082 PMCID: PMC7894602 DOI: 10.1177/2515690x20978394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex viruses, HSV-1 and HSV-2, are highly contagious and cause lifelong, latent infections with recurrent outbreaks of oral and/or genital lesions. No cure exists for HSV-1 or HSV-2 infections, but antiviral medications are commonly used to prevent and treat outbreaks. Resistance to antivirals has begun to emerge, placing an importance on finding new and effective therapies for prophylaxis and treatment of HSV outbreaks. Botanicals may be effective HSV therapies as the constituents they contain act through a variety of mechanisms, potentially making the development of antiviral resistance more challenging. A wide variety of plants from different regions in the world have been studied for antiviral activity against HSV-1 and/or HSV-2 and showed efficacy of varying degrees. The purpose of this review is to summarize research conducted on whole plant extracts against HSV-1 and/or HSV-2 in vitro and in vivo. The majority of the research reviewed was conducted in vitro using animal cell lines, and some studies used an animal model design. Also summarized are a limited number of human trials conducted using botanical therapies on HSV lesions.
Collapse
Affiliation(s)
- Anna Garber
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Lianna Barnard
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Chris Pickrell
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
13
|
More GK, Makola RT, Prinsloo G. In Vitro Evaluation of Anti-Rift Valley Fever Virus, Antioxidant and Anti-Inflammatory Activity of South African Medicinal Plant Extracts. Viruses 2021; 13:221. [PMID: 33572659 PMCID: PMC7912315 DOI: 10.3390/v13020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Rift valley fever virus (RVFV) is a mosquito-borne virus endemic to sub-Saharan African countries, and the first sporadic outbreaks outside Africa were reported in the Asia-Pacific region. There are no approved therapeutic agents available for RVFV; however, finding an effective antiviral agent against RVFV is important. This study aimed to evaluate the antiviral, antioxidant and anti-inflammatory activity of medicinal plant extracts. Twenty medicinal plants were screened for their anti-RVFV activity using the cytopathic effect (CPE) reduction method. The cytotoxicity assessment of the extracts was done before antiviral screening using the MTT assay. Antioxidant and reactive oxygen/nitrogen species' (ROS/RNS) inhibitory activity by the extracts was investigated using non-cell-based and cell-based assays. Out of twenty plant extracts tested, eight showed significant potency against RVFV indicated by a decrease in tissue culture infectious dose (TCID50) < 105. The cytotoxicity of extracts showed inhibitory concentrations values (IC50) > 200 µg/mL for most of the extracts. The antioxidant activity and anti-inflammatory results revealed that extracts scavenged free radicals exhibiting an IC50 range of 4.12-20.41 µg/mL and suppressed the production of pro-inflammatory mediators by 60-80% in Vero cells. This study demonstrated the ability of the extracts to lower RVFV viral load and their potency to reduce free radicals.
Collapse
Affiliation(s)
- Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| | - Raymond T. Makola
- Department of Biochemistry Microbiology and Biotechnology, School of Molecular and Life Science, University of Limpopo (Turfloop Campus) Sovenga, Polokwane 0727, South Africa;
- National institute of Communicable Diseases, Special Viral Pathogen/Arbovirus Unit, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Gerhard Prinsloo
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| |
Collapse
|
14
|
Rahman MM, Mosaddik A, Alam AK. Traditional foods with their constituent's antiviral and immune system modulating properties. Heliyon 2021; 7:e05957. [PMID: 33462562 PMCID: PMC7806454 DOI: 10.1016/j.heliyon.2021.e05957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Background Viruses are responsible for several diseases, including severe acute respiratory syndrome, a condition caused by today's pandemic coronavirus disease (COVID-19). A negotiated immune system is a common risk factor for all viral infections, including COVID-19. To date, no specific therapies or vaccines have been approved for coronavirus. In these circumstances, antiviral and immune boosting foods may ensure protection against viral infections, especially SARS-CoV-2 by reducing risk and ensuring fast healing of SARS-CoV-2 illness. Scope and approach In this review, we have conducted an online search using several search engines (Google Scholar, PubMed, Web of Science and Science Direct) to find out some traditional foods (plant, animal and fungi species), which have antiviral and immune-boosting properties against numerous viral infections, particularly coronaviruses (CoVs) and others RNA-virus infections. Our review indicated some foods to be considered as potential immune enhancers, which may help individuals to overcome viral infections like COVID-19 by modulating immune systems and reducing respiratory problems. Furthermore, this review will provide information regarding biological properties of conventional foods and their ingredients to uphold general health. Key Findings and Conclusions We observed some foods with antiviral and immune-boosting properties, which possess bioactive compounds that showed significant antiviral properties against different viruses, particularly RNA viruses such as CoVs. Interestingly, some antiviral and immune-boosting mechanisms were very much similar to the antiviral drug of COVID-19 homologous SARS (Severe Acute Respiratory Syndrome Coronavirus) and MERS (Middle East Respiratory Syndrome Coronavirus). The transient nature and the devastating spreading capability of COVID-19 lead to ineffectiveness of many curative therapies. Therefore, body shielding and immune-modulating foods, which have previous scientific recognition, have been discussed in this review to discern the efficacy of these foods against viral infections, especially SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ashik Mosaddik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
15
|
Wang F, Bao Y, Zhang C, Zhan L, Khan W, Siddiqua S, Ahmad S, Capanoglu E, Skalicka-Woźniak K, Zou L, Simal-Gandara J, Cao H, Weng Z, Shen X, Xiao J. Bioactive components and anti-diabetic properties of Moringa oleifera Lam. Crit Rev Food Sci Nutr 2021; 62:3873-3897. [PMID: 33401950 DOI: 10.1080/10408398.2020.1870099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moringa oleifera Lam. is a perennial tropical deciduous tree with high economic and pharmaceutical value. As an edible plant, M. oleifera Lam. is rich in nutrients, such as proteins, amino acids, mineral elements and vitamins. Besides, it also contains an important number of bioactive phytochemicals, such as polysaccharides, flavonoids, alkaloids, glucosinolates and isothiocyanates. M. oleifera for long has been used as a natural anti-diabetic herb in India and other Asian countries. Thus, the anti-diabetic properties of Moringa plant have evolved highly attention to the researchers. In the last twenty years, a huge number of new chemical structures and their pharmacological activities have been reported in particularly the anti-diabetic properties. The current review highlighted the bioactive phytochemicals from M. Oleifera. Moreover, evidence regarding the therapeutic potential of M. oleifera for diabetes including experimental and clinical data was presented and the underlying mechanisms were revealed in order to provide insights for the development of novel drugs.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chen Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Washim Khan
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sahifa Siddiqua
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zebin Weng
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Zothantluanga JH, Gogoi N, Shakya A, Chetia D, Lalthanzara H. Computational guided identification of potential leads from Acacia pennata (L.) Willd. as inhibitors for cellular entry and viral replication of SARS-CoV-2. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:201. [PMID: 34660817 PMCID: PMC8502097 DOI: 10.1186/s43094-021-00348-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in 2019 and is still an on-going pandemic. SARS-CoV-2 uses a human protease called furin to aid in cellular entry and its main protease (Mpro) to achieve viral replication. By targeting these proteins, scientists are trying to identify phytoconstituents of medicinal plants as potential therapeutics for COVID-19. Therefore, our study was aimed to identify promising leads as potential inhibitors of SARS-CoV-2 Mpro and furin using the phytocompounds reported to be isolated from Acacia pennata (L.) Willd. RESULTS A total of 29 phytocompounds were reported to be isolated from A. pennata. Molecular docking simulation studies revealed 9 phytocompounds as having the top 5 binding affinities towards SARS-CoV-2 Mpro and furin. Among these phytocompounds, quercetin-3-O-α-L-rhamnopyranoside (C_18), kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside (C_4), and isovitexin (C_5) have the highest drug score. However, C_18 and C_4 were not selected for further studies due to bioavailability issues and low synthetic accessibility. Based on binding affinity, molecular properties, drug-likeness, toxicity parameters, ligand interactions, bioavailability, synthetic accessibility, structure-activity relationship, and comparative analysis of our experimental findings with other studies, C_5 was identified as the most promising phytocompound. C_5 interacted with the active site residues of SARS-CoV-2 Mpro (GLU166, ARG188, GLN189) and furin (ASN295, ARG298, HIS364, THR365). Many phytocompounds that interacted with these amino acid residues were reported by other studies as potential inhibitors of SARS-CoV-2 Mpro and furin. The oxygen atom at position 18, the -OH group at position 19, and the 6-C-glucoside were identified as the pharmacophores in isovitexin (also known as apigenin-6-C-glucoside). Other in-silico studies reported apigenin as a potential inhibitor of SARS-CoV-2 Mpro and apigenin-o-7-glucuronide was reported to show stable conformation during MD simulations with SARS-CoV-2 Mpro. CONCLUSION The present study found isovitexin as the most promising phytocompound to potentially inhibit the cellular entry and viral replication of SARS-CoV-2. We also conclude that compounds having oxygen atom at position 18 (C-ring), -OH group at position 19 (A-ring), and 6-C-glucoside attached to the A-ring at position 3 on a C6-C3-C6 flavonoid scaffold could offer the best alternative to develop new leads against SARS-CoV-2.
Collapse
Affiliation(s)
- James H. Zothantluanga
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Neelutpal Gogoi
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Anshul Shakya
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Dipak Chetia
- grid.412023.60000 0001 0674 667XDepartment of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - H. Lalthanzara
- grid.411813.e0000 0000 9217 3865Department of Zoology, Pachhunga Univeristy College, Aizawl, Mizoram 796001 India
| |
Collapse
|
17
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
18
|
Khan T, Khan MA, Mashwani ZUR, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 31:101890. [PMID: 33520034 PMCID: PMC7831775 DOI: 10.1016/j.bcab.2020.101890] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, KP, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | | | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Akhtar Nadhman
- Department of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
19
|
Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, Ahsan W, Najmi A, Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules 2020; 25:E4878. [PMID: 33105694 PMCID: PMC7659943 DOI: 10.3390/molecules25214878] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/classification
- Antiviral Agents/isolation & purification
- Antiviral Agents/therapeutic use
- Betacoronavirus/drug effects
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Drug Discovery
- HIV/drug effects
- HIV/pathogenicity
- HIV/physiology
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV Infections/virology
- Hepacivirus/drug effects
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Herpes Simplex/drug therapy
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Influenza, Human/virology
- Orthomyxoviridae/drug effects
- Orthomyxoviridae/pathogenicity
- Orthomyxoviridae/physiology
- Pandemics
- Phytochemicals/chemistry
- Phytochemicals/classification
- Phytochemicals/isolation & purification
- Phytochemicals/therapeutic use
- Plants, Medicinal
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Simplexvirus/drug effects
- Simplexvirus/pathogenicity
- Simplexvirus/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Manal Mohamed Elhassan Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| |
Collapse
|
20
|
Thabti I, Albert Q, Philippot S, Dupire F, Westerhuis B, Fontanay S, Risler A, Kassab T, Elfalleh W, Aferchichi A, Varbanov M. Advances on Antiviral Activity of Morus spp. Plant Extracts: Human Coronavirus and Virus-Related Respiratory Tract Infections in the Spotlight. Molecules 2020; 25:molecules25081876. [PMID: 32325742 PMCID: PMC7221944 DOI: 10.3390/molecules25081876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Viral respiratory infections cause life-threatening diseases in millions of people worldwide every year. Human coronavirus and several picornaviruses are responsible for worldwide epidemic outbreaks, thus representing a heavy burden to their hosts. In the absence of specific treatments for human viral infections, natural products offer an alternative in terms of innovative drug therapies. (2) Methods: We analyzed the antiviral properties of the leaves and stem bark of the mulberry tree (Morus spp.). We compared the antiviral activity of Morus spp. on enveloped and nonenveloped viral pathogens, such as human coronavirus (HCoV 229E) and different members of the Picornaviridae family-human poliovirus 1, human parechovirus 1 and 3, and human echovirus 11. The antiviral activity of 12 water and water-alcohol plant extracts of the leaves and stem bark of three different species of mulberry-Morus alba var. alba, Morus alba var. rosa, and Morus rubra-were evaluated. We also evaluated the antiviral activities of kuwanon G against HCoV-229E. (3) Results: Our results showed that several extracts reduced the viral titer and cytopathogenic effects (CPE). Leaves' water-alcohol extracts exhibited maximum antiviral activity on human coronavirus, while stem bark and leaves' water and water-alcohol extracts were the most effective on picornaviruses. (4) Conclusions: The analysis of the antiviral activities of Morus spp. offer promising applications in antiviral strategies.
Collapse
Affiliation(s)
- Inès Thabti
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
- Laboratoire d’Aridoculture et Cultures Oasiennes, Institut des régions Arides de Médenine, Route el Djorf, Médenine 4119, Tunisia; (W.E.); (A.A.)
| | - Quentin Albert
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
| | - Stéphanie Philippot
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
| | - François Dupire
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
| | - Brenda Westerhuis
- Department of Medical Microbiology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Stéphane Fontanay
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
- INSA de Lyon, Université de Lyon, CNRS, UMR5240, F-69622 Villeurbanne, France
| | - Arnaud Risler
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
| | - Thomas Kassab
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
| | - Walid Elfalleh
- Laboratoire d’Aridoculture et Cultures Oasiennes, Institut des régions Arides de Médenine, Route el Djorf, Médenine 4119, Tunisia; (W.E.); (A.A.)
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia
| | - Ali Aferchichi
- Laboratoire d’Aridoculture et Cultures Oasiennes, Institut des régions Arides de Médenine, Route el Djorf, Médenine 4119, Tunisia; (W.E.); (A.A.)
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France; (I.T.); (Q.A.); (S.P.); (F.D.); (S.F.); (A.R.); (T.K.)
- Correspondence:
| |
Collapse
|
21
|
Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020; 11:139. [PMID: 32117158 PMCID: PMC7026011 DOI: 10.3389/fmicb.2020.00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.
Collapse
Affiliation(s)
- Diana M. Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefanía Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Arriagada
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A. Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adolfo Henríquez
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Cristian Agurto-Muñoz
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Inhibitory Activity of Illicium verum Extracts against Avian Viruses. Adv Virol 2020; 2020:4594635. [PMID: 32411246 PMCID: PMC7212320 DOI: 10.1155/2020/4594635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed at screening the inhibitory activity of Illicium verum extracts against avian reovirus, infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), and infectious laryngotracheitis virus (ILTV). The cytotoxic and antiviral actions of 3 extracts, absolute methanol (100MOH), 50% methanol (50MOH), and aqueous extracts (WA.), were evaluated by MTT assay. The Illicium verum extracts were added to the cultured chick embryo fibroblast (CEF) with tested viruses in three attacks, preinoculation, postinoculation, and simultaneous inoculation. The three extracts showed antiviral inhibitory activity against all tested viruses during simultaneous inoculation and preinoculation except 100MOH and 50MOH that showed no effect against IBDV, thereby suggesting that the extracts have a preventive effect on CEF against viruses. During postinoculation, the extracts exhibited inhibitory effects against NDV and avian reovirus, while no effect against IBDV recorded and only the 100MOH showed an inhibitory effect against ILTV. The initial results of this study suggest that Illicium verum may be a candidate for a natural alternative source for antiviral agents.
Collapse
|
23
|
Anti-herpes simplex type-1 (HSV-1) activity from the roots of Jatropha multifida L. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res 2019; 33:2870-2903. [PMID: 31453658 DOI: 10.1002/ptr.6475] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti-inflammatory, cardio-protective, hepato-protective, neuro-protective, tissue-protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low-cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this "Miracle Tree."
Collapse
Affiliation(s)
- Ashok K Dhakad
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| | - Mohsin Ikram
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Salman Khan
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Vijay V Pandey
- Forest Pathology Division, Forest Research Institute, Dehradun, India
| | - Avtar Singh
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
25
|
Kondel R, Shafiq N, Kaur IP, Singh MP, Pandey AK, Ratho RK, Malhotra S. Effect of Acyclovir Solid Lipid Nanoparticles for the Treatment of Herpes Simplex Virus (HSV) Infection in an Animal Model of HSV-1 Infection. Pharm Nanotechnol 2019; 7:389-403. [PMID: 31465287 DOI: 10.2174/2211738507666190829161737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Acyclovir use is limited by a high frequency of administration of five times a day and low bioavailability. This leads to poor patient compliance. OBJECTIVES To overcome the problem of frequent dosing, we used nanotechnology platform to evaluate the proof of concept of substituting multiple daily doses of acyclovir with a single dose. METHODS Acyclovir was formulated as solid lipid nanoparticles (SLN). The nanoparticles were characterized for particle size, surface charge and morphology and in vitro drug release. The pharmacokinetic and pharmacodynamic of SLN acyclovir were compared with conventional acyclovir in a mouse model. RESULTS SLN showed drug loading of 90.22% with 67.44% encapsulation efficiency. Particle size was found to be of 131 ± 41.41 nm. In vitro drug release showed 100% release in SIF in 7 days. AUC0-∞ (119.43 ± 28.74 μg/ml h), AUMC0-∞ (14469 ± 4261.16 μg/ml h) and MRT (120.10 ± 9.21 h) were significantly higher for ACV SLN as compared to ACV AUC0-∞ (12.22 ± 2.47 μg/ml h), AUMC0-∞ (28.78 ± 30.16 μg/ml h) and MRT (2.07 ± 1.77 h), respectively (p<0.05). In mouse model, a single dose of ACV SLN was found to be equivalent to ACV administered as 400mg TID for 5 days in respect to lesion score and time of healing. CONCLUSION The proof of concept of sustained-release acyclovir enabling administration as a single dose was thus demonstrated.
Collapse
Affiliation(s)
- Ritika Kondel
- Department of Pharmacology, PGIMER, Chandigarh, 160012, India
| | - Nusrat Shafiq
- Department of Pharmacology, PGIMER, Chandigarh, 160012, India
| | - Indu P Kaur
- UIPS, Punjab University, Chandigarh, 160014, India
| | - Mini P Singh
- Department of Virology, PGIMER, Chandigarh, 160012, India
| | | | - Radha K Ratho
- Department of Virology, PGIMER, Chandigarh, 160012, India
| | - Samir Malhotra
- Department of Pharmacology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
26
|
Extract from Moringa oleifera seeds suppresses the epithelial-mesenchymal transition-mediated metastasis of gastric cancer by targeting the metastatic suppressor NDRG1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
27
|
Li W, Wang XH, Luo Z, Liu LF, Yan C, Yan CY, Chen GD, Gao H, Duan WJ, Kurihara H, Li YF, He RR. Traditional Chinese Medicine as a Potential Source for HSV-1 Therapy by Acting on Virus or the Susceptibility of Host. Int J Mol Sci 2018; 19:ijms19103266. [PMID: 30347851 PMCID: PMC6213986 DOI: 10.3390/ijms19103266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the most common virus, with an estimated infection rate of 60–95% among the adult population. Once infected, HSV-1 can remain latent in the host for a lifetime and be reactivated in patients with a compromised immune system. Reactivation of latent HSV-1 can also be achieved by other stimuli. Though acyclovir (ACV) is a classic drug for HSV-1 infection, ACV-resistant strains have been found in immune-compromised patients and drug toxicity has also been commonly reported. Therefore, there is an urge to search for new anti-HSV-1 agents. Natural products with potential anti-HSV-1 activity have the advantages of minimal side effects, reduced toxicity, and they exert their effect by various mechanisms. This paper will not only provide a reference for the safe dose of these agents if they are to be used in humans, referring to the interrelated data obtained from in vitro experiments, but also introduce the main pharmacodynamic mechanisms of traditional Chinese medicine (TCM) against HSV-1. Taken together, TCM functions as a potential source for HSV-1 therapy by direct (blocking viral attachment/absorption/penetration/replication) or indirect (reducing the susceptibility to HSV-1 or regulating autophagy) antiviral activities. The potential of these active components in the development of anti-HSV-1 drugs will also be described.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiao-Hua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Li-Fang Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Guo-Dong Chen
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Molee W, Phanumartwiwath A, Kesornpun C, Sureram S, Ngamrojanavanich N, Ingkaninan K, Mahidol C, Ruchirawat S, Kittakoop P. Naphthalene Derivatives and Quinones from Ventilago denticulata
and Their Nitric Oxide Radical Scavenging, Antioxidant, Cytotoxic, Antibacterial, and Phosphodiesterase Inhibitory Activities. Chem Biodivers 2018; 15:e1700537. [DOI: 10.1002/cbdv.201700537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Wannapha Molee
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Program in Biotechnology; Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Anuchit Phanumartwiwath
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
| | - Chatchai Kesornpun
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
| | - Nattaya Ngamrojanavanich
- Program in Biotechnology; Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
- Department of Chemistry; Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy; Faculty of Pharmaceutical Sciences; Naresuan University; Phitsanulok 65000 Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT); CHE; Ministry of Education; Bangkok Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Kamphaeng Phet 6 Road Laksi, Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT); CHE; Ministry of Education; Bangkok Thailand
| |
Collapse
|
29
|
Gupta S, Jain R, Kachhwaha S, Kothari S. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Abd Rani NZ, Husain K, Kumolosasi E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Front Pharmacol 2018; 9:108. [PMID: 29503616 PMCID: PMC5820334 DOI: 10.3389/fphar.2018.00108] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Moringa is a genus of medicinal plants that has been used traditionally to cure wounds and various diseases such as colds and diabetes. In addition, the genus is also consumed as a source of nutrients and widely used for purifying water. The genus consists of 13 species that have been widely cultivated throughout Asia and Africa for their multiple uses. The purpose of this review is to provide updated and categorized information on the traditional uses, phytochemistry, biological activities, and toxicological research of Moringa species in order to explore their therapeutic potential and evaluate future research opportunities. The literature reviewed for this paper was obtained from PubMed, ScienceDirect, and Google Scholar journal papers published from 1983 to March 2017. Moringa species are well-known for their antioxidant, anti-inflammatory, anticancer, and antihyperglycemic activities. Most of their biological activity is caused by their high content of flavonoids, glucosides, and glucosinolates. By documenting the traditional uses and biological activities of Moringa species, we hope to support new research on these plants, especially on those species whose biological properties have not been studied to date.
Collapse
Affiliation(s)
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
31
|
Abd-Elhakim YM, El Bohi KM, Hassan SK, El Sayed S, Abd-Elmotal SM. Palliative effects of Moringa olifera ethanolic extract on hemato-immunologic impacts of melamine in rats. Food Chem Toxicol 2018; 114:1-10. [PMID: 29438774 DOI: 10.1016/j.fct.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/09/2023]
Abstract
Melamine (MEL) is a widespread food contaminant and adulterant. Moringa olifera is a widely known medicinal plant with various pharmacological properties. Herein, this study aimed to investigate, for the first time, the probable protective or therapeutic role of M. olifera ethanolic extract (MOE) against MEL induced hemato-immune toxic hazards. Fifty Sprague Dawely male rats were orally treated with distilled water, MOE (800 mg/kg bw), MEL (700 mg/kg bw), MOE/MEl or MOE + MEl. Erythrogram and leukogram profiling were evaluated to assess hematological status. Innate immune functions were evaluated via measuring lysozyme levels, nitric oxide concentration, and bactericidal activity of phagocytes. Serum immunoglobulin levels were estimated as indicators of humoral immunity. Histologic and immunohistochemical evaluations of splenic tissues were also performed. The results indicated that MEL caused a significant decline in RBC, Hb, PCV, total WBC, neutrophil, lymphocyte, phagocytes bactericidal activity, lysozyme activity, nitric oxide, total IgM and IgG levels. Also, MEL induced various pathologic lesions in the spleen with strong expression of CD4 and CD8 positive cells. MOE significantly counteracted the former anaemic, leucopenic, innate and humoral depressant effects of MEL particularly at co-exposure. In conclusion, these findings revealed that MOE could be candidate therapy against MEL hemato-immunotoxic impacts.
Collapse
Affiliation(s)
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology Zagazig University, Zagazig, Egypt
| | | | | | | |
Collapse
|
32
|
Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018; 32:811-822. [PMID: 29356205 DOI: 10.1002/ptr.6024] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo studies met the inclusion criteria of this review. The inferences from scientific literature review, focusing on potential therapeutic consequences of medicinal plants on experimental models of HIV, HSV, influenza, hepatitis, and coxsackievirus have ascertained the curative antiviral potential of plants. Fifty-four medicinal plants belonging to 36 different families having antiviral potential were documented. Out of 54 plants, 27 individually belong to particular plant families. On the basis of the work of several independent research groups, the therapeutic potential of medicinal plants against listed common viral diseases in the region has been proclaimed. In this context, the herbal formulations as alternative medicine may contribute to the eradication of complicated viral infection significantly. The current review consolidates the data of the various medicinal plants, those are Sambucus nigra, Caesalpinia pulcherrima, and Hypericum connatum, holding promising specific antiviral activities scientifically proven through studies on experimental animal models. Consequently, the original research addressing the development of novel nutraceuticals based on listed medicinal plants is highly recommended for the management of viral disorders.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Awais Altaf
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Khalil Ahmad
- Department of Eastern Medicine, University College of Conventional Medicine, Islamia University, Bahawalpur, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Suhaila Nasir
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
33
|
Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR. Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. PHARMACEUTICAL BIOLOGY 2017; 55:1093-1113. [PMID: 28198202 PMCID: PMC6130650 DOI: 10.1080/13880209.2017.1288749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 05/02/2023]
Abstract
CONTEXT Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer. OBJECTIVES This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN. METHODS This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables. RESULTS The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis. CONCLUSION Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.
Collapse
Affiliation(s)
- Ihsan N. Zulkipli
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Rajan Rajabalaya
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Adi Idris
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Nurul Atiqah Sulaiman
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Sheba R. David
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| |
Collapse
|
34
|
Complementary and alternative medicine use among elderly patients living with chronic diseases in a teaching hospital in Ethiopia. Complement Ther Med 2017; 35:115-119. [PMID: 29154055 DOI: 10.1016/j.ctim.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The use of complementary and alternative medicine (CAM) among patients with chronic diseases has grown rapidly worldwide. Yet, little has been known about CAM use by elderly patients with chronic diseases in Ethiopia. This study aimed at assessing the prevalence and reasons for CAM utilization among elderly patients living with chronic diseases in Ethiopia. METHODS An institution-based quantitative cross-sectional survey was conducted among elderly patients with chronic disease attending outpatient ambulatory clinics of University of Gondar referral and teaching hospital (UoGRTH). An interviewer-administered and semi-structured questionnaire were utilized to collect the data. RESULT Of the total respondents, 240 (74%) reported the use of CAM, with herbal medicine and spiritual healing being the most commonly utilized CAM modalities (50.4% and 40.8% respectively). Dissatisfaction with conventional therapy (40.8%) and belief in the effectiveness of CAM (30.8%) are the most commonly cited reasons for the use of CAM therapies. Rural residency, higher educational status, higher average monthly income and presence of co-morbidity were positively associated with the use of CAM. CONCLUSION This survey revealed a higher rate of CAM use among elderly patients with chronic diseases, along with a very low rate of disclosing their use to their health care providers. Special attention should be given for these patient population due to the potentially harmful interaction of different herbal remedies with the prescribed medications, thereby predisposing the patient to untoward adverse effects and compromised overall health outcome.
Collapse
|
35
|
Traditional herbal medicine use among people living with HIV/AIDS in Gondar, Ethiopia: Do their health care providers know? Complement Ther Med 2017; 35:14-19. [PMID: 29154059 DOI: 10.1016/j.ctim.2017.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND People living with HIV/AIDS (PLWHA) are increasingly using herbal remedies due to the chronic nature of the disease, the complexities of treatment modalities and the difficulty in adhering to the therapeutic regimens. Yet, research on herbal medicine use in this patient population is scarce in Ethiopia. The present study aimed at investigating the prevalence and factors associated with the use of traditional herbal medicine among PLWHA in Gondar, Ethiopia. METHODS A cross sectional survey was conducted on 360 PLWHA attending the outpatient clinic of University of Gondar referral and teaching hospital from September 1 to 30, 2016. A questionnaire about the socio-demographic, disease characteristics as well as traditional herbal medicine use was filled by the respondents. Descriptive statistics, univariate and multivariate logistic regression analyses were performed to determine prevalence and correlates of herbal medicine use. RESULTS Out of 360 respondents, 255 (70.8%) used traditional herbal medicine. The most common herbal preparations used by PLWHA were Ginger (Zingiber officinale) (47%), Garlic (Allium sativum L.) (40.8%) and Moringa (Moringa stenopetala) (31.4%). Majority of herbal medicine users rarely disclose their use of herbal medicines to their health care providers (61.2%). Only lower educational status was found to be strong predictors of herbal medicine use in the multivariate logistic regression. CONCLUSIONS The use of herbal medicine among PLWHA is a routine practice and associated with a lower educational status. Patients also rarely disclose their use of herbal medicines to their health care providers. From the stand point of high prevalence and low disclosure rate, health care providers should often consult patients regarding herbal medicine use.
Collapse
|
36
|
Brilhante RSN, Sales JA, Pereira VS, Castelo-Branco DDSCM, Cordeiro RDA, de Souza Sampaio CM, de Araújo Neto Paiva M, Santos JBFD, Sidrim JJC, Rocha MFG. Research advances on the multiple uses of Moringa oleifera : A sustainable alternative for socially neglected population. ASIAN PAC J TROP MED 2017; 10:621-630. [DOI: 10.1016/j.apjtm.2017.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/15/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022] Open
|
37
|
Pattern of Traditional Medicine Utilization among HIV/AIDS Patients on Antiretroviral Therapy at a University Hospital in Northwestern Ethiopia: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1724581. [PMID: 28421118 PMCID: PMC5380827 DOI: 10.1155/2017/1724581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 11/30/2022]
Abstract
The objective of this study was to assess traditional, complementary, and alternative medicine (TCAM) utilization pattern among HIV/AIDS patients on antiretroviral therapy at University of Gondar Comprehensive Specialized Hospital. Materials and Methods. Data on sociodemographic profile and clinical and TCAM utilization were collected using a structured, pretested questionnaire from April 01 to May 28, 2014, through interviews with patients. Data on CD4 count, HIV stage, and ART regimen were collected from patient records. Analysis was conducted descriptively using SPSS version 20. Results. Of the 300 participants, 43.7% reported using TCAM, with the largest proportion of them from religious institutions (churches/mosques) (41.22%), followed by home prepared (32.82%) and traditional healers (16.03%). The leading forms of TCAM used were spiritual and herbal therapies constituting 56.49% and 36.64% of the patients, respectively. The most frequently used herbal products included Nigella sativa (22.92%) and Moringa oleifera (20.83%). Most of the patients (73.30%) using TCAM reported improvement in their conditions. Conclusions. TCAM utilization among HIV/AIDS patients on ART was common and different sources and types were used alongside ART, with improvement reported by most. Further research is needed to identify CAM therapies which may be used as adjunct treatments among these patients.
Collapse
|
38
|
Tanamatayarat P. Antityrosinase, antioxidative activities, and brine shrimp lethality of ethanolic extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Dapat E, Jacinto S, Efferth T. Substrate Specificity of Aglaia loheri Active Isolate towards P-glycoprotein in Multidrug-Resistant Cancer Cells. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug resistance (MDR) is a major contributory factor in the failure of chemotherapy. Concrete interpretation of P-glycoprotein (P-gp) substrate specificity, whether a substance is a substrate or an inhibitor, represents an important feature of a compound's pharmaceutical profiling in drug design and development. In this work, the P-gp substrate specificity of Maldi 531.2[M+H]+, a phenol ester from Aglaia loheri Blanco leaves was investigated. This study focuses on the effect of Maldi 531.2[M+H]+ on P-gp ATPase activity, which was examined by measuring the amount of inorganic phosphates (Pi) released as a result of ATP hydrolysis. To test the effects of Maldi 531.2[M+H]+ on MDR activity, an attempt to combine Maldi 531.2[M+H]+ with a potent P-gp substrate such as verapamil was performed. As a result of this combination treatment, two distinct patterns of interaction with P-gp activity were determined by a calcein-acetoxymethyl ester (AM) assay. Depending on the concentratgion, both stimulation and inhibition of MDR activity were observed at certain drug concentrations suggesting biphasic reactions, which can be understood as cooperative stimulation and competitive inhibition, respectively. Verapamil is a strong substrate to P-gp. Substrate specificity of Maldi 531.2[M+H]+ may be less than the substrate specificity of verapamil, but it acts additively together with low concentrations of verapamil in stimulating ATPase activity. On the one hand, verapamil and Maldi 531.2[M+H]+ exerted cooperative stimulation on P-gp. On the other hand, Maldi 531.2[M+H]+ acts as competitive inhibitor at higher concentrations.
Collapse
Affiliation(s)
- Else Dapat
- Department of Biology, University of the Philippines, Ermita, Manila City, Philippines
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Sonia Jacinto
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
40
|
Chassagne F, Hul S, Deharo E, Bourdy G. Natural remedies used by Bunong people in Mondulkiri province (Northeast Cambodia) with special reference to the treatment of 11 most common ailments. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:41-70. [PMID: 27282662 DOI: 10.1016/j.jep.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In this paper we present a comprehensive ethnomedicinal study conducted in Mondulkiri province. Traditional knowledge about natural medicine (plants, animals, mushrooms) was investigated in Cambodia's largest indigenous community: the Bunong people. The survey aims to document the medicinal plant use of this ethnic, by focusing on the eleven most frequent diseases encountered in the area, in order to highlight species that could be recommended in public health programs. MATERIALS AND METHODS During the years 2013 and 2014, 202 villagers were interviewed in 28 villages from the five districts in Mondulkiri. Two types of methodology were employed: (1) an ethnobotanical field survey (walk-in-the-wood interviews) and (2) semi-structured household interviews with a special emphasis on the treatment of 11 most common ailments encountered in the area. Medicinal plants and mushrooms were collected and identified together with medicinal animals. The factor informant consensus (FIC) and fidelity level (FL) were calculated. RESULTS Bunong people use a total of 214 plants belonging to 72 families, 1 mushroom and 22 animal species in their traditional healthcare practices in order to treat 51 different ailments. Among the medicinal plants, Fabaceae was the most predominant family; Chromolaena odorata (L.) R.M. King and H.Rob. (Asteraceae), Zingiber montanum (J.Koenig) Link ex A.Dietr. (Zingiberaceae) and Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) were the most cited medicinal plants; and four ailments (cold/fever, diarrhea, postpartum disorders and stomachache) were described as major ailments in the community. The root was the most important part of plants used, and decoction was the most cited method of preparation. During our survey, we also discovered a "new to science" plant species called Ardisia mondulkiriensis Hul and Chassagne, and we recorded for the second time the plant species recently described, Solanum sakhanii Hul. CONCLUSION Most of the species reported for the treatment of the 11 most frequent ailments have already been proven to be efficient and safe. Furthermore, 10 plant species are reported for the first time as medicinal and some of them are widely used in the community. Further pharmacological and phytochemical investigations should be undergone to assess the pharmaceutical potential of these species. While undergoing considerable changes, Bunong people have maintained extensive traditional medicine knowledge. As this indigenous hill tribe depend mainly on natural remedies for their daily healthcare, environmental preservation is of high importance for the community.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France; Nomad RSI Organization, Doh Kromom Village, Sokhadom Commune, Senmonorom District, Mondulkiri Province, Cambodia.
| | - Sovanmoly Hul
- Muséum National d'Histoire Naturelle (MNHN), Département de Systématique et Évolution, UMR 7205 (ISYEB), Herbier National (P), CP 39, 57 Rue Cuvier, 75231 Paris Cedex 5, France
| | - Eric Deharo
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | | |
Collapse
|
41
|
Matsusaki T, Takeda S, Takeshita M, Arima Y, Tsend-Ayush C, Oyunsuren T, Sugita C, Yoshida H, Watanabe W, Kurokawa M. Augmentation of T helper type 1 immune response through intestinal immunity in murine cutaneous herpes simplex virus type 1 infection by probiotic Lactobacillus plantarum strain 06CC2. Int Immunopharmacol 2016; 39:320-327. [PMID: 27517518 DOI: 10.1016/j.intimp.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022]
Abstract
We previously found that Lactobacillus plantarum strain 06CC2 showed probiotic potential, and its oral administration effectively induced Th1 cytokine production and activated the Th1 immune response associated with intestinal immunity in mice. In this study, to evaluate its potential as a versatile oral adjuvant for treatment of viral infection, we assessed the immunomodulatory activity of 06CC2 on murine cutaneous herpes simplex virus type 1 (HSV-1) infection, in which a major immune defense system is a delayed-type hypersensitivity (DTH) reaction based on activation of the Th1 immune response, in relation to its oral efficacy for alleviation of herpetic symptoms. In the HSV-1 infection model, oral administration of 06CC2 (20mg/mouse) twice daily for seven days starting two days before infection was significantly effective in delaying the development of skin lesions in the early phase of infection and reducing virus yields in the brain on day 4 after infection. In addition, 06CC2 significantly augmented the DTH reaction to inactivated HSV-1 antigen and elevated interferon (IFN)-γ production by HSV-1 antigen from splenocytes. On day 2, natural killer (NK) cell activity was significantly elevated, and the elevation was still observed on day 4. Furthermore, gene expressions of interleukin-12 receptor β2 and IFN-γ in Peyer's patches were augmented on day 4 by 06CC2 administration. Thus, 06CC2 was suggested to alleviate herpetic symptoms in mice in correlation with augmentation of the Th1 immune responses associated with NK cell activity through intestinal immunity. Strain 06CC2 may be a versatile oral adjuvant to activate Th1 immune response.
Collapse
Affiliation(s)
- Tatsuya Matsusaki
- Research Division, Minami Nihon Rakuno Kyodo Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Shiro Takeda
- Research Division, Minami Nihon Rakuno Kyodo Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan; Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahiko Takeshita
- Research Division, Minami Nihon Rakuno Kyodo Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Yuo Arima
- Research Division, Minami Nihon Rakuno Kyodo Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Chuluunbat Tsend-Ayush
- School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar 15160, Mongolia
| | | | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Wataru Watanabe
- Department of Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
| |
Collapse
|
42
|
Chatsumpun N, Chuanasa T, Sritularak B, Lipipun V, Jongbunprasert V, Ruchirawat S, Ploypradith P, Likhitwitayawuid K. Oxyresveratrol: Structural Modification and Evaluation of Biological Activities. Molecules 2016; 21:489. [PMID: 27104505 PMCID: PMC6273646 DOI: 10.3390/molecules21040489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022] Open
Abstract
Oxyresveratrol (2,4,3′,5′-tetrahydroxystilbene, 1), a phytoalexin present in large amounts in the heartwood of Artocarpus lacucha Buch.-Ham., has been reported to possess a wide variety of biological activities. As part of our continuing studies on the structural modification of oxyresveratrol, a library of twenty-six compounds was prepared via O-alkylation, aromatic halogenation, and electrophilic aromatic substitution. The two aromatic rings of the stilbene system of 1 can be chemically modulated by exploiting different protecting groups. Such a strategy allows for selective and exclusive modifications on either ring A or ring B. All compounds were evaluated in vitro for a panel of biological activities, including free radical scavenging activity, DNA protective properties, antiherpetic activity, inhibition of α-glucosidase and neuraminidase, and cytotoxicity against some cancer cell lines. Several derivatives were comparably active or even more potent than the parent oxyresveratrol and/or the appropriate positive controls. The partially etherified analogs 5′-hydroxy-2,3′,4-trimethoxystilbene and 3′,5′-dihydroxy-2,4-dimethoxystilbene demonstrated promising anti-herpetic and DNA protective activities, offering new leads for neuropreventive agent research, whereas 5′-hydroxy-2,3′,4,-triisopropoxystilbene displayed anti-α-glucosidase effects, providing a new lead molecule for anti-diabetic drug development. 3′,5′-Diacetoxy-2,4-diisopropoxystilbene showed potent and selective cytotoxicity against HeLa cancer cells, but the compound still needs further in vivo investigation to verify its anticancer potential.
Collapse
Affiliation(s)
- Nutputsorn Chatsumpun
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Vimolmas Lipipun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Vichien Jongbunprasert
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, and Program in Chemical Biology, Chulabhorn Graduate Institute, 54 Kampaeng Phet 6 Road, Bangkok 10210, Thailand.
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, and Program in Chemical Biology, Chulabhorn Graduate Institute, 54 Kampaeng Phet 6 Road, Bangkok 10210, Thailand.
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
Kurokawa M, Wadhwani A, Kai H, Hidaka M, Yoshida H, Sugita C, Watanabe W, Matsuno K, Hagiwara A. Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves. Phytother Res 2016; 30:797-804. [PMID: 26814058 DOI: 10.1002/ptr.5580] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 11/30/2015] [Accepted: 12/29/2015] [Indexed: 11/12/2022]
Abstract
Moringa oleifera Lam. is used as a nutritive vegetable and spice. Its ethanol extract has been previously shown to be significantly effective in alleviating herpetic skin lesions in mice. In this study, we evaluated the alleviation by the aqueous extract (AqMOL) and assessed the mode of its anti-herpetic action in a murine cutaneous herpes simplex virus type 1 (HSV-1) infection model. AqMOL (300 mg/kg) was administered orally to HSV-1-infected mice three times daily on days 0 to 5 after infection. AqMOL significantly limited the development of herpetic skin lesions and reduced virus titers in the brain on day 4 without toxicity. Delayed-type hypersensitivity (DTH) reaction to inactivated HSV-1 antigen was significantly stronger in infected mice administered AqMOL and AqMOL augmented interferon (IFN)-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice at 4 days post-infection. AqMOL administration was effective in elevating the ratio of CD11b(+) and CD49b(+) subpopulations of splenocytes in infected mice. As DTH is a major host defense mechanism for intradermal HSV infection, augmentation of the DTH response by AqMOL may contribute to their efficacies against HSV-1 infection. These results provided an important insights into the mechanism by which AqMOL activates cellular immunity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, Ootacamund, 643-001, India
| | - Hisahiro Kai
- Department of Pharmaceutical Health Sciences, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Muneaki Hidaka
- Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Wataru Watanabe
- Department of Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Koji Matsuno
- Department of Pharmaceutical Health Sciences, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | | |
Collapse
|
44
|
Ahadian H, Akhavan Karbassi MH, Ghaneh S, Hakimian R. Therapeutic Effect of Melissa Gel and 5% Acyclovir Cream in Recurrent Herpes labialis: A Double-Blind Randomized Clinical Trial. Jundishapur J Nat Pharm Prod 2015. [DOI: 10.17795/jjnpp-26160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
JUNG ILLAE, LEE JUHYE, KANG SECHAN. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol Lett 2015; 10:1597-1604. [PMID: 26622717 PMCID: PMC4533244 DOI: 10.3892/ol.2015.3482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44-52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers.
Collapse
Affiliation(s)
- IL LAE JUNG
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - JU HYE LEE
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - SE CHAN KANG
- Department of Life Science, Gachon University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
46
|
Lomarat P, Chancharunee S, Anantachoke N, Kitphati W, Sripha K, Bunyapraphatsara N. Bioactivity-guided Separation of the Active Compounds in Acacia Pennata Responsible for the Prevention of Alzheimer's Disease. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the health benefits of plants used in Thai food, specifically Acacia pennata Willd., in Alzheimer's prevention. A. pennata twigs strongly inhibited β-amyloid aggregation. Bioactivity-guided separation of the active fractions yielded six known compounds, tetracosane (1), 1-(heptyloxy)-octadecane (2), methyl tridecanoate (3), arborinone (4), confertamide A (5) and 4-hydroxy-1-methyl-pyrrolidin-2-carboxylic acid (6). The structures were determined by spectroscopic analysis. Biological testing revealed that tetracosane (1) was the most potent inhibitor of β-amyloid aggregation, followed by 1-(heptyloxy)-octadecane (2) with IC50 values of 0.4 and 12.3 μM. Methyl tridecanoate (3), arborinone (4) and 4-hydroxy-1-methyl-pyrrolidin-2-carboxylic acid (6) moderately inhibited β-amyloid aggregation. In addition, tetracosane (1) and methyl tridecanoate (3) weakly inhibited acetylcholinesterase (AChE). These results suggested that the effect of A pennata on Alzheimer's disease was likely due to the inhibition of β-amyloid aggregation. Thus A. pennata may be beneficial for Alzheimer's prevention.
Collapse
Affiliation(s)
- Pattamapan Lomarat
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Sirirat Chancharunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
47
|
Kunsorn P, Ruangrungsi N, Lipipun V, Khanboon A, Rungsihirunrat K, Chaijaroenkul W. The identities and anti-herpes simplex virus activity of Clinacanthus nutans and Clinacanthus siamensis. Asian Pac J Trop Biomed 2015; 3:284-90. [PMID: 23620852 DOI: 10.1016/s2221-1691(13)60064-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To distinguish the difference among the Clinacanthus nutans (Burm. f.) Lindau (C. nutans) and Clinacanthus siamensis Bremek (C. siamensis) by assessing pharmacognosy characteristics, molecular aspect and also to evaluate their anti-herpes simplex virus (HSV) type 1 and type 2 activities. METHODS Macroscopic and microscopic evaluation were performed according to WHO Geneva guideline. Stomatal number, stomatal index and palisade ratio of leaves were evaluated. Genomic DNA was extracted by modified CTAB method and ITS region was amplified using PCR and then sequenced. Dry leaves were subsequently extracted with n-hexane, dichloromethane and methanol and antiviral activity was performed using plaque reduction assay and the cytotoxicity of the extracts on Vero cells was determined by MTT assay. RESULTS Cross section of midrib and stem showed similar major components. Leaf measurement index of stomatal number, stomatal index and palisade ratio of C. nutans were 168.32±29.49, 13.83±0.86 and 6.84±0.66, respectively, while C. siamensis were 161.60±18.04, 11.93±0.81 and 3.37±0.31, respectively. The PCR amplification of ITS region generated the PCR product approximately 700 bp in size. There were 34 polymorphisms within the ITS region which consisted of 11 Indels and 23 nucleotide substitutions. The IC50 values of C. nutans extracted with n-hexane, dichloromethane and methanol against HSV-1 were (32.05±3.63) µg/mL, (44.50±2.66) µg/mL, (64.93±7.00) µg/mL, respectively where as those of C. siamensis were (60.00±11.61) µg/mL, (55.69±4.41) µg/mL, (37.39±5.85) µg/mL, respectively. Anti HSV-2 activity of n-hexane, dichloromethane and methanol C. nutans leaves extracts were (72.62±12.60) µg/mL, (65.19±21.45) µg/mL, (65.13±2.22) µg/mL, respectively where as those of C. siamensis were (46.52±4.08) µg/mL, (49.63±2.59) µg/mL, (72.64±6.52) µg/mL, respectively. CONCLUSIONS The combination of macroscopic, microscopic and biomolecular method are able to authenticate these closely related plants and both of them have a potency to be an anti-HSV agent.
Collapse
Affiliation(s)
- Paween Kunsorn
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
48
|
In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
49
|
Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One 2014; 9:e95492. [PMID: 24748376 PMCID: PMC3991666 DOI: 10.1371/journal.pone.0095492] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera has been regarded as a food substance since ancient times and has also been used as a treatment for many diseases. Recently, various therapeutic effects of M. oleifera such as antimicrobial, anticancer, anti-inflammatory, antidiabetic, and antioxidant effects have been investigated; however, most of these studies described only simple biological phenomena and their chemical compositions. Due to the increasing attention on natural products, such as those from plants, and the advantages of oral administration of anticancer drugs, soluble extracts from M. oleifera leaves (MOL) have been prepared and their potential as new anticancer drug candidates has been assessed in this study. Here, the soluble cold Distilled Water extract (4°C; concentration, 300 µg/mL) from MOL greatly induced apoptosis, inhibited tumor cell growth, and lowered the level of internal reactive oxygen species (ROS) in human lung cancer cells as well as other several types of cancer cells, suggesting that the treatment of cancer cells with MOL significantly reduced cancer cell proliferation and invasion. Moreover, over 90% of the genes tested were unexpectedly downregulated more than 2-fold, while just below 1% of the genes were upregulated more than 2-fold in MOL extract-treated cells, when compared with nontreated cells. Since severe dose-dependent rRNA degradation was observed, the abnormal downregulation of numerous genes was considered to be attributable to abnormal RNA formation caused by treatment with MOL extracts. Additionally, the MOL extract showed greater cytotoxicity for tumor cells than for normal cells, strongly suggesting that it could potentially be an ideal anticancer therapeutic candidate specific to cancer cells. These results suggest the potential therapeutic implications of the soluble extract from MOL in the treatment of various types of cancers.
Collapse
|
50
|
Khyade MS, Kasote DM, Vaikos NP. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:1-18. [PMID: 24486598 DOI: 10.1016/j.jep.2014.01.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don are two vital medicinal plant species (family: Apocynaceae). In India, the therapeutic use of Alstonia scholaris has been described in both codified and non-codified drug systems for the treatment of malaria, jaundice, gastrointestinal troubles, cancer and in many other ailments. Other species, Alstonia macrophylla has been used in conventional medicines in Thailand, Malaysia and Philippines as a general tonic, aphrodisiac, anticholeric, antidysentery, antipyretic, emmenagogue, and vulnerary agents. In India, Alstonia macrophylla is used as a substitute for Alstonia scholaris in various herbal pharmaceutical preparations. However, one certainly cannot evaluate the truthfulness of a practice (i.e. in scientific terms). In this article we discuss and summarize comparative data about traditional uses, phytochemistry, pharmacology and toxicity of Alstonia scholaris and Alstonia macrophylla. Moreover, in order to unfold future research opportunities, lacunae in the present knowledge are also highlighted. MATERIALS AND METHODS Literature about Alstonia scholaris and Alstonia macrophylla was collected by using electronic and library search. Additionally, referred books on traditional medicine and ethnopharmacology were also utilized for receiving traditional records about both the plant species. RESULTS Both Alstonia scholaris and Alstonia macrophylla are rich in different types of bioactive alkaloids. So far, broad spectrum of in vitro and in vivo biological and pharmacological activities have been reported to both the species. Amongst them, antimicrobial and anticancer activities were promising. CONCLUSIONS The use of Alstonia macrophylla as a substitute for Alstonia scholaris is not at all justifiable as both the species are distinct from each other in their phytochemistry and pharmacology. Further detail chemical fingerprinting and metabolic studies of these two species are warranted to prevent their mutual adulteration most importantly in the context of commercial preparations.
Collapse
Affiliation(s)
- Mahendra S Khyade
- Department of Botany, S. N. Arts, D. J. Malpani Commerce and B.N. Sarda Science College, Sangamner 422605, Maharashtra, India.
| | - Deepak M Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Nityanand P Vaikos
- Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India
| |
Collapse
|